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Abstract—Emission-based attenuation correction (AC) meth-
ods offer the possibility of overcoming quantification errors
induced by conventional MR-based approaches in PET/MR
imaging. However, the joint problem of determining AC and the
activity of interest is strongly ill-posed in non-TOF PET. This
can be improved by exploiting the extra information arising
from low energy window photons, but the feasibility of this
approach has only been studied with relatively simplistic analytic
simulations so far. This manuscript aims to address some of the
remaining challenges needed to handle realistic measurements; in
particular, the detection efficiency (“normalisation”) estimation
for each energy window is investigated. An energy-dependent
detection efficiency model is proposed, accounting for the pres-
ence of unscattered events in the lower energy window due
to detector scatter. Geometric calibration factors are estimated
prior to the reconstruction for both scattered and unscattered
events. Different reconstruction methods are also compared.
Results show that geometric factors differ markedly between
the energy windows and that our analytical model correspond
in good approximation to Monte Carlo simulation; the multiple
energy window reconstruction appears sensitive to input/model
mismatch. Our method applies to Monte Carlo generated data
but can be extended to measured data. This study is restricted
to single scatter events.

Index Terms—Positron Emission Tomography, PET-MR, At-
tenuation Estimation, Iterative Methods, Monte Carlo, Optimi-
sation, Scatter.
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MULTI-MODALITY scanners have recently made great
strides towards improving reliability and accuracy

of medical imaging. Hybrid Positron Emission Tomography
(PET) and Computed Tomography (CT) (PET/CT) scanners
make use of the anatomical information from the CT for
the attenuation correction of the PET activity distribution and
also for other clinical staging and diagnostic processes [1].
At present, PET/CT is generally the modality of choice in
many clinical conditions. Additionally, new multi-modality
PET scanners have become available in the last decade, such as
PET/MR scanners. Where PET/CT performs sequential PET-
CT data acquisitions, a key strength of PET and Magnetic
Resonance (MR) (PET/MR) is the capability for simultaneous
data acquisition of its two modalities. Furthermore, PET/MR
combines the unique features of MR (i.e. excellent soft tis-
sue contrast, diffusion-weighted imaging, functional Magnetic
Resonance Imaging (fMRI), and other specialised sequences)
with the quantitative functional information that is provided by
PET [1], [2]. Some specific clinical applications - especially
in brain studies - may favour PET/MR over PET/CT; such as
patients undergoing repeated imaging in a limited time with
the need to keep radiation dose as low as possible.

A well-known challenge of PET/MR is however the dif-
ficulty to find an accurate and reliable method to estimate
PET attenuation maps without relying on a CT acquisition
or without a transmission scan. PET attenuation coefficients
depend on the electron density of the tissues, whereas the MR
signal is related to both proton density and longitudinal (T1)
and transverse (T2 and T2*) magnetisation relaxation times.
At present, there is no straightforward transformation able to
map MR intensities into PET attenuation values [3].

Segmentation-based methods are the most frequently used
approaches for PET/MR attenuation correction in clinical
practice. The MR image is usually segmented into different
tissue or attenuation areas (i.e., bone, fat, lung, and air)
and population-based attenuation coefficients are assigned to
these regions. The main inaccuracies of this approach arise
from the inability to account for variations in attenuation
coefficients between subjects [2]. For tissues such as the
lung, where attenuation coefficient variation is high [4], this
can significantly affect PET quantification [5]. Lung PET/MR
attenuation correction is still an ongoing field of research.

Several techniques estimate the attenuation image from the
PET emission data - known as emission-based methods -
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sometimes incorporating MR images as prior information.
These techniques might also be able to overcome variations in
lung density due to respiration [5], [6]. A common emission-
based method to obtain the attenuation map from PET data
is Maximum Likelihood reconstruction of Activity and Atten-
uation (MLAA) [7]. Unfortunately, a stable solution for this
approach only exists when Time-Of-Flight (TOF) information
is available, in which case the activity can then be determined
up to an unknown scaling factor [8]. This global constant can
be found by imposing known attenuation values in certain
regions, such as soft tissue [9].

In non-TOF MLAA instead, the estimated activity and at-
tenuation maps still suffer from cross-talk artefacts [10], where
features of the activity map propagate into the attenuation map
and vice versa. Therefore, further solutions need to be found
for reconstructing accurate PET images from non-TOF data.

Several authors have attempted to overcome cross-talk in
non-TOF PET by exploiting the energy information contained
in multi-energy window acquired data. This was first inves-
tigated in Single Photon Emission Computed Tomography
(SPECT) [11], [12] and then extended to the case of PET [13]–
[15]. However, these studies were conducted based on detec-
tion efficiency models ignoring detector scatter and neglecting
the presence of true events in the low-energy windows. As a
consequence, the aforementioned PET approaches were only
tested on relatively simplistic analytical simulations and did
not investigate the effects of mismatch between the acquisi-
tion model and the actual measurement process. Indeed, the
performance of an iterative reconstruction method can strongly
depend on the accuracy and reliability of the forward model
of the data.

For energy-based PET image reconstruction methods, an
important factor is played by the dependency of the detector
response on the energy of the incoming gamma photons.
A common method to model the energy response of PET
detectors in the photopeak window is to use an energy-
dependent Gaussian broadening [16], [17]. However, for either
wider energy windows or in the case of energy windows placed
below the photopeak, this approximation is inaccurate. In
practice, scatter of the gamma photons within the scintillation
crystal will result in partial energy deposition. Consequently,
the presence of unscattered events in the low energy windows
can occur [18].

The problem of taking these differences in detection effi-
ciency into account for a photopeak energy window was first
investigated in [18] where different normalisation approaches
were proposed. This study showed that scatter estimation and
detector-efficiency normalisation cannot be treated as indepen-
dent issues. It also opens several questions on the importance
of normalisation factors for multiple energy windows.

The current work aims to address some of the challenges
encountered in multiple energy windows PET reconstruction.
Overall, the following improvements on previous research are
provided: (i) incorporation of detector scatter in the energy-
dependent detection efficiency model, (ii) accounting for the
presence of unscattered events in the low energy windows,
(iii) estimation of normalisation sinograms for each energy
window prior to the reconstruction, (iv) realistic input/output

for the reconstruction algorithm, (v) investigation of the effects
of inaccuracies in the detection efficiency model.

This manuscript is organised as follows. We first cover the
mathematical theory relevant to the framework, then give an
overview of the proposed methodology (with some details
in the appendices). We finally present results from GATE
Monte Carlo simulated data and provide a comparison of the
proposed method against MLAA from a single energy window
acquisition. Similar to previous published work [15], [19], the
current study is restricted to single scatter only.

II. THEORY

A. Statistical model of the measured data

The primary assumption of this work is that the observed
counts gvw in each energy window pair (v, w) ∈ {1, . . . , nE}2
can be described as a sum of independent Poisson processes
with expected value ḡvw:

ḡvw(λ,µ) = ḡunsc
vw (λ,µ) + ḡsc

vw(λ,µ) + ḡr
vw (1)

where λ ∈ Rnv and µ ∈ Rnv are vectors that represent the
activity and attenuation distributions of the object, respectively,
ḡunsc
vw denotes the expected unscattered events, ḡsc

vw indicates
the expected single scatter events and ḡrvw is a background
term incorporating randoms. Both ḡunsc

vw and ḡsc
vw are formu-

lated below.
1) Unscattered Events: The expected unscattered events

ḡunsc
vw (λ,µ) are modelled as follows:

ḡunsc
vw (λ,µ) = Avw(µ)λ (2)

where Avw(µ) ∈ RnD×nV
+ is a linear transformation mapping

from image space to data space, describing the probability that
an emission occurring in voxel u ∈ {1, . . . , nV} is detected by
a pair of detectors (h, k) ∈ {1, . . . , nD}2 for a given energy
window pair (v, w):

Avw(µ) = Ψvw(511, 511)D [exp(−Lµ)]L (3)

with D[·] indicating a diagonal matrix, Ψvw(511, 511) being
the diagonal matrix of efficiency factors for 511 keV incoming
photons and L computing the line integral operation. In this
work, dead-time effects are not included in the model.

2) Scattered Events: A detailed formulation for the ex-
pected single scatter events ḡsc

vw(θ) now follows. See [15] for
more information. For computational efficiency, we will model
the scatter in low resolution [16], [20], [21].

We introduce here the variable θ = (λ,µ). Let P ∈
RnD×nD

′

+ and R ∈ RnV
′×nV

+ be prolongation and restriction
operators, respectively. Both operators are linear. The former
maps a sinogram from low resolution (nD

′ total detector pairs)
to high resolution (nD total detector pairs). The latter maps an
image from high resolution (nV voxels) to low resolution (nV

′

voxels). For simplicity, we will write R θ for (R λ,R µ).
Also let nD

′ = γ nD and nV = η nV
′, with γ and η defining

the downsampling and upsampling factors in sinogram and
image space, respectively. Then, the scatter component ḡsc

vw(θ)
is given by the following relationship:
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ḡsc
vw(θ) = P Svw(θ̃) (4)

where:

θ̃ = R θ (5)

and Svw(θ̃) ∈ RnD
′×nV

′

+ is the forward operator comput-
ing the expected (single) scatter at an energy window pair
(v, w) for every pair of (down-sampled) detectors (i, j) ∈
{1, . . . , nD

′}2. An element (i, j) is such that:

[Svw(θ̃)]ij =

nS∑
s=1

g̃sc
vwijs(θ̃) (6)

where s is an index over scatter points and nS is the total
number of scatter points. Details on the scatter model, includ-
ing the proposed energy-dependent detection efficiency (now
accounting for detector scatter) can be found in appendix A
and B.

B. Objective Function for joint activity and attenuation esti-
mation

The log-likelihood of the measured data gvw at a certain
energy window pair (v, w) is given by:

L (gvw | ḡvw(λ,µ)) =
nD∑
h=1

nD∑
k=1

(
gvwhk log ḡvwhk(λ,µ)− ḡvwhk(λ,µ)

)
(7)

The joint maximum-likelihood reconstruction of λ and µ is
achieved by solving:

(λ̂, µ̂) = arg max
λ≥0,µ≥0

Ltot(g | ḡ(λ,µ)) (8)

with:

Ltot =

nE∑
v=1

nE∑
w=1

Lvw (9)

The gradient of the objective function Ltot is given in
Appendix C.

III. METHODS

A. Maximum Likelihood Estimation of the Detection Efficiency
Factors

Here we propose a method to estimate detection efficiency
correction factors for the normalisation of PET emission data
from multiple-energy windows, applicable to Monte Carlo
data. We extended [22] by accounting for the variation in
detection efficiency for each energy window vw of both
scattered and unscattered events:

ḡvw = ḡunsc
vw (Ψunsc

vw ) + ḡsc
vw(Ψsc

vw) (10)

where:
ḡunsc
vw (Ψunsc

vw ) = Ψunsc
vw � f̄unsc

vw , (11)

ḡsc
vw(Ψsc

vw) = Ψsc
vw � f̄ sc

vw , (12)

f̄vw is the forward projection that includes an energy-
dependent detection efficiency model (Appendix A) and �
denotes element-wise multiplication. The efficiency factors
Ψunsc
vw and Ψsc

vw are defined as:

Ψunsc
ij = εiεjτ

unsc
ij

Ψsc
ij = εiεjτ

sc
ij

(13)

where (i, j) is a detector pair in the scanner, εiεj indicates crys-
tal efficiency factors (over-and-above the energy-dependent
model) and τij are geometric factors accounting for the change
in efficiency due to the radial position of the detector pair and
relative position of each detector pair within a block; it also
depends on the angle of incidence of the incoming photon,
which is the reason why we differentiate between gunsc

ij and
gsc
ij .

In the following, we will refer to 1
Ψ as normalisation factors

and Ψ as efficiency factors.
Now let us assume in this section that we can identify if an

event has been scattered or not, such as feasible in Monte Carlo
data. Then, gunsc

vw and gsc
vw denote respectively the measured

unscattered and scatter events from a Monte Carlo simulation.
A log-likelihood function L can be then defined, denoting the
probability that measured data g are observed, given a known
object and the (unknown) efficiency factors Ψ. By extending
[22], the efficiency factors can be estimated for each energy
window pair (v, w) with a ML estimation:

Ψ̂unsc
vw = arg max

Ψunsc
vw

[
Lvw(gunsc

vw | ḡunsc
vw (Ψunsc

vw ))

]
(14)

Ψ̂sc
vw = arg max

Ψsc
vw

[
Lvw(gsc

vw | ḡsc
vw(Ψsc

vw))

]
(15)

Please note that in the GATE simulations used in this
manuscript, the efficiencies εiεj of all the crystals were
identical. Therefore, the optimisation problem reduces to the
estimation of the geometric factors. Furthermore, in agreement
with [22] we imposed symmetry between blocks, allowing us
to reduce noise in the estimated normalisation factors.

B. Image Reconstruction Algorithms

The following section covers the joint reconstruction algo-
rithms used in this manuscript, giving an overview of both
multiple and single energy window approaches.

1) Multiple Energy Window Approach:
a) aMLAA-EB-S: The cost function is obtained by sum-

ming the log-likelihoods of each energy window pair (9).
The activity and the attenuation estimates are updated using
an alternating scheme using Bounded Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (LBFGSB) optimisation [23]
in each step:

µk+1 = µk − ξµBµ∇µ
[
Ltot(λk,µk)− βµUµ(µk)]

λk+1 = λk − ξλBλ∇λ
[
Ltot(λk,µk+1)− βλUλ(λk)]

(16)
where ∇λLtot and ∇µLtot are the gradients of the objective
function with respect to the current estimate of the activity and
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attenuation image, respectively, Bλ and Bµ approximate the
inverse Hessian matrix of L, in λ and µ respectively, ξµ and
ξλ are the step-size, and U(µ) are penalty functions weighted
by global strength parameters βλ and βµ, respectively. For the
results presented in this paper, the Parallel Level Sets (PLS)
prior [24] was chosen as penalty term (Sec. IV-F2).

Pseudo code for Energy-Based Alternating Maximum Like-
lihood reconstruction of Activity and Attenuation with photo-
peak Scatter re-estimation (aMLAA-EB-S) is shown in Algo-
rithm 1.

Algorithm 1: Pseudo-code for aMLAA-EB-S.
Input: gUU, gUL, gLU, gLL, λinit , µinit , ĝsc,init

UU ;
Output: Estimated activity and attenuation images λest, µest;

λ0
0 ← λinit ;
µ0

0 ← µinit ;
ĝsc,0

UU ← ĝsc,init
UU ;

for t = 0, . . . ,MaxOuterIter− 1 do

for k = 1, . . . ,MaxInnerIterMu− 1 do

µt
k ← LBFGS-B(gUU, gUL, gLU, gLL, λt

0, µt
k−1)

end
µt+1

0 ← µt
MaxInnerIterMu−1;

ĝsc, t+1
UU ← SSS(λt

0, µt+1
0 );

for k = 1, . . . ,MaxInnerIterLambda− 1 do

λt
k ← LBFGS-B(gUU, gUL, gLU, gLL, λt

k−1, µt+1
0 );

end

λt+1
0 ← λt

MaxInnerIterLambda−1;
end
λest ← λMaxOuterIter−1;
µest ← µMaxOuterIter−1;

. Please note that U indicates the upper energy window and
L the lower energy window with nE = 2.

2) Single Energy Window Approach:
a) aMLAA-S: The cost function of alternating Maximum

Likelihood reconstruction of Activity and Attenuation with
photopeak Scatter re-estimation (aMLAA-S) is obtained from
(9) with nE = 1. The optimisation framework follows the one
from aMLAA-EB-S.

b) LBFGS-AC: An LBFGS emission reconstruction us-
ing the true attenuation map (LBFGS-AC) was used as gold-
standard comparison. The algorithm outputs an estimate of the
activity image from the following inputs: (i) ground truth at-
tenuation image µtrue, (ii) photopeak window projection data
gUU. The photopeak scatter is re-estimated during iterations.

c) LBFGS-MRAC: An LBFGS emission reconstruction
using the MRAC attenuation map (LBFGS-MRAC) was also
computed. The algorithm outputs an estimate of the activity
image from the following inputs: (i) MRAC attenuation image
µinit, (ii) photopeak window projection data gUU. The pho-
topeak scatter is re-estimated during iterations. The µ-map is
not updated over iterations as it would be the case for activity
reconstruction only.

IV. EVALUATION

A. GATE simulation of a Siemens mMR Biograph

Simulations of a PET scanner similar to the Siemens mMR
Biograph [25] were conducted based on a GEANT Application
Tomography Emission (GATE) Monte Carlo simulation [26]
(GATE 8.0 and Geant4 10.4). The PET system includes 64
rings, with each containing 56 blocks. Each block consists of
1x8x9 Lutetium Oxyorthosilicate (LSO) crystals. Please note
that the real mMR uses a 1x8x8 block; therefore, the gaps
between the detector blocks are artificially removed in our
simulations. Eight blocks are placed in the axial direction,
resulting in a total of 64 rings and 504 detector per ring. The
transaxial Field Of View (FOV) is 65.6 cm. The energy reso-
lution is set to 14.5%, according to the mMR characteristics.

Recent PET/CT scanners - such as the Siemens Biograph
Vision and the GE Discovery MI - have the capability of
a multiple energy acquisition in experimental mode. In the
following, we have simulated the possibility of measuring
two energy windows. Specifically, U = 460 − 570 keV,
L = 350 − 460 keV. Therefore, the list-mode GATE files
were unlisted into four sinograms (gUU, gUL, gLU, gLL), as
would be the case for a two-energy window acquisition. For
this study, gLL = 0. The unlisting procedure was implemented
on a private fork of STIR [27]. Please note that only direct
sinograms are used in the results of this manuscript.

B. STIR acquisition modelling

We used a ray-tracing model with 344 tangential positions,
252 views, 64 rings and 504 detectors per ring.

The scatter component is computed at low resolution with
21 views, 31 tangential positions and 8 rings and then up-
sampled with a linear interpolation to full resolution via the
operator P (Sec. II-A). Simulations use in-plane detector pairs
only but out-of-plane scatter points were included. The energy
resolution was set to 14% for 511 keV photons.

C. Energy-Dependent Detection Efficiency Fitting

A point source of 511 keV located at the centre of the
scanner was used to generate the training set data.

The Python SciPy [28] library was used to fit the proposed
detection efficiency model (Appendix A) to the GATE simu-
lation. Once the parameters of the model were fit, the model
was tested with a GATE data-set from a point source emitting
370 keV photons.

D. Estimation of Efficiency Factors

A 3D volume of a cylindrical phantom with elliptical section
(covering the region occupied by the XCAT 3D volume) was
generated. Image dimension and voxel size were respectively
120x120x64 and 0.4x0.4x0.40625 cm3. The attenuation mate-
rial was set to lung tissue defined in the default GATE database
(µ511 = 0.0247 cm−1).

A maximum-likelihood estimation of efficiency factors for
PET detectors was conducted for both scattered and unscat-
tered events: Ψunsc

vw and Ψsc
vw. In particular, they were obtained

by comparing GATE simulated data (Sec. IV-A) to an estimate
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Fig. 1. 3D XCAT Thorso Phantom. From left to right: MRAC with 15 %
decreasing attenuation value (See Sec. IV-F3), true attenuation image, true
activity image, attenuation mask. First row: axial view. Second row: coronal
view.

of the projection data using the forward model in Sec. II-A,
obtained with STIR (Sec. IV-B).

The efficiency factors of the true counts in the region outside
the support of the activity image are undefined and were
therefore set to 0.

E. XCAT Simulation - Comparison in Sinogram Space

A 3D volume from the XCAT torso phantom [29] was
generated, cropped to a 120x120x64 matrix with voxel size
of 0.4x0.4x0.40625 cm3. Both axial and coronal views of the
phantom are shown in Fig. 1. The distribution represents the
normalised radioactivity distribution corresponding to a static
FDG acquisition.

GATE simulations from the input XCAT voxelised image
were performed as in Sec. IV-A. Sinograms for UU, UL and
LU from GATE simulations were obtained via unlisting the
GATE root file into multiple energy window sinograms. STIR
sinograms were obtained as explained in Sec. IV-B from the
forward model in Sec. II-A and the detection efficiency model
in Appendix A.

F. Reconstruction parameters

The maximum number of inner iterations for the attenuation
update (MaxInnerIterMu) was set to 5, whilst the one for the
activity (MaxInnerIterLambda) was set to 12. The maximum
number of outer iterations was set to 30. Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (LBFGS) stopping crite-
ria were set to the default values for the implementation from
[30]. In the current results, lung segmentation was incorporated
in the algorithm by only updating the attenuation values within
the inner cylinder/lung mask during iterations. The mask
extends beyond the exact lung edges (Fig. 1). This constraint is
not used for the emission update, for which we only assumed
to know the support of the activity image as in [15].

1) Heuristic scaling factor: A heuristic global scaling fac-
tor ζ = 0.93 was incorporated in the low-energy window
normalisation so that the ratio between the expected and
measured counts was equal to 1. The reconstruction was
performed both with and without scaling factor to assess the
effect of model mismatch.

2) Regularisation parameters: The MRAC (Fig. 1) image
was used as anatomical image for the PLS prior [24].

For aMLAA-EB-S reconstructions, the PLS prior was used
on both activity and attenuation image estimates. The penalty

strength βµ of the PLS prior on the attenuation image was set
to 80; the penalty strength βλ of the PLS prior on the activity
image was assigned to the value or 5. Smoothing parameters
in [24] were both set to 0.03.

For reconstructions from UU windows only (aMLAA-S,
LBFGS-AC and LBFGS-MRAC), the penalty strength was
reduced by a factor f = LUU

LUU+LUL+LLU
. The log-likelihood

values were computed at the ground truth images.
3) Initial conditions: The initial attenuation image

(“MRAC”) was generated by decreasing the lung attenuation
values by 15% with respect to the ground truth. The attenua-
tion map was perfectly aligned with the activity image.

The reconstruction was initialised with an activity estimate
obtained by iterating between OSEM (3 subsets 100 sub-
iterations) and SSS [20] for one outer iteration. The activity
image thus obtained was postfiltered with a Gaussian filter
with a FWHM of 5 mm.

4) Analysis: The performance evaluation of the reconstruc-
tion methods was conducted in terms of relative percentage
error with respect to the ground truth images. A visualisation
of the bias in the reconstructed image was used as initial
assessment. Further investigations were conducted in terms of
Mean Percentage Error (MPE) of the estimated images over
iterations in different ROIs: (i) 10x10x5 ROI placed within
the right lung not overlapping lung structures, (ii) the whole
image.

V. RESULTS

A. Energy-Dependent Detection Efficiency Fitting

Table I reports the values of the parameters obtained by
fitting the point source data (511 keV) to the model in
Appendix A. In particular, the model is given by the sum
of four contributions, respectively (i) Photoelectric Effect, (ii)
Compton Scattering, (iii) Flat Continuum, (iv) Exponential
Tail. Zeff indicates the atomic number of the single crystal
element and the remaining parameters scale the amplitude
and the centre of each of the aforementioned components. See
Appendix A for further details.

Fitted Parameters

Zeff 66
FWHM (511 keV) 0.14

H1 0.940 1026

H2 0.7 101

H3 0.260 102

p1 0.598 10−2

p2 0.296 102

p3 - 0.817 10−2

TABLE I
FITTED PARAMETERS FOR THE PROPOSED DETECTION EFFICIENCY

MODEL, OBTAINED FROM A MONTE CARLO SIMULATION OF A POINT
SOURCE EMITTER.

Fig. 2 shows the model versus the training and test data sets,
respectively. The Normalized Root-Mean-Square Deviation
(NRMSD) was found to be equal to 0.015 for the training
set and equal to 0.03 for the testing set.
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Fig. 2. Proposed detection efficiency model: training-set (511 keV point
source emission positioned at the centre of the scanner) and testing-set (370
keV point source emission positioned at the centre of the scanner).

Fig. 3. Efficiency factors sinograms obtained from the cylindrical phantom
for the energy windows: UU, UL and LU. Sinograms at all axial positions
were summed for display purposes.

B. Estimation of Normalisation Factors

Results in Fig. 3 demonstrate that the geometric effects
vary significantly between the photopeak and lower windows.
As scatter events show a relatively high variation of the
probability of angles of incidence and points of origination;
the resulting normalisation sinograms look more homogeneous
and flat in the low energy windows, with a less marked
‘end block efficiency-drop’ (diagonal stripes on the sinogram).
Furthermore, the UL and LU normalisation sinograms show
a mirror symmetry; this corresponds to the fact that only one
of the photons is scattered, and therefore the geometric effect
appears more ‘blurred’ due to the scattered photon only.

C. XCAT Simulation - Comparison in Sinogram Space

Sinograms from all energy window pairs are compared in
Fig. 4, showing that the proposed forward model matches
closely Monte Carlo simulations. The photopeak data show
the best match amongst the three sinograms, whilst the low
energy windows slightly overestimate the number of scatter
events; a heuristic scaling factor was found to be needed to
match more closely the GATE simulation (Sec. IV-F1).

D. XCAT Reconstruction of activity and attenuation

Fig. 5 shows the reconstruction error in the activity and at-
tenuation images from GATE Monte Carlo generated data. The
reconstruction was computed with and without scaling factor
(Sec. IV-F1). The reconstruction from UU data only are also

shown; aMLAA-S (Sec. III-B2a), LBFGS-AC (Sec. III-B2b)
and LBFGS-MRAC (Sec. III-B2c) outputs are reported.

Results show that errors in the forward model propagate
in the estimated activity and attenuation maps. In particular,
effects of remaining model mismatch on the final estimates
seem to arise in the region outside the lung - consistent in all
the three reconstructions. With regards to the lung region, the
best solution (closer to the one from LBFGS-AC) is achieved
with aMLAA-EB-S (when a scaling factor is incorporated in
the normalisation) and aMLAA-S.

Mean values in ROI (Fig. 6) confirm that reconstruction
errors from aMLAA-EB-S (with ζ = 0.93) and aMLAA-S
appear similar, whilst aMLAA-EB-S (with ζ = 1) shows a
higher error in both attenuation and activity estimation.

VI. DISCUSSION

This study investigated the problem of low-energy window
normalisation and the effect of input/model mismatch on the
multiple energy window joint reconstruction.

The benefits of incorporating low-energy photons informa-
tion in PET image reconstruction have been discussed in [19],
[31], [32]. Previous studies [15], [19] based on relatively
simplistic analytical simulations have also shown that the
multiple energy window reconstruction outperforms the single
energy window approach. However, the behaviour of this
methodology for the case of realistic measurements was yet
unknown.

To accurately predict the expected measurements, an ap-
propriate model for the detector energy response is needed
[33]. In particular, results from this manuscript show that both
the energy-dependent efficiency model and the normalisation
technique play an important role in the accuracy of the
forward model for quantitative measurements. In particular, the
detection sensitivity of the low energy window was found to
be significantly different from that of the photopeak window.

The output of aMLAA-EB-S from GATE Monte Carlo
simulated data was compared to the joint reconstruction output
from a single energy window, aMLAA-S. Fig. 5 shows that
aMLAA-EB-S with ζ = 0.93 achieved a final error in the
activity estimate comparable to the one from an LBFGS-
AC reconstruction. On the other hand, the aMLAA-EB-S
reconstruction with ζ = 1 shows a final negative bias. Results
from aMLAA-S were also in good agreement with LBFGS-
AC.

Together with the fact that aMLAA-EB-S was shown to
be sensitive to errors in the forward model, this raises the
question of whether the use of multiple energy windows will
be beneficial in practice. According to the results presented
in this manuscript, some aspects would favour a practical
application of aMLAA-S compared to aMLAA-EB-S: (i)
lower computational burden, (ii) no real need to accurately
model detector scatter - for a standard single energy win-
dow acquisition -, (iii) no need to acquire data in multiple
energy windows. However, this has not been tested for small
structures and it could represent the objective of future inves-
tigations. Moreover, aMLAA-EB-S brings additional benefits
due to the lower variance in the estimated images (shown in

Authorized licensed use limited to: University College London. Downloaded on August 24,2021 at 09:41:30 UTC from IEEE Xplore.  Restrictions apply. 



2469-7311 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TRPMS.2021.3064239, IEEE
Transactions on Radiation and Plasma Medical Sciences

7

Fig. 4. Comparison in sinogram space between Monte Carlo GATE simulation and analytical 3D XCAT torso simulation. First row: UU data. Second row:
UL data. Third row: LU data. First column: GATE Monte Carlo generated data. Second column: proposed analytical generated data. Sinograms at different
axial positions were summed for display purposes. Third column: Sinogram profile comparison between GATE and the proposed method.

[15]) for a sufficiently accurate forward model. Furthermore,
using multiple energy windows could allow the possibility of
accounting for higher scattering angles in the model, giving
the chance to directly model out-of-FOV scatter. Given the
lower computational cost, one practical option could be to use
aMLAA-S for the initial iterations and then use aMLAA-EB-
S to further refine the solution. This hypothesis will require
further investigation.

One other aspect to mention is that aMLAA-EB-S and
aMLAA-S rely on an alternating approach, meaning that
optimal settings of inner loops need to be established. An alter-
nating approach was chosen given the different intensity scales
of the activity and attenuation gradients and different levels
of numerical conditioning of the different contributing log-
likelihoods. One possible way to avoid the alternating scheme
could be to use the simultaneous approach (as in [15]) and to
include pre-conditioning, similar to [30], [34]. Furthermore,
the frequency at which the photopeak scatter is updated could
be reduced over iterations to decrease computational cost. This
will however require additional testing and validation.

For the single energy window reconstruction, the penalty
strength in both attenuation and activity updates was reduced
according to the global scale of the likelihood (LUU vs
LUU + LUL + LLU ) computed from the ground truth dis-

tributions. However, comparing reconstructions from different
cost functions and penalty strengths is challenging. Further
assessments are required in this regard, such as varying the
penalty strengths and investigating multiple noise realisations.
It is a possibility that the accuracy of the reconstruction could
also vary depending on the chosen penalty term. Furthermore,
the accuracy of the PLS depends on the reliability of the MR
information. Different penalty terms could also be investigated.
In addition to this, a fine tuning of the penalty would be needed
to reduce the noise in the final attenuation estimates from both
aMLAA-EB-S and aMLAA-S.

As the scatter distribution varies with the size and shape
of an object, concerns arise on the dependency of the scatter
efficiency factors on the geometry of the phantom used for
computing the normalisation. In this study, this effect was
partially overcome by using a global factor ζ adjusting the rel-
ative scale between the photopeak and UL/LU windows (Fig.
4). This would not be applicable for reconstructing real data
acquisitions; improving on the efficiency model (Appendix A)
and using an object matching more closely an actual patient
density distribution to determine the normalisation factors
should give better results. Possibly, a cylindrical phantom
with ‘lung’ inserts could improve on the final normalisation
sinogram used for thorax imaging. This hypothesis, however,
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Fig. 5. Reconstruction error from GATE Monte Carlo generated data. First and second row: error in the attenuation. Third and fourth row: error in the activity
image. First column: initial error (reconstruction input). Second column: reconstruction error from aMLAA-EB-S with ζ = 1. Penalty strengths: βµ = 80 and
βλ = 5. Third column: reconstruction using from aMLAA-EB-S with ζ = 0.93. Fourth column: reconstruction from aMLAA-S. Penalty strengths: βµ = 60
and βλ = 3. Fifth column: emission reconstruction from LBFGS-AC. Penalty strength: βλ = 3. Sixth column: emission reconstruction from LBFGS-MRAC
(using the initial attenuation image). Penalty strength: βλ = 3.

Fig. 6. Mean percentage Error (MPE) of the ROI values over iterations in
the reconstructed attenuation (top) and activity (bottom) image.

will need to be confirmed with further investigations.
Assessing the feasibility of this methodology on patient

data would bring additional value to this proposed method.
However, to make this approach applicable in clinics, further
efforts would be required. First, there is a need to validate
the proposed detection efficiency model on real measurements
from clinical scanners. Second, the necessity to account for
multiple scatters and out-of-FOV scatters, and to further im-
prove on the normalisation method. In particular, the latter

relies on the possibility of differentiating between scattered
and unscattered events. One possible solution for clinical
application could be the following. First, the unscattered count
efficiency factors could be obtained from a thin moving line
source as in [35]. Once obtained, the true count sensitivity
could be incorporated in the forward model so that the only
unknown sensitivity is the one related to the scatter events.
The scatter sensitivity Ψsc

vw could be estimated from the total
measured events. This method will need to be tested in the
future.

Our results have shown how different energy windows
require different normalisation sinograms given the wide range
of angle of incidence of the incoming photons; the presence
of gaps between detector blocks will likely make this effect
larger, motivating even more the need of an energy-dependent
detection efficiency model.

It is important to mention that with out-of-field activity
and presence of double-scatter, the current heuristic scaling
correction is likely not to be adequate. The model mismatch
analysis is limited in this respect.

Multiple scatter estimation [16], [36] could be however
incorporated into our algorithm using the same strategy as for
the single scatter estimation in the photopeak window (one-
step-late approach). However, this will need existing multiple
scatter estimation code to be adapted to use multiple energy
windows, and the accuracy of the existing multiple scatter
models for low-energy windows to be established.
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Out-of-FOV scatters could be also accounted for by our
method as the only constraint on the scatter locations is given
by the boundaries of the attenuation map. The template image
given to the algorithm could be extended beyond the FOV
to place scatter locations outside the edge of the scanner.
Similarly to how the arm regions were recovered in [37],
the methods proposed in this manuscript that take scatter into
account for the joint reconstruction might allow estimating
activity and attenuation elsewhere, albeit most likely at low
spatial resolution.

In this manuscript, the attenuation update was restricted to
the lung region. Among the different tissue classes defined
in standard MRAC methods, the lungs have the largest vari-
ability of inter-patient attenuation values [38]. Therefore, this
assumption is fairly common in PET/MR studies [4], [38].
However, this assumption could be relaxed, potentially with
the help of the incorporation of prior information.

This study is restricted to direct planes only. The 3D nature
could potentially benefit the joint problem as it introduces cor-
relations. This will apply to both aMLAA-EB-S and aMLAA-
S but possibly favour aMLAA-EB-S over aMLAA-S due
to scatter between-planes. However, efforts should be made
in order to reduce the computational burden led by higher
dimension sinograms.

Extending our method to TOF-PET would represent an
interesting direction of future research. Without taking scatter
into account, TOF information improves on the poor condi-
tioning of the problem, but comes with the main limitation of
a global scaling factor in the estimated activity distribution [8].
From previous studies in [13] and our current results, it appears
that the scatter information could solve the scaling issues of
TOF-MLAA, but this needs to be confirmed in future research
studies.

Finally, the possibility of improving on the reconstruction
methods discussed in this publication by using more than two
energy windows should be investigated. Both the theoretical
framework of the proposed methods and their implementations
are suitable for this extension. However, the computational
complexity of the algorithm scales quadratically with the
number of energy windows. Furthermore, an increased number
of normalisation sinograms will be needed to be computed.
Therefore, an optimal value for the number of energy windows
should be found where the computational cost in the algorithm
is offset by the quantitative accuracy of the result.

VII. CONCLUSION

This work investigated the feasibility of joint reconstruction
of the activity and attenuation distributions of 3D objects from
multiple energy window measurements by using a maximum
likelihood framework in a realistic setting.

As low energy windows see a higher number of low energy
photons, for which geometric factors differ markedly, the ne-
cessity for new model-based corrections for the normalisation
of PET emission data from multiple-energy windows was
investigated in this manuscript.

This work eliminates the dependency of over-simple as-
sumptions of other previous work, leading to the possibility

of reconstructing 3D volumes with data simulated for a real-
istic clinical PET/MR system in the presence of input/model
mismatch and considering the presence of detector scatter.

Results show that with the proposed model, our analytic
simulations correspond in good approximation to the Monte
Carlo simulations, with only small deviations. The effect of
such error on the final reconstructed attenuation and activity
distributions was investigated. The multiple energy window
approach was found to be sensitive to input/model mismatch
but capable of leading to accurate attenuation and activity esti-
mates for a sufficiently accurate forward model, in agreement
with previous results based on analytical simulations only.

This manuscript has progressed this technique from being a
simplistic idea to a reconstruction method able to reconstruct
Monte Carlo generated data. This constitutes a significant step
towards real data application in PET imaging of this type of
methodology. Investigating the possibility of translating this
approach to clinical practice remains the objective of future
work.
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APPENDIX A
DETECTION EFFICIENCY MODEL

Detector response varies as a function of the energy of
the incoming photon. A semi-empirical response function
for photon energies between 0.5 and 1.5 MeV was recently
proposed [39]. This model was adapted in this manuscript
to the case of LSO detectors (the detector type used in the
Siemens mMR) and to PET energy ranges. The proposed
model is described in the following.

Similarly to the case of the photopeak window, the detec-
tion probability is obtained by integrating the probability of
detecting the energy response function f(E,Em) between the
boundaries of the energy window tL and tH :

ε(E, tL, tH) =
∫ tH
tL

f(E,Em) dEm (17)

Please note that E and Em indicate respectively the in-
coming and measured photon energy. The detection efficiency
model f(E,Em) is given by the sum of four contributions, of
which the following paragraphs give an overview:

f(E,Em) =
f1(E,Em) + f2(E,Em) + f3(E,Em) + f4(E,Em)

(18)

Pair production was not included in the model given the almost
zero probability of this effect occurring for incoming photon
energies of 511 keV (or lower).

A. Photoelectric effect:

A Gaussian distribution function is adopted to describe the
detection efficiency for a gamma photon whose energy is
completely deposited:
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f1(E,Em) =
σT√
2πσP

exp

(
−(Em − E)2

2σP
2

)
(19)

where σP is the standard deviation of the photopeak. The
amplitude of the peak is proportional to the total photoelectric
cross section σT, given by:

σT =
Zeff

5

E
(20)

For lower energy photons, the photoelectric cross section
increases, and the amplitude of the photopeak is therefore
expected to be higher. The expression Zeff indicates the atomic
number of hypothetical single element that would attenuate
photons at the same rate as the composite material in question
[40]. The (effective) atomic number Zeff was set to 66,
corresponding to that of LSO crystal.

B. Compton Scattering:

To model detector scatter the function proposed by [39] was
modified here by incorporating the dependency on the total
Compton cross section σC and the effective atomic number
Zeff . The resulting function becomes:

f2(E,Em) =

H2 Zeff σC

[(
E
E′

)
+
(
E′

E − 2
)]

exp
(
−(Em−p1E)2

4p2σP

) (21)

where E′ is the energy after Compton scatter with φ = π, H2,
p1 and p2 are parameters to scale the amplitude, determine
the centre of the Compton plateau and its standard deviation,
respectively.

C. Flat continuum:

An ‘almost’ flat continuum from zero to the photopeak
energy found to exist in the spectrum [39], possibly resulting
from the presence of electronic noise. It is modelled as:

f3(E,Em) = H3 erfc

(
Em − E√

2σP

)
(22)

where H3, is a parameter to scale the amplitude of the flat
continuum. For E > Em , f3(E,Em) = 0 and erfc = 1−erf .

D. Exponential tail:

This last function relates to the presence of an exponential
tail in the region of low energy side of the spectrum. The
representative function is given by:

f4(E,Em) =

H4 exp

(
Em − E√

2πp3σP

)
erfc

(
Em − E√

2σP

+
1

2p3

)
(23)

where H4 and p3 are parameters that scale the amplitude,
the standard deviation and the slope of the exponential tail,
respectively.

APPENDIX B
SINGLE SCATTER MODEL

The scatter forward model used in this manuscript is for-
mulated as:

g̃sc
vwijs(θ̃) =

1
α

(
Ψvw(E, 511) Iisj(θ̃) + Ψvw(511, E) Ijsi(θ̃)

) (24)

where E is the photon energy after (single) Compton scattering
(in keV) as a function of the scatter angle ϕ for a scatter point
at voxel s, α = 3

4
σiσj

2πr2 approximates the solid angle at each
detector ij, Ψvw(511, E) being the matrix of efficiency factors
for a scatter coincidence and:

Iisj(θ̃) =
σisσjs

4πr2isr
2
js

dσ
dΩ (ϕ) µ511,s

(
Kis λ̃

)
e−Kisµ̃511e−Kjsµ̃E

(25)

where dσ
dΩ (ϕ) is the differential cross section given by the

Klein-Nishina (KN) equation [41], µ̃E is the distribution
of attenuation coefficients at photon energy E, ris is the
distance between the scatter point s and detector i, σis denotes
the detector cross-section presented to the ray is, and Kis

indicates the line integral operator along the line is [20].
1) Probability of scattering: The KN formula in (25)

predicts the number of photons that will scatter with a certain
angle ϕ, which can be also related to the change in photon
energy via the Compton equation. The final energy of the
scattered photon only depends on the scattering angle and on
the original photon energy.

2) Effect of reduced energy on attenuation after Compton
scattering: The Compton scattering process results in the
reduction of the photon energy as well as change in direction.
As a result, photon attenuation after the point of scatter is
increased. Here we address the dependency of the attenuation
on the energy in the scatter model by assuming that the
attenuation is only due to Compton scatter and is therefore
proportional to the total Compton scatter cross-section σtot at
a particular energy E [15]:

µE =
σtot(Λ)

σtot(1)
µ511 (26)

where σtot can be obtained by integrating KN over all solid
angles and Λ = E

511 . The forward model can therefore be re-
written with respect to the attenuation coefficient at reference
energy (511 keV).

APPENDIX C
GRADIENT OF THE OBJECTIVE FUNCTION

To be able to solve (8) it is required to compute its gradient
∇Ltot

θ =
∑

(v,w)∇Lv,w, where:

∇θLvw =
(
Junsc
vw + J sc

vw

)>(
gvw � ḡvw − 1

)
(27)

with � indicating the element-wise division, (..)> indicating
the transpose operator, and 1 being a vector of ones.

Dropping the energy window indices vw, the Jacobian
Junsc = [Junsc

λ ,Junsc
µ ] is given by :
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Junsc
λ = ΨA(µ)

Junsc
µ = −ΨD(A(µ) λ)L

(28)

The Jacobian J sc = [J sc
λ ,J sc

µ ] is given by :

J sc
µ = P J sc

µ̃ R

J sc
λ = P J sc

λ̃
R

(29)

with P andR defined in II-A. Please note that an expression
for J sc

λ̃
and J sc

µ̃ was given in [15].
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