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Extended Data 
Fig. 1 A cross-tissue 

survey of 
ACE2+TMPRSS2+ 
cells in published 
single-cell 
datasets. 

 

 (a) Odds ratio (x axis) of ACE2+TMPRSS2+ co-
expression in single-cell datasets (dots) from 
different tissues (y axis). (b) Significance (-
log10(p-value) using two-sided Fisher’s exact 
test, x axis) of co-expression of 
ACE2+TMPRSS2+ in single-cell datasets (dots) 
from different tissues (y axis). (c,d) 
Proportion (x axis) of ACE2+ cells per dataset 
(c) and TMPRSS2+ cells per dataset (d) across 
different tissues (y axis).  

 

Extended Data 
Fig. 2 A cross-tissue 

survey of 
ACE2+CTSL+ cells 
in published 
single-cell 
datasets. 

 

 (a) Proportion (x axis) of ACE2+CTSL+ cells per 
dataset (dots) across different tissues (y 
axis). (b) Proportion (x axis) of ACE2+CTSL+ 
cells within clusters annotated by broad cell-
type categories (dots) in each of the top 7 
enriched datasets (y axis; color legend, 
inset). (c) Odds ratio (x axis) of ACE2+CTSL+ 
co-expression in single-cell datasets (dots) 
from different tissues (y axis). (d) 
Significance (-log10(p-value) using two-sided 
Fisher’s exact test, x axis) of co-expression of 
ACE2 and CTSL  in single-cell datasets (dots) 
from different tissues (y axis). (e) Proportion 
(x axis) of CTSL+ cells per dataset across 
different tissues (y axis). 

 

Extended Data 
Fig. 3 Cellular 

composition and 
fraction of 
ACE2+TMPRSS2+ 

cells across the 

 (a) Boxplot of normalized donor fractions of 
ACE2+TMPRSS2+ (double positive - DP) cells 
per cell type. The box indicates the median 
and first and third quartile, whiskers extend 
to points within 1.5 times the interquartile 
range. For each cell type, only donors that 
have at least 100 cells of the cell type were 
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aggregated lung 
dataset 

 

included. Cell types with at least 10 
ACE2+TMPRSS2+ cells in the entire dataset 
were labeled, the remaining cell types were 
grouped under ‘Other’. Cell type labels 
preceded by a “2” consist of cells that had 
no annotation available at level 3 and 
therefore kept their level 2 annotation. Cells 
with only level 1 annotations were grouped 
under “Other”. (2_Airway epithelium: n=6, 
2_Olfactory epithelium: n=3, 2_fetal airway 
progenitors: n=5, AT1: n=60, AT2: n=92, 
Basal: n=56, Multiciliated lineage: n=88, 
Secretory: n=79, Submucosal Secretory: 
n=35, Other: n=180 donors.) 

 (b) Percentage of ACE2+TMPRSS2+ cells 
across 377 samples and with sample 
composition. Top: Percentage 
ACE2+TMPRSS2+ cells in each sample, 
categorized by level 3 annotations. Bottom: 
Sample compositions. Samples are ordered 
by age, with 31-week pre-term births and 
39-week full-term births both set to age 0. 
(c) Zoom in on fetal and pediatric samples of 
plot (b). Samples are ordered and labeled by 
age. Fetal samples are partitioned into first 
and second trimester (TM) and pediatric 
samples are divided into 31-week pre-term 
births, 39-week full term births, 3 month, 3 
year, and 10 year old children. AT1, 2: 
alveolar type 1, 2. AT2 progenitor cells were 
grouped under AT2. 

Extended Data 
Fig. 4 

Chromatin 
accessibility at 
the ACE2, 
TMPRSS and 
CTSL loci across 
lung cells in early 
life 

 (a) Schematic: single-cell chromatin 
accessibility by transposome hypersensitive 
sites sequencing (THS-Seq) from human 
pediatric samples (full gestation, no known 
lung disease) collected at day 1 of life, 14 
months, 3 years, and 9 years (n=1 at each 
time point). (b) Accessibility (dot color log 
normalized gene activity scores), and % of 
cells with accessible loci (dot size) for the 
ACE2, TMPRSS, and CTSL loci (columns) 
across different cell types (rows) in scTHS-
Seq with all time points aggregated. (c) 
Accessibility (dot color log normalized gene 
activity scores), and % of cells with 
accessible loci (dot size) of ACE2, TMPRSS 
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and CTSL in AT1--AT2 cells in scTHS-Seq at 
day 1 of life, 14 months, 3 years, and 9 years 
(rows). (d) Number of ACE2+CTSL+ and 
ACE2+TMPRSS2+ cells per time point.  

 

Extended Data 
Fig. 5 ACE2 expression 

across tissues 
and cell types. 

 

 Shown are fractions of ACE2 expressing cells 
(dot size) and mean ACE2 expression level in 
expressing cells (dot color) across datasets 
(rows) and cell types (columns). 

 

Extended Data 
Fig. 6 Additional 

analyses to 
identify other 
proteases that 
may have a role 
in infection. 

 

 (a) Multiple proteases are co-expressed 
with ACE2 in another human lung scRNA-seq 
(“aggregated lung”). Scatter plot of 
significance (y axis, -log10(adjusted p value) 
by two-sided Wald test. (Methods)) and 
effect size (x axis) of co-expression of each 
protease gene (dot) with ACE2 within each 
indicated epithelial cell type (color). Dashed 
line: significance threshold. TMPRSS2 and 
PCSKs that significantly co-expressed with 
ACE2 are marked. (b) ACE2-protease co-
expression with PCSKs, TMPRSS2 and CTSL 
across lung cell types (“aggregated lung”). 
Significance (dot size, -log10(adjusted p 
value) by two-sided Wald test. (Methods)) 
and effect size (color) for co-expression of 
ACE2 with selected proteases (columns) 
across cell types (rows). (c-d) Predicted 
cleavage sites in the SARS-CoV-2 S-protein 
S1/S2 region. (c) Multiple amino acid 
sequence alignment of SARS-CoV-2 S-
protein S1/S2 region with orthologous 
sequences from other betacoronaviruses 
(top) and polybasic cleavage sites of other 
human pathogenic viruses (bottom). (d) 
Sequence logo plot showing cleavage site 
preference derived from MEROPS database 
for PCSK1, PCSK2, FURIN, PCSK4, PCSK5, 
PCSK6 and PCSK7. (e) Protease cleavage 
sites (triangles) predicted by ProP and 
PROSPERous in the SARS-CoV-2 spike 
protein. Top: Full-length SARS-CoV-2 S-
protein sequence schematic with predicted 
functional protein domains and motifs. 
Numbers: amino acid residues after which 
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cleavage occurs; SP: signal peptide; NTD: N-
terminal domain; RBD: Receptor-binding 
domain; FP: Fusion peptide; FP1/2: Fusion 
peptide 1/2; HR1: Heptad repeat 1; CH: 
connecting helix; HR2: Heptad repeat 2; TM: 
Transmembrane domain. (f,g) Multiple 
proteases are expressed across lung cell 
types (“aggregated lung”). (f) Distribution of 
non-zero expression (y axis) for ACE2, PCSKs 
and TMPRSS2 across lung cell types (x axis). 
White dot: median non-zero expression. (g) 
Proportion of cells (y axis) expressing ACE2, 
PCSK family or TMPRSS2 across lung cell 
types (x axis), ordered by compartment. (h) 
ACE2+PCSK+ double positive cells across lung 
cell types. Fraction (y axis) of different 
ACE2+PCSK+ or ACE2+TMPRSS2+ double 
positive cells across lung cell types, ordered 
by compartment (x axis). Dots: different 
samples, line: median of non-zero fractions. 
(i,j) ACE2+PCSK+ co-expression across human 
tissues (collection of published scRNA seq 
datasets). (i) Percent (y axis) of different 
ACE2+PCSK+ or ACE2+TMPRSS2+ double 
positive cells across human tissues (x axis). 
Dots: different single-cell datasets, line: 
median of non-zero fractions. (j) ACE2 co-
expression with PCSKs or TMPRSS2 across 
human tissues. Significance (dot size, -
log10(adjusted p value) by two-sided Wald 
test. (Methods)) and effect size (dot color) of 
co-expression. (k) Fraction of 
ACE2+TMPRSS2+PCSK+ cells across lung cell 
types (“Regev/Rajagopal dataset”). Dots: 
samples, line: median of non-zero fractions.  

 

Extended Data 
Fig. 7 

ACE2, TMPRSS2, 
CTSL 
Immunofluoresc
ence and RNA 
profiling 

 (a) Negative control of PLISH in human lung 
alveoli. Left shows scrambled probe 
detection in three indicated colors. Right 
shows HTII-280 antibody staining (red) with 
2 color scramble probe detection. DAPI 
(blue) indicates nuclei.  (b) Frequency of 
ACE2, CTLS and TMPRSS2 triple positive cells 
in each sample (n =  60) (dots) in the 
Regev/Rajagopal dataset. (c) PLISH and 
immunostaining in human adult lung alveoli 
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for ACE2 (red), PRO-SFTPC (green), DAPI 
(blue).  

 (d) Immunostaining in human adult lung 
alveoli. HTII-280 (green) , TMPRSS2 (red) 
and AGER (white). Blue shows DAPI in 
nuclei.  (e) Mean expression (y axis, FPKM, 
from bulk RNA-seq, error bars: standard 
error) of ACE2, CTSL, TMPRSS2 in sorted cells 
from 3 different human explant donors 
using the following markers:  large and small 
airway basal cells (NGFR+), AT2 cells (HT-II 
280+) and alveolar organoids (HT-II 280+).  
(f) Expression in the submucosal gland. 
Mean expression (color) and proportion of 
expressing cells (dot size) of ACE2, TMPRSS2 
and CTSL in key cell types (rows), from 
scRNA-seq of human large airway 
submucosal glands. (g) PLISH and 
immunostaining in human large airway 
submucosal glands. ACE2 (red), ACTA2 
(green) and DAPI (blue). We imaged one 
representative area for a single patient for 
a,c,d,g (Methods). 

 

Extended Data 
Fig. 8 An overview of 

the three-level 
lung cell 
ontology used 
for cell 
annotation 
harmonization. 

 

  

Extended Data 
Fig. 9 Age, sex, and 

smoking status 
associations with 
expression of 
ACE2, TMPRSS2, 
and CTSL across 
level 3 cell type 
annotations 
modeled without 

 (a) Age, sex, and smoking assocations with 
expression of ACE2 (blue), TMPRSS2 
(yellow), and CTSL (green) modeled without 
interaction terms on 985,420 cells from 164 
donors. Level 3 cell types are shown on the 
y-axes, and are subdivided by level 1 cell 
type annotations (top to bottom: epithelial, 
endothelial, stromal and immune cells). The 
effect size (x axis) is given as a log fold 
change (sex, smoking status) or the slope of 
log expression per year (age). Positive effect 
sizes indicate increases with age, in males, 
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interaction 
terms. 

and in smokers. As the age effect size is 
given per year, it is not directly comparable 
to the sex and smoking status effect sizes. 
Colored bars: associations with an FDR-
corrected p-value<0.05 (one-sided Wald 
test on regression model coefficients), 
consistent effect direction in pseudo-bulk 
analysis, and consistent results using the 
model with interaction terms (Methods). 
White bars: associations that do not pass all 
of the three above-mentioned evaluation 
criteria. Error bars: standard errors around 
coefficient estimates. Error bars are only 
shown for colored bars (indications or 
robust trends) to limit figure size. Only cell 
types with at least 1000 cells across donors 
are included. Number of cells and donors 
per cell type: Basal: 155877, 105, 
Multiciliated lineage: 37530, 157, Secretory: 
22306, 140, Rare: 2676, 71, Submucosal 
secretory: 33661, 45, AT1: 29973, 101, AT2: 
155512, 104, Arterial: 3497, 37, Capillary: 
15745, 34, Venous: 7173, 33, Lymphatic EC: 
5055, 76, Fibroblasts: 9112, 51, Airway 
smooth muscle: 1077, 13, B cell lineage: 
11761, 90, T cell lineage: 52139, 97, Innate 
lymphoid cells: 29836, 56, Dendritic cells: 
9017, 90, Macrophages: 156964, 89, 
Monocytes: 42703, 96, Mast cells: 13581 
cells, 88 donors. (b) Robustness of 
associations to holding out a dataset. The 
values show the number of held-out 
datasets that result in loss of association 
between a given covariate (rows) and ACE2, 
TMPRSS2, or CTSL expression in a given cell 
type (columns). Robust trends are 
determined by significant effects that are 
robust to holding out any dataset (0 values). 
From left to right: results for ACE2, 
TMPRSS2, and CTSL. AT1, 2: alveolar type 1, 
2. EC: endothelial cell.  

 

Extended Data 
Fig. 10 

ACE2 and 
TMPRSS2 are up-
regulated in 
bronchial 

 
Boxplots of log counts per million 
normalized gene expression for ACE2 and 
TMPRSS2 are plotted across current (red, 
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brushings from 
current versus 
former smokers.   

n=70 samples) versus former (green, n=60 
samples) smokers.  Both genes are 
significantly up-regulated in current versus 
former/never (ACE2, FDR=0.006; and 
TMPRSS2, FDR=0.00004) based on a linear 
model using voom-transformed data that 
included genomic smoking status, batch, 
and RNA quality (TIN) as covariates and 
patient as a random effect. Multiple testing 
correction was performed via Benjamini-
Hochberg to obtain an FDR-corrected p-
value. (Methods) 
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Supplementary_Table_
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Supplementary_Table_
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Supplementary Table  
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Supplementary_Table_

04_figure-2-

supplementary-table-
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celltypes.xlsx 

Glmm results on 

Regev/Rejagopal 

dataset for Figure 2. 

Supplementary Table  5 

Supplementary_Table_
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supplementary-table-
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Supplementary_Table_
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Antibodies and PLISH 

probe details. 
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Supplementary_Table_
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Supplementary Table  9 

Supplementary_Table_
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Results of the random 
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and the pseudo-bulk analysis results for 

both the simple model and the complex 
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model with interaction terms. Smoking 
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analysis. 
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ABSTRACT 

ACE2 and accessory proteases (TMPRSS2, CTSL) are needed for SARS-CoV-2 cellular entry, 

and their expression may shed light on viral tropism and impact across the body. We assess the 

cell type-specific expression of ACE2, TMPRSS2, and CTSL across 107 single-cell RNA-Seq 

studies from different tissues. ACE2, TMPRSS2, and CTSL are co-expressed in specific subsets of 

respiratory epithelial cells in the nasal passages, airways, and alveoli, and in cells from other organs 

associated with COVID-19 transmission or pathology. We performed a meta-analysis of 31 lung 

scRNA-seq studies with 1,320,896 cells from 377 nasal, airway, and lung parenchyma samples 

from 228 individuals. This revealed cell type specific associations of age, sex, and smoking with 

expression levels of ACE2, TMPRSS2, and CTSL. Expression of entry factors increased with age 

and in males, including in airway secretory cells and alveolar AT2 cells. Expression programs 

shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate 

viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in 

the IL6, IL1, TNF and complement pathways. Cell type-specific expression patterns may 

contribute to COVID-19 pathogenesis , and our work highlights putative molecular pathways for 

therapeutic intervention.  
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INTRODUCTION 

COVID-19, caused by SARS-CoV-2 infection, can manifest with pathologies in multiple systems, 

including the lungs and airways, gastrointestinal tract, kidney, liver, and heart, and multiorgan 

failure1–3. SARS-CoV-2 RNA has been found in nasal and throat secretions, saliva and stool 

specimens4. 

Virion infection of host cells is initiated by the viral spike (S)-protein binding to ACE2. ACE2 

expression has been correlated with increased viral load in human cell lines5,6 and in mice7. Viral 

infection further requires proteolytic cleavage of the S-protein, and TMPRSS2 or  Cathepsin L, 

encoded by the CTSL gene, can provide this role for cellular entry8. 

There is substantial variation in the clinical consequences of infection across individuals, from 

asymptomatic to death. Disease severity and mortality rise with age9,10, with a slightly higher 

incidence and mortality in men2. Children are significantly less likely to develop severe acute 

disease11. Smoking may be associated with more severe disease12. Finally, adults with pre-existing 

cardiovascular disease may have higher rates of disease acuity and death2.  

 

Identifying specific cell types that can be infected by SARS-CoV-2 and relating SARS-CoV-2 

entry factors to key co-variates, like age or sex could inform our understanding of COVID-19 

tropism and heterogeneity in disease outcomes. The Human Cell Atlas (HCA) community has 

generated single-cell cell atlases of diverse tissues in healthy individuals, which can now be 

leveraged to enable such studies. Early analyses of Human Cell Atlas data revealed that some of 

the cells of the nasal passages, airways, lung parenchyma, and gut express ACE2 and 

TMPRSS213,14, most notably nasal goblet cells and multiciliated cells13 in the airways and AT2 

https://paperpile.com/c/53eFaW/fvSrX+qWoan+Zwogw
https://paperpile.com/c/53eFaW/XeYqm
https://paperpile.com/c/53eFaW/bsf5o+0Ipj2
https://paperpile.com/c/53eFaW/jzsq7
https://paperpile.com/c/53eFaW/dgR5E
https://paperpile.com/c/53eFaW/okHP9+gk3Rr
https://paperpile.com/c/53eFaW/qWoan
https://paperpile.com/c/53eFaW/5jYSA
https://paperpile.com/c/53eFaW/KSAqZ
https://paperpile.com/c/53eFaW/qWoan
https://paperpile.com/c/53eFaW/5bj2Y+V1rDk
https://paperpile.com/c/53eFaW/5bj2Y
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cells in the distal lung13,15,16, and identified ACE2 and TMPRSS2 expression in colonic 

enterocytes13,17. 

Here, we chart the cell-type-specific expression patterns of ACE2 and accessory proteases by 

integrated analysis of 116 single-cell and single-nucleus RNA-Seq studies, including 31 studies of 

the lung and airways, and 85 studies of other diverse tissues. With the lung and airway studies, we 

performed the first single-cell meta-analysis of atlas datasets associating cell type specific changes 

in expression level with age, sex and smoking status. We identify cross-tissue and tissue-specific 

gene programs enriched in immune-associated genes in ACE2+TMPRSS2+ cells and highlight other 

proteases that are significantly co-expressed with ACE2 and could play a role in infection. 

RESULTS  

Double positive ACE2+TMPRSS2+ cells across the lung, airways and other organs associated 

with COVID-19   

We enumerated the proportion of double positive ACE2+TMPRSS2+ cells and ACE2+CTSL+ cells 

across 92 human single-cell or single-nucleus RNA-seq (sc/snRNA-seq) studies (including seven 

of the lung and airways) (Fig. 1, Methods, Supplementary Table 1 and 2). We surveyed 

published datasets, assigning cells to five broad categories (Fig. 1a,b, Extended Data Fig. 1, 

Extended Data Fig. 2, Supplementary Table 1), and analyzed more finely annotated published 

and unpublished datasets (Methods, Fig. 1c,d, Supplementary Table 1,3).  

ACE2+TMPRSS2+ epithelial cells were most prevalent (in order) within the ileum, liver, lung, nasal 

mucosa, bladder, testis, prostate, and kidney (Fig. 1a). Consistent with previous reports33, double 

positive ACE2+TMPRSS2+ cells in the nose and airways were largely secretory goblet and 

https://paperpile.com/c/53eFaW/5bj2Y+wC2yl+3xTa
https://paperpile.com/c/53eFaW/P40kL+5bj2Y
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multiciliated cells, and double positive cells in the distal lung were largely AT2 cells (Fig. 1c, 

Extended Data Fig. 3a). ACE2 and TMPRSS2 expression in secretory and AT2 cells is also 

supported by scATAC-seq from the primary carina and subpleural parenchyma of one adult 

individual, respectively, as well as secretory and multiciliated cells, and to a lesser extent some 

basal and tuft cells (Supplementary Fig. 1a-d, n=3 samples per location, n=1 patient, Methods). 

In a larger aggregation of lung and nasal datasets (Methods), we observed ACE2+TMPRSS2+ cells 

in various lung epithelial cells in pediatric samples (Extended Data Fig. 3b,c), also supported by 

single-cell chromatin accessibility by transposome hypersensitive sites sequencing (scTHS-Seq)18 

(Extended Data Fig. 4, Methods). Significant double positive ACE2+TMPRSS2+ cells in other 

tissues included enterocytes, pancreatic ductal cells, prostate luminal epithelial cells, brain 

oligodendrocytes, kidney proximal tubular cells and principal cells of the collecting duct, 

inhibitory enteric neurons, heart fibroblasts/pericytes, and fibroblasts and pericytes in multiple 

tissues (Fig. 1a-c). Notably, some of the cell types in which there are double positive cells 

(including brain oligodendrocytes, multiciliated cells of the upper respiratory tract, and 

sustentacular cells in olfactory epithelium) are cell types that also express MYRF (albeit not always 

significant triple expressors; Supplementary Fig. 2). MYRF is a transcription factor that induces 

expression of the myelin proteins MBP (myelin basic protein) and MOG (myelin oligodendrocyte 

glycoprotein)19 Autoimmune reactions against these proteins are known to potentially induce 

neurological symptoms (Discussion). 

ACE2+CTSL+ co-expressing cells were enriched among AT1 and AT2 cells, enterocytes, 

ventricular cardiomyocytes and heart macrophages, as well as fibroblasts and pericytes in multiple 

tissues, including the placenta, heart, lung, kidney and ENS (Fig. 1d). We did not observe 

substantial ACE2 mRNA expression in scRNA-seq profiles in the bone marrow or cord blood (Fig. 

https://paperpile.com/c/53eFaW/pzSry
https://paperpile.com/c/53eFaW/HaH3v
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1a,b), although there was ACE2 expression in alveolar and heart macrophages (Extended Data 

Fig. 5). Notably, in human placenta20–22, ACE2 was expressed (1.4%) in maternal decidual/stromal 

cells, maternal pericytes, and fetal extravillous trophoblasts, cytotrophoblasts, and 

syncytiotrophoblast in both first-trimester and term placenta (Fig. 1d). While there was little 

expression of TMPRSS2 (0.2%), CTSL was expressed in most cells (56%), and there were 

ACE2+CTSL+ double positive cells (1.3%).  

 

Cell type specific expression of additional proteases that may be relevant to infection  

SARS-CoV-2 infects cells in the absence of TMPRSS28, so additional proteases likely play roles 

in proteolytic cleavage of viral proteins for entry and egress. To predict such proteases, we tested 

the co-expression of ACE2 with each of 625 annotated human protease genes23 in a declined donor 

transplant dataset (“Regev/Rajagopal”, Supplementary Table 1). TMPRSS2 was significantly co-

expressed in multiple lung epithelial cell types (Fig. 2a, Supplementary Table 4, 5), as were 

multiple members of the proprotein convertase subtilisin kexin (PCSK) family (Fig. 2a,b), 

including FURIN, PCSK2, PCSK5, PCSK6 and PCSK7 in AT2 cells. Proprotein convertases have 

known roles in coronavirus S-protein priming. We obtained similar results in an independent 

dataset from 40 samples (Extended Data Fig. 6a,b,  Supplementary Table 1, datasets “Barbry”, 

“Kropski”, “Lafyatis/Rojas”, “Misharin_new”, “Nawijn/Teichmann”, “Northwestern_Misharin_ 

2018Reyfman”, “Sanger_Meyer_2019Madissoon”). As previously reported24, the SARS-CoV-2 

S-protein has a polybasic motif in the S1/S2 region (Extended Data Fig. 6c) that corresponds to 

cleavage motifs of PCSK family proteases (Extended Data Fig. 6d)24 and an additional site at the 

S2’ position (Extended Data Fig. 6e)25. 

https://paperpile.com/c/53eFaW/oqhT0+bwO6W+Xllib
https://paperpile.com/c/53eFaW/dgR5E
https://paperpile.com/c/53eFaW/yzsS9
https://paperpile.com/c/53eFaW/pyZLs
https://paperpile.com/c/53eFaW/pyZLs
https://paperpile.com/c/53eFaW/vt0Pi
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FURIN, PCSK5 and PCSK7 were co-expressed with ACE2 across multiple lung cell types (Fig. 

2c, Extended Data Fig. 6f), PCSK1 and PCSK2 were mostly restricted to neuroendocrine cells26, 

and PCSK2 also detected in some AT2 cells (Fig. 2d, Extended Data Fig. 6g). In AT2 cells, 

proximal multiciliated cells, and basal cells, dual expression of PCSKs with ACE2 was at fractions 

comparable to or higher than ACE2+TMPRSS2+ cells (Fig. 2e, Extended Data Fig. 6h). Co-

expression is significant across other tissues (Extended Data Fig. 6i,j), including liver, ileum, 

kidney, and nasal airways. 

Because different host proteases may contribute to different stages of the viral life cycle25, we 

examined the prevalence of ACE2+TMPRSS2+PCSK+ triple-positive cells (TPs) in the lung. 

ACE2+TMPRSS2+PCSK7+ were the main TPs in multiciliated (0.75%) and secretory (0.72%) cells 

of proximal airways, and ACE2+TMPRSS2+FURIN+ TPs were the most common within AT2 cells 

(0.36%) (Extended Data Fig. 6k). Among all known human proteases (Fig. 2f, Supplementary 

Fig. 3), cathepsins (CTSB, CTSC, CTSD, CTSL, CTSS), proteasome subunits (PSMB2, PSMB4, 

PSMB5), and complement proteases (C1R, C2, CFI), were the most commonly co-expressed with 

ACE2 in lung epithelial cell types.  

Orthogonal validation of ACE2, TMPRSS2 and CTSL expression in the lungs  

As ACE2 expression is quite low, we next validated some of these patterns by fluorescence in situ 

hybridization and immunofluorescence in tissue sections of airways and alveoli from three healthy 

donor lungs that were rejected for lung transplantation. ACE2, CTSL and TMPRSS2 were co-

expressed by fluorescence in situ hybridization in alveolar cells, albeit at low levels (Fig. 1e,f). 

Co-staining with cell type-specific markers, showed ACE2 expression and TMPRSS2 expression 

in some HTII-280+ AT2 cells (Fig. 1g,h); we confirmed the latter by TMPRSS2 protein 

https://paperpile.com/c/53eFaW/b9qnq
https://paperpile.com/c/53eFaW/vt0Pi
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immunostaining (Extended Data Fig. 7d). TMPRSS2 protein was expressed at low levels in some 

AT1 cells (identified by AGER, Extended Data Fig. 7d). Some non-epithelial cells also expressed 

these three genes. We further validated ACE2 expression by bulk mRNA-seq of sorted AT2 cells 

(Extended Data Fig. 7e). Immunohistochemistry with antibodies used previously to block cellular 

viral entry specifically labeled adult pro-SFTPC+ AT2 cells (Extended Data Fig. 7c, 

Supplementary Table 6, Methods).  

Previous studies revealed that ACE2 is highly enriched in nasal and intestinal mucous cells13,14. 

While mucous cells are relatively rare in healthy surface airway epithelium, they are abundant in 

submucosal glands (SMGs). scRNA-seq of microdissected SMGs of healthy donors showed 

enrichment of ACE2, TMPRSS2 and CTSL in mucous cells (Extended Data Fig. 7f). In situ 

analysis confirmed the presence of ACE2 transcripts in acinar epithelial cells of the SMGs 

(Extended Data Fig. 7g), and cells expressing ACE2 in the large airway epithelium (Extended 

Data Fig. 7). 

Association of ACE2, TMPRSS2, and CTSL expression in lung and airway cells with age, sex 

and smoking 

We next asked how the expression of ACE2, TMPRSS2, and CTSL in specific cell subsets relates 

to three key covariates associated with disease severity: age (older individuals are more severely 

affected), sex (males are more severely affected), and smoking (smokers are more severely 

affected)27. As no single dataset to date was sufficiently large, we aggregated samples across 31 

sc/snRNA-seq studies (Supplementary Table 2, Supplementary Data 3; 14 published16,28–38; 17 

not yet published39,40). This analysis spanned 1,320,896 cells from 228 individuals without known 

lung disease or from histologically normal-appearing lung adjacent to the site of disease, across 

https://paperpile.com/c/53eFaW/5bj2Y+V1rDk
https://paperpile.com/c/53eFaW/nzVsR
https://paperpile.com/c/53eFaW/3xTa+3PtE+PN8n+WoSd+mQfI+qW4F+wval+cNdG+UfRP+b4vy+GB5J+4lIG
https://paperpile.com/c/53eFaW/wkcg+AdrU
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377 nasal, lung, and airway samples from either brushes, scrapings, biopsies, bronchoalveolar 

lavages, resections, entire lungs that could not be used for transplant or post mortem examinations 

(Fig. 3a). From unpublished data, we only obtained single-cell expression counts for the three 

genes (pre-processed by each data generator), total UMI counts per cell, cell identity annotations 

(which we harmonized to three resolution levels across studies; Fig. 3a,b, Supplementary Table 

2, Extended Data Fig. 8, Methods), and age, sex, and smoking status (when ascertained). We 

modeled the association between the expression counts of each gene and age, sex, and smoking 

status using a linear model, accounting for technical variation arising from dataset-related factors 

and covariate interactions (Methods). We fitted this model within each cell type to non-fetal lung 

data of donors for whom smoking history was known (985,420 cells, 286 samples, 164 donors, 21 

datasets), and fitted a model without smoking status covariates to the full non-fetal lung data 

(1,096,604 cells, 309 samples, 185 donors, 24 datasets). 

For simplicity, we treated each cell as an independent observation. This implicitly combines 

variability in both donors and cells, and, because cells from the same donor are not truly 

independent observations, can result in inflated p-values, especially when there are few donors for 

a particular cell type. To address this, account for covariate interactions, and ensure robustness, 

we: (1) used a simple noise model (Poisson) to reduce overfitting of donor variability; (2) 

confirmed that effect directions of significant associations are consistent in a pseudo-bulk analysis 

(modeling only donor variation; Methods, Supplementary Data D1); (3) confirmed summarized 

age, sex, and smoking associations with a model including interaction terms (Methods, 

Supplementary Data D1); and (4) separated significant associations that passed all above 

confirmations into robust trends and indications depending on their robustness to holding out 

individual datasets (Methods, Supplementary Data D1). We focused on trends or indications in 
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cell types where ACE2 and TMPRSS2 are co-expressed (Fig. 3c): airway epithelial cells (basal, 

multiciliated, and secretory cells), alveolar AT1 and AT2 cells, and submucosal gland secretory 

cells. 

We find robust trends of ACE2 expression with age, sex, and smoking status in these cell types 

(Fig. 3d, Extended Data Fig. 9, Supplementary Fig. 4-6; non-smoking model results in 

Supplementary Fig. 7-10): ACE2 expression increases with age in AT2 cells, and is elevated in 

males in airway secretory cells and alveolar AT1 and AT2 cells. ACE2 levels are higher in past or 

current smokers in basal and submucosal secretory cells, and lower in AT2 cells (Fig. 3d). Analysis 

of bulk RNA-Seq data from bronchial brushings41 indicated an upregulation of both ACE2 and 

TMPRSS2 in current vs. former smokers (Extended Data Fig. 10). Furthermore, we find indications 

of increased ACE2 expression with age and in males in multiciliated cells, but those rely on 

inclusion of the dataset with the most cells and samples (“Regev/Rajagopal”; Extended Data Fig. 

9, Methods).  All above trends and indications for sex and age were validated in a simplified 

model without smoking status on the full non-fetal lung dataset (Supplementary Fig. 7, 

Supplementary Data D2, Methods). 

Examining joint trends of ACE2 and the protease genes within the same cell type, we found robust 

trends of ACE2 and TMPRSS2 co-expression increasing with age in AT2 cells, in males in AT1 

cells, and an indication of the two genes being elevated in males in multiciliated cells (ACE2 

indication dependent on “Regev/Rajagopal” dataset; Fig. 3d, Extended Data Fig. 9). ACE2 and 

CTSL show robust trends of joint up-regulation in males in AT2 cells, and in smokers in 

submucosal secretory cells. Indications of joint up-regulation of these genes were found in males 

in AT1 cells, and in smokers in basal cells (Fig. 3d, Extended Data Fig.  9, Methods). All joint 

trends for age and sex covariates were confirmed on the full non-fetal lung data using the simple 

https://paperpile.com/c/53eFaW/ipbv
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model without smoking covariates (Supplementary Fig. 7). 

An immune gene program in ACE2+TMPRSS2+ cells in airway, lung and gut  

Our previous analyses revealed immune signaling genes that co-vary with ACE2 and TMPRSS2 in 

airway and lung cells13,14 . To explore these in a broader context, we identified tissue and cell 

programs related to double positive ACE2+TMPRSS2+ cells in the nasal epithelium, lung, and gut 

(Supplementary Tables 7-10). Tissue programs are shared across double positive cells from 

different cell types in one tissue; cell programs distinguish double positive cells from the rest of 

the cells of the same type (Methods).  

Tissue programs were enriched in pathways related to viral infection and immune response, 

including phagosome structure, antigen processing and presentation, and apoptosis (Fig. 4a,b, 

Supplementary Fig. 11a,b for selected genes, Supplementary Tables 7-10). These include 

CEACAM5 (lung, nasal, gut programs) and CEACAM642 (lung), surface attachment factors for 

coronavirus spike protein; SLPI (lung, nasal)43; PIGR (lung, gut; may promote antibody-dependent 

enhancement via IgA44); and CXCL17 (lung, nasal)45. Tissue programs also had genes associated 

with cholesterol and lipid metabolic pathways and endocytosis (DHCR24, LCN2, FASN); MHC I 

and MHC II pathways46; preparation against cellular injury (interferons, extracellular RNAse: 

PLAC8, TXNIP); complement (C3, C4BPA); immune modulation (BTG1) and tight junctions 

(DST, CLDN3, CLDN4). 

Cell programs (Fig. 4c,d, Supplementary Fig. 12a-c, Supplementary Tables 7-10) were 

enriched in many of the same genes and pathways (e.g., CEACAM5, CXCL17, SLPI), and further 

captured unique functions, including TNF signaling in lung secretory cells (e.g., RIPK347), 

lysosomal functions in lung secretory and multiciliated cells48, the immunoproteasome (AT1 cells, 

https://paperpile.com/c/53eFaW/V1rDk+5bj2Y
https://paperpile.com/c/53eFaW/Q2LTI
https://paperpile.com/c/53eFaW/clJ78
https://paperpile.com/c/53eFaW/B1OzR
https://paperpile.com/c/53eFaW/Q9Od7
https://paperpile.com/c/53eFaW/fnFFb
https://paperpile.com/c/53eFaW/XGk7j
https://paperpile.com/c/53eFaW/I396A
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Fig. 4c), cytokines, chemokines and their receptors (nasal goblet cells: CSF3, CXCL1, CXCL3, 

IL19, CCL20; AT1 cells: IL1R1), and genes that encode surfactant proteins (AT2 cells, SFTPA, 

SFTPA2). Cell programs from multiple tissues (Fig. 4c,d) included genes related to TNF signaling, 

raising the possibility that anti-TNF therapy may impact the expression of ACE2 and/or TMPRSS2. 

Some of the genes encode proteins that are targets of known drugs49 (e.g., in lung secretory cells: 

C3, HDAC9, IL23A, PIK3CA, RAMP1, and SLC7A11), other gene products have been shown to 

interact with SARS-CoV-2 proteins50 (e.g., GDF1568, a central regulator of inflammation51), and 

yet others may be related to COVID-19 pathological features, including MUC152 (in tissue and 

specific cell programs), IL6ST (lung tissue and gut enterocyte programs), and IL6 (AT2 program, 

Supplementary Fig. 12d). Other cell types, such as heart pericytes, are enriched for cells co-

expressing ACE2 with IL6R or IL6ST (Supplementary Fig. 13). The immune-like programs of 

ACE2+ epithelial cells are also reflected in the regulatory features of the ACE2 locus by scATAC-

Seq (Fig. 4f). Cell-cell interaction analysis53 (Methods) predicted interactions (Supplementary 

Table 11) between AT2 cells (overall or ACE2+TMPRSS2+) and myeloid cells through oncostatin, 

complement, IL1 receptor and CSF signaling. 

 

Conserved expression patterns in mouse models  

Preclinical studies of SARS-CoV-2 infection and treatment require model systems that 

approximate human physiology. Transgenic hACE2 mouse models have been identified as a 

valuable resource to evaluate diverse therapeutics for COVID-1954. We thus asked whether 

expression patterns of SARS-CoV-2 entry factors were similar in human and mouse model cell 

types of interest.  

https://paperpile.com/c/53eFaW/x9AQx
https://paperpile.com/c/53eFaW/oiDt9
https://paperpile.com/c/53eFaW/X4d2j
https://paperpile.com/c/53eFaW/uRtbt
https://paperpile.com/c/53eFaW/JItIW
https://paperpile.com/c/53eFaW/idDOl
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Ace2+Tmprss2+ and Ace2+Ctsl+ double positive cells were present primarily in club and 

multiciliated cells in the airway epithelia of healthy mice55 (Fig. 5a), consistent with human 

airways (Extended Data Fig. 3a), and increased from 2 to 4 months old (Fig. 5a,b). Moreover, 

the expression patterns observed in scRNA-seq data of whole lungs from mice exposed daily to 

cigarette smoke for two months (Fig. 5c-k, Methods) are consistent with our observations in 

human airway epithelial cells (Fig. 3d,  Extended Data Fig. 9a). Upon smoke exposure, there was 

a significant increase in the number Ace2+ cells and Ace2 expression in airway secretory cell 

numbers, but not AT2 cells (Fig. 5f-i). There was also agreement in expression patterns between 

the human placenta and mouse placenta development (Fig 1c,d, Fig. 5l, Supplementary Fig. 14). 

 

DISCUSSION 

To the best of our knowledge, this study represents the first single-cell meta-analysis. Our meta-

analysis provided the required power to uncover age, sex and smoking associations at single-cell 

resolution. The contrasting smoking associations of ACE2 across epithelial cell types show the 

importance of single-cell resolution, as down-regulation in AT2 cells would have been otherwise 

masked by increases in airway epithelial signal in bulk RNA-Seq56. Although we have aggregated 

over 200 donors in our dataset, effects such as race, ethnicity, genetic ancestry, cumulative 

smoking, or healthy tissue with a distal disease site may still confound the associations we have 

obtained. 

Our models included tested covariates, technical covariates, and interaction terms, which allowed 

us to uncover complex associations (e.g., sex and smoking associations are typically stronger for 

younger individuals; Supplementary Fig. 5). Modeling the smoking status of a donor was 

https://paperpile.com/c/53eFaW/JoPG0
https://paperpile.com/c/53eFaW/SgVpR
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important to reduce background variation and account for the unbalanced distribution of 

covariates. Fitting this model required aggregating many datasets, harmonized by a consistent cell 

type annotation. However, the annotation remains coarse in some cases, where cell labels still 

aggregate over considerable diversity, and can be further refined in the future. As the HCA grows 

and further datasets become available, our model could be extended to allow nonlinear associations 

with the tested covariates. Such associations may uncover e.g. distinct effects in the particularly 

affected geriatric population. While there is a trend of increased proportion of ACE2+TMPRSS2+ 

cells with age (Extended Data Fig. 3b,c), this cannot be modeled reliably given the compositional 

diversity (Fig. 3a, Supplementary Fig. 15), potential confounders, and limited sample numbers. 

Further metadata can help address this. 

Our findings in human and mouse models are consistent with respect to smoking and age 

associations. In line with our human data, we find an increase in Ace2 expression in maturing mice 

(2-4 months). Others have reported lower expression of entry factors in aged mice (24 months), 

showing potential limitations of mice as a model system.  

Our comprehensive cross-tissue analysis expands on our13,14,16,57 and others’58–60  earlier efforts, 

identifying cell subsets across tissues that may be implicated in transmission or pathogenesis. For 

example, double positive cells in the submucosal glands may be a reservoir for viruses that escape 

from expulsion associated with severe cough in the airway luminal surface. Another intriguing 

hypothesis is that neurologic symptoms61–63 and Guillain-Barré Syndrome64 may arise as an 

autoimmune response to myelin antigens expressed by infected ACE2+TMPRSS2+ and ACE2+ 

cells that express myelin-producing genes (Supplementary Fig. 2, Supplementary Table 7). 

ACE2 and TMPRSS2 expression in lung, nasal and gut epithelial cells is associated with programs 

https://paperpile.com/c/53eFaW/5bj2Y+V1rDk+3xTa+yl7lz
https://paperpile.com/c/53eFaW/eghl5+y6Fkl+viVgb
https://paperpile.com/c/53eFaW/Y579U+E7A66+NTebg
https://paperpile.com/c/53eFaW/kWalc
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involving key immunological genes and genes related to viral infection. Expression of IL6, IL6R 

and IL6ST in lung epithelial cells raises the hypothesis that infection may trigger uncontrolled 

cytokine expression, as elevated IL-6 levels were reported in more severe COVID-19 patients65 . 

The prediction of TNF, complement, and IL1 pathways may suggest a benefit for therapies that 

target these axes. The accessibility of STAT and IRF binding sites in scATAC-Seq data is 

consistent with interferon regulation of ACE2 expression in epithelial cells14 and with high activity 

of STAT1/2 and IRF1/2/5/7/8/9 in macrophage states increased in severe COVID-19 patients66. 

Future lines of inquiry could include investigating the impact of lysosomal genes in lung secretory 

and multiciliated cells on viral infection and of RIPK3 expression in airway cells on necroptosis. 

Finally, the expression of other potential accessory proteases may help pursue therapeutic 

hypotheses related to disruption of viral processing via protease inhibition. FURIN, PCSK5 and 

PCSK7 are more broadly expressed than TMPRSS2 across lung cell types (Fig. 2d) and across 

tissues (Extended Data Fig. 6i). Viral proteins may physically interact with PCSK650, which is 

significantly co-expressed with ACE2 in AT2 cells (Fig. 2b, Extended Data Fig. 6b). Because 

PCSKs are localized in different membrane compartments26, they might process SARS-CoV-2 S-

proteins at different viral stages. Altogether, this could provide SARS-CoV-2 with immense 

flexibility in entry and egress. 

Our meta-analysis provides a detailed molecular and cellular map to aid in our understanding of 

SARS-CoV-2 transmission, pathogenesis and clinical associations. We have demonstrated here 

how this can be done despite restrictions on data sharing. As the HCA progresses, we envision 

such meta-analyses in the context of other diseases, for example by combining large healthy 

reference atlases with both epidemiological and genetic risk factors. In parallel, as new atlases are 

https://paperpile.com/c/53eFaW/2eXVO
https://paperpile.com/c/53eFaW/V1rDk
https://paperpile.com/c/53eFaW/KHqAq
https://paperpile.com/c/53eFaW/oiDt9
https://paperpile.com/c/53eFaW/b9qnq
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generated from COVID-19 tissues and models, their integration will further advance our 

understanding of this disease. 

METHODS 

Patient samples 

Sample collection underwent IRB review and approval at the institutions where the samples were 

originally collected. “Adipose_Healthy_Manton_unpublished” was collected under  IRB   

2007P002165/1(ORSP-3877).  Tissue samples from breast, esophagus muscularis, esophagus 

mucosa, heart, lung, prostate, skeletal muscle and skin referred to as 

“Tissue_Healthy_Regev_snRNA-seq_unpublished” were collected under ORSP-3635. Samples 

referred to as “Eye_Sanes_unpublished” were collected under Dana Farber / Harvard Cancer 

Center Protocol Number 13-416 and Massachusetts Eye and Ear Protocol Number 18-034H. 

Samples referred to as “Kidney_Healthy_Greka_unpublished” were collected under 

Massachusetts General Hospital IRB number 2011P002692. Samples referred to as 

“Liver_Healthy_Manton_unpublished” were collected under IRB 02-240; ORSP 1702 as well as 

and ORSP-2630 under ORSP-2169. Lung samples from smokers and non-smokers (41 samples, 

10 patients, 2-6 locations each) with suffix “Regev/Rajagopal_unpublished” were collected under 

Massachusetts General Hospital IRB 2012P001079 / (ORSP-3900) under ORSP-3490. Healthy 

and fibrotic lung samples with suffix “Xavier_snRNA-seq_unpublished“ were collected under 

Massachusetts General Hospital IRB number 2003P000555 (CG-5242) under ORSP-3490, 

Medoff, 2015P000319 (CG-5145) under ORSP-3490. Pancreas PDAC samples were collected 

under Fernandez-del Castillo, 2003P001289 (CG-4692) under ORSP-3490 Massachusetts General 

Hospital IRB number Fernandez-del Castillo, 2003P001289 (CG-4692) under ORSP-3490. 
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Samples in the dataset “Barbry” were derived from a study that was approved by the Comité de 

Protection des Personnes Sud Est IV (approval number: 17/081) and informed written consent was 

obtained from all participants involved. All experiments were performed during 8 months, in 

accordance with relevant guidelines and French and European regulations. No deviations were 

made from our approved protocol named 3Asc (An Atlas of Airways at a single cell level - 

ClinicalTrials.gov identifier: NCT03437122). IPF and COPD lungs in the “Kaminski” dataset 

were obtained from patients undergoing transplant while healthy lungs were from rejected donor 

lung organs that underwent lung transplantation at the Brigham and Women’s Hospital or donor 

organs provided by the National Disease Research Interchange (NDRI).  Patient tissues relating to 

the dataset “Krasnow” were obtained under a protocol approved by Stanford University’s Human 

Subjects Research Compliance Office (IRB 15166) and informed consent was obtained from each 

patient prior to surgery. The study protocol was approved by the Partners Healthcare Institutional 

Board Review (IRB Protocol # 2011P002419). Samples in the dataset “Kropski_Banovich” were 

collected under Vanderbilt IRB # 060165, 171657, and Western IRB#20181836. Ethics approval 

number 2018/769-31. “Meyer_b” were collected under CBTM (Cambridge Biorepository for 

Translational Medicine), research ethics approval number: UK NHS REC approval reference 

number 15/EE/0152. Samples in the dataset “Linnarsson” are covered by (2018/769-31) approved  

by the Swedish Ethical Review Authority. Samples in the “Misharin” dataset were collected under 

(STU00056197, STU00201137, and STU00202458) approved by the Northwestern University 

Institutional Review Board. Samples in the “Rawlins” dataset were obtained from terminations of 

pregnancy from Cambridge University Hospitals NHS Foundation Trust under permission from 

NHS Research Ethical Committee (96/085) and the Joint MRC/Wellcome Trust Human 

Developmental Biology Resource (grant R/R006237/1, www.hdbr.org, HDBR London: REC 
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approval 18/LO/0822; HDBR Newcastle: REC approval 18/NE/0290). The studies relating to 

datasets “Schultze” and “Schultze_Falk” were approved by the ethics committees of the University 

of Bonn and University hospital Bonn (local ethics vote 076/16) and the Medizinische Hochschule 

Hannover (local ethics vote 7414/2017). Fifteen human tracheal airway epithelia in the “Schultze” 

dataset were isolated from de-identified donors whose lungs were not suitable for transplantation. 

Lung specimens were obtained from the International Institute for the Advancement of Medicine 

(Edison, NJ) and the Donor Alliance of Colorado. The National Jewish Health Institutional Review 

Board (IRB) approved the research under IRB protocols HS-3209 and HS-2240. Samples in the 

“Xu/Whitsett” dataset were provided through the federal United Network of Organ Sharing via the 

National Disease Research Interchange (NDRI) and International Institute for Advancement of 

Medicine (IIAM) and entered into the NHLBI LungMAP Biorepository for Investigations of 

Diseases of the Lung (BRINDL) at the University of Rochester Medical Center, overseen by the 

IRB as RSRB00047606. (Supplementary Table 1, 2) 

Integrated analysis of published datasets  

Publicly available (Supplementary Table 1) single-cell RNA-seq datasets were downloaded from 

Gene Expression Omnibus (GEO). We searched GEO for datasets that met all of the following 

criteria: (1) provided unnormalized count data; (2) was generated using the 10X Genomics’s 

Chromium platform; and (3) profiled human samples. These samples spanned a wide range of 

tissues, including primary tissues, cultured cell lines, and chemically or genetically perturbed 

samples. Applying these filters increases standardization of sample as the vast majority were 

prepared using the same 10X Chromium instrument and Cell Ranger pipelines. 
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Datasets comprise of one or more samples (individual gene expression matrices), which often 

correspond to individual experiments or patient samples. In total, this yielded 2,333,199 cells from 

469 samples from 64 distinct datasets (Supplementary Table 1). To allow comparison across 

samples and datasets, we mapped through a common dictionary of gene symbols and excluded 

unrecognized symbols. If a gene from an aggregated master list was not found in a sample, the 

expression was considered to be zero for every cell in that sample. 

After all datasets were collected, we quantified the percentage of cells with >0 UMIs for both 

ACE2 and TMPRSS2 or ACE2 and CTSL. For further analyses with broad cell classes, we only 

used datasets with more than 15 double positive cells yielding 252,871 cells from 40 samples. 

For integration across datasets, we used two levels of annotations. When possible, every sample 

was annotated with its tissue of origin based on the available metadata from GEO. We excluded 

any sample for which tissue was not specified. For the smaller subset of 252,871 cells we then 

manually annotated cell clusters with broad cell type classes using marker genes. These clusters 

were generated using the harmony-pytorch Python implementation (version 0.1.1 

(https://github.com/lilab-bcb/harmony-pytorch) of the Harmony scRNA-seq integration method67 

for batch correction and leiden clustering from the Scanpy package (version 1.4.5). Clusters 

without clear markers distinguishing types were excluded from further analysis.  

Data was processed using Scanpy. Individual datasets were normalized log (UMIs/10,000 +1)  by 

column sum and the log1p function (ln(10,000 * gij + 1) where a gene’s expression profile, g, is 

the result of the UMI count for each gene, i, for cell j, normalized by the sum of all UMI counts 

for cell j. This data normalization step was only used for generating the clusters and cell type 

annotations.  

https://github.com/lilab-bcb/harmony-pytorch
https://paperpile.com/c/53eFaW/TfGk


29 

All other statistical tests for the integrated analysis were performed on the cell’s binary 

classification as a double positive or not. For example, for a cell to be considered ACE2+, it has 

>0 ACE2 transcripts. Double positive cells have >0 transcripts for both genes of interest. We used 

Fisher's exact test to test for statistical dependence between the expression of ACE2 and TMPRSS2 

or CTSL and corrected for multiple testing via Benjamini-Hochberg over all tests for each gene 

pair. 

Bronchial brushings from current and former smokers 

Bronchial brushings were obtained from high-risk subjects undergoing lung cancer screening at 

~1-year intervals by white light and autofluorescence bronchoscopy and computed tomography 

(n=137 brushings from n=50 patients, GSE109743) and profiled via RNA-seq as described 

previously41. Differential expression analysis of entry factors in former and current smokers was 

performed via voom-limma68 using the model: 

𝑌𝑖  ∼   𝑠𝑚𝑜𝑘𝑖𝑛𝑔 +  𝑏𝑎𝑡𝑐ℎ +  𝑇𝐼𝑁 +  (1 | 𝑝𝑎𝑡𝑖𝑒𝑛𝑡), 

where smoking denotes the encoded smoking status (“current” or “former”), batch refers to the 

experimental batch effect derived from the sequencing run, TIN represents the RNA integrity 

score, and (1 | patient) is a random intercept per patient. Multiple testing correction was performed 

via Benjamini-Hochberg to obtain an FDR-corrected p-value. 

 

Integrated co-expression analysis of high resolution cell annotations across tissues  

We compiled a compendium of published and unpublished datasets consisting of 2,433,890 cells 

from 21 tissues and/or organs including adipose, bone marrow, brain, breast, colon, cord blood, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109743
https://paperpile.com/c/53eFaW/ipbv
https://paperpile.com/c/53eFaW/hOFqm
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enteric nervous system, esophagus mucosa, esophagus muscularis, anterior eye, heart, kidney, 

liver, lung, nasal, olfactory epithelium, pancreas, placenta, prostate, skeletal muscle and skin. After 

the harmonization of cell type annotations, ACE2-TMPRSS2 and ACE2-CTSL coexpression were 

assessed using a logistic mixed effect model:  

𝑌𝑖  ∼   𝐴𝐶𝐸2 +  (1 | 𝑠𝑎𝑚𝑝𝑙𝑒_𝑖𝑑)           (1) 

where Yi was the binarized expression level of either TMPRSS2 or CTSL, and covariates were 

binarized ACE2 expression in cell i and a sample-level random intercept.  

Models were fit separately for each cell type in each dataset. In order to avoid spurious associations 

in cell types with very few ACE2+ cells and due to very low expression of ACE2, we subsampled 

ACE2- cells to the number of ACE2+ cells within each cell type and discarded cell types containing 

fewer than 5 cells expressing either ACE2 or fewer than 5 cells expressing the other gene being 

tested after the subsampling procedure. The significance of the association between ACE2 and 

TMPRSS2/CTSL is controlled for 10% FDR using the statsmodels Python package (version 

0.11.1)69. Data processing was performed using Scanpy Python package (version 1.4.6)70 and 

logistic models were fit using lme4 R package (version 1.1.21)71. 

Single-cell ATAC-Seq analysis 

Library Generation and Sequencing.   

We performed single-cell ATAC-seq from primary carina and subpleural parenchyma of one 

individual (n=3 samples per location). Libraries were generated using the 10x Chromium 

Controller and the Chromium Single Cell ATAC Library & Gel Bead Kit (#1000111) according 

to the manufacturer’s instructions (CG000169-Rev C; CG000168-Rev B) with unpublished 

https://paperpile.com/c/53eFaW/nGZxc
https://paperpile.com/c/53eFaW/vb48v
https://paperpile.com/c/53eFaW/hOoy6
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modifications relating to cell handling and processing. Briefly, human lung derived primary cells 

were processed in 1.5ml DNA LoBind tubes (Eppendorf), washed in PBS via centrifugation at 

400g, 5 min, 4C, lysed for 3 min on ice before washing via centrifugation at 500g, 5 min, 4C. The 

supernatant was discarded and lysed cells were diluted in 1x Diluted Nuclei buffer (10x Genomics) 

before counting using Trypan Blue and a Countess II FL Automated Cell Counter to validate lysis. 

If large cell clumps were observed, a 40µm Flowmi cell strainer was used prior to the tagmentation 

reaction, followed by Gel Bead-In-Emulsions (GEMs) generation and linear PCR as described in 

the protocol. After breaking the GEMs, the barcoded tagmented DNA was purified and further 

amplified to enable sample indexing and enrichment of scATAC-seq libraries. The final libraries 

were quantified using a Qubit dsDNA HS Assay kit (Invitrogen) and a High Sensitivity DNA chip 

run on a Bioanalyzer 2100 system (Agilent). 

 All libraries were sequenced using Nextseq High Output Cartridge kits and a Nextseq 500 

sequencer (Illumina). 10x scATAC-seq libraries were sequenced paired-end (2 x 72 cycles). 

Initial data processing and QC. Fastq files were demultiplexed using 10x Genomics CellRanger 

ATAC mkfastq (version 1.1.0). We obtained peak-barcode matrices by aligning reads to GRCh38 

(CR v1.2.0 pre-built reference) using CellRanger ATAC count. Peak-barcode matrices from six 

channels were normalized per sequencing depth and pooled using CellRanger ATAC aggr. 

The aggregated, depth-normalized,  filtered dataset was analyzed with Signac (v0.1.6, 

https://github.com/timoast/signac), a Seurat72 extension developed for the analysis of scATAC-

seq data. All the analyses in Signac were run with a random number generator seed set as 1234. 

Cells that appeared as outliers in QC metrics (peak_region_fragments ≤ 750 or 

peak_region_fragments ≥ 20,000 or blacklist_ratio ≥ 0.025 or nucleosome_signal ≥ 10 or  

https://github.com/timoast/signac
https://github.com/timoast/signac
https://github.com/timoast/signac
https://paperpile.com/c/53eFaW/NJMqO
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TSS.enrichment ≤ 2) were excluded from the analysis. 

Normalization and dimensionality reduction. The aggregated dataset was processed with Latent 

Semantic Indexing73, i.e. datasets were normalized using term frequency-inverse document 

frequency (TF-IDF), then singular value decomposition (SVD), ran on all binary features, was 

used to embed cells in low-dimensional space. Uniform Manifold Approximation and Projection 

(UMAP)74 was then applied for visualization, using the first 30 dimensions of the SVD space. 

Gene activity matrix and differential motif activity analysis. A gene activity matrix was calculated 

as the chromatin accessibility associated with each gene locus (extended to include 2kb upstream 

of the transcription start site, as described in the vignette ‘Analyzing PBMC scATAC-seq’ 

(version: March 13, 2020, https://satijalab.org/signac/articles/pbmc_vignette.html), using as gene 

annotation the genes.gtf file provided together with Cellranger’s atac GRCh38-1.2.0 reference 

genome. For the motif analysis, we note that because epithelial cells with an accessible ACE2 locus 

tend to have a higher number of fragments in peaks than cells with inaccessible ACE2 

(Supplementary Fig. 1e), consistent also with higher UMIs in scRNA-seq, some of the cells with 

inaccessible ACE2 could be false negatives, reducing our power. 

Clusters were annotated using label transfer from matching scRNA samples or by literature / expert 

search of marker “active” (i.e. accessible) genes. Differential motif activity analysis was performed 

using Signac’s implementation of ChromVAR75, with motif position frequency matrices from 

JASPAR202076 (http://jaspar.genereg.net/) selecting transcription factors motifs from human 

(species=9606), broadly following the vignette ‘Motif analysis with Signac’ 

(https://satijalab.org/signac/articles/motif_vignette.html). Cells were identified as positive for 

ACE2 and/or TMPRSS2 (i.e. with the loci accessible) if at least one fragment was overlapping with 

the gene locus or 2kb upstream. Differential activity scores between epithelial cells positive for 

https://paperpile.com/c/53eFaW/oRbOO
https://paperpile.com/c/53eFaW/yWYbW
https://satijalab.org/signac/articles/pbmc_vignette.html
https://satijalab.org/signac/articles/pbmc_vignette.html
https://paperpile.com/c/53eFaW/mvhDq
https://paperpile.com/c/53eFaW/yuE4o
http://jaspar.genereg.net/
https://satijalab.org/signac/articles/motif_vignette.html
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ACE2 (with the above-mentioned definition of ‘positive’) and non-expressing ACE2 was 

performed with the FindMarkers function of Seurat (version 3.1.1), using as test ‘LR’ (i.e. logistic 

regression) and as latent variable the number of counts in peak. The function constructs a logistic 

regression model predicting group membership based on each motif score individually and 

compares this to a null model with a likelihood ratio test. Adjusted p-value is the result of 

Bonferroni correction. 

Immunohistochemistry and Proximity ligation in situ hybridization (PLISH) 

Proximity ligation in situ hybridization (PLISH) was performed as described previously76. 

Briefly, frozen human trachea and distal lung sections were fixed with 4.0% paraformaldehyde 

for 20 min, treated with protease (20 μg/mL proteinase K for lung or Pepsin for trachea for 9 

min) at 37°C, and dehydrated with up-series of ethanol. The sections were incubated with gene-

specific oligos (Supplementary Table 6) in hybridization buffer (1 M sodium trichloroacetate, 

50 mM Tris [pH 7.4], 5 mM EDTA, 0.2 mg/mL heparin) for 2 h at 37°C. Common bridge and 

circle probes were added to the section and incubated for 1 h followed by T4 ligase reaction for 2 

h. Rolling circle amplification was performed by using phi29 polymerase (#30221, Lucigen) for 

12 hours at 37°C. Fluorophore-conjugated detection probe was applied and incubated for 30 min 

at 37°C. For combination of PLISH and Immunostaining, sections were incubated with primary 

antibody for HTII-280 (Terrace Biotech, TB-27AHT2-280), pro-SFTPC (Millipore, ab3786) or 

ACTA2 (Sigma, F3777) for 1 h at room temperature. Sections were incubated with secondary 

antibody (goat anti-mouse IgM secondary antibody (Thermo Scientific, A21044) or donkey anti-

rabbit IgG secondary antibody (Thermo Scientific, A32795) for 45 min at room temperature, 

then sections were mounted in medium containing DAPI. We imaged three representative areas 

per patient for three patients total for images and quantification shown in Fig. 1 and imaged one 
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representative area for a single patient for Extended Data Fig. 7 a,c,d,g. Images were captured 

using Olympus Confocal Microscope FV3000 with Olympus FLUOVIEW FV31S-SW v2.1.1.98 

using 20× or 60× objective.  

THS-Seq on human pediatric samples 

THS-Seq was performed as previously reported18 on  human pediatric samples (full gestation, with 

no known lung disease) collected at day 1 of life, 14 months, 3 years, and 9 years (n=1 at each 

time point). 

Integrated analysis for associating ACE2, TMPRSS2, and CTSL expression with age, sex and 

smoking status in nasal, airway and lung cells 

To assess the association of age, sex, and smoking status with the expression of ACE2, TMPRSS2, 

and CTSL, we aggregated 31 scRNA-seq datasets of healthy human nasal and lung cells, as well 

as fetal samples containing the expression counts of only the 3 genes. Aggregation of these datasets 

was enabled by harmonizing the cell type labels of individual datasets and dataset concatenation 

within Scanpy70 (version 1.4.5.1). We harmonized annotations manually on the basis of provided 

cell type labels together with data contributors using a preliminary ontology generated on the basis 

of 5 published datasets 30–32,36,38 with 3 levels of annotations. Level 1 has the lowest resolution and 

distinguishes epithelial from stromal/mesenchymal, endothelial and immune cells. Level 2 breaks 

up each of the level 1 categories in the coarsest available further observed annotations. Level 3 in 

turn splits up the observed level 2 annotations where finer annotations were available. 

(Supplementary Table 2, consent to publish was obtained from all contributors). To compare 

AT2 cells and their fetal progenitors possible, we mapped progenitor cells labeled “AT2-like” and 

“SpC+ progenitors” to the AT2 label. We further harmonized metadata by collapsing the smoking 

https://paperpile.com/c/53eFaW/pzSry
https://paperpile.com/c/53eFaW/vb48v
https://paperpile.com/c/53eFaW/WoSd+mQfI+4lIG+qW4F+b4vy


35 

covariate into “has smoked” and “has never smoked” and by taking mean ages where only age 

ranges were given. This resulted in a dataset of 1,320,896 cells and 3 genes in 377 samples from 

228 donors (cell by three-gene count matrix with annotations in Supplementary Data D3). We 

divided the data into fetal (136,450 cells, 41 samples, 34 donors), adult nasal (57,548 cells, 20 

samples, 18 donors), and adult lung (1,126,898 cells, 316 samples, 187 donors) datasets based on 

metadata provided. 

To get an overview of sample diversity, we clustered the samples using the proportion of cells in 

level 2 cell types as features. Clustering was performed using louvain clustering (resolution 0.3; 

louvain package version 0.6.1) on a knn-graph (k=15) computed on Euclidean distances over the 

top 5 principal components of the cell type proportion data within Scanpy. This produced four 

clusters. Sample cluster labels were assigned based on cell type compositions and metadata for 

anatomical location that was obtained from the published datasets and via input from the data 

generators. 

Within non-fetal datasets we modeled the association of age, sex, and smoking status with gene 

expression for ACE2, TMPRSS2, and CTSL within each cell type using a generalized linear model 

with the log total counts per cell as offset and Poisson noise as implemented in statsmodels69 

(version 0.11.1) and using a Wald test from Diffxpy (www.github.com/theislab/diffxpy; version 

0.7.3, batchglm version 0.7.4). Specifically, we fit the model: 

𝑌𝑖𝑗  ∼  𝑎𝑔𝑒 +  𝑠𝑒𝑥 +  𝑎𝑔𝑒: 𝑠𝑒𝑥 +  𝑠𝑚𝑜𝑘𝑖𝑛𝑔 +  𝑠𝑒𝑥: 𝑠𝑚𝑜𝑘𝑖𝑛𝑔 +  𝑎𝑔𝑒: 𝑠𝑚𝑜𝑘𝑖𝑛𝑔 +  𝑑𝑎𝑡𝑎𝑠𝑒𝑡,       

(2) 

which models effects of age, sex and smoking while accounting for potential interactions between 

covariates and the uneven distribution of covariates across the dataset. Here, 𝑌𝑖𝑗 denotes the raw 

https://paperpile.com/c/53eFaW/nGZxc
http://www.github.com/theislab/diffxpy
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count expression of gene i in cell j, age, sex, and smoking denote the modeled covariates, and 

age:sex, sex:smoking, and age:smoking represent the interaction terms between these covariates. 

The interaction terms model whether there is a difference in the smoking effect in men and women, 

and likewise whether the age effect is different for smokers and non-smokers. We included the 

dataset term to model the technical variation (e.g., sampling and processing differences) between 

the diverse datasets, and the log total counts per cell was used as an offset. Here, the total counts 

were scaled to have a mean of 1 across all cells before the log was taken. Due to the inclusion of 

interaction terms, the complex interaction model (2) fits the overall effects of age (kage), sex (ksex), 

and smoking (ksmoking) as linear functions of the other two covariates respectively, given by the 

equations: 

𝑘𝑎𝑔𝑒(𝑠𝑒𝑥, 𝑠𝑚𝑜𝑘𝑖𝑛𝑔) = 𝛽𝑎𝑔𝑒  +  𝑠𝑒𝑥 𝛽𝑎𝑔𝑒:𝑠𝑒𝑥  +  𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝛽𝑎𝑔𝑒:𝑠𝑚𝑜𝑘𝑖𝑛𝑔, 

𝑘𝑠𝑒𝑥(𝑎𝑔𝑒, 𝑠𝑚𝑜𝑘𝑖𝑛𝑔) = 𝛽𝑠𝑒𝑥  +  𝑎𝑔𝑒 𝛽𝑎𝑔𝑒:𝑠𝑒𝑥  +  𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝛽𝑠𝑒𝑥:𝑠𝑚𝑜𝑘𝑖𝑛𝑔, 

𝑘𝑠𝑚𝑜𝑘𝑖𝑛𝑔(𝑎𝑔𝑒, 𝑠𝑒𝑥) = 𝛽𝑠𝑚𝑜𝑘𝑖𝑛𝑔  +  𝑎𝑔𝑒 𝛽𝑎𝑔𝑒:𝑠𝑚𝑜𝑘𝑖𝑛𝑔  +  𝑠𝑒𝑥 𝛽𝑠𝑒𝑥:𝑠𝑚𝑜𝑘𝑖𝑛𝑔. 

Here, βage and βage:sex represent the model coefficients for age and the interaction of age and sex in 

model (2) respectively, and age denotes the age covariate. Sex and smoking covariates were 

converted into a one-hot encoded format such that sex=0 denoted females and smoking=0 denoted 

non-smokers. As linear dependencies on covariates can be summarized by showing 2 values per 

covariate, we displayed effect sizes for the overall age, sex, and smoking associations by 

computing kage, ksex, and ksmoking for sex∈{0,1}, smoking∈{0,1}, and age∈{31,62} (the first and 

third quartiles of the age distribution). Standard errors for these effects were computed using the 

variance-covariance matrix Σ via 𝑆𝐸 =  √𝐶𝑇𝛴 𝐶, where SE is the standard error and C is the 

vector of covariate values used to compute the respective overall effect (e.g., kage). P-values were 
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obtained using a Wald test, and multiple testing correction was performed over all tests on the 

same cell type data via Benjamini-Hochberg. In order to fit this model we pruned the data to 

contain only datasets that have at least 2 donors and for which smoking status metadata was 

provided. This resulted in a dataset of 985,420 cells and 286 samples from 164 donors for adult 

lung data. Only 15 donors remained for adult nasal data after this filtering, which we deemed too 

few to obtain robust results. To obtain cell-type specific associations the above model was fit 

within each cell type for all cell types with at least 1,000 cells.  

While cells from different donors are not truly independent observations, model (2) treats them as 

such and thus models cellular and donor variation jointly. As donor variation tends to be larger 

than single-cell variation, when most cells come from few donors (either there are few donors, or 

few donors contribute most of the cells), this can lead to an inflation of p-values. To counteract 

this effect, we verified that significant associations are consistent when modeling only donor 

variation via pseudo-bulk analysis (Supplementary Data D1). Furthermore, we tested whether 

effects are dependent on few donors by holding out datasets. 

Pseudo-bulk data was generated by computing the mean for each gene expression value and nUMI 

covariate for cells in the same cell type and donor. After filtering as described above, model (2) 

was fit to the data (Supplementary Data D1). In contrast to the single-cell model, pseudo-bulk 

analysis underestimates certainty in modeled effects as uncertainty in the pseudo-bulk means are 

not taken into account when estimating background variance. Thus, we used only effect directions 

from pseudo-bulk analysis to validate single-cell associations. In further analysis, we regarded 

only those associations as confirmed by pseudo-bulk analysis, where the FDR-corrected p-value 

in the single-cell model is below 0.05, and the sign of the estimated effect is consistent in both the 

single-cell and the pseudo-bulk analysis. 
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We further separated significant associations into robust trends and indications depending on the 

holdout analysis. A significant association was regarded as a robust trend if the effect direction is 

consistent when holding out any dataset when fitting the model (without considering the p-value). 

In the case that holding out one dataset caused the maximum likelihood estimate of the coefficient 

to be reversed, we denote this as the effect no longer being present, which characterized the 

association as an indication. Two dataset holdouts led to indications in our analysis: the largest 

declined donor transplant dataset (Supplementary Table 2, “Regev-Rajagopal”, most cells and 

most samples; indication in ACE2 multiciliated lineage age and sex associations, and CTSL AT1 

sex association), and a declined donor tracheal epithelium dataset (“Seibold”, Supplementary 

Table 2, most donors in the smoking analysis; CTSL basal smoking association).  

At least 4 values per covariate are required to describe a single association in model (2) (e.g., male 

non-smoker, female non-smoker, male smoker, and female smoker for the kage effect). To 

summarize these effects and present a single association per covariate, we also fit the simplified 

model:  

𝑌𝑖𝑗  ∼  𝑎𝑔𝑒 +  𝑠𝑒𝑥 +  𝑠𝑚𝑜𝑘𝑖𝑛𝑔 +  𝑑𝑎𝑡𝑎𝑠𝑒𝑡.                 (3) 

As in model (2), the logarithmized, scaled total counts per cell were used as an offset, data were 

filtered as described, and multiple testing correction was performed via Benjamini-Hochberg. To 

increase the robustness of our reported associations, we again performed pseudo-bulk and holdout 

analysis. Additionally, to still account for covariate interactions, we discarded associations where 

the complex model (2) and the simplified model (3) results were inconsistent. Here, consistency 

was defined by two criteria: at least one model (2) indication or robust trend in the same direction 

as the model (3) effect, and no model (2) indication or robust trend in the opposite direction to the 
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model (3) effect. 

 

As metadata on smoking status was only available for a subset of the data, we also fitted a reduced 

version of models (2) and (3) without the smoking covariate on a larger dataset to confirm sex and 

age associations (Supplementary Data D2). The non-smoking model was fit on 1,096,604 cells 

in 309 samples from 185 donors of adult lung data. Again, log total counts (scaled) was used as an 

offset, pseudo-bulk and holdout analysis was performed, and associations from the simple model 

were tested for consistency with the complex model. 

 

Normalizing ACE2+TMPRSS2+ double positive fractions of human lung samples 

Proportions of ACE2+TMPRSS2+ cells (Extended Data Fig. 3a, Supplementary Fig. 15) were 

normalized to account for differences in total UMI counts. Normalization was done per donor, per 

cell type by calculating 
𝑋𝑖,𝑗

𝑁𝑖,𝑗
∗ 10,000, where Xi,j is the DP fraction of cell type i in donor j, and Ni,j 

represents the median total UMI count of cells of type i in donor j. 

 

Identification of gene programs using feature importance for a random forest trained to 

classify ACE2+TMPRSS2+ vs ACE2-TMPRSS2- cells 

To infer tissue programs, we trained a random forest classifier to discriminate between double 

positive and double negative cells (excluding ACE2 and TMPRSS2; 75:25 class balanced test-train 

split), generalizing across multiple cell types in one tissue, and ranked genes according to their 

importance scores in the classifier. To infer cell programs, we performed differential expression 

analysis between double positive and double negative cells within each cell subset. 
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Importantly, these methods do not assume that ACE2+TMPRSS2+ cells form a distinct subset 

within each cell type. Rather, our goal is to leverage the variation among single cells within a 

single type to identify gene programs that are co-regulated with ACE2 and TMPRSS2 within each 

expressing cell subset. 

For each of the lung, nasal, and gut datasets, we labeled the cells with non-zero counts for both 

ACE2 and TMPRSS2 as double positive cells (DPs), and the cells with zero counts for both ACE2 

and TMPRSS2 as double negative cells (DNs). Within each tissue, we identified cell types with 

greater than 10 DPs, and for each of these cell types, we selected the genes with increased 

expression (log fold change greater than 0) in DPs vs DNs (so that we focus on important 

”positive” features). We trained a classifier with 75:25 train:test split to classify the DPs from DNs 

within each of these cell types using the sklearn (version 0.21.3) 77114 RandomForestClassifier 

function with the following parameters: n_estimators set to 100, the criterion as gini, and the 

class_weight parameter set to balanced_subsample. We first trained individual classifiers 

separately for each of the cell types, and pooled genes with positive feature importance values 

(using the feature_importance78 field in the trained RandomForestClassifier object) to train a final 

DP vs DN classifier across each tissue. We used the top 500 genes, as ranked by their feature 

importance scores, to define the signature for the gene expression program of DPs for the tissue. 

This procedure was carried out in lung, nasal, and gut datasets, yielding tissue-specific signatures 

for gene expression programs of DPs from each tissue. 

For visualization purposes only, we generated network diagrams using the networkx (version 

2.2)116 tool with the ForceAtlas2 graph layout algorithm 79117. We scored genes that appeared in 

signatures for multiple tissues by their aggregated feature importance (using a plotting heuristic 

that used the sum of importance ranks for genes in individual tissues and by assigning a large 

https://paperpile.com/c/53eFaW/WKDip
https://paperpile.com/c/53eFaW/JadAK
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098679
https://paperpile.com/c/53eFaW/n7miq
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valued rank (10000) to a gene that did not appear in a particular tissue) and selected the top 10 

genes that were shared by each pair of tissues or shared by all tissues along with additional genes 

that included the ones unique to each tissue’s signature to plot in the network visualization. The 

GO terms enriched in the gene expression programs shared by DPs across tissues were found using 

gprofiler (version 1.0.0) 80 using the scanpy.queries.enrich tool.  

This analysis was performed in two ways: on the original data, as well as after accounting for 

differences in distribution of the number of UMIs (nUMI) per cell between DPs and DNs. This 

was done by binning the nUMI distribution in the DPs for each tissue into a 100 bins and then 

randomly sampling from the nUMI distribution for the DNs in each bin to match the distribution 

of the DPs in that bin. The nUMI distributions before and after the matching are shown in 

Supplementary Fig. 11b.    

Identification of gene programs enriched in DP vs. DN cells using regression  

In parallel, we used a regression framework to recover gene modules enriched in DP vs. DN cells 

(Fig. 4c,d, Supplementary Fig. 12a,b) in the nasal, lung, and gut datasets. We first restricted our 

analysis to cell subsets derived from at least two donor individuals that each contained a mixture 

of DN and DP cells (Nawijn Nasal: multiciliated, Goblet; Regev/Rajagopal Lung: AT1, AT2, 

Basal, multiciliated, Secretory; Aggregated Lung: AT2, multiciliated, Secretory; Regev/Xavier 

Colon: BEST4+ Enterocytes, Cycling TA (Transit Amplifying), Enterocytes, Immature 

Enterocytes 2, TA-2). For each of these cell subsets, we then used MAST (version 1.8.2) 81119 to 

fit the following regression model to every gene with cells as observations: 

 𝑌𝑖  ∼  𝑋 + (1|𝑆), 

https://paperpile.com/c/53eFaW/hd59d
https://paperpile.com/c/53eFaW/PwScr
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where Yi is the expression level of gene i in cells, measured in units of log2(TP10K+1), X is the 

binary co-expression state of each cell (i.e. DP vs. DN), and S is the donor that each cell was 

isolated from. To control for donor-specific effects (i.e. batch effects), we used a mixed model 

with a random intercept that varies for each donor. To fit this model, we subsampled cells from 

DP and DN groups to ensure that both the donor distribution and the cell complexity (i.e. the 

number of genes per cell) were evenly matched between the two groups, as follows. First, for each 

subset, we restricted our analysis to donors containing at least two DN and two DP cells. Using 

these samples, we partitioned the cells into 10 equally-sized bins based on cell complexity and 

subsampled DN cells from each bin to match the cell complexity distribution of the DP cells. 

Finally, we fit the mixed model (above), controlling for both donor and cell complexity. 

To build gene modules for DP cells, we prioritized genes by requiring that they be expressed in at 

least 10% of DP cells, and to have a model coefficient greater than 0 with an FDR-adjusted p-

value less than 0.05 (for the combined coefficient in the hurdle model). After this filtering step, 

genes were ranked by their model coefficient (i.e. estimated effect size). The top 12 genes were 

selected for network visualization within each cell type (Fig. 4c,d, Supplementary Fig. 12a,b). 

In three cases (gut Cycling TA, TA-2 and BEST4+ cells), RP11-* antisense genes were flagged 

and excluded from visualizations. To visualize overlap across each network, we indicated whether 

each gene was among the top 250 genes from each of the other cell types. Putative drug targets 

were identified by querying the Drugbank database49. Gene set enrichment analysis was performed 

using the R package EnrichR (version 1.0)82, selecting the top 25 genes from each cell type for the 

pan-tissue analysis (“All” category; Fig. 4e), and the top 50 genes from each cell type for the 

tissue-specific analyses (“Nose”, and “Lung” categories; Fig. 4e). We note a few 

caveats/challenges/limitations that may influence our results, including non uniform sampling 

https://paperpile.com/c/53eFaW/x9AQx
https://paperpile.com/c/53eFaW/6UQiw
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across donors; variation in cell compositions across regions (e.g., distal lung vs carina), and 

additional cellular heterogeneity that the current level of broad subset annotation may not have 

been captured.  

Cell-Cell interaction analysis 

CellphoneDB 53 v.2.0.0 was run with default parameters on the 10 human lung samples of the 

Regev/Rajagopal dataset (41 samples, 10 patients, 2-6 locations each), analyzing the cells from 

each dissected region separately. For each sample (patient/location combination), for each cell 

type we distinguished double positive cells (ACE2 > 0 and TMPRSS2 > 0) from all others. Only 

interactions highlighted as significant, i.e. present in the “significant means” output (p <0.05) from 

CellphoneDB were considered. AT2 cells and myeloid cells were present in lung lobes samples 

from all 10 patients, whereas samples from 5 patients contained both ACE2+TMPRSS2+ double 

positive AT2 cells and myeloid cells. 

Co-expression patterns of additional proteases and IL6/IL6R/IL6ST 

ACE2-protease co-expression (Fig. 2, Extended Data Fig. 5) and ACE2-IL6/IL6R/IL6ST co-

expression (Supplementary Fig. 13) were tested via the logistic mixed-effects model described 

in “Integrated co-expression analysis of high resolution cell annotations across tissues” (Equation 

1, above). 

Mouse smoke exposure experiments 

For these experiments, 8 to 10 week old pathogen-free female wild-type C57BL/6 mice were 

obtained from Charles River (Sulzfeld, Germany) and housed in rooms maintained at constant 

temperature and humidity with a 12 hour light cycle. Animals were allowed food and water ad 

https://paperpile.com/c/53eFaW/JItIW
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libitum. All animal experiments were approved by the ethics committee for animal welfare of the 

local government for the administrative region of Upper Bavaria (Regierungspräsidium 

Oberbayern) and were conducted under strict governmental and international guidelines in 

accordance with EU Directive 2010/63/EU. The female C57BL/6 mice (n=5) were whole body 

exposed to 100% mainstream cigarette smoke at a particle concentration of 500 mg/m3, generated 

from 3R4F research cigarettes (Filter removed, Tobacco Research Institute, University of 

Kentucky), for 50 min twice/day, 5 days/week for 2 months to mimic human smoking habits 83. 

Control mice (n=3) were exposed to filtered air, but exposed to the same stress as mice exposed to 

cigarette smoke`. 
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Code Availability Statement  

Data and an interactive analysis examining the co-expression of genes across datasets can be 

accessed via the open-source data platform, Terra at https://app.terra.bio/#workspaces/kco-

incubator/COVID-19_cross_tissue_analysis (requires Google account). The analysis can also be 

accessed at https://github.com/theislab/Covid_meta_analysis/. 
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Data Availability Statement 

Availability of published datasets is summarized in Supplementary Table 1 and 2. Interactive 

visualization and download of select gene expression data can be accessed on the Single Cell Portal 

at http://broad.io/hcacovid19 

Acknowledgements 

We thank all donors, patients and their families for their contributions to the studies that are part 

of our integrated analysis. We thank Leslie Gaffney and Anna Hupalowska for help with figure 

preparation, Carl de Boer for critical reading of the manuscript, and Dr. Elmar Spiegel from the 

statistical consulting core facility at the Institute of Computational Biology, Helmholtz Center 

Munich for advice on statistical modeling.  

N.E.B. is supported by NIH/NHLBI R01HL145372,  Department of Defense W81XWH1910416. 

The work was in parted funded by Department of Defense grant W81XWH-14-1-0234 (PI: Beane), 

Stand Up To Cancer-LUNGevity-American Lung Association Lung Cancer Interception Dream 

Team Translational Cancer Research Grant (grant number: SU2C-AACR-DT23-17 to S.M. 

Dubinett and A.E. Spira), and sponsored research agreements from Janssen Pharmaceuticals, Inc. 

(PI: Beane, Mazzilli, Campbell). Joseph Collin is supported by grants MRC (#MR/S035826/1) and 

ERC (#614620). Roland Eils and Christian Cond are supported by the European Commission - 

ESPACE, 874710 and Horizon 2020, Tushar Desai is supported by HubMap consortium and 

Stanford Child Health Research Institute- Woods Family Faculty Scholarship. Oliver Eickelberg 

is supported by CZI Seed network and NIH 1R01HL146519 (OE). Christine Falk is supported by 

DFG, SFB 738 project B3; DFG FA-483/1-1. Ian A. Glass and the University of Washington 

Laboratory of Developmental Biology was supported by NIH award number 5R24HD000836 from 

http://broad.io/hcacovid19


48 

the Eunice Kennedy Shriver National Institute of Child Health and Human Development 

(NICHD). Anna Greka is supported by Seed Network Grant from the Chan Zuckerberg Initiative. 

PH acknowledges support from the LENDULET-BIOMAG Grant (2018-342) and the Chan 

Zuckerberg Initiative (CZF2019-002448). Norbert Hubner acknowledges support by BHF/DZHK 

grant, ERC Advanced Grant under the European Union Horizon 2020 Research and Innovation 

Program and the Federal Ministry of Education and Research of Germany in the framework of 

CaRNAtion. William Janssen received funding from the NIH (R35HL140039, R01HL130938). 

Naftali Kaminski received funding from NIH grants R01HL127349, U01HL145567 and an 

unrestricted grant from Three Lakes Foundation. Melanie Koenigshoff received funding from 

National Institute of Health Grant R01HL141380. Gerard Koppelman received funding from 

discovAIR. Mark Krasnow received funding from Howard Hughes Medical Institute, Chan 

Zuckerberg Initiative, Wall Center for Pulmonary Vascular Disease. Jonathan Kropski received 

funding from NIH R01HL145372(JAK/NEB), K08HL130595(JAK), Doris Duke Charitable 

Foundation (JAK). Malte Kuhnemund received funding from Horizon2020 HCA “discovAir” 

project. Majlinda Lako received funding from ERC (#614620). Haeock Lee acknowledges funding 

from the National Research Foundation of Korea. Marc E. Lenburg acknowledges funding from 

SU2C-AACR-DT23-17, Sponsored Research Agreement with Janssen Pharmaceuticals, Inc. 

Sylvie Leroy acknowledges funding from European Union’s H2020 Research and Innovation 

Program under grant agreement no. 874656 (discovAIR). Sten Linnarson acknowledges funding 

from Knut and Alice Wallenberg Foundation (2015.0041, 2018.0172), Erling-Persson Family 

Foundation (HDCA) and Swedish Foundation for Strategic Research (SB16-0065, RIF14-0057). 

Joakim Lundeberg acknowledges funding from Horizon2020 HCA discovAIR, Knut and Alice 

Wallenberg Foundation (2018.0172) and Erling-Persson Family Foundation (HDCA). Sarah 



49 

Mazzilli Avrum Spira: This work was supported by a Stand Up To Cancer-LUNGevity-American 

Lung Association Lung Cancer Interception Dream Team Translational Cancer Research Grant 

(grant number: SU2C-AACR-DT23-17 to S.M. Dubinett and A.E. Spira). Stand Up To Cancer is 

a division of the Entertainment Industry Foundation. Research grants are administered by the 

American Association for Cancer Research, the scientific partner of SU2C & JC, SM & JB multipi, 

: Funded in part by a sponsored research agreement from Janssen Pharmaceuticals, Inc. B.D.M. is 

supported by National Institutes of Health grant R01 HL133153.  Kerstin Meyer acknowledges 

funding from Chan Zuckerberg Initiative grant 2017-174169 (5022), Wellcome Trust grants 

206194/Z/17/Z and 211276/Z/18/Z, Medical Research Council grant MR/S035907/1, EU H2020 

discovAIR.  Alexander Misharin acknowledges funding from NIH grants HL135124, AG049665 

and AI135964, CZI seed network grant.. Martijn Nawijn acknowledges funding from CZI Seed 

network, GSK Ltd, Netherlands Lung Foundation project no. 5.1.14.020 and 4.1.18.226 and EU 

H2020 discovAIR. Marko Z. Nikolić acknowledges funding from Rutherford Fund Fellowship 

allocated by the Medical Research Council and the UK Regenerative Medicine Platform (MR/ 

5005579/1); Rosetrees Trust (Grant number M899 to Marko Z Nikolic). Michela Noseda 

acknowledges funding from a BHF/DZHK grant and British Heart Foundation (PG/16/47/32156), 

Chan Zuckerberg Initiative RFA CZF2019-002431e for Research Excellence and Centre for 

Regenerative Medicine, Imperial College London, London, UK. Jose Ordovas Montanes 

acknowledges funding from Richard and Susan Smith Family Foundation. Gavin Y. Oudit 

acknowledges support from Canada Research Chair (CRC), Canadian Institute of Health Research 

(CIHR) and the Heart and Stroke Foundation (HSF). Dana Pe’er acknowledges funding from Alan 

and Sandra Gerry Metastasis and Tumor Ecosystems Center. Stephen R Quake acknowledges 

funding from the CZI Biohub. Jayaraj Rajagopal acknowledges funding from LungMAP, CZI 



50 

Seed Network. Purushothama Rao Tata acknowledges funding from R01HL146557 from 

NHLBI/NIH and CZI- HCA seed projects . Emma L Rawlins acknowledges funding from MRC: 

MR/S035907/1 and MR/P009581/1. Wellcome:109146/Z/15/Z. Core support from the Wellcome 

Trust: 203144/Z/16/Z and Cancer Research UK: C6946/A24843. AR and O.R.-R. work was 

supported by HHMI, the Klarman Cell Observatory, the Manton Foundation and the Chan 

Zuckerberg Initiative. Paul Reyfman acknowledges funding from NIH K08HL146943; Parker B. 

Francis Fellowship, ATS Foundation/Boehringer Ingelheim Pharmaceuticals Inc. Research 

Fellowship in IPF. Mauricio Rojas acknowledges funding from 1 U01 HL14555-01. Kourosh 

Saeb‐Parsy acknowledges funding from NIHR CambridgeBiomedical Research Centre. Christos 

Samakovlis acknowledges funding from the Swedish research Council, Swedish Cancer Society, 

CPI, discovAIR H2020 EU. Herbert Schuller’s work was supported by the German Center for 

Lung Research and Helmholtz Association, discovAIR. Joachim Schultze’s work was supported 

by JLS funded in part by Boehringer Ingelheim, by the German Research Foundation (DFG; 

EXC2151/1, ImmunoSensation2 - the immune sensory system, project number 390873048), 

project numbers 329123747, 347286815) and by the HGF grant sparse2big. Christine Seidman 

was supported by Howard Hughes Medical Institute, NIH (NHLBI): 2R01HL080494. Jon 

Seidman was supported by NIH (NHLBI): 2R01HL080494. Alex K. Shalek was supported by the 

Beckman Young Investigator Program, a Sloan Fellowship in Chemistry, the NIH 

(5U24AI118672), and the Bill and Melinda Gates Foundation. Douglas Shepherd was supported 

by the CZI Seed Network grant. JRS is supported by the National Heart, Lung, and Blood Institute 

(NHLBI - R01HL119215), by the NIAID Novel Alternative Model Systems for Enteric Diseases 

(NAMSED) consortium (U19AI116482) and by grant number CZF2019-002440 from the Chan 

Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation. Avrum 



51 

Spira was supported by a Stand Up To Cancer-LUNGevity-American Lung Association Lung 

Cancer Interception Dream Team Translational Cancer Research Grant (grant number: SU2C-

AACR-DT23-17 to S.M. Dubinett and A.E. Spira). Stand Up To Cancer is a division of the 

Entertainment Industry Foundation. Research grants are administered by the American 

Association for Cancer Research, the scientific partner of SU2C & JC, SM & JB multipi, : Funded 

in part by a sponsored research agreement from Janssen Pharmaceuticals, Inc. Fabian J. Theis was 

supported by CZI Lung Atlas, EU Discovair and German Center for Lung Research. Alexander 

Tsankov was supported by CZI Lung Atlas and NSF award IOS-2028295. Ludovic Vallier was 

supported by the ERC advanced grant New-Chol,  the Cambridge University Hospitals National 

Institute for Health Research Biomedical Research Centre and the core support grant from the 

Wellcome Trust and Medical Research Council of the Wellcome–Medical Research Council 

Cambridge Stem Cell Institute. Maarten van den Berge was supported by the ministry of Economic 

Affairs and Climate Policy by means of the PPP. Ramnik J Xavier was supported by DK 043351, 

DK114784, AI142784, DK117263. Laure Emmanuelle Zaragosi was supported by the Agence 

Nationale de la Recherche (UCAJEDI, ANR-15-IDEX-01; SAHARRA, ANR-19-CE14-0027; 

France Génomique, ANR-10-INBS-09-03); Fondation pour la Recherche Médicale 

(DEQ20180339158); Chan Zuckerberg Initiative (Silicon Valley Foundation, 2017-175159-

5022); Conseil Départemental des Alpes Maritimes (2016-294DGADSH-CV; 2019-

390DGADSH-CV). Darin Zerti was supported by MRC (#MR/S035826/1) and ERC (#614620). 

H.Z. is supported by the National Key R&D Program (no. 2019YFA0801703) and National 

Natural Science Foundation of China (no. 31871370). This study was supported by NHLBI 

Molecular Atlas of Lung Development Program Human Tissue Core grant U01HL122700 and 

HL148861.  Jeffrey Whitsett, Gail H. Deutsch and Yan Xu acknowledge support from National 



52 

Institutes of Health, U01 HL148856 LungMap Phase II – Building a multidimensional map of 

developing human lung. Xin Sun, Allen Wang, Sebastian Preissl, Thomas J. Mariani 

Conflict of interest statement  

N.K. was a consultant to Biogen Idec, Boehringer Ingelheim, Third Rock, Pliant, Samumed, 

NuMedii, Indaloo, Theravance, LifeMax, Three Lake Partners, Optikira and received non-

financial support from MiRagen. All of these outside the work reported. J.L. is a scientific 

consultant for 10X Genomics Inc. A.R. is a co-founder and equity holder of Celsius Therapeutics, 

an equity holder in Immunitas, and an SAB member of ThermoFisher Scientific, Syros 

Pharmaceuticals, Asimov, and Neogene Therapeutics. O.R.R. and A.R. are co-inventors on patent 

applications filed by the Broad Institute to inventions relating to single cell genomics applications, 

such as in PCT/US2018/060860 and US Provisional Application No. 62/745,259. A.K.S. 

compensation for consulting and SAB membership from Honeycomb Biotechnologies, Cellarity, 

Cogen Therapeutics, Orche Bio, and Dahlia Biosciences. S.A.T.  was a consultant at Genentech, 

Biogen and Roche in the last three years. F.J.T. reports receiving consulting fees from Roche 

Diagnostics GmbH, and ownership interest in Cellarity Inc. L.V. is founder of Definigen and 

Bilitech two biotech companies using hPSCs and organoid for disease modelling and cell based 

therapy. Jennifer Beane has a sponsored research agreement from Janssen Pharmaceuticals. J.A.K. 

has received advisory board fees from Boehringer Ingelheim, Inc, and has research contracts with 

Genentech. Eric S. Lander serves on the Board of Directors for Codiak BioSciences and serves on 

the Scientific Advisory Board of F-Prime Capital Partners and Third Rock Ventures; he is also 

affiliated with several non-profit organizations including serving on the Board of Directors of the 

Innocence Project, Count Me In, and Biden Cancer Initiative, and the Board of Trustees for the 

Parker Institute for Cancer Immunotherapy. He has served and continues to serve on various 



53 

federal advisory committees. Joakim Lundeberg is a scientific consultant for 10X Genomics Inc. 

Sarah Mazzilli is funded in part by a sponsored research agreement from Janssen Pharmaceuticals, 

Inc. Mary Reid has sponsors research agreement with Johnson & Johnson. Avrum Spira is an 

employee of Johnson & Johnson. Ramnik J. Xavier is a co-founder Celsius Therapeutics and Jnana 

Therapeutics, and a consultant at Novartis. All other authors declare no conflicts of interest. 

Figures 

Figure 1. A cross-tissue survey of ACE2+TMPRSS2+ cells shows enrichment in cells at 

reported sites of disease transmission or pathogenesis. 

(a,b) Double positive cells are more prevalent in epithelial organs and cells. (a) Proportion of 

ACE2+TMPRSS2+ cells (y axis) per dataset (dots) from 21 tissues and organs (rows). (b) 

Proportion of ACE2+TMPRSS2+ cells (y axis) within cell clusters (dots) annotated by broad cell-

type categories (rows) within each of the top 7 enriched datasets (color legend, inset).  (c,d) 

Significant co-expression of ACE2+TMPRSS2+  or ACE2+CTSL+  highlights cells from tissues 

implicated in transmission or pathogenesis. Significance of co-expression (dot size -

log10(adjusted P-value),  by  two-sided Wald test (Methods); red border: FDR<0.1) of 

ACE2+TMPRSS2+ (c) or ACE2+CTSL+ (d) and effect size (dot color, color bar) for finely annotated 

cell classes (columns) from diverse tissues (rows). Only tissues and cells in at least one significant 

co-expression relationship are shown (Methods). (e-h) In situ validation of double positive cells in 

the lung, airways, and submucosal gland (n = 3 donors per experiment, imaged three randomly 

chosen areas per donor).  PLISH and immunostaining (e,g) and quantification (error bars:  standard 

error) (f,h) in human adult lung alveoli for (e) ACE2 (white), TMPRSS2 (green) and CTSL (red) 

(total of 1487 DAPI positive cells examined for quantification (f))  and (g) ACE2 (white), 
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TMPRSS2 (green) and HTII-280 (red) (total of HTII-280 positive 482 cells examined for 

qualitification (h)).  

 

 

Figure 2. ACE2-protease co-expression and SARS-CoV-2 S-protein cleavage sites suggest a 

possible role for additional proteases in infection. 

(a) Multiple proteases are co-expressed with ACE2 in human lung scRNA-seq. Scatter plot of 

significance (y axis, -log10(adjusted P value)), by two-sided Wald test. (Methods) and effect size 

(x axis) of co-expression of each protease gene (dot) with ACE within each indicated epithelial 

cell type (color). Dashed line: significance threshold. TMPRSS2 and PCSKs that significantly co-

expressed with ACE2 are marked. (b) ACE2-protease co-expression with PCSKs, TMPRSS2 and 

CTSL across lung cell types. Significance (dot size, -log10(adjusted P value), by two-sided Wald 

test. (Methods)) and effect size (color) for co-expression of ACE2 with selected proteases 

(columns) across cell types (rows).  (c,d) Multiple proteases are expressed across lung cell types. 

(c) Distribution of non-zero expression (y axis) for ACE2, PCSKs and TMPRSS2 across lung cell 

types (x axis). White dot: median non-zero expression. (d) Proportion of cells (y axis) expressing 

ACE2, PCSK family or TMPRSS2 across lung cell types (x axis), ordered by compartment. (e) 

ACE2+PCSK+ double positive cells across lung cell types. Fraction (y axis) of different 

ACE2+PCSK+ or ACE2+TMPRSS2+ double positive cells across lung cell types (x axis). Dots: 

different samples, line: median of non-zero fractions. (f) ACE2-protease co-expression analysis 

for the 20 most significant human proteases in AT2 cells. Significance (dot size, -log10(adjusted 

P value), by two-sided Wald test. (Methods)) and effect size (color) for co-expression of ACE2 

with different proteases (columns) across cell types (rows). (g) Additional protease expression in 
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ACE2+TMPRSS2+ double positive cells. Significance (y axis, -log10(adjusted P value), by two-

sided Wald test. (Methods)) and fold change (x axis) of differential expression for each human 

protease between ACE2+TMPRSS2+ double positive vs double negative cells within each indicated 

epithelial cell types (color). Significantly differentially expressed proteases within AT2 cells and 

PCSKs across all epithelial cell types are highlighted.  

  

Figure 3.  ACE2, TMPRSS2, and CTSL expression increases with age and in men, and shows 

cell type specific associations with smoking 

(a) Samples in the aggregated lung and airway dataset partition to several classes by their cell 

composition. Percentage of cells (y axis) by level 2 cell annotations (Annotations with a preceding 

“1” indicate coarse annotations of cells that had no annotation at level 2) across samples (x axis). 

The 377 samples are ordered by sample composition clusters (Methods). (b) Schematic of key 

lung and airway epithelial cell types highlighted in the study. (c) Distribution of normalized ACE2 

and TMPRSS2 expression across level 3 lung cell types in 1,031,254 cells from 228 donors. Red 

shading indicates the main cell types that express both ACE2 and TMPRSS2. (d) Age, sex, and 

smoking status associations with expression of ACE2 (blue), TMPRSS2 (orange), and CTSL 

(green) in level 3 epithelial cells. The effect size (x axis) of the association is given as a log fold 

change (sex, smoking status) or the slope of log expression per year with age. As the age effect 

size is given per year, it is not directly comparable to the sex and smoking status effect sizes. 

Positive effect sizes indicate increases with age, in males, and in smokers. Colored bars: 

associations with an FDR-corrected p-value<0.05 (one-sided Wald test on regression model 

coefficients), consistent effect direction in pseudo-bulk analysis, and consistent results using the 

model with interaction terms (Methods). White bars: associations that do not pass all of the three 
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above-mentioned evaluation criteria. Error bars: standard errors around coefficient estimates. Error 

bars are only shown for colored bars (indications or robust trends) to limit figure size. Number of 

donors and cells per cell type: Basal: 155877, 105, Multiciliated lineage: 37530, 157, Secretory: 

22306, 140, Rare: 2676, 71, Submucosal secretory: 33661, 45, AT1: 29973, 101, AT2: 155512 

cells, 104 donors. AT1, AT2: alveolar type 1, 2; EC: endothelial cell; MDC: monocyte derived 

cell. 

Figure 4: Tissue and cell-type-specific gene modules in ACE2+TMPRSS2+ cells highlight 

immune and inflammatory features 

 (a,b) Tissue programs of ACE2+TMPRSS2+ cells in lung, gut, and nasal samples. (a) Selected 

tissue program genes. Node: gene; Edge: program membership. Genes are selected heuristically 

for visualization (Methods).  (b) Enrichment was tested using a hypergeometric test exactly as 

performed by gprofiler in scanpy.queries.enrich (-log10(adj P-value), x axis) of KEGG pathway 

gene sets (y axis) in the full tissue programs. (c-e) Cell programs of ACE2+TMPRSS2+ cells. (c,d) 

Top 12 genes from each cell program recovered for different lung (c) or (d) nasal epithelial cell-

type (nodes, colors). Colored concentric circles: overlap with a gene in the top 250 significant 

genes in other cell types. ACE2 and TMPRSS2 are included even if not among the top 12. (e) 

Enrichment (-log10(adj P-value), x axis) of KEGG disease and non-disease pathway gene sets in 

either highly significant genes across all tissues (top) or in specific tissues (lung, nose, bottom). 

(f) Motif activity in immune TFs in ACE2+ cells. Significance (-log10(adjusted p-value), x axis) 

of the top 10 differential “motif activity scores” (Methods) between epithelial ACE2+ cells or 

ACE2- cells (y axis). (Epithelial cells are: AT1, AT2, secretory, ciliated, ionocytes, and 

neuroendocrine cells, highlighted in the gray shaded area in Supplementary Fig. 1a). (n=2 

locations: primary carina and lung lobes, n=3 samples per location, n=1 patient). Motifs are 
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extracted from the JASPAR2020 database, motif code is shown in each row. Dashed line: 

threshold for significance (adjusted p-value of 0.05). P-values were calculated by logistic 

regression and likelihood ratio test, adjusted through Bonferroni correction (see Methods). 

 

Figure 5: Ace2, Tmprss2 and Ctsl expression in mouse in similar cell types and follows similar 

patterns with age and smoking.  (a) Gradual increase in Ace2 expression by airway epithelial 

cell type with age. Mean expression (y axis) of Ace2 in different airway epithelial cells (x axis) of 

mice of three consecutive ages (color legend, upper right). Shown are replicate mice (dots, n=3 for 

each age), mean (bar), and error bars (standard error of the mean (SEM)). The effect of mouse age 

was tested using a two-sided Wald test (p-values).  (b) Increase in proportion of Ace2+Ctsl+ goblet 

and club cells with age. Percent of Ace2+Ctsl+ cells (x axis) in different airway epithelial cell types 

(y axis) of mice of three consecutive ages (color legend, upper right). Shown are replicate mice 

(dots), mean (bar), and error bars (SEM). The effect of mouse age was tested using Wald test (p-

values). (c-k) Increase in Ace2 expression in secretory cells with smoking. Mice were daily 

exposed to cigarette smoke or filtered air (FA) as control for two months after which cells from 

whole lung suspensions were analyzed by scRNA-seq (Drop-Seq). (c,d) UMAP of scRNA-seq 

profiles (dots) colored by experimental group (c) or by Ace2+ cells and indicated double positive 

cells (d). Alveolar epithelial cells (AT1 and AT2) and airway epithelial secretory and ciliated cells 

are marked. (f) The relative frequency of Ace2+ cells is increased by smoking in airway secretory 

cells but not AT2 cells. Relative proportion (y axis) of Ace2+ (red) and Ace2- (grey) cells in 

smoking and control mice of different cell types (x axis) (filtered air (FA): n = 9 mice, smoke 

exposed: n=5 mice, error bars represent 95% confidence intervals). (g, h) Expression of Ace2 is 

increased in airway secretory cells (filtered air: 187 cells, smoke exposure: 62 cells) , but not in 
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AT2 cells (filtered air: 3808, smoke exposure: 1882). Distribution of Ace2 expression (y axis) in 

secretory (f) and AT2 (g) cells from control and smoking mice (x axis), (p-value = 1.5 10-6 by 

Wilcoxon rank-sum test). (i-k) Re-analysis of published bulk mRNA-Seq
74

 of lungs exposed to 

different daily doses of cigarette smoke show increased expression of (i) Ace2, (j) Tmprss2, and 

(k) Ctsl after five months of chronic exposure. n=8 mice per condition. Bars show mean, error bars 

show standard error. (** p=0.0046, *** p=0.0002, **** p<0.0001,  one-way ANOVA with 

Dunnett’s multiple comparisons test, compared to Air group.) (l) Expression in placenta. Mean 

expression (color) and proportion of expressing cells (dot size) of Ace2, Tmprss2 and Ctsl along 

with marker genes (see Supplementary Fig. 14) in single and double positive cells from 

embryonic days 9.5 to 18 of mouse placenta development. 

Extended Data Figures  

Extended Data Fig. 1.  A cross-tissue survey of ACE2+TMPRSS2+ cells in published single-

cell datasets. 

(a) Odds ratio (x axis) of ACE2+TMPRSS2+ co-expression in single-cell datasets (dots) from 

different tissues (y axis). (b) Significance (-log10(p-value) using two-sided Fisher’s exact test, x 

axis) of co-expression of ACE2+TMPRSS2+ in single-cell datasets (dots) from different tissues (y 

axis). (c,d) Proportion (x axis) of ACE2+ cells per dataset (c) and TMPRSS2+ cells per dataset (d) 

across different tissues (y axis).  

Extended Data Fig. 2.  A cross-tissue survey of ACE2+CTSL+ cells in published single-cell 

datasets. 

(a) Proportion (x axis) of ACE2+CTSL+ cells per dataset (dots) across different tissues (y axis). (b) 

Proportion (x axis) of ACE2+CTSL+ cells within clusters annotated by broad cell-type categories 
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(dots) in each of the top 7 enriched datasets (y axis; color legend, inset). (c) Odds ratio (x axis) of 

ACE2+CTSL+ co-expression in single-cell datasets (dots) from different tissues (y axis). (d) 

Significance (-log10(p-value) using two-sided Fisher’s exact test, x axis) of co-expression of ACE2 

and CTSL  in single-cell datasets (dots) from different tissues (y axis). (e) Proportion (x axis) of 

CTSL+ cells per dataset across different tissues (y axis). 

Extended Data Fig. 3. Cellular composition and fraction of ACE2+TMPRSS2+ cells across the 

aggregated lung dataset 

(a) Boxplot of normalized donor fractions of ACE2+TMPRSS2+ (double positive - DP) cells per 

cell type. The box indicates the median and first and third quartile, whiskers extend to points within 

1.5 times the interquartile range. For each cell type, only donors that have at least 100 cells of the 

cell type were included. Cell types with at least 10 ACE2+TMPRSS2+ cells in the entire dataset 

were labeled, the remaining cell types were grouped under ‘Other’. Cell type labels preceded by a 

“2” consist of cells that had no annotation available at level 3 and therefore kept their level 2 

annotation. Cells with only level 1 annotations were grouped under “Other”. (2_Airway 

epithelium: n=6, 2_Olfactory epithelium: n=3, 2_fetal airway progenitors: n=5, AT1: n=60, AT2: 

n=92, Basal: n=56, Multiciliated lineage: n=88, Secretory: n=79, Submucosal Secretory: n=35, 

Other: n=180 donors.) 

 (b) Percentage of ACE2+TMPRSS2+ cells across 377 samples and with sample composition. Top: 

Percentage ACE2+TMPRSS2+ cells in each sample, categorized by level 3 annotations. Bottom: 

Sample compositions. Samples are ordered by age, with 31-week pre-term births and 39-week full-

term births both set to age 0. (c) Zoom in on fetal and pediatric samples of plot (b). Samples are 

ordered and labeled by age. Fetal samples are partitioned into first and second trimester (TM) and 

pediatric samples are divided into 31-week pre-term births, 39-week full term births, 3 month, 3 
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year, and 10 year old children. AT1, 2: alveolar type 1, 2. AT2 progenitor cells were grouped under 

AT2. 

Extended Data Fig. 4.  Chromatin accessibility at the ACE2, TMPRSS and CTSL loci across 

lung cells in early life 

(a) Schematic: single-cell chromatin accessibility by transposome hypersensitive sites sequencing 

(THS-Seq) from human pediatric samples (full gestation, no known lung disease) collected at day 

1 of life, 14 months, 3 years, and 9 years (n=1 at each time point). (b) Accessibility (dot color log 

normalized gene activity scores), and % of cells with accessible loci (dot size) for the ACE2, 

TMPRSS, and CTSL loci (columns) across different cell types (rows) in scTHS-Seq with all time 

points aggregated. (c) Accessibility (dot color log normalized gene activity scores), and % of cells 

with accessible loci (dot size) of ACE2, TMPRSS and CTSL in AT1--AT2 cells in scTHS-Seq at 

day 1 of life, 14 months, 3 years, and 9 years (rows). (d) Number of ACE2+CTSL+ and 

ACE2+TMPRSS2+ cells per time point.  

 

Extended Data Fig. 5. ACE2 expression across tissues and cell types. 

Shown are fractions of ACE2 expressing cells (dot size) and mean ACE2 expression level in 

expressing cells (dot color) across datasets (rows) and cell types (columns). 

Extended Data Fig. 6. Additional analyses to identify other proteases that may have a role in 

infection. 

(a) Multiple proteases are co-expressed with ACE2 in another human lung scRNA-seq 

(“aggregated lung”). Scatter plot of significance (y axis, -log10(adjusted p value) by two-sided 

Wald test. (Methods)) and effect size (x axis) of co-expression of each protease gene (dot) with 
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ACE2 within each indicated epithelial cell type (color). Dashed line: significance threshold. 

TMPRSS2 and PCSKs that significantly co-expressed with ACE2 are marked. (b) ACE2-protease 

co-expression with PCSKs, TMPRSS2 and CTSL across lung cell types (“aggregated lung”). 

Significance (dot size, -log10(adjusted p value) by two-sided Wald test. (Methods)) and effect size 

(color) for co-expression of ACE2 with selected proteases (columns) across cell types (rows). (c-

d) Predicted cleavage sites in the SARS-CoV-2 S-protein S1/S2 region. (c) Multiple amino acid 

sequence alignment of SARS-CoV-2 S-protein S1/S2 region with orthologous sequences from 

other betacoronaviruses (top) and polybasic cleavage sites of other human pathogenic viruses 

(bottom). (d) Sequence logo plot showing cleavage site preference derived from MEROPS 

database for PCSK1, PCSK2, FURIN, PCSK4, PCSK5, PCSK6 and PCSK7. (e) Protease cleavage 

sites (triangles) predicted by ProP and PROSPERous in the SARS-CoV-2 spike protein. Top: Full-

length SARS-CoV-2 S-protein sequence schematic with predicted functional protein domains and 

motifs. Numbers: amino acid residues after which cleavage occurs; SP: signal peptide; NTD: N-

terminal domain; RBD: Receptor-binding domain; FP: Fusion peptide; FP1/2: Fusion peptide 1/2; 

HR1: Heptad repeat 1; CH: connecting helix; HR2: Heptad repeat 2; TM: Transmembrane domain. 

(f,g) Multiple proteases are expressed across lung cell types (“aggregated lung”). (f) Distribution 

of non-zero expression (y axis) for ACE2, PCSKs and TMPRSS2 across lung cell types (x axis). 

White dot: median non-zero expression. (g) Proportion of cells (y axis) expressing ACE2, PCSK 

family or TMPRSS2 across lung cell types (x axis), ordered by compartment. (h) ACE2+PCSK+ 

double positive cells across lung cell types. Fraction (y axis) of different ACE2+PCSK+ or 

ACE2+TMPRSS2+ double positive cells across lung cell types, ordered by compartment (x axis). 

Dots: different samples, line: median of non-zero fractions. (i,j) ACE2+PCSK+ co-expression 

across human tissues (collection of published scRNA seq datasets). (i) Percent (y axis) of different 
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ACE2+PCSK+ or ACE2+TMPRSS2+ double positive cells across human tissues (x axis). Dots: 

different single-cell datasets, line: median of non-zero fractions. (j) ACE2 co-expression with 

PCSKs or TMPRSS2 across human tissues. Significance (dot size, -log10(adjusted p value) by 

two-sided Wald test. (Methods)) and effect size (dot color) of co-expression. (k) Fraction of 

ACE2+TMPRSS2+PCSK+ cells across lung cell types (“Regev/Rajagopal dataset”). Dots: samples, 

line: median of non-zero fractions.  

 

Extended Data Fig. 7. ACE2, TMPRSS2, CTSL Immunofluorescence and RNA profiling 

(a) Negative control of PLISH in human lung alveoli. Left shows scrambled probe detection in 

three indicated colors. Right shows HTII-280 antibody staining (red) with 2 color scramble probe 

detection. DAPI (blue) indicates nuclei.  (b) Frequency of ACE2, CTLS and TMPRSS2 triple 

positive cells in each sample (n =  60) (dots) in the Regev/Rajagopal dataset. (c) PLISH and 

immunostaining in human adult lung alveoli for ACE2 (red), PRO-SFTPC (green), DAPI (blue).  

 (d) Immunostaining in human adult lung alveoli. HTII-280 (green) , TMPRSS2 (red) and AGER 

(white). Blue shows DAPI in nuclei.  (e) Mean expression (y axis, FPKM, from bulk RNA-seq, 

error bars: standard error) of ACE2, CTSL, TMPRSS2 in sorted cells from 3 different human 

explant donors using the following markers:  large and small airway basal cells (NGFR+), AT2 

cells (HT-II 280+) and alveolar organoids (HT-II 280+).  (f) Expression in the submucosal gland. 

Mean expression (color) and proportion of expressing cells (dot size) of ACE2, TMPRSS2 and 

CTSL in key cell types (rows), from scRNA-seq of human large airway submucosal glands. (g) 

PLISH and immunostaining in human large airway submucosal glands. ACE2 (red), ACTA2 

(green) and DAPI (blue). We imaged one representative area for a single patient for a,c,d,g 

(Methods). 
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Extended Data Fig. 8. An overview of the three-level lung cell ontology used for cell 

annotation harmonization. 

Extended Data Fig. 9. Age, sex, and smoking status associations with expression of ACE2, 

TMPRSS2, and CTSL across level 3 cell type annotations modeled without interaction terms. 

(a) Age, sex, and smoking assocations with expression of ACE2 (blue), TMPRSS2 (yellow), and 

CTSL (green) modeled without interaction terms on 985,420 cells from 164 donors. Level 3 cell 

types are shown on the y-axes, and are subdivided by level 1 cell type annotations (top to bottom: 

epithelial, endothelial, stromal and immune cells). The effect size (x axis) is given as a log fold 

change (sex, smoking status) or the slope of log expression per year (age). Positive effect sizes 

indicate increases with age, in males, and in smokers. As the age effect size is given per year, it is 

not directly comparable to the sex and smoking status effect sizes. Colored bars: associations with 

an FDR-corrected p-value<0.05 (one-sided Wald test on regression model coefficients), consistent 

effect direction in pseudo-bulk analysis, and consistent results using the model with interaction 

terms (Methods). White bars: associations that do not pass all of the three above-mentioned 

evaluation criteria. Error bars: standard errors around coefficient estimates. Error bars are only 

shown for colored bars (indications or robust trends) to limit figure size. Only cell types with at 

least 1000 cells across donors are included. Number of cells and donors per cell type: Basal: 

155877, 105, Multiciliated lineage: 37530, 157, Secretory: 22306, 140, Rare: 2676, 71, 

Submucosal secretory: 33661, 45, AT1: 29973, 101, AT2: 155512, 104, Arterial: 3497, 37, 

Capillary: 15745, 34, Venous: 7173, 33, Lymphatic EC: 5055, 76, Fibroblasts: 9112, 51, Airway 

smooth muscle: 1077, 13, B cell lineage: 11761, 90, T cell lineage: 52139, 97, Innate lymphoid 

cells: 29836, 56, Dendritic cells: 9017, 90, Macrophages: 156964, 89, Monocytes: 42703, 96, Mast 



64 

cells: 13581 cells, 88 donors. (b) Robustness of associations to holding out a dataset. The values 

show the number of held-out datasets that result in loss of association between a given covariate 

(rows) and ACE2, TMPRSS2, or CTSL expression in a given cell type (columns). Robust trends 

are determined by significant effects that are robust to holding out any dataset (0 values). From 

left to right: results for ACE2, TMPRSS2, and CTSL. AT1, 2: alveolar type 1, 2. EC: endothelial 

cell.  

Extended Data Fig. 10. ACE2 and TMPRSS2 are up-regulated in bronchial brushings from 

current versus former smokers.  Boxplots of log counts per million normalized gene expression 

for ACE2 and TMPRSS2 are plotted across current (red, n=70 samples) versus former (green, n=60 

samples) smokers.  Both genes are significantly up-regulated in current versus former/never 

(ACE2, FDR=0.006; and TMPRSS2, FDR=0.00004) based on a linear model using voom-

transformed data that included genomic smoking status, batch, and RNA quality (TIN) as 

covariates and patient as a random effect. Multiple testing correction was performed via 

Benjamini-Hochberg to obtain an FDR-corrected p-value. (Methods) 

 

Supplementary Figures 

Supplementary Fig. 1. Open chromatin at the ACE2 and TMPRSS2 loci in AT2, ciliated and 

secretory cells in the lung and airways 

(a,c) Single-cell ATAC-seq of lung samples from primary carina (1C) and subpleural parenchyme 

(RPL) (n=1 patient, k=3 samples, 3,366 cells from 1C, 8,340 cells from RPL). Uniform Manifold 

Approximation and Projection (UMAP) embedding of scATAC-seq profiles (dots) colored by (a, 

left) cell types, (a, right) cells with at least 1 fragment (indicating accessibility, open chromatin) 

mapping to the ACE2 gene locus (defined as -2kb upstream the Transcription Start Site to 
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Transcription End Site), grey shaded area indicates epithelial cell types., or by sample location (c). 

(b) Inferred gene activity of ACE2, TMPRSS2, CTSL across cell types. Log normalized mean 

“scATAC activity score” (quantified from accessibility, open chromatin) (dot color) and 

proportion of cells with active scores (dot size) for ACE2, TMPRSS2, and CTSL (columns) across 

different cell types (rows) from the primary carina (1C) and subpleural parenchyme (RPL). (d) 

Some AT2, ciliated and secretory cells have accessible chromatin at both ACE2 and TMPRSS2 

loci. Proportion of cells (x axis) in each cell type (y axis) with accessible chromatin (at least 1 

fragment) at both the ACE2 and TMPRSS2 loci (defined as -2kb upstream of the Transcription 

Start Site to Transcription End Site). 

Supplementary Fig. 2. Co-expression of ACE2 and MYRF, MBP, MOG. 

Co-expression of ACE2 and MYRF, MBP, MOG in select single-cell datasets. P-values and 

significance (FDR 10%) derived from the logistic mixed-effects model. 

Supplementary Fig. 3. ACE2-protease co-expression of the top 20 most significantly co-

expressed human proteases in key lung epithelial cell types. 

Significance (dot size) and effect size (dot color) of co-expression of each protease (columns) with 

ACE2 in each cell subset (rows). 

Supplementary Fig. 4. Age, sex, and smoking status associations with expression of ACE2, 

TMPRSS2, and CTSL across level 2 cell type annotations modeled without interaction terms. 

Age, sex, and smoking assocations with expression of ACE2 (blue), TMPRSS2 (yellow), and CTSL 

(green) modeled without interaction terms on 985,420 cells from 164 donors. Level 2 cell types 

are shown on the y-axes, and are subdivided by level 1 cell type annotations (top to bottom: 

epithelial, endothelial, stromal and immune cells). The effect size (x axis) is given as a log fold 
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change (sex, smoking status) or the slope of log expression per year (age). Positive effect sizes 

indicate increases with age, in males, and in smokers. As the age effect size is given per year, it is 

not directly comparable to the sex and smoking status effect sizes. Colored bars: associations with 

an FDR-corrected p-value<0.05 (one-sided Wald test on regression model coefficients), consistent 

effect direction in pseudo-bulk analysis, and consistent results using the model with interaction 

terms (Methods). White bars: associations that do not pass all of the three above-mentioned 

evaluation criteria. Error bars: standard errors around coefficient estimates. Error bars are only 

shown for colored bars (indications or robust trends) to limit figure size. Only cell types with at 

least 1000 cells across donors are included. Number of cells and donors per cell type: Airway 

epithelium: 218787, 161, Submucosal gland: 33661, 45, Alveolar Epithelium: 185485, 106, Blood 

vessels: 42519, 79, Lymphatics: 5055, 76, Fibroblast lineage: 53166, 94, Smooth muscle: 16272, 

61, Mesothelium: 2490, 29, Lymphoid: 132777, 134, Myeloid: 246957 cells, 121 donors. 

Supplementary Fig. 5. Age, sex, and smoking status associations with expression of ACE2, 

TMPRSS2, and CTSL across level 3 cell type annotations modeled with interaction terms. 

Age, sex, and smoking assocations with expression of ACE2 (blue), TMPRSS2 (yellow), and CTSL 

(green) modeled with interaction terms on 985,420 cells from 164 donors. Level 3 cell types are 

shown on the y-axes, and are subdivided by level 1 cell type annotations (top to bottom: epithelial, 

endothelial, stromal and immune cells). The effect size (x axis) is given as a log fold change (sex, 

smoking status) or the slope of log expression per year (age). Positive effect sizes indicate increases 

with age, in males, and in smokers. As the age effect size is given per year, it is not directly 

comparable to the sex and smoking status effect sizes. Colored bars: associations with an FDR-

corrected p-value<0.05 (one-sided Wald test on regression model coefficients) and a consistent 

effect direction in pseudo-bulk analysis (Methods). White bars: associations that do not pass the 
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two above-mentioned evaluation criteria. Error bars: standard errors around coefficient estimates. 

Error bars are only shown for colored bars (indications or robust trends) to limit figure size. Only 

cell types with at least 1000 cells across donors are included. Number of cells and donors per cell 

type: Basal: 155877, 105, Multiciliated lineage: 37530, 157, Secretory: 22306, 140, Rare: 2676, 

71, Submucosal secretory: 33661, 45, AT1: 29973, 101, AT2: 155512, 104, Arterial: 3497, 37, 

Capillary: 15745, 34, Venous: 7173, 33, Lymphatic EC: 5055, 76, Fibroblasts: 9112, 51, Airway 

smooth muscle: 1077, 13, B cell lineage: 11761, 90, T cell lineage: 52139, 97, Innate lymphoid 

cells: 29836, 56, Dendritic cells: 9017, 90, Macrophages: 156964, 89, Monocytes: 42703, 96, Mast 

cells: 13581 cells, 88 donors. AT1, 2: alveolar type 1, 2. EC: endothelial cell.  

Supplementary Fig. 6. Age, sex, and smoking status associations with expression of ACE2, 

TMPRSS2, and CTSL across level 2 cell type annotations modeled with interaction terms. 

Age, sex, and smoking associations with expression of ACE2 (blue), TMPRSS2 (yellow), and 

CTSL (green) modeled with interaction terms on 985,420 cells from 164 donors. Level 2 cell types 

are shown on the y-axes, and are subdivided by level 1 cell type annotations (top to bottom: 

epithelial, endothelial, stromal and immune cells). The effect size (x axis) is given as a log fold 

change (sex, smoking status) or the slope of log expression per year (age). Positive effect sizes 

indicate increases with age, in males, and in smokers. As the age effect size is given per year, it is 

not directly comparable to the sex and smoking status effect sizes. Colored bars: associations with 

an FDR-corrected p-value<0.05 (one-sided Wald test on regression model coefficients) and a 

consistent effect direction in pseudo-bulk analysis (Methods). White bars: associations that do not 

pass the two above-mentioned evaluation criteria. Error bars: standard errors around coefficient 

estimates. Error bars are only shown for colored bars (indications or robust trends) to limit figure 

size. Only cell types with at least 1000 cells across donors are included. Number of cells and donors 
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per cell type: Airway epithelium: 218787, 161, Submucosal gland: 33661, 45, Alveolar 

Epithelium: 185485, 106, Blood vessels: 42519, 79, Lymphatics: 5055, 76, Fibroblast lineage: 

53166, 94, Smooth muscle: 16272, 61, Mesothelium: 2490, 29, Lymphoid: 132777, 134, Myeloid: 

246957 cells, 121 donors. 

Supplementary Fig. 7. Age and sex associations with expression of ACE2, TMPRSS2, and 

CTSL across level 3 cell type annotations modeled without interaction terms. 

(a) Age and sex assocations with expression of ACE2 (blue), TMPRSS2 (yellow), and CTSL 

(green) modeled without interaction terms on 1,096,604 cells from 185 donors. Level 3 cell types 

are shown on the y-axes, and are subdivided by level 1 cell type annotations (top to bottom: 

epithelial, endothelial, stromal and immune cells). The effect size (x axis) is given as a log fold 

change (sex) or the slope of log expression per year (age). Positive effect sizes indicate increases 

with age and in males. As the age effect size is given per year, it is not directly comparable to the 

sex effect size. Colored bars: associations with an FDR-corrected p-value<0.05 (one-sided Wald 

test on regression model coefficients), consistent effect direction in pseudo-bulk analysis, and 

consistent results using the model with interaction terms (Methods). White bars: associations that 

do not pass all of the three above-mentioned evaluation criteria. Error bars: standard errors around 

coefficient estimates. Error bars are only shown for colored bars (indications or robust trends) to 

limit figure size. Only cell types with at least 1000 cells across donors are included. Number of 

cells and donors per cell type: Basal: 156378, 110, Multiciliated lineage: 41999, 170, Secretory: 

26025, 154, Rare: 2676, 71, Submucosal secretory: 33661, 45, AT1: 40043, 115, AT2: 182124, 

118, Arterial: 4355, 42, Capillary: 18999, 43, Venous: 7893, 38, Lymphatic EC: 6149, 89, 

Fibroblasts: 9996, 54, Myofibroblasts: 2193, 44, Airway smooth muscle: 1077, 13, B cell lineage: 

12453, 105, T cell lineage: 59841, 118, Innate lymphoid cells: 31106, 71, Dendritic cells: 9526, 
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101, Macrophages: 188971, 110, Monocytes: 43493, 107, MDC: 1514, 6, Mast cells: 15271 cells, 

107 donors.(b) Robustness of associations to holding out a dataset. The values show the number 

of held-out datasets that result in loss of association between a given covariate (rows) and ACE2, 

TMPRSS2, or CTSL expression in a given cell type (columns). Robust trends are determined by 

significant effects that are robust to holding out any dataset (0 values). From left to right: results 

for ACE2, TMPRSS2, and CTSL. AT1, 2: alveolar type 1, 2. EC: endothelial cell. MDC: monocyte 

derived cell. 

Supplementary Fig. 8. Age and sex associations with expression of ACE2, TMPRSS2, and 

CTSL across level 2 cell type annotations modeled without interaction terms. 

Age and sex assocations with expression of ACE2 (blue), TMPRSS2 (yellow), and CTSL (green) 

modeled without interaction terms on 1,096,604 cells from 185 donors. Level 2 cell types are 

shown on the y-axes, and are subdivided by level 1 cell type annotations (top to bottom: epithelial, 

endothelial, stromal and immune cells). The effect size (x axis) is given as a log fold change (sex) 

or the slope of log expression per year (age). Positive effect sizes indicate increases with age and 

in males. As the age effect size is given per year, it is not directly comparable to the sex effect size. 

Colored bars: associations with an FDR-corrected p-value<0.05 (one-sided Wald test on regression 

model coefficients), consistent effect direction in pseudo-bulk analysis, and consistent results 

using the model with interaction terms (Methods). White bars: associations that do not pass all of 

the three above-mentioned evaluation criteria. Error bars: standard errors around coefficient 

estimates. Error bars are only shown for colored bars (indications or robust trends) to limit figure 

size. Only cell types with at least 1000 cells across donors are included. Number of cells and donors 

per cell type: Airway epithelium: 227572, 181, Submucosal gland: 33661, 45, Alveolar epithelium: 

222167, 120, Blood vessel: 51640, 92, Lymphatic: 6149, 89, Fibroblast lineage: 58621, 108, 
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Smooth muscle: 16493, 66, Mesothelium: 2500, 31, Lymphoid: 142441, 155, Myeloid: 283467, 

142, Granulocyte: 1141 cells, 14 donors. 

Supplementary Fig. 9. Age and sex associations with expression of ACE2, TMPRSS2, and 

CTSL across level 3 cell type annotations modeled with interaction terms. Age and sex 

assocations with expression of ACE2 (blue), TMPRSS2 (yellow), and CTSL (green) modeled with 

interaction terms on 1,096,604 cells from 185 donors. Level 3 cell types are shown on the y-axes, 

and are subdivided by level 1 cell type annotations (top to bottom: epithelial, endothelial, stromal 

and immune cells). The effect size (x axis) is given as a log fold change (sex) or the slope of log 

expression per year (age). Positive effect sizes indicate increases with age and in males. As the age 

effect size is given per year, it is not directly comparable to the sex effect size. Colored bars: 

associations with an FDR-corrected p-value<0.05 (one-sided Wald test on regression model 

coefficients) and a consistent effect direction in pseudo-bulk analysis (Methods). White bars: 

associations that do not pass the two above-mentioned evaluation criteria. Error bars: standard 

errors around coefficient estimates. Error bars are only shown for colored bars (indications or 

robust trends) to limit figure size. Only cell types with at least 1000 cells across donors are 

included. Number of cells and donors per cell type: Basal: 156378, 110, Multiciliated lineage: 

41999, 170, Secretory: 26025, 154, Rare: 2676, 71, Submucosal secretory: 33661, 45, AT1: 40043, 

115, AT2: 182124, 118, Arterial: 4355, 42, Capillary: 18999, 43, Venous: 7893, 38, Lymphatic 

EC: 6149, 89, Fibroblasts: 9996, 54, Myofibroblasts: 2193, 44, Airway smooth muscle: 1077, 13, 

B cell lineage: 12453, 105, T cell lineage: 59841, 118, Innate lymphoid cells: 31106, 71, Dendritic 

cells: 9526, 101, Macrophages: 188971, 110, Monocytes: 43493, 107, MDC: 1514, 6, Mast cells: 

15271 cells, 107 donors. AT1, 2: alveolar type 1, 2. EC: endothelial cell. MDC: monocyte derived 

cell. 
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Supplementary Fig. 10. Age and sex associations with expression of ACE2, TMPRSS2, and 

CTSL across level 2 cell type annotations modeled with interaction terms. 

Age and sex assocations with expression of ACE2 (blue), TMPRSS2 (yellow), and CTSL (green) 

modeled with interaction terms on 1,096,604 cells from 185 donors. Level 2 cell types are shown 

on the y-axes, and are subdivided by level 1 cell type annotations (top to bottom: epithelial, 

endothelial, stromal and immune cells). The effect size (x axis) is given as a log fold change (sex) 

or the slope of log expression per year (age). Positive effect sizes indicate increases with age and 

in males. As the age effect size is given per year, it is not directly comparable to the sex effect size. 

Colored bars: associations with an FDR-corrected p-value<0.05 (one-sided Wald test on regression 

model coefficients) and a consistent effect direction in pseudo-bulk analysis (Methods). White 

bars: associations that do not pass the two above-mentioned evaluation criteria. Error bars: 

standard errors around coefficient estimates. Error bars are only shown for colored bars 

(indications or robust trends) to limit figure size. Only cell types with at least 1000 cells across 

donors are included. Number of cells and donors per cell type: Airway epithelium: 227572, 181, 

Submucosal gland: 33661, 45, Alveolar epithelium: 222167, 120, Blood vessel: 51640, 92, 

Lymphatic: 6149, 89, Fibroblast lineage: 58621, 108, Smooth muscle: 16493, 66, Mesothelium: 

2500, 31, Lymphoid: 142441, 155, Myeloid: 283467, 142, Granulocyte: 1141 cells, 14 donors. 

Supplementary Fig. 11.  Tissue programs for double positive cells 

(a) Selected tissue program genes. Node: gene; Edge: program membership. Genes are selected 

heuristically for visualization, derived from the positive feature importance values of a random 

forest classifier without nUMI distribution matching (Methods).). (b) Stratified subsampling to 

match nUMI distributions. (c,d) Enrichment (-log10(adj P-value), x axis) of GO Biological 
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Process (c) and KEGG pathway (d) gene sets (y axis) in the full tissue programs without nUMI 

distribution matching. 

Supplementary Fig. 12.  Cell programs for double positive cells 

(a,b) Top 12 genes from each cell program recovered for different lung (a) or gut (b) epithelial 

cell-type (nodes, colors). Colored concentric circles: overlap with a gene in the top 250 significant 

genes in other cell types. ACE2 and TMPRSS2 are included even if not among the top 12. (c) 

Comparison of signature scores of cell programs between DP and DN cells for each cell type 

stratified by gene complexity bin. Cells were partitioned into 10 gene complexity bins for every 

cell type. (d,e) IL6 and its receptor’s expression in specific cell types in lung and heart. (d) 

Significance (dot size, -log10(adj P-value by) and fold change (dot color) of differential expression 

between DP and DN cells within different types (rows) for IL6 and its receptors IL6R and IL6ST 

(columns) across tissues. (e)  Distribution of number of counts in peaks (y axis) in ACE2+ epithelial 

cells (having at least 1 fragment in the ACE2 gene locus) and ACE2- cells.  

Supplementary Fig. 13. Co-expression of ACE2 and IL6, IL6R, IL6ST. 

Co-expression of ACE2 and IL6, IL6R, IL6ST in select single-cell datasets. P-values and 

significance (FDR 10%) derived from the logistic mixed-effects model. 

Supplementary Fig. 14.  Expression of Ace2, Tmprss2 and Ctsl in mouse placenta. 

UMAP embedding of placenta cells from embryonic days 9.5 to 18 (a-c) or embryonic day 14.5 

(e,f) colored by Ace2, Tmprss2 and Ctsl single and double positive cells (a,d), time point (b) or  

gene expression (c,e, ln(TP100k+1)). (d) Dotplot that shows the expression of marker genes and 

entry factors in cell types of interest. 
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Supplementary Fig. 15. Variation in fraction of ACE2+TMPRSS2+ cells 

The normalized fraction of ACE2+TMPRSS2+ cells in 377 lung and nasal samples from 228 donors, 

subdivided by level 3 cell type. Samples are grouped by dataset and ordered by donor age within 

each dataset (blue bars at the top). Datasets are ordered by mean age of donors. White patches 

indicate that the cell type annotation was not observed in the sample’s annotations, either due to 

coarseness of annotation, or absence of cell type in the sample. Only level 3 cell types are shown, 

and only those cell types that were annotated in at least 3 different samples. The color bar 

maximum is set to 0.1, so that lower fractions can be visually distinguished. AT1, 2: alveolar type 

1, 2. EC: endothelial cell. MDC: monocyte derived cell. 

REFERENCES 

Authors and affiliations 

Named authors: *contributed equally 

name affiliation 

Christoph Muus* 

Klarman Cell Observatory, Broad Institute of MIT and Harvard, 

Cambridge, MA, 02142, USA 

John A. Paulson School of Engineering and Applied Sciences, Harvard 

University, Cambridge, MA 02138 

Malte D. Luecken* Institute of Computational Biology, Helmholtz Zentrum München, , Neuherberg, Germany 

Gokcen Eraslan* Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Avinash Waghray* 

Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA 

Departments of Internal Medicine and Pediatrics, Pulmonary and Critical 

Care Unit, Massachusetts General Hospital, Boston, MA, USA 

Harvard Stem Cell Institute, Cambridge, MA, USA 

Graham Heimberg* Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Lisa Sikkema* Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany 

Yoshihiko Kobayashi* Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA 



74 

Eeshit Dhaval Vaishnav* 

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA 

Ayshwarya 

Subramanian* Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Christopher Smillie* Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Karthik A. Jagadeesh* Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Elizabeth Thu Duong* 

University of California San Diego 

Department of Pediatrics, Division of Respiratory Medicine 

Evgenij Fiskin* Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Elena Torlai Triglia* Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Meshal Ansari* 

Comprehensive Pneumology Center (CPC) / Institute of Lung Biology and Disease (ILBD), Helmholtz 

Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany; Institute 

of Computational Biology, Helmholtz Zentrum München, Munich, Germany 

Peiwen Cai* 

Department of Genetics and Genomic Sciences, Icahn School of Medicineat Mount Sinai, New York, NY 

10029, USA 

Brian Lin* 

Center for Regenerative Medicine, Massachusetts General Hospital,Boston, MA, USA 

Departments of Internal Medicine and Pediatrics, Pulmonary and Critical 

Care Unit, Massachusetts General Hospital, Boston, MA, USA 

Harvard Stem Cell Institute, Cambridge, MA, USA 

Justin Buchanan* 

Center for Epigenomics, University of California-San Diego School of Medicine, La Jolla, CA, 92093. 

Department of Cellular and Molecular Medicine, University of California-San Diego School of Medicine, La 

Jolla, CA, 92093. 

Sijia Chen* 

Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical 

School, Boston, USA  

Jian Shu* 

Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA 

Adam L Haber* 

Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA. 

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Hattie Chung* Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Daniel T Montoro* Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 



75 

Taylor Adams Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine 

Hananeh Aliee Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany 

Samuel J. Allon 

Institute for Medical Engineering and Science & Department of Chemistry, MIT; Ragon Institute of MGH, 

MIT and Harvard; Broad Institute of MIT and Harvard 

Zaneta Andrusivova SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology 

Ilias Angelidis 

Comprehensive Pneumology Center (CPC) / Institute of Lung Biology and Disease (ILBD), Helmholtz 

Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany 

Orr Ashenberg Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Kevin Bassler 

Department for Genomics & Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, 

Germany 

Christophe Bécavin 

  

Université Côte d’Azur, CNRS, IPMC, Sophia-Antipolis, 06560, France 

  

Inbal Benhar Klarman Cell Observatory, Broad Institute of MIT and Harvard,Cambridge, MA, 02142, USA 

Joseph Bergenstråhle SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology 

Ludvig Bergenstråhle SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology 

Liam Bolt Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK 

Emelie Braun 

Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska 

Institute 

Linh T Bui Translational Genomics Research Institute, Phoenix, AZ 

Steven Callori Department of Medicine, Boston University School of Medicine; Bioinformatic Program, Boston University 

Mark Chaffin Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142 

Evgeny Chichelnitskiy 

Institute of Transplant Immunology, Hannover Medical School, MHH, Carl-Neuberg Str. 1, 30625 Hannover, 

Germany, phone +40 511 532 9745; fax +40 511 532 8090; German Center for Infectious Diseases DZIF, TTU-

IICH 07.801 

Joshua Chiou Biomedical Sciences Graduate Program, University of California-San Diego, La Jolla, CA, 92093. 

Thomas M. Conlon 

Comprehensive Pneumology Center (CPC) / Institute of Lung Biology and Disease (ILBD), Helmholtz 

Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany 

Michael S. Cuoco Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Anna SE Cuomo European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK 



76 

Marie Deprez Université Côte d’Azur, CNRS, IPMC, Sophia-Antipolis, 06560, France 

Grant Duclos Boston University School of Medicine, Boston, MA 02118, USA 

Denise Fine Boston University Medical Center 

David S Fischer 

Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany,  

TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany 

Shila Ghazanfar Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom 

Astrid Gillich Department of Biochemistry and Wall Center for Pulmonary Vascular Disease 

Bruno Giotti Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 

Joshua Gould Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Minzhe Guo Divisions of Pulmonary Biology; Perinatal Institute, Cincinnati Children's Hospital Medical Center 

Austin J. Gutierrez Translational Genomics Research Institute, Phoenix, AZ 

Arun C. Habermann 

Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University 

Medical Center, Nashville, TN 

Tyler Harvey Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Peng He Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK 

Xiaomeng Hou 

Center for Epigenomics, University of California-San Diego School of Medicine, La Jolla, CA, 92093. 

Department of Cellular and Molecular Medicine, University of California-San Diego School of Medicine, La 

Jolla, CA, 92093. 

Lijuan Hu 

Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska 

Institute 

Yan Hu 

Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, 

Aurora, CO, USA 80045 

Alok Jaiswal Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Lu Ji 

Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, 

Hong Kong SAR, China 

Peiyong Jiang 

Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, 

Hong Kong SAR, China 

Theodoros Kapellos 

Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 

Bonn, Germany 

Christin S. Kuo Department of Biochemistry and Wall Center for Pulmonary Vascular Disease 



77 

Ludvig Larsson SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology 

Michael A. Leney-Greene Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Kyungtae Lim Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK 

Monika Litviňuková 

Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, 

Cambridge CB10 1SA, United Kingdom.; Cardiovascular and Metabolic Sciences, Max Delbrück Center 

for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. 

Leif S. Ludwig 

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA Division of 

Hematology / Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber 

Cancer Institute, Harvard Medical School, Boston, MA 02115, USA 

Soeren Lukassen 

Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu 

Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany 

Berlin Institute of Health (BIH), Center for Digital Health, Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, 

Germany 

Wendy Luo Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Henrike Maatz 

Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz 

Association (MDC), Berlin, Germany. 

Elo Madissoon 

European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, 

Hinxton, Cambridgeshire, CB10 1SD, UK 

Wellcome Sanger Institute, Cellular Genetics Programme Wellcome Genome Campus, Hinxton, Cambridge, 

CB10 1HH, UK 

Lira Mamanova Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK 

Kasidet 

Manakongtreecheep  

Broad Institute of MIT and Harvard, Cambridge, MA, USA 

Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA 

Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA, 

USA 

Charles-Hugo Marquette 

Université Côte d’Azur, CHU de Nice, FHU OncoAge, CNRS, Inserm, IRCAN team 3, Pulmonology 

Department, Nice, 06000, France 

Christoph H. Mayr 

Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Systems Medicine of Chronic 

Lung Disease, Member of the German Center for Lung Research (DZL), Munich, Germany 

Ian M. Mbano 

Africa Health Research Institute,Durban, South Africa. 

School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of Kwazulu 



78 

Natal, Durban, South Africa. 

Alexi Marie McAdams Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA 02114; 

Ross J. Metzger Department of Biochemistry and Wall Center for Pulmonary Vascular Disease 

Ahmad N. Nabhan Department of Biochemistry and Wall Center for Pulmonary Vascular Disease 

Sarah K. Nyquist 

Computational and Systems Biology, CSAIL, Institute for Medical Engineering and Science & Department 

of Chemistry, MIT; Ragon Institute of MGH, MIT and Harvard; Broad Institute of MIT and Harvard 

Lolita Penland Department of Biochemistry and Wall Center for Pulmonary Vascular Disease 

Olivier B. Poirion 

Center for Epigenomics, University of California-San Diego School of Medicine, La Jolla, CA, 92093. 

Department of Cellular and Molecular Medicine, University of California-San Diego School of Medicine, La 

Jolla, CA, 92093. 

Sergio Poli Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine 

CanCan Qi 

Dept. of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital, University of 

Groningen, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, 

University of Groningen, University Medical Center Groningen, Groningen, The Netherlands 

Rachel Queen 

Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, 

Bioscience West Building, Newcastle upon Tyne NE1 3 BZ, UK 

Daniel Reichart 

Department of Genetics, Harvard Medical School, Boston, MA, United States.; Department of Cardiology, 

University Heart & Vascular Center, University of Hamburg, Hamburg, Germany 

Ivan Rosas Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine 

Jonas C. Schupp 

Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, 

CT, USA 

Conor V. Shea Boston University School of Medicine, Boston, MA 02118, USA 

Xingyi Shi Department of Medicine, Boston University School of Medicine; Bioinformatic Program, Boston University 

Rahul Sinha Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA 94305, USA 

Rene V. Sit Department of Biochemistry and Wall Center for Pulmonary Vascular Disease 

Kamil Slowikowski  

Broad Institute of MIT and Harvard, Cambridge, MA, USA 

Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA 

Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA, 

USA 

Michal Slyper Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 



79 

Neal P. Smith  Massachusetts General Hospital Center for Immunology and Inflammatory Diseases 

Alex Sountoulidis Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute. 

Maximilian Strunz 

Comprehensive Pneumology Center (CPC) and Institute of Lung Biology and Disease (ILBD), Helmholtz 

Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany 

Travis B. Sullivan Lahey Hospital & Medical Center 

Dawei Sun Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK 

Carlos Talavera-López 

Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, 

Cambridge CB10 1SA, United Kingdom. 

Peng Tan Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Jessica Tantivit 

Broad Institute of MIT and Harvard, Cambridge, MA, USA 

Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA 

Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA, 

USA 

Kyle J. Travaglini Department of Biochemistry and Wall Center for Pulmonary Vascular Disease 

Nathan R. Tucker 

Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142 

Masonic Medical Research Institute, Utica, NY, USA 13501 

Katherine A. Vernon 

Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA 

Broad Institute of MIT and Harvard, Cambridge, MA, USA 

Marc H. Wadsworth 

Institute for Medical Engineering and Science, Department of Chemistry & Koch Institute for Integrative 

Cancer Research, MIT; Ragon Institute of MGH, MIT and Harvard; Broad Institute of MIT and Harvard 

Julia Waldman Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 

Xiuting Wang 

Department of Genetics and Genomic Sciences, Icahn School of Medicineat Mount Sinai, New York, NY 

10029, USA 

Ke Xu Boston University School of Medicine, Boston, MA 02118, USA 

Wenjun Yan 

Center for Brain Science, Harvard University, Cambridge, MA 02138 

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 

William Zhao 

Department of Genetics and Genomic Sciences, Icahn School of Medicineat Mount Sinai, New York, NY 

10029, USA 



80 

Carly G. K. Ziegler 

Harvard-MIT Health Sciences and Technology, Institute for Medical Engineering and Science, Koch 

Institute for Integrative Cancer Research, MIT; Broad Institute of MIT and Harvard; Ragon Institute of 

MGH, MIT and Harvard 

 NHLBI LungMap Consortium author 

Gail H. Deutsch Department of Pathology, Seattle Children’s Hospital, University of Washington, Seattle, Washington 

Jennifer Dutra 

University of Rochester Biocomputational Center, Research Data Integration & Analytics Group, University 

of Rochester Medical Center, Rochester, New York; 

Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, 

New York; 

Kyle J Gaulton 

Department of Cellular and Molecular Medicine, University of California-San Diego School of Medicine, 

La Jolla, CA, 92093. 

Jeanne Holden-Wiltse 

University of Rochester Biocomputational Center, Research Data Integration & Analytics Group, University 

of Rochester Medical Center, Rochester, New York; 

Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, 

New York; 

Heidie L. Huyck 

Department of Pediatrics, Division of Neonatology, University of Rochester Medical Center, Rochester, 

New York 

Thomas J. Mariani 

Department of Pediatrics, Division of Neonatology, University of Rochester Medical Center, Rochester, New 

York 

Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of 

Rochester Medical Center, Rochester, New York 

Ravi S. Misra 

  

Department of Pediatrics, Division of Neonatology, University of Rochester Medical Center, Rochester, New 

York 

Cory Poole 

Department of Pediatrics, Division of Neonatology, University of Rochester Medical Center, Rochester, New 

York; 

Sebastian Preissl 

Center for Epigenomics, University of California-San Diego School of Medicine, La Jolla, CA, 92093. 

Department of Cellular and Molecular Medicine, University of California-San Diego School of Medicine, 

La Jolla, CA, 92093. 

Gloria S. Pryhuber 

Department of Pediatrics, Division of Neonatology, University of Rochester Medical Center, Rochester, 

New York 



81 

Lisa Rogers 

Department of Pediatrics, Division of Neonatology, University of Rochester Medical Center, Rochester, New 

York; 

Xin Sun 

Department of Pediatrics, University of California-San Diego School of Medicine, La Jolla, CA 92093. 

Department of Biological Sciences, University of California-San Diego, La Jolla, CA 92093. 

Allen Wang 

Center for Epigenomics, University of California-San Diego School of Medicine, La Jolla, CA, 92093. 

Department of Cellular and Molecular Medicine, University of California-San Diego School of Medicine, 

La Jolla, CA, 92093. 

Jeffrey A Whitsett Cincinnati Children’s Hospital Medical Center, Cincinnati, OHIO 

Yan Xu 

Divisions of Pulmonary Biology and Biomedical Informatics; Perinatal Institute, Cincinnati Children's 

Hospital Medical Center; University of Cincinnati College of Medicine 

HCA Lung Biological Network author  

    

Jehan Alladina  

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General 

Hospital, Boston, USA 

Nicholas E Banovich Translational Genomics Research Institute, Phoenix, AZ. 

Pascal Barbry Université Côte d’Azur, CNRS, IPMC, Sophia-Antipolis, 06560, France 

Jennifer E. Beane Department of Medicine, Boston University School of Medicine, Boston, MA, USA 

Roby P. Bhattacharyya 

Infectious Disease and Microbiome Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA 

Infectious Diseases Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA 

Katharine E. Black 

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General 

Hospital, Boston, MA, USA 

Alvis Brazma 

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome 

Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK 

Joshua D. Campbell 

Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, 

Boston, MA, USA. 

Josalyn L. Cho 

Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General 

Hospital, Harvard Medical School, Boston, MA, USA; 

Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, 

Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; 

Joseph Collin Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, 



82 

Bioscience West Building, Newcastle upon Tyne NE1 3 BZ, UK 

Christian Conrad 

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-

Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany 

Berlin Institute of Health (BIH), Center for Digital Health, Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, 

Germany 

Kitty de Jong Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA 

Tushar Desai 

Department of Medicine and Institute for Stem Cell Biology and Regenerative Medicine, Stanford 

University School of Medicine, Stanford, CA 94116 

Diane Z. Ding Boston University School of Medicine, Boston, MA 02118, USA 

Oliver Eickelberg 

Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of 

Colorado, Anschutz Medical Campus, Aurora, CO, US 

Roland Eils 

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-

Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany 

Berlin Institute of Health (BIH), Center for Digital Health, Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, 

Germany 

Health Data Science Unit, Heidelberg University Hospital and BioQuant, Im Neuenheimer Feld 267, 69120 

Heidelberg, Germany 

Patrick T. Ellinor 

Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142 

Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114 

Alen Faiz 

Respiratory Bioinformatics and Molecular Biology, University of Technology Sydney, Sydney, New South 

Wales, Australia. 

Christine S. Falk Institute of Transplant Immunology, Hannover Medical School, MHH, Germany 

Michael Farzan 

Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA 

(33458) 

Andrew Gellman Department of Statistics, Columbia University 

Gad Getz 

Broad Institute of MIT and Harvard, Cambridge, MA, USA 

Department of Pathology, Harvard Medical School, Boston, MA, USA 

Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA 

Ian A Glass Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, Washington; 



83 

Anna Greka Brigham and Women's Hospital, Harvard Medical School, and Broad Institute of MIT and Harvard 

Muzlifah Haniffa 

Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Biosciences 

Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; 

Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS 

Foundation Trust, Newcastle upon Tyne NE2 4LP, UK. 

Lida P Hariri 

Division of Pulmonary and Critical Care Medicine and Department of Pathology, Massachusetts General 

Hospital, Harvard Medical School, Boston, Massachusetts, USA 

Mark W. Hennon Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA 

  

Peter Horvath 

Synthetic and Systems Biology Unit, Hungarian Academy of Sciences, Biological Research Center (BRC), 

Temesvári körút 62, 6726 Szeged, Hungary. 

Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, 00014 

Helsinki, Finland. 

Norbert Hübner 

Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz 

Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), 

Partner Site Berlin, 13347 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany; 

Charité-Universitätsmedizin, 10117 Berlin, Germany 

Deborah T. Hung 

Professor of Genetics, Department of Genetics at Harvard Medical School and Department of Molecular 

Biology at Massachusetts General Hospital; Co-Director, Infectious Disease and Microbiome Program 

and Core Faculty Member, Broad Institute of MIT & Harvard 

Heidie L. Huyck 

Department of Pediatrics, Division of Neonatology, University of Rochester Medical Center, Rochester, 

New York 

William  J. Janssen 

 

 

Division of Pulmonary, Critical Care and Sleep Medicine 

National Jewish Health 

Division of Pulmonary Medicine and Critical Care Sciences 

University of Colorado Denver 

Dejan Juric 

Department of Medicine, Harvard Medical School and Massachusetts General Hospital Cancer Center, 

Boston, MA 02114 

Naftali Kaminski Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine 

Melanie Koenigshoff 

 

Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, 

Aurora, CO, USA 80045 



84 

Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, 

University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, 

Germany 81377 

 

 

 

Gerard H. Koppelman 

Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital, University 

of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma 

and COPD, Groningen, Netherlands 

Mark A. Krasnow Department of Biochemistry and Wall Center for Pulmonary Vascular Disease 

Jonathan A Kropski 

Division of Allergy, Pulmonary and Critical Care Medicine,Department of Medicine, Vanderbilt 

University Medical Center, Nashville, TN 

Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 

Department of Veterans Affairs Medical Center, Nashville, TN 

Malte Kuhnemund Cartana AB, Nobels vag 16, 17165 Stockholm, Sweden 

Robert Lafyatis 

Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, 

PA, USA. 

Majlinda Lako 

Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, 

Bioscience West Building, Newcastle upon Tyne NE1 3 BZ, UK 

Eric S. Lander 

Broad Institute of Harvard and MIT, Cambridge, MA, USA 

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA 

Department of Systems Biology, Harvard Medical School, Boston, MA 

Haeock Lee Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Korea 

Marc E Lenburg Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine 

Sylvie Leroy 

Université Côte d’Azur, Pulmonology Department, CHU Nice, NICE, France 

Institut de Pharmacologie Moléculaire et Cellulaire, Sophia-Antipolis, France. 

Sten Linnarsson 

Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska 

Institute 

Gang Liu Boston University School of Medicine, Boston, MA 02118, USA 

Yuk Ming Dennis Lo 

Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, 

Hong Kong SAR, China 



85 

Joakim Lundeberg SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology 

John C. Marioni 

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK 

Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK European Molecular Biology 

Laboratory, European Bioinformatics Institute, Hinxton, UK 

Sarah A. Mazzilli 

 Boston University School of Medicine, Boston, MA 02118, USA 

Benjamin D. Medoff 

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General 

Hospital, Boston, MA, USA 

Kerstin B Meyer Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK 

Zhichao Miao Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK 

Alexander V Misharin Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 

Martijn C Nawijn 

Department of Pathology and Medical Biology, University of Groningen, GRIAC Research institue, 

University Medical Center Groningen, the Netherlands 

Marko Z Nikolić UCL Respiratory, Division of Medicine, University College London, London, UK. 

Michela Noseda 

National Heart and Lung Institute, Imperial College London, London, UK; British Heart Foundation 

Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, 

UK 

Jose Ordovas-Montanes 

Division of Gastroenterology Boston Children's Hospital, Boston, MA, USA; Program in Immunology, 

Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; 

Harvard Stem Cell Institute, Cambridge, MA, USA. 

Gavin Y. Oudit 

Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada 

Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada 

Dana Pe’er 

Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering 

Cancer Center, New York, New York, USA 

Joseph E Powell 

Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 

Australia; UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, 

Australia 

Stephen R Quake Depts of Bioengineering and Applied Physics, Stanford University, and the Chan Zuckerberg Biohub. 

Jayaraj Rajagopal 

Harvard Stem Cell Institute, Cambridge, Massachusetts; Center for Regenerative Medicine, 

Massachusetts General Hospital, Boston, Massachusetts 



86 

Purushothama Rao Tata 

Department of Cell Biology, Regeneration Next Initiative, Duke University School of Medicine, Durham, 

NC, USA, 27710 

Emma L. Rawlins 

Wellcome Trust/ CRUK Gurdon Institute and Department Physiology, Development and Neuroscience, 

University of Cambridge 

Aviv Regev 

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Howard Hughes Medical Institute, 

Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02142 

Mary E. Reid Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA 

Paul A. Reyfman Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 

Kimberly M. Rieger-

Christ Lahey Hospital & Medical Center, Burlington, MA 01805 

Mauricio Rojas Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh 

Orit Rozenblatt-Rosen 

Orit Rozenblatt-Rosen, Affiliation: Klarman Cell Observatory, Broad Institute of Harvard and MIT, 

Cambridge, MA 02142, USA 

Kourosh Saeb‐Parsy Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, UK 

Christos Samakovlis 

SciLifeLab, Department of Molecular Biosciences, Stockholm University, Stockholm Sweden and 

Cardiopulmonary Institute, Justus Liebig University; Giessen Germany 

Joshua R. Sanes 

Center for Brain Science, Harvard University, Cambridge, MA 02138 

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 

Herbert  Schiller 

Comprehensive Pneumology Center (CPC) / Institute of Lung Biology and Disease (ILBD), Helmholtz 

Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany 

Joachim L Schultze 

Department for Genomics & Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, 

Germany 

PRECISE Platform for Single Cell Genomics & Epigenomics, Germany Center for Neurodegenerative 

Diseases and University of Bonn, Bonn, 

Germany 

Roland F. Schwarz 

Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 

Germany 

Ayellet V. Segre 

Broad Institute of MIT and Harvard, Cambridge, MA, USA. 

Harvard Medical School, Boston, MA, USA. 

Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, 

USA. 



87 

Max A. Seibold 

Department of Pediatrics; Center for Genes, Environment, and Health; National Jewish Health; Denver, 

CO 80206 

Christine E. Seidman 

Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Division, 

Brigham & Women’s Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute 

Jon G. Seidman Department of Genetics, Harvard Medical School, Boston, MA 02115, USA 

Alex K. Shalek 

Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering 

and Science (IMES), Koch Institute for Integrative Cancer Research, and Department of Chemistry, 

Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, 

Cambridge, MA, USA 

Douglas P Shepherd Center for Biological Physics and Department of Physics, Arizona State University, Tempe, AZ USA 

Rahul Sinha Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA 94305, USA 

Jason R. Spence 

Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, 

MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, 

Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of 

Engineering, Ann Arbor, MI 48109, USA. 

Avrum Spira 

Boston University School of Medicine, Boston, MA 02118, USA & Johnson and Johnson Innovation, 

Cambridge, MA 02142, USA. 

Xin Sun 

Department of Pediatrics, Department of Biological Sciences, University of California SD, 9500 Gilman 

Dr. MC0766, San Diego, CA 92093-0766 

Erik Sundström 

Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska 

Institutet, Stockholm, Sweden 

Sarah A. Teichmann 

Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, 

Cambridge CB10 1SA, United Kingdom. 

  

Dept Physics/Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0EH, 

United Kingdom. 

Fabian J. Theis 

Institute of Computational Biology, Helmholtz Zentrum München and Departments of Mathematics and 

Life Sciences, Technical University Munich, Germany 

Alexander M. Tsankov Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 

Ludovic Vallier 

Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Biomedical 

Campus, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Surgery, Cambridge Biomedical 



88 

Campus, Hills Rd, Cambridge, CB2 0QQ, UK 

Maarten van den Berge 

Department of Pulmonary diseases and tuberculosis, University of Groningen, GRIAC Research institue, 

University Medical Center Groningen, the Netherlands 

Tave A. Van Zyl 

Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA 

02114 

Alexandra-Chloé 

Villani  

Broad Institute of MIT and Harvard, Cambridge, MA, USA 

Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA 

Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA, 

USA 

Astrid Weins 

Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA 

02115, USA. 

Ramnik J Xavier 

Broad Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, 

Massachusetts General Hospital 

Ali Önder Yildirim 

Comprehensive Pneumology Center (CPC) / Institute of Lung Biology and Disease (ILBD), Helmholtz 

Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany 

Laure Emmanuelle 

Zaragosi Université Côte d’Azur, CNRS, IPMC, Sophia-Antipolis, 06560, France 

Darin Zerti 

Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, 

Bioscience West Building, Newcastle upon Tyne NE1 3 BZ, UK; Microscopy Centre and Department of 

Applied Clinical Sciences and Biotechnology, University of L’Aquila, via Vetoio, 67100 Coppito, L’Aquila, 

Italy 

Hongbo Zhang 

Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education and Department of 

Histology and Embryology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, 

China   

Kun Zhang UCSD Department of Bioengineering, 9500 Gilman Drive, MC0412, PFBH402, La Jolla, CA 92093-0412 

Xiaohui  Zhang 

 Boston University School of Medicine, Boston, MA 02118, USA 

 

 

 

 

 

 

 



89 

 

1. Wang, D. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. 

JAMA 323, 1061–1069 (2020). 

2. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020). 

3. Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive 

study. Lancet 395, 507–513 (2020). 

4. Wang, W. et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA (2020) doi:10.1001/jama.2020.3786. 

5. Jia, H. P. et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human 

airway epithelia. J. Virol. 79, 14614–14621 (2005). 

6. Hou, Y. J. et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 182, 429–446.e14 

(2020). 

7. McCray, P. B., Jr et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–

821 (2007). 

8. Walls, A. C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281–292.e6 (2020). 

9. Perez-Saez, J. et al. Serology-informed estimates of SARS-CoV-2 infection fatality risk in Geneva, Switzerland. Lancet Infect. Dis. (2020) 

doi:10.1016/S1473-3099(20)30584-3. 

10. Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort 

study. Lancet 395, 1054–1062 (2020). 

11. Ludvigsson, J. F. Systematic review of COVID‐19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 109, 

1088–1095 (2020). 

12. Guo, F. R. Smoking links to the severity of COVID‐19: An update of a meta‐analysis. J. Med. Virol. 1 (2020). 

13. Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 

26, 681–687 (2020). 

14. Ziegler, C. G. K. et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in 

Specific Cell Subsets across Tissues. Cell 181, 1016–1035.e19 (2020). 

15. Qi, F., Qian, S., Zhang, S. & Zhang, Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human 

coronaviruses. Biochem. Biophys. Res. Commun. 526, 135–140 (2020). 

16. Lukassen, S. et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 

(2020) doi:10.15252/embj.20105114. 

17. Zhang, H. et al. Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV 

infection. Int. J. Infect. Dis. 96, 19–24 (2020). 

18. Sos, B. C. et al. Characterization of chromatin accessibility with a transposome hypersensitive sites sequencing (THS-seq) assay. Genome 

Biol. 17, 20 (2016). 

19. Emery, B. et al. Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138, 172–185 (2009). 

20. Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018). 

http://paperpile.com/b/53eFaW/fvSrX
http://paperpile.com/b/53eFaW/fvSrX
http://paperpile.com/b/53eFaW/fvSrX
http://paperpile.com/b/53eFaW/fvSrX
http://paperpile.com/b/53eFaW/fvSrX
http://paperpile.com/b/53eFaW/fvSrX
http://paperpile.com/b/53eFaW/fvSrX
http://paperpile.com/b/53eFaW/fvSrX
http://paperpile.com/b/53eFaW/qWoan
http://paperpile.com/b/53eFaW/qWoan
http://paperpile.com/b/53eFaW/qWoan
http://paperpile.com/b/53eFaW/qWoan
http://paperpile.com/b/53eFaW/qWoan
http://paperpile.com/b/53eFaW/qWoan
http://paperpile.com/b/53eFaW/qWoan
http://paperpile.com/b/53eFaW/Zwogw
http://paperpile.com/b/53eFaW/Zwogw
http://paperpile.com/b/53eFaW/Zwogw
http://paperpile.com/b/53eFaW/Zwogw
http://paperpile.com/b/53eFaW/Zwogw
http://paperpile.com/b/53eFaW/Zwogw
http://paperpile.com/b/53eFaW/Zwogw
http://paperpile.com/b/53eFaW/Zwogw
http://paperpile.com/b/53eFaW/XeYqm
http://paperpile.com/b/53eFaW/XeYqm
http://paperpile.com/b/53eFaW/XeYqm
http://paperpile.com/b/53eFaW/XeYqm
http://paperpile.com/b/53eFaW/XeYqm
http://dx.doi.org/10.1001/jama.2020.3786
http://paperpile.com/b/53eFaW/XeYqm
http://paperpile.com/b/53eFaW/bsf5o
http://paperpile.com/b/53eFaW/bsf5o
http://paperpile.com/b/53eFaW/bsf5o
http://paperpile.com/b/53eFaW/bsf5o
http://paperpile.com/b/53eFaW/bsf5o
http://paperpile.com/b/53eFaW/bsf5o
http://paperpile.com/b/53eFaW/bsf5o
http://paperpile.com/b/53eFaW/bsf5o
http://paperpile.com/b/53eFaW/0Ipj2
http://paperpile.com/b/53eFaW/0Ipj2
http://paperpile.com/b/53eFaW/0Ipj2
http://paperpile.com/b/53eFaW/0Ipj2
http://paperpile.com/b/53eFaW/0Ipj2
http://paperpile.com/b/53eFaW/0Ipj2
http://paperpile.com/b/53eFaW/0Ipj2
http://paperpile.com/b/53eFaW/0Ipj2
http://paperpile.com/b/53eFaW/jzsq7
http://paperpile.com/b/53eFaW/jzsq7
http://paperpile.com/b/53eFaW/jzsq7
http://paperpile.com/b/53eFaW/jzsq7
http://paperpile.com/b/53eFaW/jzsq7
http://paperpile.com/b/53eFaW/jzsq7
http://paperpile.com/b/53eFaW/jzsq7
http://paperpile.com/b/53eFaW/jzsq7
http://paperpile.com/b/53eFaW/dgR5E
http://paperpile.com/b/53eFaW/dgR5E
http://paperpile.com/b/53eFaW/dgR5E
http://paperpile.com/b/53eFaW/dgR5E
http://paperpile.com/b/53eFaW/dgR5E
http://paperpile.com/b/53eFaW/dgR5E
http://paperpile.com/b/53eFaW/dgR5E
http://paperpile.com/b/53eFaW/okHP9
http://paperpile.com/b/53eFaW/okHP9
http://paperpile.com/b/53eFaW/okHP9
http://paperpile.com/b/53eFaW/okHP9
http://paperpile.com/b/53eFaW/okHP9
http://paperpile.com/b/53eFaW/okHP9
http://dx.doi.org/10.1016/S1473-3099(20)30584-3
http://paperpile.com/b/53eFaW/okHP9
http://paperpile.com/b/53eFaW/gk3Rr
http://paperpile.com/b/53eFaW/gk3Rr
http://paperpile.com/b/53eFaW/gk3Rr
http://paperpile.com/b/53eFaW/gk3Rr
http://paperpile.com/b/53eFaW/gk3Rr
http://paperpile.com/b/53eFaW/gk3Rr
http://paperpile.com/b/53eFaW/gk3Rr
http://paperpile.com/b/53eFaW/gk3Rr
http://paperpile.com/b/53eFaW/5jYSA
http://paperpile.com/b/53eFaW/5jYSA
http://paperpile.com/b/53eFaW/5jYSA
http://paperpile.com/b/53eFaW/5jYSA
http://paperpile.com/b/53eFaW/5jYSA
http://paperpile.com/b/53eFaW/5jYSA
http://paperpile.com/b/53eFaW/KSAqZ
http://paperpile.com/b/53eFaW/KSAqZ
http://paperpile.com/b/53eFaW/KSAqZ
http://paperpile.com/b/53eFaW/5bj2Y
http://paperpile.com/b/53eFaW/5bj2Y
http://paperpile.com/b/53eFaW/5bj2Y
http://paperpile.com/b/53eFaW/5bj2Y
http://paperpile.com/b/53eFaW/5bj2Y
http://paperpile.com/b/53eFaW/5bj2Y
http://paperpile.com/b/53eFaW/5bj2Y
http://paperpile.com/b/53eFaW/5bj2Y
http://paperpile.com/b/53eFaW/V1rDk
http://paperpile.com/b/53eFaW/V1rDk
http://paperpile.com/b/53eFaW/V1rDk
http://paperpile.com/b/53eFaW/V1rDk
http://paperpile.com/b/53eFaW/V1rDk
http://paperpile.com/b/53eFaW/V1rDk
http://paperpile.com/b/53eFaW/V1rDk
http://paperpile.com/b/53eFaW/V1rDk
http://paperpile.com/b/53eFaW/wC2yl
http://paperpile.com/b/53eFaW/wC2yl
http://paperpile.com/b/53eFaW/wC2yl
http://paperpile.com/b/53eFaW/wC2yl
http://paperpile.com/b/53eFaW/wC2yl
http://paperpile.com/b/53eFaW/wC2yl
http://paperpile.com/b/53eFaW/3xTa
http://paperpile.com/b/53eFaW/3xTa
http://paperpile.com/b/53eFaW/3xTa
http://paperpile.com/b/53eFaW/3xTa
http://paperpile.com/b/53eFaW/3xTa
http://paperpile.com/b/53eFaW/3xTa
http://dx.doi.org/10.15252/embj.20105114
http://paperpile.com/b/53eFaW/3xTa
http://paperpile.com/b/53eFaW/P40kL
http://paperpile.com/b/53eFaW/P40kL
http://paperpile.com/b/53eFaW/P40kL
http://paperpile.com/b/53eFaW/P40kL
http://paperpile.com/b/53eFaW/P40kL
http://paperpile.com/b/53eFaW/P40kL
http://paperpile.com/b/53eFaW/P40kL
http://paperpile.com/b/53eFaW/P40kL
http://paperpile.com/b/53eFaW/pzSry
http://paperpile.com/b/53eFaW/pzSry
http://paperpile.com/b/53eFaW/pzSry
http://paperpile.com/b/53eFaW/pzSry
http://paperpile.com/b/53eFaW/pzSry
http://paperpile.com/b/53eFaW/pzSry
http://paperpile.com/b/53eFaW/pzSry
http://paperpile.com/b/53eFaW/pzSry
http://paperpile.com/b/53eFaW/HaH3v
http://paperpile.com/b/53eFaW/HaH3v
http://paperpile.com/b/53eFaW/HaH3v
http://paperpile.com/b/53eFaW/HaH3v
http://paperpile.com/b/53eFaW/HaH3v
http://paperpile.com/b/53eFaW/HaH3v
http://paperpile.com/b/53eFaW/HaH3v
http://paperpile.com/b/53eFaW/oqhT0
http://paperpile.com/b/53eFaW/oqhT0
http://paperpile.com/b/53eFaW/oqhT0
http://paperpile.com/b/53eFaW/oqhT0
http://paperpile.com/b/53eFaW/oqhT0
http://paperpile.com/b/53eFaW/oqhT0
http://paperpile.com/b/53eFaW/oqhT0


90 

21. Suryawanshi, H. et al. A single-cell survey of the human first-trimester placenta and decidua. Sci Adv 4, eaau4788 (2018). 

22. Tsang, J. C. H. et al. Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics. Proc. Natl. 

Acad. Sci. U. S. A. 114, E7786–E7795 (2017). 

23. Pérez-Silva, J. G., Español, Y., Velasco, G. & Quesada, V. The Degradome database: expanding roles of mammalian proteases in life and 

disease. Nucleic Acids Res. 44, D351–5 (2016). 

24. Coutard, B. et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same 

clade. Antiviral Res. 176, 104742 (2020). 

25. Millet, J. K. & Whittaker, G. R. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology 

517, 3–8 (2018). 

26. Seidah, N. G. & Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov. 11, 367–383 (2012). 

27. Cai, H. Sex difference and smoking predisposition in patients with COVID-19. The Lancet Respiratory Medicine vol. 8 e20 (2020). 

28. Goldfarbmuren, K. C. et al. Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway 

epithelium. Nat. Commun. 11, 2485 (2020). 

29. Duclos, G. E. et al. Characterizing smoking-induced transcriptional heterogeneity in the human bronchial epithelium at single-cell 

resolution. Sci Adv 5, eaaw3413 (2019). 

30. Vieira Braga, F. A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25, 1153–1163 

(2019). 

31. Reyfman, P. A. et al. Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. 

Am. J. Respir. Crit. Care Med. 199, 1517–1536 (2019). 

32. Madissoon, E. et al. scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. Genome Biol. 

21, 1 (2019). 

33. Ordovas-Montanes, J. et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560, 649–654 (2018). 

34. Miller, A. J. et al. In Vitro and In Vivo Development of the Human Airway at Single-Cell Resolution. Dev. Cell 53, 117–128.e6 (2020). 

35. Adams, T. S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv 

6, eaba1983 (2020). 

36. Habermann, A. C. et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary 

fibrosis. Science Advances vol. 6 eaba1972 (2020). 

37. Deprez, M. et al. A single-cell atlas of the human healthy airways. Am. J. Respir. Crit. Care Med. (2020) doi:10.1164/rccm.201911-

2199OC. 

38. Morse, C. et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur. Respir. J. 54, (2019). 

39. Travaglini, K. J., Nabhan, A. N., Penland, L. & Sinha, R. A molecular cell atlas of the human lung from single cell RNA sequencing. 

BioRxiv (2020). 

40. Mayr, C. H. et al. Integrated Single Cell Analysis of Human Lung Fibrosis Resolves Cellular Origins of Predictive Protein Signatures in 

Body Fluids. (2020) doi:10.2139/ssrn.3538700. 

41. Beane, J. E. et al. Molecular subtyping reveals immune alterations associated with progression of bronchial premalignant lesions. Nat. 

http://paperpile.com/b/53eFaW/bwO6W
http://paperpile.com/b/53eFaW/bwO6W
http://paperpile.com/b/53eFaW/bwO6W
http://paperpile.com/b/53eFaW/bwO6W
http://paperpile.com/b/53eFaW/bwO6W
http://paperpile.com/b/53eFaW/bwO6W
http://paperpile.com/b/53eFaW/bwO6W
http://paperpile.com/b/53eFaW/Xllib
http://paperpile.com/b/53eFaW/Xllib
http://paperpile.com/b/53eFaW/Xllib
http://paperpile.com/b/53eFaW/Xllib
http://paperpile.com/b/53eFaW/Xllib
http://paperpile.com/b/53eFaW/Xllib
http://paperpile.com/b/53eFaW/Xllib
http://paperpile.com/b/53eFaW/Xllib
http://paperpile.com/b/53eFaW/yzsS9
http://paperpile.com/b/53eFaW/yzsS9
http://paperpile.com/b/53eFaW/yzsS9
http://paperpile.com/b/53eFaW/yzsS9
http://paperpile.com/b/53eFaW/yzsS9
http://paperpile.com/b/53eFaW/yzsS9
http://paperpile.com/b/53eFaW/pyZLs
http://paperpile.com/b/53eFaW/pyZLs
http://paperpile.com/b/53eFaW/pyZLs
http://paperpile.com/b/53eFaW/pyZLs
http://paperpile.com/b/53eFaW/pyZLs
http://paperpile.com/b/53eFaW/pyZLs
http://paperpile.com/b/53eFaW/pyZLs
http://paperpile.com/b/53eFaW/pyZLs
http://paperpile.com/b/53eFaW/vt0Pi
http://paperpile.com/b/53eFaW/vt0Pi
http://paperpile.com/b/53eFaW/vt0Pi
http://paperpile.com/b/53eFaW/vt0Pi
http://paperpile.com/b/53eFaW/vt0Pi
http://paperpile.com/b/53eFaW/vt0Pi
http://paperpile.com/b/53eFaW/b9qnq
http://paperpile.com/b/53eFaW/b9qnq
http://paperpile.com/b/53eFaW/b9qnq
http://paperpile.com/b/53eFaW/b9qnq
http://paperpile.com/b/53eFaW/b9qnq
http://paperpile.com/b/53eFaW/nzVsR
http://paperpile.com/b/53eFaW/nzVsR
http://paperpile.com/b/53eFaW/nzVsR
http://paperpile.com/b/53eFaW/3PtE
http://paperpile.com/b/53eFaW/3PtE
http://paperpile.com/b/53eFaW/3PtE
http://paperpile.com/b/53eFaW/3PtE
http://paperpile.com/b/53eFaW/3PtE
http://paperpile.com/b/53eFaW/3PtE
http://paperpile.com/b/53eFaW/3PtE
http://paperpile.com/b/53eFaW/3PtE
http://paperpile.com/b/53eFaW/PN8n
http://paperpile.com/b/53eFaW/PN8n
http://paperpile.com/b/53eFaW/PN8n
http://paperpile.com/b/53eFaW/PN8n
http://paperpile.com/b/53eFaW/PN8n
http://paperpile.com/b/53eFaW/PN8n
http://paperpile.com/b/53eFaW/PN8n
http://paperpile.com/b/53eFaW/PN8n
http://paperpile.com/b/53eFaW/WoSd
http://paperpile.com/b/53eFaW/WoSd
http://paperpile.com/b/53eFaW/WoSd
http://paperpile.com/b/53eFaW/WoSd
http://paperpile.com/b/53eFaW/WoSd
http://paperpile.com/b/53eFaW/WoSd
http://paperpile.com/b/53eFaW/WoSd
http://paperpile.com/b/53eFaW/WoSd
http://paperpile.com/b/53eFaW/mQfI
http://paperpile.com/b/53eFaW/mQfI
http://paperpile.com/b/53eFaW/mQfI
http://paperpile.com/b/53eFaW/mQfI
http://paperpile.com/b/53eFaW/mQfI
http://paperpile.com/b/53eFaW/mQfI
http://paperpile.com/b/53eFaW/mQfI
http://paperpile.com/b/53eFaW/mQfI
http://paperpile.com/b/53eFaW/qW4F
http://paperpile.com/b/53eFaW/qW4F
http://paperpile.com/b/53eFaW/qW4F
http://paperpile.com/b/53eFaW/qW4F
http://paperpile.com/b/53eFaW/qW4F
http://paperpile.com/b/53eFaW/qW4F
http://paperpile.com/b/53eFaW/qW4F
http://paperpile.com/b/53eFaW/qW4F
http://paperpile.com/b/53eFaW/wval
http://paperpile.com/b/53eFaW/wval
http://paperpile.com/b/53eFaW/wval
http://paperpile.com/b/53eFaW/wval
http://paperpile.com/b/53eFaW/wval
http://paperpile.com/b/53eFaW/wval
http://paperpile.com/b/53eFaW/wval
http://paperpile.com/b/53eFaW/cNdG
http://paperpile.com/b/53eFaW/cNdG
http://paperpile.com/b/53eFaW/cNdG
http://paperpile.com/b/53eFaW/cNdG
http://paperpile.com/b/53eFaW/cNdG
http://paperpile.com/b/53eFaW/cNdG
http://paperpile.com/b/53eFaW/cNdG
http://paperpile.com/b/53eFaW/UfRP
http://paperpile.com/b/53eFaW/UfRP
http://paperpile.com/b/53eFaW/UfRP
http://paperpile.com/b/53eFaW/UfRP
http://paperpile.com/b/53eFaW/UfRP
http://paperpile.com/b/53eFaW/UfRP
http://paperpile.com/b/53eFaW/UfRP
http://paperpile.com/b/53eFaW/UfRP
http://paperpile.com/b/53eFaW/b4vy
http://paperpile.com/b/53eFaW/b4vy
http://paperpile.com/b/53eFaW/b4vy
http://paperpile.com/b/53eFaW/b4vy
http://paperpile.com/b/53eFaW/b4vy
http://paperpile.com/b/53eFaW/b4vy
http://paperpile.com/b/53eFaW/GB5J
http://paperpile.com/b/53eFaW/GB5J
http://paperpile.com/b/53eFaW/GB5J
http://paperpile.com/b/53eFaW/GB5J
http://paperpile.com/b/53eFaW/GB5J
http://dx.doi.org/10.1164/rccm.201911-2199OC
http://dx.doi.org/10.1164/rccm.201911-2199OC
http://paperpile.com/b/53eFaW/GB5J
http://paperpile.com/b/53eFaW/4lIG
http://paperpile.com/b/53eFaW/4lIG
http://paperpile.com/b/53eFaW/4lIG
http://paperpile.com/b/53eFaW/4lIG
http://paperpile.com/b/53eFaW/4lIG
http://paperpile.com/b/53eFaW/4lIG
http://paperpile.com/b/53eFaW/4lIG
http://paperpile.com/b/53eFaW/wkcg
http://paperpile.com/b/53eFaW/wkcg
http://paperpile.com/b/53eFaW/wkcg
http://paperpile.com/b/53eFaW/wkcg
http://paperpile.com/b/53eFaW/AdrU
http://paperpile.com/b/53eFaW/AdrU
http://paperpile.com/b/53eFaW/AdrU
http://paperpile.com/b/53eFaW/AdrU
http://dx.doi.org/10.2139/ssrn.3538700
http://paperpile.com/b/53eFaW/AdrU
http://paperpile.com/b/53eFaW/ipbv
http://paperpile.com/b/53eFaW/ipbv
http://paperpile.com/b/53eFaW/ipbv
http://paperpile.com/b/53eFaW/ipbv


91 

Commun. 10, 1856 (2019). 

42. Chan, C.-M. et al. Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 Is an Important Surface Attachment Factor That Facilitates 

Entry of Middle East Respiratory Syndrome Coronavirus. Journal of Virology vol. 90 9114–9127 (2016). 

43. Wahl, S. M. et al. Secretory leukocyte protease inhibitor (SLPI) in mucosal fluids inhibits HIV-1. Oral Dis. 3, S64–S69 (1997). 

44. Turula, H. & Wobus, C. The Role of the Polymeric Immunoglobulin Receptor and Secretory Immunoglobulins during Mucosal Infection 

and Immunity. Viruses vol. 10 237 (2018). 

45. Burkhardt, A. M. et al. CXCL17 is a mucosal chemokine elevated in idiopathic pulmonary fibrosis that exhibits broad antimicrobial activity. 

J. Immunol. 188, 6399–6406 (2012). 

46. Debbabi, H. et al. Primary type II alveolar epithelial cells present microbial antigens to antigen-specific CD4+ T cells. Am. J. Physiol. Lung 

Cell. Mol. Physiol. 289, L274–9 (2005). 

47. Yue, Y. et al. SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death. Cell Death Dis. 9, 904 (2018). 

48. Burkard, C. et al. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog. 10, 

e1004502 (2014). 

49. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018). 

50. Gordon, D. E. et al. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. 

bioRxiv 2020.03.22.002386 (2020) doi:10.1101/2020.03.22.002386. 

51. Luan, H. H. et al. GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance. Cell 178, 1231–1244.e11 (2019). 

52. Dhar, P. & McAuley, J. The Role of the Cell Surface Mucin MUC1 as a Barrier to Infection and Regulator of Inflammation. Front. Cell. 

Infect. Microbiol. 9, 117 (2019). 

53. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-cell communication from combined 

expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020). 

54. Bao, L. et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583, 830–833 (2020). 

55. Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018). 

56. Smith, J. C. et al. Cigarette smoke exposure and inflammatory signaling increase the expression of the SARS-CoV-2 receptor ACE2 in the 

respiratory tract. doi:10.1101/2020.03.28.013672. 

57. Tucker Nathan R. et al. Myocyte-Specific Upregulation of ACE2 in Cardiovascular Disease. Circulation 142, 708–710 (2020). 

58. Hamming, I. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS 

pathogenesis. J. Pathol. 203, 631–637 (2004). 

59. Zhao, Y. et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv 2020.01.26.919985 

(2020) doi:10.1101/2020.01.26.919985. 

60. Venkatakrishnan, A. J. et al. Knowledge synthesis from 100 million biomedical documents augments the deep expression profiling of 

coronavirus receptors. arXiv [q-bio.GN] (2020). 

61. Mao, L. et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. 

(2020). 

62. Poyiadji, N. et al. COVID-19--associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology 201187 (2020). 

http://paperpile.com/b/53eFaW/ipbv
http://paperpile.com/b/53eFaW/ipbv
http://paperpile.com/b/53eFaW/ipbv
http://paperpile.com/b/53eFaW/ipbv
http://paperpile.com/b/53eFaW/Q2LTI
http://paperpile.com/b/53eFaW/Q2LTI
http://paperpile.com/b/53eFaW/Q2LTI
http://paperpile.com/b/53eFaW/Q2LTI
http://paperpile.com/b/53eFaW/Q2LTI
http://paperpile.com/b/53eFaW/Q2LTI
http://paperpile.com/b/53eFaW/clJ78
http://paperpile.com/b/53eFaW/clJ78
http://paperpile.com/b/53eFaW/clJ78
http://paperpile.com/b/53eFaW/clJ78
http://paperpile.com/b/53eFaW/clJ78
http://paperpile.com/b/53eFaW/clJ78
http://paperpile.com/b/53eFaW/clJ78
http://paperpile.com/b/53eFaW/B1OzR
http://paperpile.com/b/53eFaW/B1OzR
http://paperpile.com/b/53eFaW/B1OzR
http://paperpile.com/b/53eFaW/B1OzR
http://paperpile.com/b/53eFaW/Q9Od7
http://paperpile.com/b/53eFaW/Q9Od7
http://paperpile.com/b/53eFaW/Q9Od7
http://paperpile.com/b/53eFaW/Q9Od7
http://paperpile.com/b/53eFaW/Q9Od7
http://paperpile.com/b/53eFaW/Q9Od7
http://paperpile.com/b/53eFaW/Q9Od7
http://paperpile.com/b/53eFaW/Q9Od7
http://paperpile.com/b/53eFaW/fnFFb
http://paperpile.com/b/53eFaW/fnFFb
http://paperpile.com/b/53eFaW/fnFFb
http://paperpile.com/b/53eFaW/fnFFb
http://paperpile.com/b/53eFaW/fnFFb
http://paperpile.com/b/53eFaW/fnFFb
http://paperpile.com/b/53eFaW/fnFFb
http://paperpile.com/b/53eFaW/fnFFb
http://paperpile.com/b/53eFaW/XGk7j
http://paperpile.com/b/53eFaW/XGk7j
http://paperpile.com/b/53eFaW/XGk7j
http://paperpile.com/b/53eFaW/XGk7j
http://paperpile.com/b/53eFaW/XGk7j
http://paperpile.com/b/53eFaW/XGk7j
http://paperpile.com/b/53eFaW/XGk7j
http://paperpile.com/b/53eFaW/I396A
http://paperpile.com/b/53eFaW/I396A
http://paperpile.com/b/53eFaW/I396A
http://paperpile.com/b/53eFaW/I396A
http://paperpile.com/b/53eFaW/I396A
http://paperpile.com/b/53eFaW/I396A
http://paperpile.com/b/53eFaW/I396A
http://paperpile.com/b/53eFaW/I396A
http://paperpile.com/b/53eFaW/x9AQx
http://paperpile.com/b/53eFaW/x9AQx
http://paperpile.com/b/53eFaW/x9AQx
http://paperpile.com/b/53eFaW/x9AQx
http://paperpile.com/b/53eFaW/x9AQx
http://paperpile.com/b/53eFaW/x9AQx
http://paperpile.com/b/53eFaW/x9AQx
http://paperpile.com/b/53eFaW/oiDt9
http://paperpile.com/b/53eFaW/oiDt9
http://paperpile.com/b/53eFaW/oiDt9
http://paperpile.com/b/53eFaW/oiDt9
http://paperpile.com/b/53eFaW/oiDt9
http://paperpile.com/b/53eFaW/oiDt9
http://dx.doi.org/10.1101/2020.03.22.002386
http://paperpile.com/b/53eFaW/oiDt9
http://paperpile.com/b/53eFaW/X4d2j
http://paperpile.com/b/53eFaW/X4d2j
http://paperpile.com/b/53eFaW/X4d2j
http://paperpile.com/b/53eFaW/X4d2j
http://paperpile.com/b/53eFaW/X4d2j
http://paperpile.com/b/53eFaW/X4d2j
http://paperpile.com/b/53eFaW/X4d2j
http://paperpile.com/b/53eFaW/uRtbt
http://paperpile.com/b/53eFaW/uRtbt
http://paperpile.com/b/53eFaW/uRtbt
http://paperpile.com/b/53eFaW/uRtbt
http://paperpile.com/b/53eFaW/uRtbt
http://paperpile.com/b/53eFaW/uRtbt
http://paperpile.com/b/53eFaW/JItIW
http://paperpile.com/b/53eFaW/JItIW
http://paperpile.com/b/53eFaW/JItIW
http://paperpile.com/b/53eFaW/JItIW
http://paperpile.com/b/53eFaW/JItIW
http://paperpile.com/b/53eFaW/JItIW
http://paperpile.com/b/53eFaW/idDOl
http://paperpile.com/b/53eFaW/idDOl
http://paperpile.com/b/53eFaW/idDOl
http://paperpile.com/b/53eFaW/idDOl
http://paperpile.com/b/53eFaW/idDOl
http://paperpile.com/b/53eFaW/idDOl
http://paperpile.com/b/53eFaW/idDOl
http://paperpile.com/b/53eFaW/JoPG0
http://paperpile.com/b/53eFaW/JoPG0
http://paperpile.com/b/53eFaW/JoPG0
http://paperpile.com/b/53eFaW/JoPG0
http://paperpile.com/b/53eFaW/JoPG0
http://paperpile.com/b/53eFaW/JoPG0
http://paperpile.com/b/53eFaW/JoPG0
http://paperpile.com/b/53eFaW/SgVpR
http://paperpile.com/b/53eFaW/SgVpR
http://paperpile.com/b/53eFaW/SgVpR
http://paperpile.com/b/53eFaW/SgVpR
http://dx.doi.org/10.1101/2020.03.28.013672
http://paperpile.com/b/53eFaW/SgVpR
http://paperpile.com/b/53eFaW/yl7lz
http://paperpile.com/b/53eFaW/yl7lz
http://paperpile.com/b/53eFaW/yl7lz
http://paperpile.com/b/53eFaW/yl7lz
http://paperpile.com/b/53eFaW/yl7lz
http://paperpile.com/b/53eFaW/yl7lz
http://paperpile.com/b/53eFaW/yl7lz
http://paperpile.com/b/53eFaW/eghl5
http://paperpile.com/b/53eFaW/eghl5
http://paperpile.com/b/53eFaW/eghl5
http://paperpile.com/b/53eFaW/eghl5
http://paperpile.com/b/53eFaW/eghl5
http://paperpile.com/b/53eFaW/eghl5
http://paperpile.com/b/53eFaW/eghl5
http://paperpile.com/b/53eFaW/eghl5
http://paperpile.com/b/53eFaW/y6Fkl
http://paperpile.com/b/53eFaW/y6Fkl
http://paperpile.com/b/53eFaW/y6Fkl
http://paperpile.com/b/53eFaW/y6Fkl
http://paperpile.com/b/53eFaW/y6Fkl
http://paperpile.com/b/53eFaW/y6Fkl
http://dx.doi.org/10.1101/2020.01.26.919985
http://paperpile.com/b/53eFaW/y6Fkl
http://paperpile.com/b/53eFaW/viVgb
http://paperpile.com/b/53eFaW/viVgb
http://paperpile.com/b/53eFaW/viVgb
http://paperpile.com/b/53eFaW/viVgb
http://paperpile.com/b/53eFaW/viVgb
http://paperpile.com/b/53eFaW/viVgb
http://paperpile.com/b/53eFaW/Y579U
http://paperpile.com/b/53eFaW/Y579U
http://paperpile.com/b/53eFaW/Y579U
http://paperpile.com/b/53eFaW/Y579U
http://paperpile.com/b/53eFaW/E7A66
http://paperpile.com/b/53eFaW/E7A66
http://paperpile.com/b/53eFaW/E7A66
http://paperpile.com/b/53eFaW/E7A66
http://paperpile.com/b/53eFaW/E7A66


92 

63. Helms, J., Kremer, S. & Meziani, F. More on Neurologic Features in Severe SARS-CoV-2 Infection. Reply. The New England journal of 

medicine vol. 382 e110 (2020). 

64. Toscano, G. et al. Guillain–Barré Syndrome Associated with SARS-CoV-2. N. Engl. J. Med. 382, 2574–2576 (2020). 

65. Del Valle, D. M. et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. (2020) doi:10.1038/s41591-

020-1051-9. 

66. Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020). 

 

 

http://paperpile.com/b/53eFaW/NTebg
http://paperpile.com/b/53eFaW/NTebg
http://paperpile.com/b/53eFaW/NTebg
http://paperpile.com/b/53eFaW/NTebg
http://paperpile.com/b/53eFaW/kWalc
http://paperpile.com/b/53eFaW/kWalc
http://paperpile.com/b/53eFaW/kWalc
http://paperpile.com/b/53eFaW/kWalc
http://paperpile.com/b/53eFaW/kWalc
http://paperpile.com/b/53eFaW/kWalc
http://paperpile.com/b/53eFaW/kWalc
http://paperpile.com/b/53eFaW/2eXVO
http://paperpile.com/b/53eFaW/2eXVO
http://paperpile.com/b/53eFaW/2eXVO
http://paperpile.com/b/53eFaW/2eXVO
http://paperpile.com/b/53eFaW/2eXVO
http://dx.doi.org/10.1038/s41591-020-1051-9
http://dx.doi.org/10.1038/s41591-020-1051-9
http://paperpile.com/b/53eFaW/2eXVO
http://paperpile.com/b/53eFaW/KHqAq
http://paperpile.com/b/53eFaW/KHqAq
http://paperpile.com/b/53eFaW/KHqAq
http://paperpile.com/b/53eFaW/KHqAq
http://paperpile.com/b/53eFaW/KHqAq
http://paperpile.com/b/53eFaW/KHqAq
http://paperpile.com/b/53eFaW/KHqAq

