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The dual-basis theory of metamemory suggests that people evaluate their memory performance based on
both processing experience during the memory process and their prior beliefs about overall memory ability.
However, few studies have proposed a formal computational model to quantitatively characterize how
processing experience and prior beliefs are integrated during metamemory monitoring. Here, we introduce a
Bayesian inference model for metamemory (BIM) which provides a theoretical and computational
framework for the metamemory monitoring process. BIM assumes that when people evaluate their memory
performance, they integrate processing experience and prior beliefs via Bayesian inference. We show that
BIM can be fitted to recall or recognition tasks with confidence ratings on either a continuous or discrete
scale. Results from data simulation indicate that BIM can successfully recover a majority of generative
parameter values, and demonstrate a systematic relationship between parameters in BIM and previous
computational models of metacognition such as the stochastic detection and retrieval model (SDRM) and
the meta-d′ model. We also show examples of fitting BIM to empirical data sets from several experiments,
which suggest that the predictions of BIM are consistent with previous studies on metamemory. In addition,
when compared with SDRM, BIM could more parsimoniously account for the data of judgments of learning
(JOLs) and memory performance from recall tasks. Finally, we discuss an extension of BIMwhich accounts
for belief updating, and conclude with a discussion of how BIM may benefit metamemory research.

Keywords: metamemory, metacognition, processing experience, prior belief, Bayesian

Supplemental materials: https://doi.org/10.1037/rev0000270.supp

Metamemory refers to the processes for monitoring and control-
ling memory activities (Nelson &Narens, 1990). Many studies have
shown that metamemory monitoring significantly influences
subsequent learning processes, and understanding the mechanisms

underlying metamemory monitoring is important for improving
learning performance (for a review, see Bjork et al., 2013). Previous
studies have shown that people cannot directly monitor their
memory strength when they give metamemory judgments (or pre-
dictions) about their memory performance. Instead, they infer their
memory performance based on a variety of cues, such as item
difficulty, study duration, and perceptual features of study materials
(Frank & Kuhlmann, 2017; Koriat, 1997; Rhodes & Castel, 2008).

One of the most influential theories in the metamemory literature
is the dual-basis theory, which suggests that a cue can affect
metamemory judgments through processing experience, prior be-
liefs, or both (Koriat et al., 2004). Experience-based metamemory
judgments are assumed to rely on the experience derived from the
processing of study materials. One important type of processing
experience is processing fluency, which refers to the subjective
experience of ease or difficulty with which we are able to process
the items (Oppenheimer, 2008). For example, people ascribe higher
confidence in their memory performance to word pairs when
the semantic relatedness between cue and target words is higher
because the subjective experience of processing high-relatedness
word pairs is more fluent than that of low-relatedness word pairs
(Undorf & Erdfelder, 2015). In contrast, belief-based metamemory
judgments are assumed to rely on people’s prior beliefs about how
a cue can affect memory performance. For example, people give
higher confidence to high-relatedness than low-relatedness word
pairs because they believe that high-relatedness word pairs are
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easier to remember (Mueller et al., 2013). Although most
researchers agree that both processing experience and prior beliefs
affect metamemory monitoring, there is a still debate about the
degree to which each contributes to metamemory judgments
(Frank & Kuhlmann, 2017; Hu et al., 2015; Mueller &
Dunlosky, 2017; Mueller, Dunlosky, Tauber, et al., 2014;
Mueller et al., 2013, 2016; Su et al., 2018; Undorf & Erdfelder,
2015; Undorf et al., 2017, Yang, Huang, et al., 2018).
Although the dual-basis theory suggests that metamemory moni-

toring depends on both current processing experience and people’s
prior beliefs about their overall memory ability, it does not indicate
how people combine processing experience and prior beliefs to
evaluate their memory performance. Recent studies on metamemory
monitoring mainly focus on whether processing experience or
prior beliefs can mediate the cue effect on metamemory judgments
(Frank&Kuhlmann,2017;Suet al., 2018;Undorf&Erdfelder,2015;
Undorf et al., 2017; Yang, Huang, et al., 2018). However, few have
characterized the cognitive process about howprocessing experience
and prior beliefs are integrated during metamemory monitoring. In
addition, there is a lack of formal computational models to quantita-
tively explain the role of processing experience and prior beliefs in
metamemory judgments. Compared with descriptive theories,
computational models can more precisely characterize the cognitive
processes underlying behavior, allowing more detailed empirical
predictions (Lewandowsky&Farrell, 2011).While previousdescrip-
tive theories only suggest that both processing experience and prior
beliefs contribute to metamemorymonitoring, formal computational
models may quantitatively predict to what extent experience and
beliefs affectmetamemory judgments, andwhether these effects vary
across experimental conditions.
To date, relatively few studies have developed formal computa-

tional models to explain the metamemory monitoring process (Jang
et al., 2012; Sikström & Jönsson, 2005). For example, Jang et al.
(2012) propose the stochastic detection and retrieval model (SDRM)
to describe how people give metamemory judgments based on
processing experience. The SDRM assumes that people give their
metamemory judgments based on their experience during the memory
process, which is correlated with (but not the same as) the objective
memory strength. People compare their processing experience with a
set of confidence criteria, according to which they evaluate their
performance in thememory test. SDRM is an important computational
model that attempts to explain themetamemory process. It emphasizes
the role of processing experience in metamemory monitoring and
suggests potential dissociation between the objective memory strength
determining memory performance and the subjective processing
experience utilized in the metamemory process, which is consistent
with the recent second-order model for metacognition (Fleming &
Daw, 2017). Although SDRM does not explicitly explain how prior
beliefs about memory ability feed into this metamemory monitoring
process, it is possible that people may set confidence criteria based on
their prior beliefs. For example, theymay set liberal confidence criteria
and frequently give high-confidence ratings when they believe they
have high memory ability, or use conservative criteria if they believe
their memory performance should be low. However, SDRM does not
formally and quantitatively characterize how people integrate current
processing experience and their prior beliefs about memory ability
when they evaluate their memory performance.
In this article, we present a Bayesian inference model for

metamemory (BIM) to quantitatively explain how people make

metamemory judgments based on both processing experience and
prior beliefs. Similar to SDRM,BIM assumes that people are not able
to monitor their objective memory strength, and instead only gain
access to their processing experience during learning, which in turn is
correlated with memory strength. However, in contrast to SDRM,
BIM assumes that people need to integrate their processing experi-
ence and prior beliefs through a Bayesian inference to evaluate their
memory performance. Previous computational models on perceptual
confidence judgments suggest that people’s confidence judgments
are grounded in a Bayesian inference that integrates observed
evidence and prior beliefs (Fleming & Daw, 2017; Pouget et al.,
2016). Similarly, BIM assumes that during metamemory monitoring,
people infer the posterior distribution of their memory strength
through a Bayesian inference process in which they integrate their
current processing experience and prior beliefs about their overall
memory ability. BIM makes predictions about the distribution of
metamemory judgments, allowing direct empirical evaluation. BIM
can also estimate to what extent prior beliefs and processing experi-
ence each contribute to metamemory judgments. BIM is consistent
with the dual-basis theory and emphasizes an important role for both
experience and beliefs in metamemory monitoring.

The remainder of this article is organized as follows. First, we
describe the basic ideas and mathematical structures of BIM. We
discuss the relationship between BIM and SDRM, and introduce in
detail how people integrate processing experience and prior beliefs to
evaluate their memory performance under the assumptions of BIM.
We will show that BIM can be fitted to data from both recall and
recognition tests with confidence ratings on either a continuous or
discrete scale. Next, we simulate data from BIM with different
parameter values to investigate how the change in parameter values
could predict the change in distributions of confidence and perfor-
mance. We also examine whether we can successfully recover the
parameters in BIM via fits to the simulated data, and whether there are
significant relationships between parameters in BIM and other
computational models of confidence such as SDRM and the
meta-d′ model (Jang et al., 2012; Maniscalco & Lau, 2012). We
then fit BIM to confidence rating and memory performance data
obtained from four studies. In Studies 1–3, we fit BIM to data sets
from several experiments on judgments of learning (JOLs), a canoni-
cal form of prospective metamemory monitoring (Nelson & Narens,
1990). We compare the results from BIM in Studies 1–2 and
predictions based on previous studies on JOLs to examine if BIM
is consistent with previous theories of metamemory. In Study 3, we
conduct a stronger test of the assumptions about the Bayesian
inference process in BIM. We also compare the fit of BIM and
SDRM to ask which model could better account for the data. In Study
4, we demonstrate an example of how to apply BIM to a recognition
memory test with retrospective confidence ratings. Finally, we use
simulated data sets to explore a potential extension of BIM which
accounts for belief updating.

Details of BIM

In this section, we describe the ideas and mathematical equations
behind BIM. BIM is closely related to SDRM, and here we first
discuss the qualitative similarities and differences between BIM and
SDRM. Then, we introduce the mathematical details of BIM to
illustrate how people integrate processing experience and prior beliefs
through a Bayesian inference to evaluate their memory performance.
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Relationship Between BIM and SDRM

BIM is similar to SDRM in assuming that the processing experi-
ence utilized in the metamemory monitoring process and the
objective memory strength that determines memory performance
arise from distinct distributions (Jang et al., 2012). Both models
assume that there is a correlation between the distributions of
objective memory strength and subjective processing experience,1

which can be represented by a free parameter ρ in the model. In
addition, both models make assumptions that memory performance
depends on whether the objective memory strength is higher than a
criterion for recall, and that confidence ratings rely on the current
processing experience for each trial sampled from a processing
experience distribution.
However, BIM also differs from SDRM in four important ways.

First, SDRMassumes that people give their confidence ratings based
on a comparison between the current processing experience with a
set of confidence criteria, which are free parameters in SDRM.
However, SDRM does not formally and quantitatively explain how
people set the confidence criteria in the metamemory process, or
why the mean and variance of the confidence criteria may differ
across experimental conditions. In contrast, BIM offers a formal
explanation of how people use the confidence scale based on a
Bayesian inference aimed at evaluating their memory performance.
BIM assumes that during the metamemory process, people integrate
the current processing experience and their prior beliefs about
overall memory ability through a Bayesian inference to infer the
posterior probability that the current item can be correctly answered
during the memory test, and this posterior probability represents
people’s confidence about their performance. If people’s confidence
about performance mainly relies on prior beliefs, then the confi-
dence ratings reported in memory tasks should be closely distributed
around the prior beliefs about memory ability, and the variance of
reported confidence ratings should be low. However, if processing
experience plays an important role in the metamemory process, then
the variance of the reported confidence ratings should be high
because confidence ratings closely track the variation of processing
experience across trials.
Second, in SDRM, confidence can be rated on an n-point rating

scale when there are (n − 1) confidence criteria. Thus, SDRM can
only be applied to confidence data on a discrete rating scale. In
contrast, BIM is originally designed to account for confidence
ratings on a continuous scale. BIM assumes that people’s confidence
about memory performance is represented by the estimated proba-
bility that each item can be correctly answered during the memory
test, which is based on the posterior distribution of memory strength
inferred via Bayesian inference. This posterior probability should be
between 0 and 1, and thus the confidence ratings predicted by BIM
are on a 0–1 continuous scale. Furthermore, BIM assumes that when
people report their confidence in a task using a continuous scale, the
reported confidence is simply the sum of the posterior probability
obtained via Bayesian inference and random noise, and there is a
tight linear relationship between reported confidence ratings and the
posterior probability predicted by BIM. However, BIM can also be
applied to confidence ratings on a discrete scale. BIM assumes that
when people report their confidence on an n-point scale, they divide
the 0–1 continuous scale for the posterior probability into n intervals
with equal lengths, and each interval can be seen as a point on the

n-point scale. Thus, BIM can be fitted to confidence data on either a
continuous or discrete scale.

Third, BIM assumes that in a certain experimental condition, the
recall criterion is constant for a participant. In addition, when people
rate confidence on a discrete scale, they divide the 0–1 continuous
scale into equal-length bins, and thus the criteria on the confidence
scale are also constant in BIM. In contrast, SDRM assumes that the
recall criterion (CM) and confidence criteria (theCis) may be variable
across trials, and use two standard deviation parameters (σM and σC)
to characterize the variation of these criteria (Jang et al., 2012).
However, when SDRM is fitted to data in a single experimental
condition, σM and σC are typically nonidentifiable. These two
parameters are meaningful when we fit SDRM to data from two
or more different experimental conditions, in which we may con-
strain one or both of these parameters to be the same across
conditions, and see whether allowing these standard deviation
parameters to vary across conditions can change the model predic-
tions.2 BIM is more similar to SDRM in which σM and σC are set to 0
and thus the variation of recall and confidence criteria is prohibited.

Finally, SDRM is suitable for data from recall tasks but not
recognition tasks. SDRM assumes that the objective memory
strength for each trial comes from a single distribution, and people
correctly answer a trial when their memory strength is higher than a
recall criterion. These assumptions in SDRM are suitable for the
retrieval process in recall tasks. However, in a recognition test such
as a Yes/No task or 2-alternative forced-choice (2AFC) task, we
often assume that there are two types of stimuli with different
distributions of memory strength, which determine people’s Type
I response based on signal detection theory (SDT). These assump-
tions about recognition memory are outside the scope of SDRM.
However, BIM can be extended to account for data from recognition
tasks, in which we can combine SDT and BIM to explain the
retrospective confidence rating process after a Type I response.
Specifically, BIM assumes that people integrate their prior beliefs
and processing experience related to either type of stimulus and then
rate their confidence via Bayesian inference.

In the following sections, we first introduce the mathematical
details of BIM for recall tasks with (prospective or retrospective)
confidence ratings on a continuous or discrete scale. Then, we
illustrate how to extend BIM to account for retrospective confidence
ratings in recognition tasks.

BIM for Recall Tasks With Continuous Confidence

The basic form of BIM is applicable to recall tasks with confidence
ratings on a continuous scale from 0 to 1. In these tasks, people need to
learn a series of stimuli (e.g., words) during a learning phase and are
then required to recall an answer for each trial during the memory test.
Before or after the test for each item, people are asked to give a
(prospective or retrospective) confidence rating about memory perfor-
mance, in which they need to estimate the probability of correctly
recalling the item in the memory test based on an inference about their

1 In SDRM, the objective memory strength distribution is called the
distribution of memory strength underlying recall, and the processing
experience distribution is called the distribution of memory strength under-
lying confidence judgments (Jang et al., 2012).

2 We thank David E. Huber for raising these important points about
SDRM.
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memory strength for this item (Dunlosky & Metcalfe, 2009). BIM
makes a simple assumption that the distribution of objective memory
strengthm is a normal distribution for each individual with an unknown
mean μm (which may vary between individuals) and a standard
deviation of 1. The recall performance for an item depends on the
sampledmemory strength relative to the criterion for recall, which is set
to the arbitrary constant 0. An item can be correctly recalled only when
its memory strength is higher than 0. These assumptions are similar to
those in SDRM except that the mean of the memory strength distribu-
tion is fixed in SDRM while the recall criterion is variable (Jang
et al., 2012).
Consistent with the dual-basis theory for metamemory (Koriat,

1997; Koriat et al., 2004), BIM assumes that people do not have
direct access to the objective memory strength for an item when they
give a confidence rating. Instead, they infer their memory performance
according to their subjective processing experience during the memory
process. In other words, BIM assumes that while actual memory
performance solely depends on the objective memory strength, peo-
ple’s confidence ratings rely on their subjective processing experience
but not the objective memory strength. This assumption is consistent
with similar assumptions inherent to both SDRM (Jang et al., 2012)
and the second-order model in the Bayesian framework for perceptual
metacognition proposed by Fleming and Daw (2017).
In BIM, the subjective processing experience for each item is

assumed to arise from a distribution of processing experience for
each individual with a mean of μe (which may vary between
individuals) and a standard deviation of 1. We note that BIM makes
no assumptions regarding whether people infer their memory
performance based on the processing experience before or after
the recall test, and thus BIM should be applicable to either prospec-
tive or retrospective confidence ratings in recall tasks. In addition, as
in SDRM and the second-order model (Fleming & Daw, 2017; Jang
et al., 2012), the distributions of objective memory strength and
processing experience in BIM are assumed to be correlated and
drawn from a bivariate normal distribution with a correlation
coefficient ρ (see Figure 1).

According to previous studies on metamemory, the mean of the
objective memory strength distribution (μm) may differ from that
of the processing experience distribution (μe). For example, when
rating prospective confidence [i.e., the judgment of learning
(JOL)] about memory performance in a future recall test for
words presented in large or small font size during learning,
people often predict that large words will be easier to recall at
test than small words (Hu et al., 2015; Mueller, Dunlosky,
Tauber, et al., 2014; Su et al., 2018; Yang, Huang, et al.,
2018). This is partly due to a more fluent processing experience
for large than small fonts during the perceptual identification of
each word in the learning process, suggesting that the strength of
processing experience should be higher for large than small words
(Yang, Huang, et al., 2018). However, objective memory perfor-
mance typically does not differ between large and small words,
suggesting that objective memory strength may remain similar
across words with different font size (Hu et al., 2015; Mueller,
Dunlosky, Tauber, et al., 2014; Su et al., 2018; Yang, Huang,
et al., 2018). These results indicate that the distributions of
objective memory strength and processing experience in BIM
may have different means.

For each item, participants take a sample from the processing
experience distribution as the subjective experience for the current
item. The sampling of processing experience is conditional on the
objective memory strength for the item because the objective
memory strength and processing experience are correlated with a
correlation coefficient ρ. Let us suppose that the processing experi-
ence for an item is e. Participants then need to infer their memory
strength m̂ based on this processing experience. We should note that
here the notation m̂ refers to participants’ subjective estimates of
memory strength, which may differ from their objective memory
strength m. BIM assumes that participants apply Bayesian inference
to infer the memory strength (see Figure 1):

f ðm̂jeÞ = f ðm̂Þf ðejm̂Þ
f ðeÞ (1)

Figure 1
Illustration of BIM for Recall Tasks With Continuous Confidence Ratings
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In Equation 1, f ðm̂jeÞ is the probability density function (PDF)
of the posterior distribution of the memory strength, and reflects
participants’ inference about the memory strength for the current
item given the processing experience e. f ðm̂) is the PDF of the
prior distribution of the memory strength and reflects participants’
prior belief about their overall memory performance in the test.
BIM assumes that this prior belief about memory strength can be
characterized by a normal distribution for each individual with a
mean of μb (which may vary between individuals) and a standard
deviation of 1 (see Figure 1). The area under the prior belief
distribution above the criterion for recall, 0, reflects partici-
pants’ prior belief about the proportion of items they can recall
in the memory test. Thus, participants believe they have better
memory ability when μb is higher. For example, if participants are
asked to predict their future memory performance in an immediate
recall test and a delayed test (e.g., after 1 week), μb should
typically be higher when participants rate their confidence for
an immediate than a delayed test because they usually believe that
their overall memory strength will be higher for the immedi-
ate test.
f ðejm̂Þ in Equation 1 is the likelihood function, and reflects the

probability that participants obtain a processing experience e given
the estimated memory strength m̂. This likelihood function encodes
participants’ knowledge about the relationship between m̂ and e.
BIM assumes that the likelihood function is another normal distri-
bution with a mean of m̂ and a standard deviation of σl, which is a
free parameter and may vary between individuals (see Figure 1). e is
more likely to be close to m̂ when σl is small, suggesting that
participants suppose memory strength can accurately predict the
processing experience. In contrast, the processing experience is
uncertain for a given memory strength m̂when σl is large, indicating
that participants do not assume there is a close relationship between
memory strength and processing experience. Finally, f(e) is the
normalizing constant in Bayes’ theorem.
Based on the assumptions above, we can obtain the posterior

distribution for the inferred memory strength m̂ given the current
processing experience e (i.e., f ðm̂je), which is a normal distribution
with mean and variance as follows (see Section S1 in Supplemental
Materials, for the calculation):

Eðm̂jeÞ = e + σ2l μb
1 + σ2l

(2)

Varðm̂jeÞ = σ2l
1 + σ2l

(3)

The mean of the posterior distribution for memory strength,
Eðm̂je), represents the overall memory strength for the current
item inferred by participants. From Equation 2, we can see that
the posterior mean is a weighted average of the current processing
experience and the mean of the prior distribution (i.e., prior belief;
Ma, 2019). Thus, we can obtain the relative weights (or proportions)
for the contribution of processing experience (Pexp) and prior beliefs
(Pbelief) to participants’ inference on memory strength:

Pexp =
1

1 + σ2l
(4)

Pbelief =
σ2l

1 + σ2l
(5)

These proportions can be estimated from empirical data, and the
sum of the two proportions is 1.

From Equations 4 and 5, we should note that processing experi-
ence contributes more (compared with prior beliefs) to participants’
inference on memory strength when σl (the standard deviation of the
likelihood function) is lower (and vice versa). This is easy to
understand according to the model assumptions: Participants do
not assume there is a close relationship between objective memory
strength and processing experience when σl is very high. Thus, they
will not rely on processing experience when they infer their memory
performance. In order to predict the objective memory strength, they
can only rely on their prior beliefs about their overall memory
ability. In contrast, when σl is low, participants assume that objec-
tive memory strength can accurately predict processing experience,
and thus should rely more on processing experience when inferring
their memory performance. The contribution of processing experi-
ence and prior beliefs to participants’ inference on memory is the
same when σl = 1.

After participants infer the posterior distribution for memory
strength m̂ based on the current processing experience e, they can
give a (prospective or retrospective) confidence rating for the
current item which reflects the probability of correctly recalling
the item at test. Because the recall criterion is fixed to 0 in
BIM, this confidence rating is just the probability that m̂ is
higher than the recall criterion 0 obtained from the posterior
distribution3:

predicted conf = Pðm̂ > 0jeÞ = Φ
�

Eðm̂jeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðm̂jeÞp

�

= Φ
�

e + σ2l μb
σl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + σ2l

q
�

(6)

in which Φ is the cumulative density function for the standard
normal distribution.

The posterior probability that m̂ is higher than 0 represents the
confidence rating predicted by BIM.We then need a function to link
the predicted confidence from BIM and the reported confidence
ratings from empirical data, through which we could build the
likelihood function for confidence ratings and estimate the parame-
ters in BIM (for further discussion about the intermediate function
that links model predictions and empirical data, see Chapter 4.3.2 in
Lewandowsky & Farrell, 2011). One simple way of linking the
predicted and reported confidence is to assume that the reported
confidence is the sum of the predicted confidence and a random
noise term drawn from a normal distribution with a mean of 0 and a

3 In a recall task, people give prospective confidence ratings before they
take the memory test, and their prospective confidence simply represents
the probability that each item will be correctly recalled in the future test, or
the posterior probability that the memory strength will be higher than the
recall criterion at test. In contrast, when people rate retrospective confi-
dence for each trial in a recall task, they have typically already generated an
answer. However, people are usually not completely sure whether their
answer is correct or not even if an answer has been generated. Thus, their
retrospective confidence represents the probability that each item has been
correctly recalled, which should be equal to the posterior probability that
the estimated memory strength was higher than the recall criterion in the
memory test.
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standard deviation of σnoise (note that σnoise cannot be reduced to 0 as
this leads the likelihood of reported confidence to be 0 or infinite).
Previous computational model fits to confidence data have revealed
that nonspecific noise may be included into confidence ratings when
confidence is reported on a continuous scale (Fleming et al., 2018;
Hu et al., 2019). In line with a previous computational model of
perceptual confidence (Fleming et al., 2018), BIM sets the value
of σnoise to .025, such that any given rating is made with a precision
of approximately ±5%4:

reported conf ~Nðpredicted conf ; 0.0252Þ (7)

In a typical metamemory task, participants need to learn many
items and report a confidence rating for each item, allowing the
construction of a distribution of confidence ratings.We are able to fit
BIM to the empirical confidence distribution to estimate the model
parameters. The free parameters in BIM are μm (mean of the
distribution of objective memory strength), ρ (correlation between
the distribution of objective memory strength and processing expe-
rience), μe (mean of the distribution of processing experience), μb
(mean of the prior belief distribution), and Pexp (proportion for the
contribution of processing experience to the inference on memory
strength). BIM predicts that the mean of the confidence distribution
is related to the model parameters as follows (see Section S1 in
Supplemental Materials, for the calculation):

Mconf = Φ
�
μePexp + μbPbeliefffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − PexpPbelief
p

�
(8)

in which Pbelief is equal to 1 minus Pexp.
We should note that the mean confidence is related to a linear

combination of the mean for the distributions of processing experi-
ence (μe) and prior belief (μb). The effect of μe on mean confidence is
larger (compared with μb) when Pexp is higher (i.e., when partici-
pants rely more on processing experience when they infer their
memory strength), and vice versa. Thus, the contribution of proces-
sing experience and prior beliefs to confidence ratings depends on
how much participants utilize experience and beliefs during their
inference on memory strength.
During model development, we found that we could estimate

most of the free parameters from empirical data except for μe and μb
because these two parameters are nonidentifiable. Mean confidence
is related to a linear combination of μe and μb, and the effect of a
change in μe onmean confidence can bemimicked by a change in μb.
However, we can use the mean confidenceMconf as a free parameter
(instead of two parameters μe and μb), and Mconf can be estimated
directly from confidence data. Thus, when we fit BIM to empirical
data sets, the free parameters are Pexp, Mconf, μm, and ρ.
BIM can be fitted to empirical data using maximum likelihood

estimation. In a recall task, when we obtain the data of recall
performance (0 or 1, representing an incorrect or correct answer)
and confidence rating (on 0–1 continuous scale) for each trial, we
can compute the likelihood for a trial with a certain confidence rating
and recall performance, and then find the value of four free
parameters in BIM that maximizes the sum of log-likelihood for
all trials (see Section S2 in Supplemental Materials, for the compu-
tation of likelihood function for BIM with continuous confidence
ratings).

In BIM, we set the standard deviations to 1 for three separate
distributions, including the distributions of objective memory
strength, processing experience, and prior beliefs. These standard
deviation parameters are constrained to make the model identifiable.
We note that when we allow the standard deviations to vary, the
effect of a change in these standard deviation parameters on model
predictions can be mimicked by the effect of a change in other free
parameters in BIM. For example, the standard deviation of objective
memory strength distribution is simply a scaling parameter for μm,
and a change in the standard deviation of processing experience and
prior beliefs can be traded off by a change in Pexp (or σl), μe, and μb
(although μe and μb are not identifiable). In Section S3 of Supple-
mental Materials, we discuss the trade-off between these parameters
in more detail.

BIM for Recall Tasks With Discrete Confidence

In many studies, participants are asked to rate their confidence on
an n-point discrete scale rather than a continuous scale (Rahnev
et al., 2020). For mathematical simplicity, BIM assumes that when
people report their confidence on an n-point scale, they divide the
posterior probability that m̂ is higher than 0 [i.e., P (m̂ > 0 | e),
which is on a 0–1 continuous scale] into n intervals with equal
lengths, and each interval can be seen as a point on the n-point scale.
For example, when confidence is rated on a 5-point scale, people
divide the 0–1 continuous scale for the posterior probability into five
equal-length bins: 0–.2, .2–.4, .4–.6, and so on. Thus, BIM assumes
that there are (n − 1) confidence criteria (denoted by Cconf(1),
Cconf(2), : : : Cconf(n − 1)) on the 0–1 continuous scale of posterior
probability and these confidence criteria are fixed (see Figure 2),5

which can be computed as:

4 Our parameter recovery analysis reveals that when we freely estimate the
standard deviation of the noise (σnoise) in reported confidence, this parameter
cannot be successfully recovered, suggesting that σnoise may be nonidentifi-
able. Thus, in order to make the model identifiable, we need to set σnoise to an
arbitrary value. Following similar assumptions made in a previous study
(Fleming et al., 2018), we set σnoise to .025, which allows for a reasonable
range of noise for reported confidence. It is likely that the true value for σnoise
may differ from .025 in real data sets. However, we are typically not
interested in whether σnoise is accurately estimated. Instead, we are more
concerned with the other parameters in BIM (Pexp, Mconf, μm, and ρ; see
below). To investigate whether these parameters can be accurately estimated
when the assumption about σnoise is inaccurate, we performed a parameter
recovery analysis with 1,000 simulated data sets from a recall task, where
each data set contained 10 trials.When simulating each data set, we randomly
sampled σnoise from a range of .005–.1 (which allows an imprecision in
reported confidence of approximately ±1%–±20%), and other parameters
from the same range as in the parameter recovery analyses below. Here, we
set the upper bound of σnoise to .1 because larger noise values suggest random
usage of the confidence scale and thus may be unlikely. Then, we constrained
σnoise in BIM to .025 and fit the model to simulated data sets. Results showed
that all of the four free parameters in BIM could be successfully recovered
(rs > .75) even when the assumption about σnoise was inaccurate, suggesting
that setting σnoise as .025 does not affect the estimation of other parameters.

5 We fix the criteria on the 0–1 continuous scale of posterior probability
because the model is nonidentifiable when these criteria are allowed to vary.
As discussed in this section, the (n − 1) criteria on the 0–1 continuous scale of
posterior probability can be transformed into (n − 1) confidence criteria on
the distribution of processing experience. If the criteria on the 0–1 continuous
scale for posterior probability are allowed to vary, then the (n − 1) confidence
criteria on processing experience distribution are decided by (n + 1) free
parameters, includingσl,μb and the (n − 1) criteria on the 0–1 scale. Thus, the
parameters are redundant and the model is nonidentifiable.
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CconfðiÞ =
i

n
1 ≤ i ≤ n − 1 (9)

We already know that the posterior probability Pðm̂ > 0 j eÞ is
computed based on the processing experience e (see Equation 6).
Thus, the (n − 1) confidence criteria on the 0–1 continuous scale for
Pðm̂ > 0 j eÞ can be transformed into (n − 1) confidence criteria on
the distribution of processing experience (denoted by Ce(1), Ce(2),
: : : Ce(n − 1)) (see Figure 2):

CconfðiÞ = Φ
�
CeðiÞ + σ2l μb

σl
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + σ2l

q
�

1 ≤ i ≤ n − 1 (10)

CeðiÞ = σl
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + σ2l

q
Φ−1

�
CconfðiÞ

�
− σ2l μb 1 ≤ i ≤ n − 1 (11)

in which Φ−1 represents the inverse of cumulative density function
for the standard normal distribution. Thus, people give a rating of 1
on the n-point confidence scale when processing experience is lower
than Ce(1), and 2 when processing experience is between Ce(1) and
Ce(2), and so on.
From Equation 11, we can see that the parameter μb affects the

mean of all confidence criteria on the processing experience distri-
bution. For example, confidence criteria are more liberal (i.e., with a
lower mean) when μb is higher, suggesting that people believe they
have better memory ability. The parameter σl (or Pexp, see
Equation 4) can also influence the mean of confidence criteria,
and a higher value of σl (i.e., lower Pexp, suggesting that people
rely more on prior beliefs to rate their confidence) makes the
confidence criteria more liberal (with a lower mean) when μb is
high, or more conservative (with a higher mean) when μb is low. In
addition, σl also affects the variability of confidence criteria on the
processing experience distribution. When σl is lower (or Pexp is
higher), confidence criteria are more closely distributed around the
mean, suggesting that people are more likely to give extreme values
for confidence ratings.

BIM assumes that the objective memory strength and processing
experience for each individual follow a bivariate normal distribution
with correlation coefficient ρ. We can partition the area under this
bivariate normal distribution using the recall criterion and the
confidence criteria on the processing experience distribution, and
calculate the probability of each confidence bin for recalled and
unrecalled items. Then we can derive the likelihood function, and fit
BIM to empirical data using maximum likelihood estimation to
estimate the free parameters (see Section S4 in Supplemental
Materials, for the computation of the likelihood function for BIM
with discrete confidence ratings). As in the BIM developed for
continuous confidence ratings, when fitted to confidence on the
discrete scale, BIM also includes five free parameters: μm, ρ, Pexp,
μe, and μb. In addition, μe and μb are nonidentifiable and instead we
estimate the parameter Mconf from empirical data.6

We should note that BIM is similar to SDRM when both models
are fitted to empirical data of performance in recall tasks and
confidence ratings on a discrete scale. Both BIM and SDRM put
a recall criterion on the distribution of objective memory strength,
and a set of confidence criteria on the distribution of processing
experience (Jang et al., 2012). However, BIM differs from SDRM
in that each confidence criterion is a free parameter in SDRM, while
in BIM all of the confidence criteria on the processing experience
distribution are determined by only two parameters including
people’s prior beliefs about overall memory ability (μb) and how
much experience and beliefs contribute to confidence (Pexp or σl). In
addition, another difference between BIM and SDRM is that the
criteria for recall and confidence are constant across trials in BIM but
allowed to vary across trials in SDRM, and SDRM uses two free
parameters (σM and σC) to characterize the variability of these
criteria. Thus, we can conclude that BIM is identical to SDRM if
(a) the confidence criteria in SDRM are represented by only a scale

Figure 2
Illustration of Transformation From the Criteria on the Distribution of Predicted Confidence
(Or the Distribution of the Posterior Probability That Estimated Memory Strength is Higher
Than 0) Into Confidence Criteria on the Distribution of Processing Experience. A 5-Point
Scale is Used as an Example

6 BIM is not suitable for fitting confidence data on a 2-point rating scale
(i.e., binary scale). This is because the confidence criteria on the processing
experience distribution in BIM are determined by two parameters, including
Pexp and μb (although μb is nonidentifiable and instead we estimate Mconf).
Thus, we need at least two criteria (i.e., no less than 3 points on the
confidence rating scale) to make the parameters Pexp and Mconf identifiable.
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and a location parameter rather than (n − 1) free parameters, and (b)
the confidence and recall criteria in SDRM are not allowed to vary
across trials (i.e., σM and σC are set to 0).

BIM for Recognition Tasks

In the previous two sections, we introduced the BIM for recall
tasks, in which we assume that the objective memory strength for
each trial is sampled from a single distribution. However, in
recognition memory tests, there are typically two types of stimuli
presented during the test. For example, in an Old/New test (or Yes/
No task) participants see either an old or new word in each trial. In a
2AFC test, they see an old and a new word at the same time, and the
stimulus type depends on which of the two choices is the old word.
Data from recognition tasks are often analyzed with SDT, which
defines one of the two stimuli as “signal” and the other as “noise.”
The signal and noise come from two separate distributions with a
different mean of memory strength, and participants’ response in the
test depends on the comparison between the memory strength for the
current trial and a criterion.
In this section, we introduce how BIM explains retrospective

confidence ratings given after Type I response in a recognition test.
We define the two types of stimuli in recognition tasks as S1 and S2,
in which S1 represents noise and S2 represents the signal. We also
assume that the mean of the distribution for objective memory
strength is−d′/2 and d′/2 for S1 and S2, respectively, and the Type I
response criterion is C. Participants give an S1 response when
memory strength for the current trial is lower than C, and an S2
response when memory strength is higher than C. Using the hit rate
(HR) and false alarm rate (FAR) from empirical data, we can easily
estimate the values of d′ and C derived from SDT (see Figure 3):7

d′= Φ−1ðHRÞ −Φ−1ðFARÞ (12)

C = −
Φ−1ðHRÞ + Φ−1ðFARÞ

2
(13)

After the Type I response, participants need to rate their confi-
dence that their answer is correct. BIM assumes that when parti-
cipants give confidence ratings, they are not able to directly monitor
their objective memory strength. Instead, they can only infer their
memory strength based on the subjective processing experience.

The processing experience for each stimulus type (S1 or S2) is
correlated with the objective memory strength for the same type of
stimulus, and this correlation is estimated with the free parameter ρ.
In addition, the mean of the processing experience distribution (μe)
may be different between the S1 and S2 stimuli. Similar to the mean
of objective memory strength, the mean of processing experience
should also typically be lower for S1 than S2.

For each trial, participants take a sample e from the processing
experience distribution of S1 or S2 (depending on the stimulus type
presented in the current trial) as the subjective experience. They then
need to infer the probability that their Type I response is correct
based on this processing experience. BIM assumes that when
participants give an S1 response in the recognition test, they
then aim to estimate the probability that the current stimulus is
S1 when they rate their confidence. Similarly, when they give an S2
response, they aim to estimate the probability that the current
stimulus is S2. However, according to the assumptions of SDT,
participants do not obtain any information indicating whether the
true stimulus type is S1 or S2 in each trial of a recognition task.
Instead, they decide whether a stimulus belongs to S1 or S2 category
simply based on the comparison between the objective memory
strength and the Type I criterion C. BIM assumes that when
participants evaluate their confidence, they similarly estimate the
probability that their estimated memory strength m̂ is higher or lower
than C given the processing experience e. For example, when
participants give an S1 response, their confidence is the probability
that m̂ is lower than C given e, i.e., P (m̂ < C | e). In contrast, when
they give an S2 response, they then estimate the probability that m̂ is
higher than C, i.e., P (m̂ > C | e). We note that the probability
estimated in the confidence rating process should only depend on
participants’ response rather than the true stimulus type because
participants cannot know a priori anything about the true stimulus
type in the recognition test. This probability that represents parti-
cipants’ confidence may be different from the probability that the
stimulus in each trial belongs to S1 or S2 category based on the
objective memory strengthm, which is related to the likelihood ratio
for the S1 and S2 objective strength distributions at the strength
value m (Fleming & Daw, 2017).

In order to rate their confidence, participants then infer the
posterior distribution of m̂ given e via Bayesian inference. This
Bayesian inference is very similar to that introduced in the BIM for
recall tasks except that the prior beliefs about memory strength may
be different when participants estimate the probability that the
current stimulus is S1 or S2 (i.e., the probability that m̂ is lower
or higher than C). For example, participants may have a prior belief
that the overall memory strength is lower for S1 than S2. Thus, the
mean of the prior belief distribution (μb) in the Bayesian inference
may be different when the Type I response is S1 or S2. The predicted
confidence for S1 and S2 responses (denoted by rS1 and rS2) given
processing experience e can be then calculated as:

Figure 3
Illustration of the Application of Type I Signal Detection Theory to
Recognition Memory Tasks. HR Represents Hit Rate, and FAR
Represents False Alarm Rate

7 For mathematical simplicity, here we combine BIM with equal-variance
SDT to explain how people rate their retrospective confidence about memory
performance in a recognition task. It is possible to combine BIM with
unequal-variance SDT to explain the confidence ratings in more realistic
memory tasks, in which the variance for the objective memory strength (and
perhaps also for the subjective processing experience) may be different
between S1 and S2 stimuli (although we leave this extension to future study).
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predicted conf rS1 = Pðm̂ < CjeÞ = Φ
�
C − Eðm̂jeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðm̂jeÞp

�

= Φ
�
−
e + σ2l μbðrS1Þ

σl
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + σ2l

q +
C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + σ2l

q
σl

�
(14)

predicted conf rS2 = Pðm̂ > CjeÞ = Φ
�
Eðm̂jeÞ − Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðm̂jeÞp

�

= Φ
�
e + σ2l μbðrS2Þ

σl
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + σ2l

q −
C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + σ2l

q
σl

�
(15)

In recognition tasks, confidence ratings can be reported on either a
continuous or discrete scale. When people report confidence ratings
on a 0–1 continuous scale, BIM assumes that the reported confi-
dence is the sum of the predicted confidence based on the posterior
probability and a noise term obtained from a normal distribution
with a mean of 0 and standard deviation of .025, as in recall tasks.
When confidence ratings are reported on an n-point discrete scale,
BIM assumes that people use (n − 1) fixed criteria to divide the 0–1
continuous scale for the posterior probability into n intervals with
equal lengths, which is also the same as in recall tasks. These
(n − 1) criteria on the 0–1 scale for the posterior probability can be
transformed into (n − 1) confidence criteria on the processing
experience distribution for either S1 or S2 stimulus (depending
on the true stimulus type in each trial). In addition, people may have
different prior beliefs about memory strength (μb) for the two
stimulus types, leading to different confidence criteria on the
processing experience distribution when the Type I response is
S1 or S2 (see Equation 11).
In the BIM for recognition tasks, the free parameters are Pexp, μe,

μb and ρ. In addition, instead of estimating the nonidentifiable
parameters μe and μb when fitting BIM to empirical data, we
estimate the mean of the confidence distribution (Mconf) which is
affected by both the μe and μb. We already know that μe is different
when the true stimulus type is S1 or S2, and μb differs between
S1 and S2 response. Thus, the value of Mconf is different across the
2 (stimulus: S1 vs. S2, denoted by sS1 and sS2) × 2 (response:
S1 vs. S2, denoted by rS1 and rS2) conditions (see Section S1 in
Supplemental Materials, for the calculation):

MconfðsS1,rS1Þ = Φ
�
−
μeðsS1ÞPexp + μbðrS1ÞPbelief − Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − PexpPbelief
p

�
(16)

MconfðsS1,rS2Þ = Φ
�μeðsS1ÞPexp + μbðrS2ÞPbelief − Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − PexpPbelief
p

�
(17)

MconfðsS2,rS1Þ = Φ
�
−
μeðsS2ÞPexp + μbðrS1ÞPbelief − Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − PexpPbelief
p

�
(18)

MconfðsS2,rS2Þ = Φ
�μeðsS2ÞPexp + μbðrS2ÞPbelief − Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − PexpPbelief
p

�
(19)

Using maximum likelihood estimation, we can fit BIM to recog-
nition tasks with confidence ratings on either a continuous or
discrete scale (see Section S2 and S4 in Supplemental Materials,

for the computation of likelihood function), and estimate the free
parameters including Pexp, four different Mconf (for each of the four
conditions) and ρ.

Data Simulation and Parameter Recovery

In this section, we simulate data from BIM with different
parameter values. We performed three different analyses with
simulated data sets. First, we investigated the effect of BIM
parameters on the simulated distribution of confidence ratings
and memory performance. Then, we examined whether fitting
BIM to simulated data could successfully recover the ground-truth
parameters. Finally, we analyzed the correlation between the param-
eters in BIM and other computational models fitted to the simu-
lated data.

Confidence-Performance Joint Distribution

In this section, we investigate how values of the parameters in BIM
affect the distribution of confidence ratings andmemory performance.
We first simulated data from the BIM for recall tasks, with each of the
four free parameters in BIM set to one of five possible values:
μm = (−1 −.5 0 .5 1), ρ = (−.8 −.4 0 .4 .8), Pexp = (.3 .4 .5 .6
.7), Mconf = (.3 .4 .5 .6 .7). For each parameter combination, we
simulated 50,000 trials while recording memory performance (0 or 1)
and confidence rating (on 0–1 continuous scale) in each trial.
According to the assumption of BIM, reported confidence in each
trial is the sum of the predicted confidence from BIM and a
random noise from a normal distribution with a mean of
0 and standard deviation of .025. To make sure the simulated
confidence ratings were within the range from 0 to 1, we set the
simulated value of reported confidence in each trial to 0 if the sum
of the predicted confidence and random noise was lower than 0,
and 1 if the sum of the predicted confidence and noise was higher
than 1. We performed kernel density estimation in MATLAB
2019a (http://www.mathworks.com) to estimate the confidence-
performance joint distribution for the simulated data and examine
the effect of each parameter on the shape of this distribution
(Jones, 1993).

Figure 4 shows the effect of Pexp (proportion for the contribution
of processing experience to confidence) and Mconf (mean of confi-
dence distribution) on the shape of the confidence-performance joint
distribution in recall tasks. The confidence distributions in the figure
for recalled and unrecalled items were largely overlapped because
we assumed here that participants correctly recalled half of the items
(i.e., μm = 0) and there was no correlation between processing
experience and objective memory strength (i.e., ρ = 0). We can
see that the parameter Pexp mainly affected the variance of the
confidence distribution, indicating that the distribution was less
variable when Pexp was smaller (and vice versa). This is easy to
understand according to the assumptions of BIM: BIM assumes that
participants’ prior beliefs (i.e., beliefs about the overall proportion
of correctly recalled items) are developed before the memory task
and constant across trials. When participants rate their confidence
mainly based on prior beliefs rather than processing experience,
their confidence ratings should be distributed around this prior belief
and the variability of the confidence distribution should be low. In
contrast, the confidence distribution should have higher variability
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when processing experience contributes more to confidence ratings
because processing experience is variable across items.We also note
from Figure 4 that the parameter Mconf mainly affected the mean of
confidence distribution, as expected.
Figure 5 shows the effect of the parameters μm (mean of the

objective memory strength) and ρ (correlation between objective
memory strength and processing experience) on the shape of the

confidence-performance joint distribution in recall tasks (here we set
Pexp = .5 and Mconf = .5). We can see that μm mainly affected the
proportion of recalled and unrecalled items: Participants should
recall more items when the mean of objective memory strength is
higher. On the other hand, ρ affected the distance between the
confidence distributions of recalled and unrecalled items: Confi-
dence for recalled items is higher than that for unrecalled items when
there is a positive correlation between the objective memory
strength and the processing experience utilized in the metamemory
process (i.e., ρ > 0), and vice versa. Recalled items have higher
objective memory strength than unrecalled items, and thus are also
more likely to have higher strength of processing experience than
unrecalled items when ρ is positive, leading to higher confidence
ratings. The mean confidence for recalled and unrecalled trials
should be the same when ρ = 0.

Next, we simulated data from the BIM for recognition tasks, in
which the parameters Pexp, ρ, and the four Mconf for each of the 2
(stimulus: S1 vs. S2) × 2 (response: S1 vs. S2) conditions were set
to one of the five possible values described above. In addition, we set
d′ and C to 0 in Type I SDT. For each parameter combination, we
simulated 50,000 trials separately for S1 and S2 stimuli and recorded
memory performance and confidence rating in each trial. We then
performed kernel density estimation to estimate the confidence-
performance joint distribution. Figure 6 shows the effect of the
parameters Mconf (sS1, rS1) and Mconf (sS1, rS2) on the shape of the
confidence-performance joint distribution for the S1 stimulus (here
we set Pexp = .5 and ρ = 0). Consistent with our expectations,
Mconf (sS1, rS1) affected the mean of the confidence distribution for
correct trials (i.e., S1 response), and Mconf (sS1, rS2) affected mean
confidence for incorrect trials (i.e., S2 response). Similarly, the
parameters Mconf (sS2, rS2) and Mconf (sS2, rS1) separately affected
mean confidence for correct and incorrect trials following an S2
stimulus.

Figure 7 shows the effect of the parameters Pexp and ρ on the shape
of the confidence-performance joint distribution in recognition tasks (in
which all four of the Mconf parameters were set to .5). Similar to the
results obtained for recall tasks, the parameter Pexp mainly affected the
variance of the confidence distribution in recognition tasks. However,
confidence was increased for both correct and incorrect trials in
recognition tasks when the parameter ρ was high (and vice versa).
This result differs from that for recall tasks in which increasing ρ leads
to higher confidence for correct trials but lower confidence for incorrect
trials. The reason for this difference is that during the retrospective
confidence rating process in recognition tasks, participants are less
likely to detect an error in a Type I response when the correlation
between objective memory strength and processing experience is
higher. For example, when the true stimulus is S2, participants give
an incorrect response (i.e., S1 response) when the objective memory
strength is lower than the Type I criterion C. When there is a high
correlation between objective memory strength and subjective proces-
sing experience, it is more likely that the processing experience is also
lower than C, leading the model to give a high confidence rating for an
incorrect response.

Parameter Recovery

In this section, we carried out parameter recovery analyses to
validateBIM, and examinedwhether the number of trials could affect

Figure 4
The Effect of Pexp and Mconf on the Confidence-Performance Joint
Distribution in Recall Tasks

Note. See the online article for the color version of this figure.

Figure 5
The Effect of μm and ρ on the Confidence-Performance Joint
Distribution in Recall Tasks

Note. See the online article for the color version of this figure.

10 HU, ZHENG, SU, FAN, YANG, YIN, FLEMING, AND LUO



the results of parameter recovery. We first performed parameter
recovery analyses for BIM applied to recall tasks with confidence
on a continuous scale. We conducted ten parameter recovery
analyses with different trial numbers and simulated 1,000 data sets
in each analysis. For each simulated data set, we randomly sampled
the four parameters inBIM (i.e., μm, ρ,Pexp, andMconf) fromuniform

distributions with the following range for each parameter:
(−2 2) for μm, (−.9 .9) for ρ, (.1 .9) for Pexp, and
(.1 .9) for Mconf. Then, we simulated data from one participant
completing a block of trials of confidence ratings and memory test
based on the sampled BIM parameters. The number of trials in each
simulated data set is from 10 to 100 with an increment of 10 (i.e., 10,
20, 30, : : : 100) for the 10 parameter recovery analyses, respectively.
After simulating all of the data sets, we used maximum likelihood
estimation to fit BIM to each simulated data set and examined the
correlation for each parameter between fitted parameter values and
true values. The quality of parameter recoverywas considered good if
the correlation coefficient between true and recovered parameter
valueswas higher than .75, and excellent if the correlationwas higher
than .9 (White et al., 2018).

Results revealed that parameter recovery for Pexp (r = .926) and
Mconf (r = .955) was excellent with only 10 trials for each simulated
data set (see Figure 8a,b). The recovery for μm (r = .846) and ρ
(r = .577) was worse than Pexp andMconf, especially for the parame-
ter ρ which could not be successfully recovered for all simulated data
sets with only 10 trials (see Figure 8c,d). One important reason for
this difference is that there were some simulated data sets in which
memory performance for all trials was the same (0 or 1), and the
estimations of μm and ρ in these data sets were very inaccurate (see the
blue dots in Figure 8c,d). When these data sets were removed, the
parameter recovery was improved for both μm (r = .886) and ρ
(r = .781) (see Figure 8e,f). Thus, we only needed 10 trials to
successfully recover all of the 4 parameters in BIM, and the recovery
for each parameter was better with a larger number of trials (see
Figure 9). When the number of trials is equal to or higher than 50, the
recovery for all parameters was excellent (rs > .9).

Next, we performed parameter recovery analyses for BIM applied
to recall tasks with discrete confidence ratings (using 3-point
and 7-point scale as examples; see Figure S1 in Supplemental
Materials). The results were similar to those for BIM with continu-
ous confidence, except that all of the four parameters in BIM (μm, ρ,
Pexp, and Mconf) could only be successfully recovered (rs > .75)
when using no less than 20 trials for confidence rated on a 7-point
scale, and 30 trials for confidence on a 3-point scale.

We then conducted parameter recovery analyses for BIM applied
to recognition tasks with continuous confidence. The six parameters
in BIM, including Pexp, ρ, and four Mconf in the 2 (stimulus: S1 vs.
S2) × 2 (response: S1 vs. S2) conditions were randomly sampled
from the same ranges as in previous analyses. In addition, for each
simulated data set, we randomly sampled the two Type I SDT
parameters (d′ and C) from the following ranges: (−3 3) for d′, and
(−1 1) for C. Based on the parameters in BIM and SDT, we
conducted ten parameter recovery analyses with trial numbers
ranging from 10 to 100 in each data set, and simulated 1,000
data sets in each analysis. In each simulated data set, the stimulus
was S1 for half of the trials and S2 for the other half. We generated
the Type I response for each trial based on the SDT parameters and
the confidence rating (on a 0–1 continuous scale) for each trial from
BIM. After simulating all of the data sets, we fit BIM to each data set
and examined the correlation for each parameter in BIM between
fitted and true values. When computing the correlation between
true and recovered values forMconf in each of the 2 (stimulus: S1 vs.
S2) × 2 (response: S1 vs. S2) conditions, we removed the
simulated data sets in which there were no trials in the same

Figure 7
The Effect of Pexp and ρ on the Confidence-Performance Joint
Distribution in Recognition Tasks

Note. See the online article for the color version of this figure.

Figure 6
The Effect of Mconf (sS1, rS1) and Mconf (sS1, rS2) on the Confidence-
Performance Joint Distribution Following an S1 Stimulus in
Recognition Tasks

Note. See the online article for the color version of this figure.
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condition because the estimation of Mconf in these data sets is likely
to be inaccurate.
Results revealed that we only needed 10 trials to recover Pexp and

the fourMconf (rs > .75; see Figure 10a–e). However, the parameter
ρ could not be successfully recovered when the trial number in each
simulated data set was between 10 and 100 (see Figure 10f). In fact,
we were not able to recover ρ even with 500 trials in each data set
(r = .489). One possible explanation is that the effect of ρ on model
predictions about confidence ratings might be partly mimicked by
the effect of Mconf because both parameters could affect the overall
mean of confidence ratings (see Figures 6 and 7), and thus it might
be difficult to recover the true value of ρ.

Finally, we performed parameter recovery analyses for BIM
applied to recognition tasks with discrete confidence ratings (see
Figure S2 in Supplemental Materials). The parameter Pexp could be
successfully recovered (r > .75) with 10 trials for a 7-point
confidence scale and 20 trials for a 3-point scale. In addition,
the correlation between true and recovered values for each Mconf

was close to .75, and all of the four Mconf parameters could be
successfully recovered with 90 trials for a 3-point scale and 30
trials for a 7-point scale. Furthermore, similar to BIM for recogni-
tion tasks with continuous confidence, the parameter ρ in BIM for
recognition with discrete confidence could not be successfully
recovered.

Figure 8
Results of Parameter Recovery for Pexp (a), Mconf (b), μm (c), and ρ (d) in BIM for Recall Tasks With Continuous Confidence Based on
Simulated Data Sets With 10 Trials Each. Values Along the Identity Line (Black Line) Indicate Good Recovery, Which is Quantified by the
Correlation Between True and Fitted Parameter Values. The Correlation Between True and Fitted Value for μm (e) and ρ (f) Increased After
We Removed Data Sets With the Same Performance in All Trials, i.e., the Blue Dots in (c) and (d)

Note. See the online article for the color version of this figure.
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In summary, when we fit BIM to confidence ratings on a
continuous scale in either recall or recognition tasks, we only
need a small number of trials (e.g., 10 trials) to accurately estimate
all of the BIM parameters except for ρ in BIM for recognition tasks.
When confidence is on a discrete scale, we may need more trials to
estimate the parameters. For example, 20–30 trials are required
when we aim to estimate all of the parameters in BIM for recall tasks
with discrete confidence ratings. In addition, when we fit BIM
to recognition tasks with discrete confidence ratings, we only need
10–20 trials if we focus on the parameter Pexp. However, a larger
number of trials may be needed (e.g., more than 90 trials) if we aim
to estimate all of the fourMconf parameters. Furthermore, we do not
recommend analyzing the fitted value for the parameter ρ in BIM for
recognition because it is difficult to estimate the true value of ρ in
recognition tasks.

BIM and Other Computational Models

In this section, we investigated the correlation between parame-
ters in BIM and other metrics of metacognition, including
Goodman–Kruskal Gamma, Area under the Type II ROC curve
(AUROC), and parameters obtained from the SDRM and meta-d′
models (Fleming & Lau, 2014; Jang et al., 2012; Maniscalco & Lau,

2012; Nelson, 1984). Examining the relationship between parame-
ters in BIM and other metrics can help us further understand the
computational processes underlying BIM, and how changes in BIM
parameters may affect confidence distributions and metamemory
accuracy.

Goodman–Kruskal Gamma is a correlation measure for the
relative accuracy of metamemory (also called resolution or me-
tacognitive sensitivity) and is widely used in the metamemory
literature (Fleming & Lau, 2014; Nelson, 1984). Gamma reflects
the nonparametric correlation between confidence rating and
memory performance, and a person can be ascribed a higher
metamemory accuracy when the Gamma correlation is higher.
Area under the Type II ROC curve (AUROC) is another non-
parametric measure of metamemory accuracy based on receiver-
operating characteristic (ROC) analysis (Fleming & Lau, 2014;
Higham&Higham, 2018). To compute AUROC, we first separate
high-confidence and low-confidence trials based on each confi-
dence level and identify the hits (correctly answered trials with
high confidence) and false alarm trials (incorrectly answered trials
with high confidence) in the Type II task (i.e., the confidence
rating task). Then a set of HRs and FARs can be computed
and plotted on a Type II ROC curve, and the area under
this ROC curve can be estimated using the trapezoidal rule

Figure 9
Results of Parameter Recovery for Pexp (a), Mconf (b), μm (c), and ρ (d) in BIM for Recall Tasks With Continuous Confidence as a Function of
Number of Trials. The Two Dashed Lines Represent That the Correlation Between True and Fitted Parameter Values is .75 and .9,
Respectively. The Original Correlation (For All Simulated Data Sets) and Corrected Correlation (After We Removed the Data Sets With
Same Performance for All Trials) are Shown for the Parameters μm and ρ

Note. See the online article for the color version of this figure.
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(Higham & Higham, 2018). AUROC is preferred to the Gamma
correlation as a metric of metacognitive accuracy because
AUROC is not systematically affected by bias in confidence
ratings (Fleming & Lau, 2014).
SDRM has been introduced in previous sections. In SDRM, a

participant’s confidence rating is assumed to be based on a compari-
son between processing experience (which is correlated with objec-
tive memory strength) and a set of confidence criteria, while
memory performance is based on the comparison between objective
memory strength and a criterion for recall. The criteria for recall and
confidence ratings in SDRM are allowed to shift across trials.
SDRM contains (n + 3) parameters (in which n is the total available

levels of confidence ratings), including (n − 1) confidence criteria
(Cconf), a criterion for recall (CM), standard deviations for the shift of
criteria for confidence ratings (σC) and recall (σM), and the correla-
tion coefficient (ρ) between the distributions of processing experi-
ence and objective memory strength (Jang et al., 2012). However,
σM and σC are typically nonidentifiable when SDRM is fitted to data
in a single experimental condition. In order to make SDRM
identifiable for a single condition, σM and σC in SDRM can be
set to 0 to prevent variation of criteria across trials. This restricted
SDRM is more similar to BIM because the confidence criteria are
also not allowed to vary across trials in BIM for discrete confidence
ratings.

Figure 10
Results of Parameter Recovery for Pexp (a), Mconf in 2 (Stimulus: S1 vs. S2) × 2 (Response: S1 vs. S2) Conditions (b–e), and ρ (f) in BIM for
Recognition Tasks With Continuous Confidence as a Function of Number of Trials. The Two Dashed Lines Represent That the Correlation
Between True and Fitted Parameter Values is .75 and .9, Respectively

Note. See the online article for the color version of this figure.
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The meta-d′model is a widely used SDT-based model of metacog-
nitive judgments in two-choice perceptual and memory tasks
(e.g., recognition test; Fleming & Lau, 2014; Maniscalco & Lau,
2012). The model is fit to the stimulus (S1 vs. S2) × response
(S1 vs. S2) × confidence matrix. Meta-d′ reflects participants’ meta-
cognitive sensitivity (i.e., whether participants can discriminate
between correct and incorrect responses), and is in the same units as
Type I performance d′. Thus,meta-d′ and d′ can be directly compared,
and meta-d′/d′ is often used as a measurement of the efficiency of
participants’metacognitiongivenaparticular levelof taskperformance
(Fleming & Lau, 2014). The meta-d′ model contains (2 n − 1) para-
meters (in which n is the total available levels of confidence ratings),
including (n − 1) confidence criteria for S1 response (CrS1), (n − 1)
confidence criteria for S2 response (CrS2) and meta-d′.
Based on simulations of confidence distributions with different

parameter values in BIM (see Figures 4–7), we expected that the
parameter Pexp in BIM should mainly affect the variance of the
confidence distribution, which should be reflected in the variance or
standard deviation of the confidence criteria in other models such as
SDRM and the meta-d′model. The parameterMconf affects the mean
of confidence distribution and should relate to the mean of confi-
dence criteria in other models. In addition, the parameter μm in BIM
for recall tasks reflects objective memory strength and should be
correlated with the parameters representing memory performance.
The parameter ρ for recall tasks determines the difference between
confidence for recalled and unrecalled trials and thus might be
related to different indices of metamemory accuracy.
Here we simulated memory performance and confidence rating

data (on a 7-point scale) to investigate the relationship between
parameters in BIM and other metrics of metacognition. We first
examined the relationship between parameters in BIM for recall
tasks and other metrics, includingGamma, AUROC, and parameters
of SDRM. We sampled 1,000 different sets of parameters in BIM
from the same ranges as used in parameter recovery analysis. For
each parameter set, we simulated data of one participant completing
500 trials of confidence ratings (on a 7-point scale) and recall test.
We simulated 500 trials for each data set to ensure that the
parameters in all models could be accurately estimated. We then
used maximum likelihood estimation to fit BIM and SDRM to each
simulated data set and calculated Gamma and AUROC for each data
set. When fitting SDRM to the data sets, we set σM and σC to 0 to
remove the variation in recall and confidence criteria across trials,
which makes all of the other parameters in SDRM identifiable. We
examined the nonparametric Spearman correlation coefficient
between parameters in BIM and other models, and considered there
was a close relationship between two parameters only when the two
parameters showed a large correlation (r > .5 or r < −.5; Cohen,
1977).8 For SDRM, we also computed the mean and standard
deviation of the confidence criteria and examined the correlation
between these variables and the parameters in BIM.
The correlation coefficients between parameters in BIM for recall

tasks and other metrics are shown in Table 1. Results revealed that
parameter Pexp in BIM was negatively correlated with the standard
deviation of confidence criteria in SDRM. Confidence criteria are
close to each other when the standard deviation is smaller, suggest-
ing that participants are more likely to give extreme values rather
than medium values when rating their confidence. This is consistent
with the simulated confidence distributions (see Figure 4), showing
that participants are more willing to give extreme confidence ratings

when processing experience contributes more to metamemory.
Parameter Mconf in BIM was negatively correlated with mean
confidence criteria in SDRM, suggesting that people set liberal
confidence criteria when the mean of confidence distribution is high.
Parameter μm in BIM was negatively correlated with the recall
criterion in SDRM, showing that a liberal recall criterion leads to
high memory performance. Parameter ρ in BIM positively corre-
lated with different indices of metamemory accuracy, including
Gamma, AUROC, and ρ in SDRM. In addition, the other three
parameters in BIM did not significantly correlate with metamemory
accuracy indices, indicating that only the correlation between
memory strength and processing experience can predict metamem-
ory accuracy in recall tasks.

Next, we examined the relationship between BIM for recognition
tasks and other metrics, including Gamma, AUROC, and parameters
of the meta-d′model. We sampled 1,000 different sets of parameters
in BIM and SDT from the same ranges as in the parameter
recovery analyses in the previous section. For each parameter
set, we simulated data of 250 trials following an S1 stimulus and
250 trials following an S2 stimulus. We then fit BIM and the meta-d′
model to each simulated data set and calculated Gamma and
AUROC for each data set. When fitting the meta-d′ model to
simulated data sets, we applied padding correction to ensure all
of the parameters in the meta-d′ model could be successfully
estimated (Fleming, 2017; Maniscalco & Lau, 2012). We also
computed the mean and standard deviation of the confidence criteria
in the meta-d′ model separately for S1 and S2 responses and
examined the correlation between these variables and the parameters
in BIM. In addition, we did not analyze the parameter ρ in BIM for
recognition tasks because it is difficult to estimate the true value of ρ.

The correlation coefficients between parameters in BIM for
recognition tasks and other metrics are shown in Table 2. Parameter
Pexp in BIMwas negatively correlated with the standard deviation of
confidence criteria in the meta-d′ model, as expected. In contrast,
none of the parameter Mconf showed a large correlation with the
mean confidence criteria in the meta-d′model, which diverges from
our hypothesis. However, we noticed that the correlation between
eachMconf and the mean confidence criteria depended on the Type I
performance in the recognition test (i.e., d′). When d′ was higher
than 0, Mconf (sS1, rS1) and Mconf (sS2, rS2) largely correlated with the
mean confidence criteria in the meta-d′ model for S1 and S2

Table 1
Spearman Correlation Between Parameters in BIM for Recall Tasks
and Other Metamemory Metrics/Models

Metrics Pexp Mconf μm ρ

Gamma −.056 .059 −.031 .991a

AUROC −.046 .062 −.016 .969a

SDRM
ρ −.048 .053 −.020 .993a

MCconf .025 −.885a .021 −.029
SDCconf −.937a −.037 −.005 .031
CM −.007 .033 −.997a .029

Note. a The absolute value of the correlation coefficient is higher than .5.

8 We used Spearman correlation rather than Pearson correlation because
there were extreme values in fitted parameters such as the confidence criteria.
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responses, respectively (r = .521 and −.583). This is because
Mconf (sS1, rS1) and Mconf (sS2, rS2) represent the mean confidence
for correct trials. There should be more correct than incorrect trials in
the data sets when d′ is higher than 0, and the mean confidence
criteria in the meta-d′ model should mainly correlate with Mconf for
correct trials. Similarly, when d′was lower than 0,Mconf (sS2, rS1) and
Mconf (sS1, rS2) showed large correlations with the mean confidence
criteria in the meta-d′ model for S1 and S2 responses, respectively
(r = .589 and −.553) because the mean confidence criteria should
mainly correlate with Mconf for incorrect trials. In addition, neither
Pexp or any of the Mconf showed large correlations with indices of
metamemory accuracy such as Gamma, AUROC or meta-d′.
To further investigate the relationship between the parameters in

BIM and other models, we also simulated data generated by either
the SDRM or the meta-d′ model and examined the correlation
between the parameters in the generative model and BIM. The
results were very similar to those reported above (see Section S5 and
Tables S1–2 in Supplemental Materials).

Fitting BIM to Empirical Data

In this section, we provide examples of fitting BIM to empirical
data sets in four studies. In Studies 1–3, we fit BIM to experiments
on judgments of learning (JOLs). We examined if the results from
BIM in Studies 1–2 were consistent with previous theories of
metamemory. In Study 3, we conducted a stronger test of the
assumption about the Bayesian inference process in BIM. Further-
more, we compared the fit of BIM and SDRM to data in Studies 1–3
to see which model could better account for the data. Finally, in
Study 4, we showed an example of how to fit BIM to data from a
recognition memory test with retrospective confidence ratings.

Study 1: JOLs Versus Prestudy JOLs

A JOL is a prediction of the likelihood of remembering studied
materials in a subsequent memory test (Nelson&Narens, 1990). In a
typical study on JOLs, participants need to predict their memory
performance after they finish learning each item (Bjork et al., 2013;
Nelson & Narens, 1990). Results from many studies suggest that
poststudy JOLs rely on both the current experience in processing
each item and participants’ prior beliefs about their overall memory
ability (Frank & Kuhlmann, 2017; Hu et al., 2015; Mueller,
Dunlosky, Tauber, et al., 2014; Su et al., 2018; Undorf et al.,

2017; Witherby & Tauber, 2017; Yang, Huang, et al., 2018).
However, in some studies, researchers asked participants to guess
the likelihood of remembering each item before they see the item.
This type of metamemory judgment is called prestudy JOL
(Mueller, Dunlosky, Tauber, et al., 2014; Mueller et al., 2016;
Witherby & Tauber, 2017). Participants are not able to see the
item prior to making a prestudy JOL, and have to largely rely
on their prior belief about overall memory ability to guess the
memory performance for each item (Mueller, Dunlosky, Tauber,
et al., 2014). Thus, compared with poststudy JOLs, prestudy JOLs
should be based more on prior beliefs and less on processing
experience.

In this study, we asked participants to give post- or prestudy JOLs
to a list of word pairs. We used BIM to investigate the contribution
of processing experience and prior beliefs to post- and prestudy
JOLs. Based on previous studies, we expected that the contribution
of processing experience (i.e., Pexp) should be higher for post- than
prestudy JOLs. In addition, we expected that the correlation between
processing experience and objective memory strength (i.e., ρ)
should also be higher for post- than prestudy JOLs. It is possible
that when giving prestudy JOLs, participants may use the processing
experience for previously learned items to infer the memory perfor-
mance of the following item (Mueller et al., 2013). However, the
processing experience for previous items should not accurately
predict the objective memory strength for the current item. In
contrast, when giving poststudy JOLs, participants utilize their
experience in processing the current item, which should more
accurately predict the objective memory strength.

Another purpose of this study was to compare the fit of BIM and
SDRM to empirical data. We first compared the empirical
JOL-performance joint distribution in two experimental con-
ditions (post- and prestudy JOLs) and the predictions from BIM
and SDRM, and then examinedwhichmodel could better account for
the data.

Participants

The participants included 28 students from Beijing Normal
University (6 men; age: M = 21.21 years, SD = 2.44). Each par-
ticipant was tested individually, and written informed consent was
obtained from all participants. This sample size was similar to
previous studies of metacognition using computational modeling
(Fleming et al., 2018; Hu et al., 2019). All procedures were
approved by the local ethics committee.

Materials

The materials consisted of 50 Chinese word pairs. Each word pair
contained one cue word and one target word. All of the words were
two-character words that were from the Chinese word database by
Cai and Brysbaert (2010). The word frequency was between .03 and
46.2 per million words. Before the experiment, 238 raters used a
four-point rating scale to evaluate the semantic associations of all the
word pairs. On the four-point scale, 1 represented “very unrelated”
and 4 represented “very related”. The semantic associations of all
word pairs were between 1 and 2. Another six word pairs were used
in the practice stage.

Table 2
Spearman Correlation Between Parameters in BIM for Recognition
Tasks and Other Metamemory Metrics/Models

Metrics Pexp

Mconf

(sS1, rS1)

Mconf

(sS1, rS2)

Mconf

(sS2, rS1)

Mconf

(sS2, rS2)

Gamma −.001 .369 −.381 −.387 .404
AUROC −.004 .376 −.382 −.385 .411
Meta-d′
meta-d′ −.023 .360 −.370 −.346 .380
MCrS1 .223 .311 .007 .382 −.013
SDCrS1 −.690a −.237 −.037 −.249 −.011
MCrS2 −.186 .012 −.337 .066 −.350
SDCrS2 −.720a −.016 −.304 −.005 −.208

Note. a The absolute value of the correlation coefficient is higher than .5.

16 HU, ZHENG, SU, FAN, YANG, YIN, FLEMING, AND LUO

https://doi.org/10.1037/rev0000270.supp
https://doi.org/10.1037/rev0000270.supp


Procedure

The experiment consisted of three phases: Learning (in which pre-
and poststudy JOLs were made), distractor task, and memory test. In
the learning phase, participants were required to learn 50 word pairs
with a 3 s presentation time for each word pair. Word pairs were
randomly divided into two experimental conditions (post- and
prestudy JOLs), and each condition contained 25 pairs. For the
pairs in the poststudy JOL condition, participants were instructed to
rate the likelihood of recalling the target word in a later memory test
given the cue word (i.e., JOL) immediately following the presenta-
tion of each pair. Participants gave their JOLs on a sliding scale from
0 to 100. Arbitrary scale values of 0, 20, 40, 60, 80, and 100 were
marked at equal spacings. The initial cursor position on each trial
was randomly jittered around the midpoint of the scale (±12% of
scale length). Participants used the left or right arrow key to move
the cursor up or down the scale. The final cursor position was
recorded as a continuous variable on each trial. For the word pairs in
the prestudy JOL condition, participants guessed the likelihood of
recalling the target word before learning each pair. They gave
prestudy JOLs in the same way as poststudy JOLs. Word pairs
were presented in a pseudorandom order in which no more than
three pairs from the same experimental condition were presented
consecutively.
After the learning phase, participants engaged in a 1-min arith-

metic distractor task. They were then given a recall test. The
computer screen showed a cue word in each trial, and participants
needed to type the target word in the same pair. There was no time
limit for the test of each pair, and participants could choose to skip
the test for a trial if they could not recall the target word.

Results

The mean JOL magnitude was significantly higher for post-
than prestudy JOLs, t(27) = 3.79, p = .001, Cohen’s d = .72,

ηp2 = .35, indicating that participants were more confident about
their memory after they saw the word pair. However, the proportion
of recalled word pairs did not differ between the post- and prestudy
JOL conditions, t(27) = .88, p = .389, Cohen’s d = .17, ηp2 = .03,
suggesting that the type of JOL did not affect memory performance.
We then divided the 0–100 continuous scale for JOLs into
seven equal-length bins (i.e., 0−14, 14−28, etc.), and used AUROC
to quantify the accuracy of binned JOLs in the pre- and poststudy
condition (Fleming & Lau, 2014).9 We found that although
metamemory accuracy was slightly higher for post- than prestudy
JOLs, this difference did not reach significance, t(27) = 1.52,
p = .140, Cohen’s d = .29, ηp2 = .08 (see Table 3).

We next fit BIM for each participant separately in the post- and
prestudy JOL conditions (see Table 4). JOLs were converted into a
percentage scale, and memory performance was set to 0 for un-
recalled trials and 1 for recalled trials. We removed the parameters
μm and ρ in the prestudy JOL condition for one participant because
the memory performance was the same (i.e., 1) for all trials. Then
we used paired-sample t-tests to compare Pexp andMconf, and linear
mixed effect models to compare μm and ρ between two conditions
because linear mixed effect models can properly handle missing data
within participants (Hu et al., 2019).10 We found that the contribu-
tion of processing experience (Pexp) was significantly higher for
post- than prestudy JOLs, t(27) = 4.39, p < .001, Cohen’s d = .83,
ηp2 = .42, indicating that participants relied more on processing
experience (rather than prior beliefs about their overall memory
ability) when making poststudy compared with prestudy JOLs. In
addition, the mean of the confidence distribution (Mconf) was higher

Table 3
Mean JOL Magnitude, Recall Performance and AUROC From
Studies 1–3

Condition
Mean JOL
magnitude

Recall
performance AUROC

Study 1
Poststudy JOLs 46.61 (16.04) .51 (.28) .56 (.08)
Prestudy JOLs 41.97 (15.20) .53 (.30) .53 (.08)

Study 2, experiment 1
Immediate 51.22 (22.14) .46 (.22) .55 (.09)
Delayed 47.01 (16.90) .46 (.22) .80 (.07)

Study 2, experiment 2
Immediate 52.23 (23.02) .47 (.21) .57 (.10)
Delayed 41.53 (20.66) .41 (.23) .83 (.06)

Study 2, experiment 3
Immediate 61.60 (22.31) .45 (.20) .52 (.13)
Delayed 40.56 (20.26) .36 (.20) .82 (.08)

Study 3
Old 65.14 (17.45) .30 (.13) .50 (.10)
Young 70.05 (16.21) .30 (.13) .47 (.09)

Note. Standard deviations are reported in parentheses. Recall performance
refers to the proportion of recalled word pairs in the memory test.

Table 4
Means (and Standard Deviations) of Fitted BIM Parameters From
Studies 1–3

Condition Pexp Mconf μm ρ

Study 1
Poststudy JOLs .30 (.13) .47 (.16) .02 (.89) .22 (.37)
Prestudy JOLs .24 (.11) .42 (.15) .01 (.88) .00 (.43)

Study 2, experiment 1
Immediate .46 (.13) .51 (.22) −.14 (.69) .21 (.30)
Delayed .68 (.21) .48 (.18) −.12 (.80) .80 (.16)

Study 2, experiment 2
Immediate .51 (.16) .52 (.23) −.07 (.60) .32 (.38)
Delayed .78 (.17) .41 (.21) −.26 (.63) .84 (.15)

Study 2, experiment 3
Immediate .45 (.12) .61 (.22) −.17 (.62) .17 (.30)
Delayed .86 (.14) .40 (.20) −.49 (.68) .85 (.13)

Study 3
Old .38 (.16) .65 (.17) −.55 (.41) .07 (.30)
Young .40 (.16) .70 (.16) −.55 (.41) .01 (.32)

Note. Standard deviations are reported in parentheses.

9 We divided JOLs into 7 bins to make sure none of the criteria for the bins
was an integer between 0 and 100 such that no JOLs lay just at the edge of
bins.

10 In Studies 1–3, we used t-tests to compare the BIM parameters between
within-subject conditions when there were no missing data and linear mixed
effect model when missing data occurred. The t values and partial eta-
squared (effect size) from linear mixed effect models are reported. See Hu
et al. (2019) for details on building the linear mixed effect models. For
consistency in effect size, we report both Cohen’s d and partial eta-squared as
effect size for classical t-tests.
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for post- than prestudy JOLs, t(27) = 3.80, p = .001, Cohen’s
d = .72, ηp2 = .35. The mean of objective memory strength (μm)
did not differ between two conditions, t(25.84) = .54, p = .596,
ηp2 = .01. These results are consistent with previous analyses of
mean JOL magnitude and recall performance. Finally, the correla-
tion between processing experience and objective memory strength
(ρ) was also higher for post- than prestudy JOLs, t(25.81) = 2.30,
p = .030, ηp2 = .17, suggesting that the processing experience
utilized in poststudy JOLs could better predict the memory perfor-
mance than that in prestudy JOLs.
Finally, we compared the fit of BIM and SDRM to the data.

We first divided the percentage scale for JOLs into seven equal-
length bins, and then fit BIM and SDRM to binned JOLs (i.e., on a
7-point scale) and recall performance in each experimental condi-
tion. When fitting SDRM to data, we set the standard deviations
for recall and confidence criteria (i.e., σM and σC) to 0 to ensure
SDRM was identifiable for each condition and more similar to BIM
in which the variation of criteria across trials is not allowed. We
should note that the difference in mathematical structure between
BIM and the current version of SDRM is that each confidence
criteria in SDRM is a free parameter, while all of the confidence
criteria on the processing experience distribution in BIM are deter-
mined by only two parameters (Pexp andMconf). We also fit another
restricted version of SDRM in which the confidence criteria in one
experimental condition were the rescaled criteria in the other
condition adjusted by a scale parameter β. This restricted SDRM
is very similar to the Model 4c in Jang et al. (2012), except that the
parameters σM and σC were set to 0 in the current model. Here, we
denote the SDRMwithout and with the restriction on the confidence
criteria via parameter β as SDRM1 and SDRM2, respectively. The
JOL-performance joint distribution for the data and model predic-
tions is shown in Figure 11. All of the three models could fit the
overall pattern of JOL-performance distribution in both post- and
prestudy JOL conditions.
To further compare the fit of the three models while accounting

for the difference in model complexity, we next computed the cross-
validated (CV) log-likelihood for each model using leave-one-out
cross-validation. For each participant, we used one trial as the test

data set and the other trials as the training data set. We separately fit
each of the three models to the training data set and calculated the
log-likelihood for the left-out trial based on the fitted parameters.We
could obtain the CV log-likelihood of each trial for a participant
using this method, and then summed the CV log-likelihood of all
trials from all participants separately for each of the three models.
Results revealed that the aggregated CV log-likelihood of BIM
(−3993.46) was higher than that of SDRM1 (−7321.53) and
SDRM2 (−5455.34), suggesting that BIM could better predict
the data than SDRM.

Discussion

The results from BIM support our hypothesis that processing
experience should contribute more to post- than prestudy JOLs
(Mueller, Dunlosky, Tauber, et al., 2014), indicating that BIM is
consistent with previous theories on metamemory. We also found
that the overall proportion for the contribution of processing expe-
rience to prestudy JOLs (i.e., Pexp) across participants was .24
(see Table 4), which is considerably higher than 0. One possible
explanation is that participants’ prestudy JOL for each trial might
rely not only on prior beliefs about memory ability, but also the
processing experience in previous trials (Mueller et al., 2013). In
addition, our results showed that the processing experience utilized
in poststudy JOLs could predict objective memory strength more
accurately than that in prestudy JOLs, suggesting that the processing
experience of current items is more closely related to objective
memory than that of previous items.

Another important result from Study 1 is that BIM could better
predict the data than SDRM1 and SDRM2 (based on the CV log-
likelihood), although all of the three models could fit the overall
pattern of JOLs andmemory performance. One possible explanation
for the difference in CV log-likelihood between BIM and SDRM is
that BIM may be a more parsimonious model than SDRM. While
each confidence criterion in SDRM is a free parameter, the confi-
dence criteria in BIM for discrete confidence ratings are decided by
only a location and a scale parameter (see Equation 11). This
difference in model complexity may be accounted for by the CV

Figure 11
The JOL-Performance Joint Distribution for Poststudy JOLs (a) and Prestudy JOLs (b) Condition in Study 1. The Red, Blue, and Green
Points Represent the Predictions From BIM, SDRM1, and SDRM2, Respectively. Error Bars Represent Standard Errors

Note. See the online article for the color version of this figure.
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log-likelihood, leading to a better prediction of data by BIM
than SDRM.

Study 2: Delayed JOL Effect

In many studies on JOLs, participants are asked to make JOLs
immediately after learning each item (e.g., Finn & Metcalfe, 2008;
Frank & Kuhlmann, 2017; Hu et al., 2015; Koriat, 1997; Mueller,
Dunlosky, Tauber, et al., 2014). However, there may also be a delay
between when learning occurs and the JOL is made. For example, in
some studies participants were required to make a JOL for each item
after all items were learned. This type of JOL is called delayed JOL
(Nelson & Dunlosky, 1991; Rhodes & Tauber, 2011). Previous
studies have indicated that delayed JOLs show significantly higher
metamemory accuracy than immediate JOLs, known as the delayed
JOL effect (Hu et al., 2016; Nelson & Dunlosky, 1991; Rhodes &
Tauber, 2011; Spellman & Bjork, 1992; Weaver & Kelemen, 1997).
While immediate JOLs have been shown to rely on both proces-

sing experience and prior beliefs, researchers suggest that delayed
JOLs are mainly based on processing experience incidental to the
JOL process (Nelson & Dunlosky, 1991; Rhodes & Tauber, 2011;
Spellman&Bjork, 1992). For example, Spellman and Bjork suggest
that when rating the likelihood of recalling an item after a delay,
participants first try to retrieve the item from their long-term
memory. Whether participants believe they could recall the item
in a later test depends on this retrieval attempt: They should give a
high JOL when they successfully and fluently retrieve this item (and
vice versa). Thus, compared to immediate JOLs, processing experi-
ence should contribute more to delayed JOLs.
In this study, we used BIM to reanalyze the data in our previous

study on the delayed JOL effect (Hu et al., 2016). Based on the
theory of delayed JOLs outlined above (Rhodes & Tauber, 2011;
Spellman & Bjork, 1992), we expected that the contribution of
processing experience to JOLs (i.e., Pexp) should be higher for
delayed than immediate JOLs. We also expected that the correlation
between processing experience and objective memory strength
(i.e., ρ) should also be higher for delayed than immediate JOLs.
This is because participants mainly rely on information in short-term
memory when making immediate JOLs, while they rely on long-
term memory when making delayed JOLs. Compared with short-
term memory, the information in long-term memory is more likely
to accurately predict performance in a later test (Nelson &
Dunlosky, 1991). In addition, we compared the fit of BIM and
SDRM to the data for immediate and delayed JOLs.

Participants

Hu et al. (2016) contain three experiments. There were 28
participants (11 men) in Experiment 1, 34 participants (11 men)
in Experiment 2, and 25 participants (5 men) in Experiment 3.

Materials

The materials consisted of 52 Chinese word pairs. All of the
words were two-character words that were from the Chinese word
database by Cai and Brysbaert (2010). The word frequency was
between .006 and 46.2 per million words. The semantic associations
of the word pairs were between 1.3 and 1.9 on a 4-point scale.

Procedure

Each experiment consisted of four phases: Learning (in which
immediate JOLs were made), delayed JOLs, a distractor task, and
memory test (except for Experiment 3 in which there was also a
lexical decision task). In the learning phase, participants were
required to learn 52 word pairs with 4 s presentation time for
each word pair. The first and last two pairs were buffering pairs
and were not included in the JOL and recall phases. From the
remaining 48 pairs, half (i.e., 24 pairs) were randomly selected for
immediate JOLs. Immediately following the presentation of these
pairs, participants were instructed to orally report a number between
0 and 100 indicating their JOL. After learning all of the pairs,
participants were required to make JOLs for the remaining 24 pairs
with only the cue words presented on the screen (i.e., delayed JOL).
After the delayed JOL phase, participants engaged in an arithmetic
distractor task. They were then given a recall test. During the
immediate and delayed JOL phases, cue words were presented in
either 70-pt or 9-pt font size. In the data analyses here, we combined
the trials with different font sizes (see Hu et al. (2016), for further
details of the experimental procedure).

Results

The mean JOL magnitude and recall performance did not differ
between immediate and delayed JOLs in Experiment 1, ts < 1.3,
ps > .2, Cohen’s d < .3, ηp2 < .06. However, in Experiments 2 and
3 both the mean JOL magnitude and recall performance was higher
for immediate than delayed JOLs, ts > 2.6, ps < .05, Cohen’s
d > .4, ηp2 > .17. This consistency in JOL magnitude and recall
performance across two conditions confirms that participants could
accurately predict the overall pattern of memory performance. We
then used AUROC to quantify the accuracy of JOLs, and found that
in all of the experiments JOL accuracy was significantly higher for
delayed than immediate JOLs, ts > 10.2, ps < .001, Cohen’s
d > 1.9, ηp2 > .79, replicating the delayed JOL effect found in
previous studies (see Table 3).

We next fit BIM for each participant separately in immediate and
delayed JOL conditions (see Table 4).11 In all of the three experi-
ments, the contribution of processing experience to JOLs (i.e., Pexp)
was higher for delayed than immediate JOLs, ts > 7.6, ps < .001,
ηp2 > .68, showing that participants relied more on processing
experience during delayed JOLs. We also found that the correlation
between processing experience and objective memory strength (ρ)
was higher for delayed than immediate JOLs in all of the experiments,
ts > 7.4, ps < .001, ηp2 > .46, suggesting that the information uti-
lized in delayed JOLs (such as the results of retrieval attempt) could
better predict memory performance. In addition, the mean of the
confidence distribution (Mconf) and objective memory strength (μm)
did not differ between immediate and delayed JOLs in Experiment 1,
ts < 1.0, ps > .3, Cohen’s d < .2, ηp2 < .05, but were significantly
higher for immediate than delayed JOLs in Experiments 2 and 3,

11 As in Study 1, we removed the parameters μm and ρ in the immediate or
delayed JOL condition for the participants with the same memory perfor-
mance for all trials. We also removed the parameters Pexp and ρ for the
participants with the same JOL value for all trials, because during model
development we found that the estimation of these parameters is inaccurate
when all trials have the same confidence rating.
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ts > 2.4, ps < .05, ηp2 > .15, which is consistent with previous
analyses on mean JOL magnitude and recall performance.
Finally, we compared the fit of BIM and the two SDRM models

(i.e., SDRM1 and SDRM2; see Study 1) to the data (see Figure 12).
Although all of the three models could fit the overall pattern of
JOL-performance distribution for immediate and delayed JOLs, the
fit of SDRM2 was imperfect for trials with low JOLs. To further
compare the three models, we computed the CV log-likelihood as in
Study 1. The aggregated CV log-likelihood was higher for BIM
(Exp 1: −3301.81; Exp 2: −3790.37; Exp 3: −2672.99) than
SDRM1 (Exp 1: −8245.21; Exp 2: −9904.55; Exp 3: −7792.53)
and SDRM2 (Exp 1:−5184.91; Exp 2:−6858.77; Exp 3:−5162.92)
in all of the experiments, suggesting that BIM could better predict
the data.

Discussion

The results from BIM revealed that participants relied more on
processing experience in delayed than immediate JOLs, which is
consistent with our hypothesis based on previous studies (Rhodes &
Tauber, 2011; Spellman & Bjork, 1992). Furthermore, the propor-
tion for the contribution of processing experience to delayed JOLs
was significantly higher than .5 in all of the three experiments
(ts > 4.4, ps < .001), suggesting that delayed JOLs were mainly
based on processing experience (Spellman & Bjork, 1992). We also
found that the processing experience utilized in delayed JOLs could
more accurately predict memory performance than that in immediate
JOLs, supporting a previous theory that immediate JOLs are based
on short-term memory while delayed JOLs rely on long-term

Figure 12
The JOL-Performance Joint Distribution for Immediate JOLs (a for Exp 1, c for Exp 2, and e for Exp 3) and Delayed JOLs (b for Exp 1, d for
Exp 2, and f for Exp 3) in Study 2. The Red, Blue, and Green Points Represent the Predictions From BIM, SDRM1, and SDRM2, Respectively.
Error Bars Represent Standard Errors

Note. See the online article for the color version of this figure.
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memory (Nelson & Dunlosky, 1991). In addition, as in Study 1,
while both BIM and SDRM could fit the overall pattern of JOLs and
performance, BIM could better predict the data according to the CV
log-likelihood, possibly because BIM is a more parsimoni-
ous model.

Study 3: Stronger Test of Assumptions in BIM

The core assumption of BIM is that people evaluate their memory
performance through a Bayesian inference, in which they integrate
the current processing experience and prior beliefs about memory.
In Studies 1 and 2, we found that BIM could accurately fit the overall
pattern of confidence distribution. However, the previous two
studies did not provide direct support for the assumption that
participants apply Bayesian inference to evaluate their memory
performance. Thus, in Study 3, we conducted a stronger test of
the assumption about the Bayesian inference process in BIM.
Specifically, we obtained separate estimates for the strength of
processing experience and prior beliefs about memory performance
from separate data sets, and made parameter-free predictions of the
JOL value in each trial via Bayesian inference given people’s prior
beliefs about memory and the processing experience during learn-
ing. Then we examined whether the true JOL values could be
predicted by the computed JOLs based on Bayesian inference. If
people give JOLs through a Bayesian inference process in which
processing experience and prior beliefs are integrated, then the
computed JOLs based on Bayesian inference should significantly
predict the true JOL values.
In Study 3, we reanalyzed the data from Experiment 6 of Tauber

et al. (2019). In this experiment, participants were asked to learn a
list of words. After learning each word, they gave two different JOLs
in which they predicted the probability of correctly recalling this
word in a later memory test for an average young adult (18–21 years
old) and an average old adult (65 + years old), respectively. Before
the learning phase, some of the participants also made global
predictions about the number of correctly recalled words in the
memory test separately for young and old adults. These global
predictions should be only based on participants’ prior beliefs
because they had not seen the words when giving the global
predictions.
We could assume that when participants gave the two JOLs for

each word, they should rely on the same (or at least very similar)
processing experience because the two JOLs were made for the
same word. Thus, we could fit BIM to one experimental condition
(e.g., young adult) to estimate the processing experience for each
word, and then directly compute the JOLs in the other condition
(e.g., old adult) without model fitting by applying Bayesian infer-
ence based on the estimated processing experience and participants’
prior beliefs obtained in their global predictions before learning. We
examined whether the value of the computed JOL in each trial could
significantly predict the true JOL.

Participants

There were 85 participants in Experiment 6 of Tauber et al.
(2019), in which only 43 participants made belief-based global
predictions about memory performance for young and old adults
before learning (the other 42 participants gave retrospective global
postdictions about memory performance after memory test). Here

we only analyzed the data from the participants for whom prior
beliefs were measured. One participant was excluded due to using
the same JOL value for all trials in each experimental condition,
leaving 42 participants in the data analysis.

Materials

The materials consisted of 28 neutral English words.

Procedure

Participants were asked to learn all of the words and then took a
memory test. They gave belief-based global predictions about the
number of correctly recalled words in a later memory test separately
for young and old adults before the learning phase. After learning
each word, they separately gave a JOL representing the recall
probability for young and old adults. Participants finished a free
recall test after the learning phase, in which they were required to
report the learned words as many as possible. See Tauber et al.
(2019) for further details of the experimental procedure.

Data Analysis

We first examined the difference in mean JOL magnitude and
belief-based global predictions between young and old adults. Next,
we fit BIM to each experimental condition for each participant and
compared the parameters in BIM between the two conditions. Then
we compared the fit of BIM and the two SDRM models to the data,
as in Studies 1 and 2.

Finally, for each participant, we directly computed the JOL in
each trial and investigated whether the value of the computed JOLs
could significantly predict the true JOLs. According to the assump-
tion of BIM, people integrate their prior beliefs and processing
experience in a Bayesian inference to evaluate their memory
performance. Thus, the JOL value can be directly computed through
this Bayesian inference given the processing experience and prior
beliefs. We assumed that the processing experience utilized in the
JOLs for young and old adults in each trial was the same because the
two JOLs were made for the same word. Thus, we could estimate the
processing experience in each trial by fitting BIM to the JOL data in
one experimental condition (e.g., young adult), and then calculate
the JOL in each trial for the other condition (e.g., old adult) without
model fitting, using this estimated processing experience and parti-
cipants’ prior beliefs obtained from the belief-based global predic-
tions made before learning (see Section S6 in Supplemental
Materials for details of the calculation). We examined the correla-
tion between the computed JOLs and true JOLs to see whether the
true value of JOLs could be predicted by our Bayesian inference
computation.

Results

The mean JOL magnitude was significantly higher for young
than old adults, t(41) = 3.12, p = .003, Cohen’s d = .48,
ηp2 = .19, suggesting participants predicted that young adults
would have higher memory performance than old adults in a later
test(see Table 3). Similarly, the belief-based global predictions
(converted into beliefs about the proportion of recalled words)
were also higher for young (M = 50.5%, SD = 19.1%) than old
adults (M = 40.6%, SD = 15.3%), t(41) = 4.25, p < .001,
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Cohen’s d = .66, ηp2 = .31, indicating participants had a prior
belief that young adults should have better overall memory ability.
We next fit BIM for each participant separately in the young and old
adult conditions (see Table 4). Results revealed that the mean of
confidence distribution (i.e., parameter Mconf) was significantly
higher for young than old adults, t(41) = 3.13, p = .003, Cohen’s
d = .48, ηp2 = .19, as in the analysis on the mean JOL magnitude.
The other three parameters in BIM (Pexp, μm, and ρ) did not
significantly differ between young and old adults, ts < 1.4,
ps > .1, Cohen’s d < .3, ηp2 < .05.
We then compared the fit of BIM and the two SDRM models

(i.e., SDRM1 and SDRM2; see Study 1) to the data (see Figure 13).
All of the three models could fit the overall pattern of JOL-
performance distribution for both old and young adults. To further
compare the three models, we computed the CV log-likelihood as in
Studies 1 and 2. The aggregated CV log-likelihood was higher
for BIM (−5334.66) than SDRM1 (−9293.88) and SDRM2
(−7032.19), suggesting that BIM could better predict the data.
Finally, we computed the JOL in each trial by applying Bayesian

inference and examined the correlation between the computed and

true value of JOLs. We first looked at the overall correlation for all
trials from all participants, which showed that the computed JOLs
could significantly predict the true JOLs and the correlation was
large, r = .776, p < .001, suggesting the true JOL values could be
predicted by our Bayesian inference computation (see Figure 14).
We next examined the correlation for each participant. Results
indicated that the mean correlation between computed and true
JOLs across participants was large (M = .635, SD = .252),
although the prediction for true JOLs was not perfect.

One possible concern with this result is that a large correlation
between computed and true JOLs may be expected due to an
underlying correlation between the two JOLs provided on a given
trial. In other words, because the model is basing its prediction on
the other JOL from the same trial, a correlation may emerge due to
the two JOLs sharing the same word, rather than due to any success
of BIM. To rule out this possibility, we built a simple correlation
model in which we used the true JOL values in one condition to
predict the JOLs in the other condition, and investigated whether the
JOLs computed via Bayesian inference could predict the true JOLs
better than the simple correlation model. We first examined the
overall correlation for all trials from all participants, which showed
that the correlation between true JOLs and computed JOLs based on
Bayesian inference (r = .776) was significantly higher than the
correlation between JOLs in two conditions (r = .728; Z > 5,
p < .001). We also analyzed the same correlations for each partici-
pant, and results again indicated that the mean correlation between
true JOLs and computed JOLs based on Bayesian inference
(M = .635, SD = .252) was significantly higher than the mean
correlation between JOLs in two conditions (M = .446,
SD = .408), t(41) = 3.15, p = .003, Cohen’s d = .49, ηp2 = .19.
These results suggest that the prediction for true JOL values based
on Bayesian inference goes beyond that which can be obtained from
a simple linear correlation between the JOLs in two experimental
conditions.

To further investigate the relationship between the true and
computed JOLs, we built linear regression models in which true
JOLs were regressed on computed JOLs. If the value of true JOLs
could be perfectly predicted by the computed JOLs, then the

Figure 13
The JOL-Performance Joint Distribution for Old Adult (a) and Young Adult (b) in Study 3. The Red, Blue, and Green Points Represent the
Predictions From BIM, SDRM1 and SDRM2, Respectively. Error Bars Represent Standard Errors

Note. See the online article for the color version of this figure.

Figure 14
The Relationship Between True and Computed JOLs for All Trials
From All of the Participants in Study 3

Note. See the online article for the color version of this figure.
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regression slope should not significantly differ from 1, and the
regression intercept should not significantly differ from 0. We first
built a regression model for all trials from all participants, and found
that the slope was significantly lower than 1, β = .72, t = −23.38,
p < .001, and the intercept was significantly higher than 0,
β = 18.92, t = 21.86, p < .001, suggesting the computed JOLs
could not perfectly predict the true JOLs. We next built a regression
model for each participant and calculated the slope and intercept.
Results also revealed that the overall regression slope for
the participant group was significantly lower than 1, M = .725,
SD = .644, t(41) = −2.77, p = .008, Cohen’s d = .43, ηp2 = .16,
and the overall intercept was significantly higher than 0,M = 18.10,
SD = 46.86, t(41) = 2.50, p = .016, Cohen’s d = .39, ηp2 = .13,
which was consistent with previous analysis. These results further
support our conclusion above that although the value of true JOLs
could be predicted by our computation via Bayesian inference, this
prediction was not perfect.

Discussion

As in Studies 1 and 2, we found that BIM could better predict the
data than the two SDRM models based on the CV log-likelihood,
suggesting that BIM might be a more parsimonious model. More
importantly, there was a large correlation between the value of
computed and true JOLs, suggesting that the empirical JOLs
measured in the experiment could be predicted by our Bayesian
inference computation. This result supports the assumption of BIM
that people may apply Bayesian inference to evaluate their memory
performance. However, we also found that this prediction for the
true JOL values was not perfect. There are two possible explanations
for this imperfection in the prediction. First, during the learning
phase, participants might continue to update their beliefs about
memory ability based on the processing experience in each trial
(Mueller, Dunlosky, & Tauber, 2014; Rouault et al., 2019). In this
study, we used participants’ belief-based global predictions before
learning as the prior beliefs when computing the JOL values, which
might not fully reflect the evolution of participants’ beliefs during
learning (we will further discuss this issue below). Second, the
processing experience utilized in the JOLs for young and old adults
in the same trial might not be exactly the same. For example,
participants might continue accumulating processing experience
after giving the first JOL in a trial, leading to a slightly different
processing experience when they rated the second JOL for the same
word (Navajas et al., 2016).

Study 4: Example of Fitting BIM to Recognition
Memory Data

In this study, we show an example of fitting BIM to empirical data
from recognition memory tests with retrospective confidence rat-
ings. We reanalyzed the data from Carpenter et al. (2019) which
aimed to improve metacognition through training. In their experi-
ment, Carpenter et al. first asked participants to perform perceptual
discrimination and recognition memory tests with retrospective
confidence ratings, using words or abstract shapes as stimuli.
Then all participants took part in several training sessions across
multiple days, in which they performed a perceptual task with
confidence ratings. Participants were randomly divided into experi-
mental or control groups: The experimental group received feedback

about their metacognitive accuracy during the training sessions,
while the control group received feedback about their task perfor-
mance. After the training sessions, all participants performed the
perceptual and memory tasks again with confidence ratings. Results
indicated that metacognitive training for the experimental group
could improve metacognitive accuracy from pre- to posttraining
sessions for not only the trained perceptual task, but also the
untrained recognition memory task, suggesting the benefit of meta-
cognition training could transfer to another cognitive domain.

Here we reanalyzed data from the recognition memory task in the
pre- and posttraining sessions with either words or shapes used as
the stimuli. We fit BIM to the data of memory performance and
confidence ratings, and focused on the fitted value of the parameter
Pexp. We first examined whether the contribution of processing
experience and prior beliefs to confidence was significantly corre-
lated across stimulus types (words or shapes) and sessions. Then we
investigated whether metacognitive training in the experimental
group influenced the extent to which experience and beliefs affected
confidence ratings.

Participants

There were 61 participants in Carpenter et al. (2019), including
29 participants in the experimental group and 32 participants in the
control group.

Procedure

In this study, we focused on the recognition memory tests in
Carpenter et al. (2019). In both the pre- and posttraining session,
participants completed two recognition memory tests with words or
abstract shapes as the to-be-remembered items, respectively. There
were 108 trials in the recognition test for each stimulus type in each
session. Before the memory test, participants were first presented
with a series of stimuli (words or shapes) to memorize. Then in each
subsequent trial during the test, a learned and a new stimulus were
presented at the same time. Participant were asked to choose the
learned stimulus, and then rate confidence in their choice on a
4-point discrete scale. See Carpenter et al. (2019) for further details
of the experimental procedure.

Results

As in Carpenter et al. (2019), we excluded trials in which either
participants did not respond in time (response times >2,000 ms) or
response times were less than 200 ms. Then for each participant, we
fit BIM to the data from each of the 2 (Stimulus Type: words vs.
shapes) × 2 (Session: pre- vs. posttraining) conditions, and focused
on the fitted value of the parameter Pexp in our data analysis (see
Table S3 in Supplemental Materials, for the fitted value of the
parameter Mconf in each condition).

We first examined the correlation between Pexp for different
stimulus types (words and shapes). Results showed that for both
the experimental and control groups, there was a significant positive
correlation between Pexp for words and shapes in the pretraining
session (Experimental Group: r = .615, p < .001; Control Group:
r = .492, p = .004) and the posttraining session (Experimental
Group: r = .421, p = .023; Control Group: r = .754, p < .001),
suggesting that participants who relied more on processing
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experience to generate confidence ratings for word stimuli were also
more likely to rely on experience for shape stimuli. Next, we
explored the correlation between Pexp in different sessions. We
found that in the control group, Pexp in the pre- and posttraining
sessions was significantly correlated for words (r = .472, p = .006)
and shapes (r = .513, p = .003), indicating that participants who
relied more on processing experience to generate their confidence
before training tended to also rely more on experience after training.
However, in the experimental group, Pexp in the two sessions did not
significantly correlate with each other for either words (r = .096,
p = .619) or shapes (r = .055, p = .776).
We then conducted a 2 (Session: pre- vs. posttraining) × 2

(Stimulus Type: words vs. shapes) × 2 (Group: experimental vs.
control) ANOVA on the fitted value of Pexp (see Figure 15). There
was a marginally significant interaction between Stimulus Type and
Group, F(1, 59) = 3.92, p = .052, ηp2 = .06, indicating that the
difference in the contribution of processing experience to confidence
between the two stimulus types was larger in the control than
the experimental group. In addition, there was a significant main
effect of Session, F(1, 59) = 4.76, p = .033, ηp2 = .08, suggesting
that the overall contribution of processing experience to confidence
was higher in the pre- compared to the posttraining session.
More importantly, the Session × Group interaction was close to
significance, F(1, 59) = 2.98, p = .089, ηp2 = .05. Further analysis
revealed that Pexp did not significantly differ across sessions in
the control group, F(1, 31) = .15, p = .704, ηp2 < .01, but was
significantly reduced in the posttraining session compared with
the pretraining session for the experimental group, F(1, 28) = 5.65,
p = .025, ηp2 = .17. These results suggest that metacognitive
training in the experimental group could reduce the contribu-
tion of processing experience to confidence ratings in the re-
cognition memory test, and increase the contribution of prior
beliefs.

Discussion

In this study, we demonstrated an example of fitting BIM to data
from recognition tests and analyzing the fitted value of the parameter

Pexp across different experimental conditions. We found that the
contribution of processing experience and prior beliefs to confidence
ratings for words and shapes significantly correlated with each other,
suggesting that the integration of processing experience and prior
beliefs via Bayesian inference might generalize across stimulus
types. In addition, participants’ reliance on experience and beliefs
was stable across time for the control group. However, metacog-
nitive training for the experimental group significantly reduced the
contribution of processing experience to confidence in the post-
training session, and might explain why the correlation between the
Pexp in different sessions was only significant for the control group
but not for the experimental group. One possible explanation for the
reduction of Pexp following metacognitive training is that partici-
pants received feedback about their metacognitive performance
during training, and were able to develop and adjust their meta-
cognitive beliefs about their performance based on this feedback.
Although these beliefs were developed in a perception task, parti-
cipants might transfer their beliefs to the memory test and use these
beliefs to generate confidence ratings during the posttraining
session.

Extension of BIM: Belief Updating

The basic assumption of BIM is that people evaluate their
memory performance by integrating current processing experience
and prior beliefs about memory ability via Bayesian inference. Up
until now, we have assumed that people’s prior beliefs about
memory are developed before the memory task and do not change
during learning and test. However, this may be an oversimplification
because previous empirical studies have shown that people are able
to (at least partly) update their beliefs about memory ability during
the memory and metamemory process (Hertzog et al., 2009;
Mueller, Dunlosky, & Tauber, 2014). Here we provide an extension
of BIM which may explain this updating of beliefs during the
metamemory process. In this extended BIM, we assume that
when people rate their confidence for each trial via Bayesian
inference, they also continuously update their beliefs about memory
ability by applying a second Bayesian inference that incorporates
the processing experience in each trial. We also performed a data
simulation to quantitatively illustrate this belief updating process
across trials, and discuss how we may detect the belief updating in
empirical data.

Model Details

To illustrate the belief updating process in the extended BIM,
suppose that the prior belief distribution, which represents partici-
pants’ prior belief about memory ability developed before the
memory task, has a mean of μb and a standard deviation of 1
(see Figure 1). Then in the first trial of the memory task, participants
take a sample of processing experience, which is denoted by e1.
According to the assumptions of BIM, participants rate their confi-
dence for the first trial through a Bayesian inference, in which they
infer the posterior distribution of the subjective memory strength m̂
(see also Equation 1):

f cðm̂je1Þ ∝ f ðm̂Þf cðe1jm̂Þ (20)

Figure 15
The Fitted Value of the Parameter Pexp as a Function of Stimulus
Type (Words vs. Shapes), Group (Experimental vs. Control), and
Session (Pre- vs. Posttraining) in Study 4. Error Bars Represent
Standard Errors

Note. See the online article for the color version of this figure.
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In Equation (20), fc (m̂ | e1) represents the posterior distribution
for m̂, which is used to generate the confidence rating in the first trial.
In a recall task, the confidence predicted by BIM is the posterior
probability that m̂ is higher than 0, i.e., Pc (m̂ > 0 | e1). In a
recognition task, the predicted confidence is the posterior probabil-
ity that m̂ is higher or lower than the Type I criterion C depending
on the Type I response (S1 or S2), i.e., Pc (m̂ > C | e1) or
Pc (m̂ < C | e1). The posterior distribution fc (m̂ | e1) is inferred
based on (a) the prior belief distribution f (m̂), which has a mean
of μb and a standard deviation of 1, and (b) the likelihood function
fc (e1 | m̂), which is a normal distribution with a mean of m̂ and a
standard deviation of σl (see Figure 1). σl reflects participants’
knowledge about the relationship between memory strength m̂
and processing experience e, and participants rely more on proces-
sing experience to generate their confidence rating when σl is lower
(i.e., when Pexp is higher; see Equation 4).
In the extended BIM, we assume that at the same time participants

also update their beliefs about memory using another Bayesian
inference when rating their confidence:

f bðm̂je1Þ ∝ f ðm̂Þf bðe1jm̂Þ (21)

Here, we use fb (m̂ | e1) to represent the updated distribution of
beliefs about memory strength m̂ based on the processing experience
e1 in the first trial. This Bayesian inference for belief updating is very
similar to the previous Bayesian inference generating confidence
ratings. The prior belief distribution f (m̂) utilized in this inference is
the same as that in Equation 20. The likelihood function fb (e1 | m̂) is
also very similar to that in Equation 20 (i.e., fc (e1 | m̂)) except that
the standard deviation of the likelihood function (denoted by σlb) is
different from the σl used previously. Typically, the value of σlb
should be larger than the value of σl, as we expect updated beliefs to
mainly rely on prior beliefs rather than current processing experi-
ence. This is because previous studies indicate that belief updating
based on processing experience is often slow and incomplete
(Hertzog et al., 2009; Mueller, Dunlosky, Tauber, 2014).
Then, in the second trial, participants take another sample of

processing experience denoted by e2. To rate their confidence for the
second trial, they apply a Bayesian inference in which they use
beliefs about memory updated in the first trial:

f cðm̂je2Þ ∝ f bðm̂je1Þf cðe2jm̂Þ (22)

In Equation 22, fc (m̂ | e2) refers to the posterior distribution of m̂
used for the confidence rating in the second trial. fb (m̂ | e1)
represents participants’ beliefs about memory strength m̂, which
was updated in the first trial. The likelihood function fc (e2 | m̂) is the
same as that in the first trial and has a standard deviation of σl.

In the second trial, participants also update their beliefs about
memory based on processing experience e2:

f bðm̂je1,e2Þ ∝ f bðm̂je1Þf bðe2jm̂Þ (23)

In Equation 23, fb (m̂ | e1) represents the beliefs updated in the first
trial, and fb (m̂ | e1, e2) refers to the beliefs updated in the second trial.
The likelihood function fb (e2 | m̂) is the same as that in the first trial
and has a standard deviation of σlb.

Similarly, when participants rate their confidence for the ith trial,
they conduct a Bayesian inference using the beliefs updated in the
(i − 1)th trial:

f cðm̂jeiÞ ∝ f bðm̂je1,e2, · · · ei−1Þf cðeijm̂Þ (24)

At the same time, they update their beliefs about memory based
on the processing experience in the ith trial:

f bðm̂je1,e2, · · · ei−1,eiÞ ∝ f bðm̂je1,e2, · · · ei−1Þf bðeijm̂Þ (25)

BIM assumes that this belief updating process should be similar
for the recall and recognition tasks. The only difference between the
two tasks is that in the recognition task, participants’ subjective
beliefs about the distribution of memory strength m̂may be different
for S1 and S2 stimulus. Thus, participants should only update one of
the two belief distributions in each trial (either for S1 or S2), which
depends on the Type I response given by participants.

Data Simulation

In this section, we simulated data from a hypothetical recall task
with confidence ratings to quantitatively illustrate the belief updat-
ing process. In the simulation, we constructed the distribution of

Figure 16
The (a) Mean (μb) and (b) Standard Deviation (σb) of the Belief Distribution Across Trials in the Data Simulated From the Extended BIM.
(Averaged for All Simulated Participants)

Note. See the online article for the color version of this figure.
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processing experience with a standard deviation of 1 (as assumed by
BIM) and a mean (μe) of.5. In addition, the distribution for the prior
beliefs developed before the task was set with a mean (μb) of 0 and a
standard deviation (σb) of 1.We also set the standard deviation of the
likelihood function in the Bayesian inference to 1 for confidence
ratings (i.e., σl = 1) and either 10, 15, or 20 for belief updating
(i.e., σlb = 10, 15 or 20). Then for each parameter set, we simulated
data from 100 participants with 100 trials per participant to obtain
stable results for the belief updating process. In each trial, we took a
sample from the processing experience distribution as the proces-
sing experience for the current trial and computed the confidence
rating on a continuous 0–1 scale in this trial based on the equations
of the extended BIM.
Figure 16 shows the change of the mean and standard deviation

for the belief distribution (i.e., μb and σb) across trials (averaged
for all simulated participants). We see that μb gradually increased
across trials. This is because the overall strength of processing
experience (reflected by the mean of processing experience distri-
bution, μe, which was .5) was stronger than participants’ prior
beliefs about memory developed before the memory task (reflected
by the original μb before the task, which was 0). In this example,
participants update their beliefs about memory ability based on their
processing experience in each trial and end up believing that they
have higher overall memory performance. In addition, σb decreased
across trials, suggesting that participants were more certain about
their beliefs after belief updating. We should also note that the belief
updating process was faster when the standard deviation of the
likelihood function for belief updating (σlb) was smaller because
participants relied more on the current processing experience rather
than prior beliefs when σlb was smaller.
Next, we looked at the change of confidence ratings across trials

during the belief updating process. For each participant, we divided
the 100 trials into 4 blocks based on the trial order, with each block
containing 25 trials. Then we calculated the mean and standard
deviation of the confidence ratings separately for each block (see
Figure 17). Results revealed a trend that the mean confidence
increased across blocks because during belief updating participants
developed new beliefs that they should have better memory ability.
In addition, the standard deviation of confidence tended to decrease
across blocks. This is because the uncertainty in beliefs about

memory reduced during belief updating, and the confidence ratings
should be distributed more closely around the updated beliefs in
later blocks. In brief, we could conclude that the belief updating
process affected the distribution of confidence ratings across blocks,
changing its mean, and reducing the variability.

The extended BIM cannot be directly fitted to empirical confi-
dence ratings because it allows variation in the uncertainty of beliefs
about memory across trials, which introduces redundant free param-
eters and makes the model nonidentifiable. However, we can fit the
restricted version of BIM, in which belief updating is not allowed
(i.e., the BIMwe have used in previous sections), to confidence data
simulated from the extended BIM. Figure 18 shows the fitted value
of Pexp and Mconf in the restricted BIM for each block.12 We could
see that the fitted Pexp reduced across blocks, suggesting the fitted
value of σl increased during belief updating (see Equation 4).
However, the true value of σl in the extended BIM was set as a
constant (σl = 1) in our data simulation. This increase of fitted σl in
the restricted BIM is due to the fact that the decreasing of belief
uncertainty in the extended BIM during belief updating reduced the
variance of confidence ratings, which was mimicked by the effect of
increasing σl (or decreasing Pexp) in the restricted BIM (see
Figure 4). In addition, the fitted Mconf in the restricted BIM
increased across blocks. Mconf is based on the mean of the distribu-
tions for both the processing experience (μe) and beliefs (μb), and
should increase when participants develop higher beliefs about their
memory ability.

In summary, we are not able to directly fit the extended BIM to
empirical confidence data to examine whether participants update
their beliefs about memory ability across trials based on processing
experience. However, we can fit the restricted BIM to data and use
the following results as potential evidence for belief updating across
trials: (a) the fitted Pexp tends to decrease across trials and (b) the
fitted Mconf changes approximately monotonically toward a new
value. In addition, the change of fitted Pexp and Mconf across trials
may be subtle and noisy with only a few participants and trials, and

Figure 17
The (a) Mean and (b) Standard Deviation of Confidence Ratings Across Blocks in the Data Simulated From the Extended BIM. Error Bars
Represent Standard Errors

Note. See the online article for the color version of this figure.

12 We randomly generated the memory performance (0 or 1) for each trial,
and then fitted the restricted BIM to simulated data of confidence ratings and
memory performance.
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we recommend future studies use a relatively large number of
participants and trials to examine these effects.

General Discussion

Although previous studies have shown that both processing
experience and prior beliefs can significantly contribute to meta-
memory monitoring (e.g., Hu et al., 2015; Mueller, Dunlosky,
Tauber, et al., 2014; Mueller et al., 2013, 2016; Undorf &
Erdfelder, 2015; Yang, Huang, et al., 2018), few have proposed
formal computational models to explain how people combine
processing experience and prior beliefs to evaluate their memory
performance. To address this question, in the current study we
introduce BIM which assumes that during the metamemory process
people integrate processing experience and prior beliefs via Bayes-
ian inference. Our results from data simulation revealed successful
recovery for most of the parameters in BIM, and also indicated a
significant relationship between parameters in BIM and other
computational models such as SDRM and the meta-d′ model
(Jang et al., 2012; Maniscalco & Lau, 2012). We then fit BIM to
empirical data sets in four studies, which suggest that BIM could
make predictions consistent with previous theories of metamemory,
and provide a better prediction of the data in recall tasks than SDRM
(as revealed by CV log-likelihood). In addition, BIM could be fitted
to empirical confidence ratings not only from recall tasks but also
recognition tasks. Finally, we discuss an extension of BIM which
may explain how people update their beliefs about memory based on
the processing experience.
BIM suggests that prior beliefs act as an anchor in metamemory

judgments (e.g., confidence ratings). As shown in Figures 4 and 7,
the variance of the confidence distribution is higher when the
contribution of processing experience to metamemory (i.e., Pexp)
is higher. This is because BIM assumes when Pexp is small,
confidence ratings are largely affected by people’s prior beliefs
about their overall memory ability, which are developed prior to the
memory process. In contrast, confidence ratings closely track the
variation of processing experience across trials when Pexp is high,
which in turn increases the variance of the confidence distribution.
These features are consistent with the anchoring hypothesis of
metamemory, which indicates that during metamemory monitoring

people set an anchor that reflects their beliefs about memory
performance, and then adjust their confidence ratings across trials
around the anchor (Scheck et al., 2004; Yang, Sun, et al., 2018). In
addition, the anchoring hypothesis predicts that delayed JOLs are
less affected by the anchor than immediate JOLs (Scheck et al.,
2004). This is consistent with the results in our Study 2 showing that
processing experience contributed more to delayed than immedi-
ate JOLs.

Our results from the simulations of confidence distributions also
suggest that the correlation between processing experience and
actual memory strength (i.e., the parameter ρ in BIM) affects the
confidence distribution differently in recall and recognition tasks
(see Figures 5 and 7). In recall tasks, increasing ρ can increase the
confidence of recalled trials and decrease the confidence of un-
recalled trials. However, in recognition tasks, increasing ρ leads to
higher confidence ratings for both the correct and incorrect trials.
The reason for this difference is that the Type I response affects the
subsequent confidence rating process in recognition tasks but not
recall tasks. During the metamemory process in recall tasks, people
only need to evaluate the probability that each item is correctly
recalled, or the probability that memory strength is higher than a
recall criterion, based on the processing experience. When the
correlation between processing experience and actual memory
strength is high, recalled trials should result in higher processing
experience than unrecalled trials, leading to high confidence for
recalled trials but low confidence for unrecalled trials. In contrast, in
recognition tasks, people’s confidence rating depends on whether
they respond S1 or S2 in Type I task. They need to evaluate the
probability that the estimated memory strength m̂ is lower than the
Type I criterionC given the processing experience ewhen the Type I
response is S1, and the probability that m̂ is higher than C given e
when the Type I response is S2. In recognition tasks, people give an
S1 response when the objective memory strengthm is lower than the
Type I criterion C, regardless of whether the true stimulus is S1 or
S2.When ρ is high, the processing experience e is also more likely to
be lower than C following S1 responses, and higher than C
following S2 responses, increasing people’s confidence that a
Type I response is correct. Thus, increasing ρ in recognition tasks
can lead to higher confidence not only for correct trials but also for
incorrect trials. This is consistent with the second-order model for

Figure 18
The Estimated Value of (a) Pexp and (b) Mconf Across Blocks in the Restricted BIM Fitted to the Data Simulated From the Extended BIM.
Error Bars Represent Standard Errors

Note. See the online article for the color version of this figure.
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metacognition proposed by Fleming and Daw (2017), which sug-
gests that increasing the correlation between the variables support-
ing Type I decisions and confidence ratings may reduce
metacognitive accuracy due to a lower possibility of detecting errors
in Type I responses.
Our parameter recovery analysis indicates that when BIM is fitted

to recall tasks with either continuous or discrete confidence ratings,
all of the parameters in BIM (including Pexp,Mconf, μm, and ρ) can be
successfully recovered with only a few trials (e.g., 10–30 trials) for
each participant. One possible explanation for this good recovery in
recall tasks is that BIM is a relatively parsimonious model. In
contrast to previous computational models (such as SDRM and
the meta-d′ model) in which each confidence criterion is a free
parameter (Jang et al., 2012; Maniscalco & Lau, 2012), BIM for
recall tasks only uses two parameters (Pexp andMconf) to characterize
the shape of the overall confidence distribution and may be able to
offer more stable parameter estimates. When BIM is fitted to
recognition tasks with retrospective confidence ratings, we also
need only a few trials to recover Pexp and fourMconf parameters in 2
(stimulus: S1 vs. S2) × 2 (response: S1 vs. S2) conditions if
confidence is rated on a 0–1 continuous scale. However, in most
of the previous studies on retrospective confidence ratings, partici-
pants were asked to rate their confidence on a discrete scale (Rahnev
et al., 2020). When we fit BIM to confidence data on a discrete scale
in recognition tasks, only a few trials (e.g., 10–20 trials) are needed
if we are only interested in the fitted value of Pexp (as in our Study 4).
However, we suggest future studies should include a relatively large
number of trials (e.g., more than 90 trials) if they aim to estimate all
four Mconf parameters from discrete confidence data in recognition
tasks. Furthermore, we do not recommend analyzing the fitted value
of ρ in recognition tasks because the estimation of ρ is often
inaccurate.
When examining the relationship between parameters in BIM and

other computational models such as SDRM and the meta-d′ model,
we found that the parameter μm in BIM for recall tasks was closely
related to the parameter reflecting memory performance in SDRM,
and ρ in BIM for recall tasks was significantly correlated with
different indices of metamemory accuracy. More interestingly, the
parameters Pexp and Mconf in BIM for either recall or recognition
tasks were separately correlated with the variance and mean of
confidence criteria in other models. These results are related to the
computational model proposed by Selker et al. (2019) which char-
acterizes a set of confidence criteria with only a location parameter
and a scale parameter. In BIM, Mconf can be seen as a location
parameter and Pexp as a scale parameter for confidence criteria.
According to BIM, the scale (or variance) of confidence criteria is
based on the relative contribution of processing experience and prior
beliefs to confidence ratings, and the location (or mean) of confi-
dence criteria is related to the integrated effect of experience and
beliefs on confidence.
We then showed how to fit BIM to empirical data in four studies.

Our Studies 1 and 2 indicated that results fromBIM about howmuch
processing experience and prior beliefs contributed to JOLs were
consistent with the theories based on previous studies. For example,
we found that the contribution of processing experience to memory
predictions (i.e., Pexp) was significantly higher for post- than pre-
study JOLs, and for delayed than immediate JOLs. Previous theories
of metamemory indicate that people largely rely on their prior
beliefs about overall memory ability to guess memory performance

when giving prestudy JOLs, and use processing experience from
retrieval attempts to infer their memory strength during metamem-
ory monitoring after a delay (Mueller, Dunlosky, Tauber, et al.,
2014; Spellman & Bjork, 1992). The results from BIM are consis-
tent with these theories, suggesting that BIM is theoretically rea-
sonable. In Study 3, we examined whether observed JOLs could be
predicted by our Bayesian inference computation given the proces-
sing experience in each trial and participants’ prior beliefs about
memory. Our results showed a substantial correlation between
computed and true JOLs, providing further evidence that metamem-
ory monitoring may be based on a Bayesian inference process in
which processing experience and prior beliefs are integrated. In
addition, in all of the first three studies, we found that BIM predicted
the data better than SDRM (as revealed by CV log-likelihood),
possibly because BIM is a more parsimonious model. In Study 4, we
provide an example of fitting BIM to recognition tasks with
retrospective confidence ratings, which revealed that the Bayesian
inference process during metamemory might generalize across
different study materials, and that metacognitive training might
increase reliance on prior beliefs.

Finally, we introduce an extended version of BIM which may
account for the updating of beliefs about memory based on the
processing experience during previous episodes of metamemory
monitoring. Although we are not able to directly fit the extended
BIM to confidence data to examine the updating of beliefs across
trials because this model is nonidentifiable, the evidence for belief
updating may be still reflected in a change in fitted parameters across
trials in the restricted BIM. First, a reduction of belief uncertainty
(i.e., the standard deviation of belief distribution, σb) during belief
updating could reduce the variance of the observed confidence
distribution, and this effect could be mimicked by a decrease in
fitted Pexp (or an increase of the fitted standard deviation of likeli-
hood function, σl) in the restricted BIM. Second, the fitted Mconf in
the restricted BIM should gradually change toward a new value
based on the updated beliefs. Future studies should use a relatively
large number of trials and participants to test these hypotheses in
empirical data.

We note that the effect of a change in σb on confidence distribu-
tion can be mimicked by the effect of a change in σl because both
parameters can affect the variability of confidence ratings (see also
Section S3 in Supplemental Materials). However, σb in the
restricted BIM is fixed to 1 in order to make the model identifiable,
and the restricted BIM can only attribute a change in the variability
of confidence to a change in σl. Thus, when we fit the restricted BIM
to confidence data in two experimental conditions and observe that
the contribution of processing experience to confidence (i.e., fitted
value of Pexp) is higher in Condition 1 than Condition 2, there are
two possibilities for this difference: (a) participants in Condition 1
assume there is a more close relationship between processing
experience and memory strength (i.e., σl in Condition 1 is lower
than Condition 2), or (b) participants in Condition 1 are actually
more uncertain of their beliefs about their overall memory ability
(i.e., σb in Condition 1 is higher than Condition 2). The restricted
BIM is not able to discriminate the two possibilities based on the
fitted parameters, which is an important limitation of BIM.

In some experimental designs, we may assume that uncertainty in
beliefs about memory is approximately equal across conditions. For
example, in Studies 1 and 2, we asked participants to make either a
prestudy JOL, immediate poststudy JOL or delayed poststudy JOL

28 HU, ZHENG, SU, FAN, YANG, YIN, FLEMING, AND LUO

https://doi.org/10.1037/rev0000270.supp


for each trial. These different types of JOLs should rely on the same
beliefs about participants’ overall memory performance in a later
memory test, and belief uncertainty should be the same across JOL
types. In addition, participants in many previous studies were asked
to give confidence ratings about their memory performance for
different levels of a manipulated variable related to study materials,
such as for word pairs with high or low semantic relatedness
between two words, or stimuli presented in either large or small
font (Hu et al., 2015; Mueller, Dunlosky, Tauber, et al., 2014;
Mueller et al., 2013; Su et al., 2018). We may assume that the
uncertainty in participants’ beliefs about memory performance is
approximately the same across different levels of the variable. In
these cases, the difference in fitted Pexp across conditions should be
attributed to the difference in σl, which reflects participants’ as-
sumptions about the relationship between processing experience and
memory strength. However, belief uncertainty may be different in
other experimental designs. For example, when participants are
asked to make belief-based predictions about memory performance
separately for an immediate test and a test after 1 week, they may be
more certain about their performance in the near than distant future.
Furthermore, in our Study 4 we found that the fitted Pexp for
confidence in recognition tasks was reduced after metacognitive
training. One possible explanation is that participants developed and
updated new metacognitive beliefs during training, and thus their
belief uncertainty was reduced in the posttraining session. In
summary, we need to be cautious when explaining why there is
a difference in the contribution of processing experience and beliefs
to confidence across conditions.
To our knowledge, BIM is the first computational framework to

systematically account for how people combine current processing
experience and prior beliefs about memory ability to evaluate their
memory performance. Previous empirical studies on this topic are
often grounded in the dual-basis theory for metamemory, which
only qualitatively proposes that metamemory monitoring is affected
by processing experience and prior beliefs, and does not quantita-
tively account for how people combine these two sources of
information during the confidence rating process (Koriat, 1997;
Koriat et al., 2004). In contrast, BIM seeks to identify psychologi-
cally meaningful latent parameters that characterize this integration
of processing experience and prior beliefs using a Bayesian infer-
ence process, and our Studies 1–2 suggest that the predictions made
by BIM were consistent with previous studies based on the dual-
basis theory (Mueller, Dunlosky, Tauber, et al., 2014; Spellman &
Bjork, 1992). Future studies should further examine BIM’s predic-
tions about metamemory judgments in different tasks, and use BIM
to investigate whether processing experience and prior beliefs
differently affect metamemory judgments when participants utilize
different cues (such as the characteristics of study materials or those
of learning process) in the metamemory process (Koriat, 1997).
Another contribution of BIM to metamemory research is that

BIM tries to explain why the usage of confidence scale varies across
individuals and experimental conditions. Many empirical studies on
metamemory judgments indicate that participants use the confidence
scale differently in different experimental conditions: They prefer to
use the middle of the scale in some conditions and the end of the
scale in the other (e.g., Dunlosky & Nelson, 1994; Nelson et al.,
2004; Weaver & Kelemen, 1997). Previous computational models
for metamemory (such as SDRM and the meta-d′ model) attribute
the different usage of the confidence scale to the setting of

confidence criteria, and suggest that participants may show prefer-
ences for different parts of the confidence scale across conditions.
These models include one free parameter for each confidence
criteria, and do not focus on the psychological interpretation of
the different setting of criteria across conditions (Jang et al., 2012;
Maniscalco & Lau, 2012). In contrast, BIM attributes different
usages of the confidence scale to differential reliance on processing
experience and prior beliefs about memory ability.

BIM assumes that people use the confidence scale in an accurate
and linear manner: Reported confidence and the predicted confi-
dence generated by BIM have a tight linear relationship when
confidence ratings are reported on a 0–1 continuous scale, and
the 0–1 confidence scale is divided into equal-length bins when
confidence ratings are reported on an n-point discrete scale. In BIM,
unlike in previous models, the different usages of the confidence
scale observed in empirical data are directly attributed to different
contributions of processing experience and prior beliefs in the
Bayesian inference process: People tend to use the middle of
confidence scale when they mainly rely on their prior beliefs about
memory to rate their confidence, and the ends of the scale when
processing experience contributes more to confidence ratings
(see Figures 4 and 7). In addition, our Study 3 showed that the
true value of JOLs could be significantly predicted by our compu-
tation via Bayesian inference (although this prediction was not
perfect), while previous computational models for metamemory
are not able to make such predictions for JOL values. Thus, BIM
gives greater psychological depth and interpretation to how confi-
dence scale usage changes across conditions and individuals, which
in turn may motivate future studies to further investigate how
different factors interact to affect the confidence distributions.
For example, future studies may examine whether the usage of
the confidence scale is affected by certain processing experience
during memory tasks, or by the activation of different beliefs about
memory performance.

In our Studies 1–4, participants rated their confidence ratings on
either a numerical continuous scale (0%–100% percentage scale) or
discrete scale with number labels (a 4-point scale labeled from
1 to 4). BIM assumes that when rating confidence on a numerical
continuous or discrete scale, people naturally use the scale in a linear
manner. We need to be more cautious when applying BIM to
confidence data on a verbal-labeled discrete scale (e.g., a 4-point
scale using not confident at all, low confidence, high confidence, and
complete confidence without corresponding numerical labels)
because different participants may link different levels of posterior
probability on the 0–1 continuous confidence scale to each ver-
bal label.

In contrast to previous computational models of metamemory,
BIM not only characterizes the accuracy of confidence ratings
(e.g., the parameter ρ in BIM for recall tasks), but also includes
a parameter representing how much our confidence is based on
processing experience or prior beliefs (the parameter Pexp).
Although Pexp does not correlate with metamemory accuracy, it
significantly affects how we evaluate our memory performance and
thus the distribution of confidence ratings. Future studies might
investigate whether experience and beliefs affect confidence ratings
similarly or differently across different types of memory such as
episodic and semantic memory tasks (Mazancieux et al., 2020), and
neural correlates of individual differences in the contribution of
experience and beliefs. Theoretically, BIM can also be fitted to data
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in any cognitive task with confidence ratings such as perceptual
tasks (Fleming et al., 2010). For instance, people may have prior
beliefs or expectations about the overall difficulty of a perceptual
task, which can affect their confidence ratings. Future studies could
compare the fit of BIM and other computational models to data from
cognitive domains other than memory, and examine whether the
contribution of experience and beliefs to confidence is correlated
across different cognitive domains.
Previous studies have used another statistical method, multilevel

mediation, to examine the relative contribution of processing expe-
rience and prior beliefs to metamemory (Hu et al., 2020; Su et al.,
2018; Undorf & Erdfelder, 2015; Undorf et al., 2017; Yang, Huang,
et al., 2018). For example, Yang, Huang, et al. (2018) measured
perceptual fluency for items presented in large or small font size as
the processing experience, and built a multilevel mediation model to
investigate howmuch perceptual fluency could explain the font-size
effect on JOLs. Their results revealed that perceptual fluency
mediated 20% of the font-size effect. We note that there are
important differences between BIM and the multilevel mediation
approach. First, the multilevel mediation model focuses on whether
the difference in processing experience or prior beliefs between
experimental conditions (e.g., large vs. small font) can explain the
difference in confidence ratings between conditions, while BIM
estimates the absolute contribution of processing experience and
beliefs to confidence. For example, suppose that the processing
experience in Conditions 1 and 2 is the same while the prior beliefs
are different. The parameter Pexp in BIM is .5 for both conditions,
indicating that people rely on processing experience and prior
beliefs to the same extent when giving confidence ratings. However,
a multilevel mediation model should reveal that processing experi-
ence mediates 0% (rather than 50%) of the effect of experimental
conditions on confidence because processing experience in both
conditions is the same and the difference in confidence is entirely
due to the difference in prior beliefs. Another difference between
BIM and the multilevel mediation model is that BIM can estimate
the contribution of processing experience and prior beliefs to
confidence without directly measuring either experience or beliefs,
which is impossible for multilevel mediation approaches. Thus, we
should choose the appropriate model to examine the contribution of
experience and beliefs to confidence according to our theoretical
hypothesis and experimental design.
The core assumption of BIM is that during metamemory moni-

toring, people integrate processing experience and prior beliefs via
Bayesian inference, in which the relative contribution of processing
experience and prior beliefs (i.e., Pexp) is controlled by the standard
deviation of the likelihood function (σl). σl reflects people’s assump-
tion about the relationship between processing experience and
objective memory. Processing experience contributes more (and
prior beliefs contribute less) to metamemory monitoring when
people have an assumption that processing experience is more
closely distributed around the memory strength (i.e., when σl is
smaller). However, BIM is not able to tell whether this assumption
affects metamemory monitoring in an explicit or implicit manner.
One possibility is that people may deliberately infer the relationship
between processing experience and memory strength, based on
which they explicitly decide how to utilize processing experience
and prior beliefs to evaluate their memory performance (Mueller &
Dunlosky, 2017). It is also possible that certain processing experi-
ences (e.g., high perceptual fluency during the identification of

study materials) trigger a subjective feeling that the materials are
easy to remember, which then implicitly leads people to predict that
they should have high performance in the memory test
(Oppenheimer, 2008). Future studies should try to distinguish these
two possibilities.

Another limitation of BIM needs to be mentioned. Although BIM
can estimate how much processing experience contributes to me-
tamemory monitoring, it cannot tell which kind of processing
experience affects metamemory. Future studies should measure
processing experience in different ways (e.g., using response
time or self-paced study time; see Mueller, Dunlosky, Tauber,
et al., 2014; Yang, Huang, et al., 2018) and compare the measured
processing experience and estimated parameters from BIM.
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