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ARTICLE INFO ABSTRACT

Keywords: Microscopic diffusion anisotropy imaging using diffusion-weighted MRI and multidimensional diffusion encoding
Diffusion MRI is a promising method for quantifying clinically and scientifically relevant microstructural properties of neural
Microscopic fractional anisotropy tissue. Several methods for estimating microscopic fractional anisotropy (uFA), a normalized measure of micro-

Multidimensional diffusion encoding

Sienal model scopic diffusion anisotropy, have been introduced but the differences between the methods have received little
1gnal mode.

attention thus far. In this study, the accuracy and precision of pFA estimation using q-space trajectory encoding
and different signal models were assessed using imaging experiments and simulations. Three healthy volunteers
and a microfibre phantom were imaged with five non-zero b-values and gradient waveforms encoding linear and
spherical b-tensors. Since the ground-truth pnFA was unknown in the imaging experiments, Monte Carlo random
walk simulations were performed using axon-mimicking fibres for which the ground truth was known. Further-
more, parameter bias due to time-dependent diffusion was quantified by repeating the simulations with tuned
waveforms, which have similar power spectra, and with triple diffusion encoding, which, unlike g-space trajec-
tory encoding, is not based on the assumption of time-independent diffusion. The truncated cumulant expansion
of the powder-averaged signal, gamma-distributed diffusivities assumption, and g-space trajectory imaging, a
generalization of the truncated cumulant expansion to individual signals, were used to estimate uFA. The gamma-
distributed diffusivities assumption consistently resulted in greater pFA values than the second order cumulant
expansion, 0.1 greater when averaged over the whole brain. In the simulations, the generalized cumulant expan-
sion provided the most accurate estimates. Importantly, although time-dependent diffusion caused significant
overestimation of uFA using all the studied methods, the simulations suggest that the resulting bias in pFA is less
than 0.1 in human white matter.

1. Introduction

Diffusion-weighted magnetic resonance imaging (dMRI) has be-
come firmly established as the MRI technique of choice for quantify-
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ing neural tissue’s microstructural properties in vivo (Johansen-Berg and
Behrens, 2013). Since the pioneering work by Basser et al. (1994), dif-
fusion tensor imaging (DTI) parameters quantifying the magnitude and
shape of the voxel-level diffusion tensor have been widely applied in
characterizing brain development and pathologies (Assaf et al., 2019).
Despite its utility, DTI suffers from various well-recognized limitations
that have been addressed by the subsequent advances in the field. Be-
cause orientation dispersion of anisotropic neurites can result in an
isotropic diffusion tensor, several methods have been developed to ob-
tain a more accurate estimate of the fibre orientation distribution, e.g.,
(Tournier et al., 2007; Tuch, 2004; Wedeen et al., 2008). Another major
limitation of DTI is that it does not provide a good fit to data in experi-
ments with moderate to high diffusion-weighting (roughly b < ms/pm?
in the brain) when the signal as a function of b-value clearly deviates
from a monoexponential decay, revealing that the voxel-level diffusion
propagator is not Gaussian, especially in white matter (Jensen et al.,
2005). More complicated signal models capturing the deviation from
the monoexponential decay, e.g., (Clark et al., 2002; Jensen et al., 2005;
Novikov and Kiselev, 2010), as well as a plenitude of microstructural
models, e.g., (Jespersen et al., 2007; Sotiropoulos et al., 2012; Zhang
et al., 2012), have been developed to obtain a better fit to data and addi-
tional information on tissue microstructure. Comprehensive overviews
of the state of the field are provided by Jelescu and Budde (2017) and
Novikov et al. (2019), for example.

The methods referred to above belong to a class of single diffusion
encoding (SDE) methods (Shemesh et al., 2016) as they are based on ac-
quisitions measuring the displacements of water molecules along a sin-
gle dimension, i.e., the direction of the diffusion encoding magnetic field
gradient. Despite being sensitive to several microstructural changes, SDE
methods are fundamentally limited because they confound two major
sources of voxel-level non-Gaussian diffusion, namely, the orientation
dispersion of anisotropic diffusion and the size variance of microscopic
diffusion environments, resulting in a lack of specificity (Westin et al.,
2016). This fundamental degeneracy of SDE acquisitions also prevents
accurate measurement of microscopic diffusion anisotropy without sub-
stantial a priori information about tissue microstructure (Henriques
etal., 2019; Ianus et al., 2016; Lampinen et al., 2017). Multidimensional
diffusion encoding (MDE), on the other hand, renders the dMRI signal
sensitive to the displacements of water molecules along two or three
dimensions. Over recent years, MDE methods, such as double diffusion
encoding (DDE) and g-space trajectory encoding (QTE), have gained
significant attention for their ability to resolve the fundamental degen-
eracy in data acquired with conventional SDE methods, capturing clini-
cally and scientifically relevant information about tissue microstructure
(Cory et al., 1990; Eriksson et al., 2013; Henriques et al., 2020b; Jes-
persen et al., 2013; Lasic et al., 2014; Mitra, 1995; Topgaard, 2017;
Westin et al., 2016).

DDE waveforms consist of two trapezoidal pulse pairs separated by
a mixing time and therefore require rather long echo times, result-
ing in a diminished signal. Using clinical whole-body scanners, asym-
metric DDE waveforms can also produce significant concomitant gra-
dients in spin echo experiments, causing artefacts and signal dropout
(Szczepankiewicz et al., 2019c¢), an issue that can be avoided by using
double spin echo (Koch and Finsterbusch, 2008). QTE waveforms are
designed to enable spin echo experiments with shorter echo times by
following an optimized trajectory in g-space to define a b-tensor with
the desired shape, orientation, and magnitude (Sjolund et al., 2015).
This makes it feasible to perform MDE experiments using more limited
scanner hardware (Szczepankiewicz et al., 2019b), albeit at the cost
of assuming diffusion time dependency to be negligible because QTE
waveforms lack a well-defined scalar diffusion time. If this assumption
is not valid, a discrepancy between the diffusion times of the gradi-
ent waveforms encoding different b-tensors shapes results in biased pa-
rameter estimates, as shown by Lundell et al. (2019, 2017), who pro-
posed reducing the bias by using so-called tuned waveforms with similar
power spectra at least along one direction. Furthermore, isotropic dif-
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fusion encoding with QTE may be orientationally variant due to signifi-
cant time-dependent microscopic diffusion anisotropy (Jespersen et al.,
2019; de Swiet and Mitra, 1996).

By combining MDE acquisitions with different b-tensor shapes, it
is possible to estimate microscopic diffusion anisotropy, i.e., the aver-
age anisotropy of the microscopic diffusion environments, referred to
as compartments hereafter, irrespective of their orientation dispersion.
Since microscopic diffusion anisotropy does not depend on the orienta-
tion dispersion of axons, it may be a clinically valuable biomarker for
axonal degeneration. Indeed, promising results of the application of mi-
croscopic fractional anisotropy (uFA) (Lasic et al., 2014), a normalized
measure of microscopic diffusion anisotropy that is equivalent to con-
ventional fractional anisotropy (FA) if the compartments are aligned,
have been reported in imaging brain tumours (Szczepankiewicz et al.,
2015; 2016), multiple sclerosis lesions (Andersen et al., 2020; Yang
et al., 2018), and microstructural properties of white matter associ-
ated with schizophrenia (Westin et al., 2016), epilepsy (Lampinen et al.,
2020), and aging and Parkinson’s disease (Kamiya et al., 2020). How-
ever, different studies have applied different methods for estimating pFA
and the differences between the methods have received little attention
thus far. Understanding how different pFA estimation methods relate to
each other is crucial in planning future studies and interpreting previ-
ously reported results. Furthermore, reaching a consensus on the opti-
mal method for measuring pFA is an essential requirement for future
clinical studies.

In this study, imaging experiments and simulations were performed
to compare the accuracy and precision of pFA estimation using the fol-
lowing signal models: truncated cumulant expansion of the powder-
averaged signal (Ianus et al., 2018; Jespersen et al., 2013; Lasi¢ et al.,
2014; Nery et al., 2019; Yang et al., 2018), gamma-distributed apparent
diffusivities (Andersen et al., 2020; Lasic et al., 2014; Szczepankiewicz
et al., 2015; 2016), and g-space trajectory imaging (QTI), a general-
ization of the truncated cumulant expansion to individual acquisitions
using diffusion tensor distribution (DTD) as a microstructural model,
(Kamiya et al., 2020; Lampinen et al., 2020; Martin et al., 2020; Westin
et al., 2016). The uFA maps in healthy volunteers calculated from the
same data using the different methods were compared. The precision of
the estimates was quantified by repeatedly imaging a microfibre phan-
tom. Furthermore, since the ground-truth value of pFA was unknown in
the imaging experiments, Monte Carlo random walk simulations were
performed using axon-mimicking fibres for which the ground truth was
known. The bias in uFA due to time-dependent diffusion was quanti-
fied by repeating the simulations with tuned waveforms and with triple
diffusion encoding (TDE).

2. Theory

Conventional DTI represents diffusion at the voxel level by a sym-
metric positive definite 3 x 3 tensor D that captures Gaussian diffusion
(Basser et al., 1994). As the magnitude of diffusion-weighting is in-
creased, the signal as a function of b-value starts to deviate from a mo-
noexponential decay, revealing that the voxel-level diffusion propagator
is not Gaussian, especially in white matter (Jensen et al., 2005). At the
voxel level, non-Gaussian diffusion is caused by intra-compartmental
restricted diffusion and variance in diffusion properties across the com-
partments (Henriques et al., 2020a). The theory presented in this section
is based on the assumption that the effects of intra-compartmental re-
stricted diffusion are negligible.

If inter-compartmental exchange of water and intra-compartmental
diffusion time dependence are negligible, the tissue in a voxel can be
represented by a distribution of microscopic diffusion tensors represent-
ing the compartments (Westin et al., 2014). In this case, the diffusion-
weighted signal can be expressed as

S = SO/PﬁD(D”)exp(—b :D,)dD,, €8]
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where S, is the signal without diffusion-weighting, D,, is a microscopic
diffusion tensor, Pgp is the normalized distribution of microscopic dif-
fusion tensors in the voxel, b is the b-tensor used in the acquisition, :
denotes the generalized scalar product (b : D = 2?:1 Z?:l b;;D;;), and
integration is performed over all symmetric positive definite 3 x 3 ten-
sors (Westin et al., 2016). QTE is based on the idea that if intra-
compartmental diffusion is Gaussian, the diffusion-weighted signal at-
tenuation depends only on b, assuming that all the other imaging pa-
rameters are kept constant (Westin et al., 2016).

Since recovering the six-dimensional microscopic diffusion tensor
distribution is an ill-posed problem (Topgaard, 2017), several methods
have been developed for estimating relevant properties of it. One of
these is pFA, a normalized measure of the average eigenvalue variance
of the microscopic diffusion tensors (Jespersen et al., 2013; Lasi¢ et al.,
2014; Szczepankiewicz et al., 2016):

3 (Var,D,))
nFA = = )
2 (Var,(D,)) + ([Tr(D,)/31?)
where Var,( ) denotes an operator that calculates the eigenvalue vari-

ance of a tensor, Tr( ) denotes the trace of a tensor, and ( ) denotes
averaging over the DTD.

@

2.1. Powder-averaged signal

The powder-averaged signal, i.e., the signal averaged over all pos-
sible diffusion encoding directions, is orientationally invariant and can
be expressed as

S =5, /m P(D,)exp (-bD,)dD,, ©)
0

where P is the distribution of apparent microscopic diffusivities in the
voxel, b is the b-value used in the acquisition, and D, is the apparent
microscopic diffusivity (Lasic et al., 2014). P depends on the shape of
the b-tensor used in the acquisition. The powder-averaged signal can be
accurately estimated by averaging over the acquired diffusion encod-
ing directions, given that the signal-to-noise ratio (SNR) is high enough
and a sufficient number of directions is used (Jespersen et al., 2013;
Szczepankiewicz et al., 2019b).

2.1.1. Second order cumulant expansion
Using the cumulant expansion up to the second order in b, the
powder-averaged signal can be expressed as

S & Syexp (—bMD+b2%), @

where MD = (Tr(D,)/3) is the voxel-level mean diffusivity and V is
the second central moment, i.e., variance, of P (Lasi¢ et al., 2014).
By combining acquisitions with different b-tensor shapes, the total
variance in apparent microscopic diffusivities can be decomposed
into anisotropic and isotropic variances, V,,, and Vi, respectively
(Szczepankiewicz et al., 2016). Vs, is proportional to the average
eigenvalue variance of the microscopic diffusion tensors and Vg, is equal
to the variance of mean diffusivities of the microscopic diffusion tensors:

Vaniso = %(Var/l(l)#»s )

Viso = <[Tr(DM)/3]2> — MD?. )

In experiments with linear and spherical b-tensors, such as in this study,
the total variance relates to anisotropic and isotropic variances as

VLtE = Vaniso * Viso» (M

Vste = Visos (8)

where the subscripts LTE and STE represent acquisitions with lin-
ear tensor encoding and spherical tensor encoding, respectively
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(Szczepankiewicz et al., 2016). Therefore, uFA can be estimated by fit-
ting a signal model, e.g, Eq. (4), to the estimated powder-averaged sig-
nals acquired with linear and spherical b-tensors.

2.1.2. Higher-order correction

The limitation of estimating puFA as described above is that Eq. (4) is
strictly valid as b — 0. However, the applied b-value has to be suffi-
ciently high for voxel-level non-Gaussian diffusion to be measurable.
The accuracy of pFA estimation using the truncated cumulant expansion
and DDE has been shown to improve if an additional term is introduced
to account for higher-order effects (Ianus et al., 2018):

S % Syexp (—bMD+b2% -5 Py), ©)

where P; € R. This correction, which is applied to the signal model rep-
resenting acquisitions with linear encoding, was introduced to correct
for higher-order effects in the difference between the signals acquired
with different b-tensor shapes. It can reduce the b-value-dependent un-
derestimation of pFA (Ianus et al., 2018).

2.1.3. Gamma-distributed apparent diffusivities

The distribution of apparent microscopic diffusivities can also be a
priori assumed to be such that enables Eq. (3) to be analytically evalu-
ated, e.g., gamma-distributed (Jensen and Helpern, 2010):

D)1 D
) exp <—7ﬂ> (10)

T(k)0k
where k € R, and 0§ € R, are the shape and scale parameters of the
gamma distribution, respectively, and I" is the gamma function. Under
this assumption, the powder-averaged signal can be expressed as

P(D,:k.0) =

MD?

V \"Tv
1+bm> , an

where MD = k6 and V = k#? (Lasic et al., 2014). However, the resulting
parameter estimates can be inaccurate if the distribution of apparent
microscopic diffusivities is not gamma-distributed.

s o

2.2. Q-space trajectory imaging

The second order cumulant expansion has also been generalized to
describe individual acquisitions instead of the powder-averaged signal.
In QTI (Westin et al., 2016), the signal in a single acquisition is expressed
as

S~ Syexp(-b: D+ %(b@b) : c), (12)

where ® denotes the tensor outer product and C isa 3 x 3 x 3 x 3
covariance tensor defined as

C=(D,®D,)-D®D. (13)

The covariance tensor contains 21 unique elements and enables the esti-
mation of several relevant properties of the DTD. pFA can be calculated
as

D ®D,) : E
WFA = 2( u ;4) shear’ (14)
2 (Du ®D;¢> : [EiSO

where E;;, and Eg,,, are the isotropic and shear tensors of rank 2 and
shape 6 x 6 as described by Westin et al. (2016).

3. Methods
3.1. uFA estimation

Four signal models for pFA estimation were compared: the cumu-
lant expansion of the powder-averaged signal up to the second order

in b (Eq. (4)) and with a higher-order correction (Eq. (9)), the gamma-
distributed diffusivities assumption (Eq. (11)), and QTI (Eq. (12)). For
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brevity, the methods will be referred to hereafter as the cumulant model,
higher-order model, gamma model, and QTI.

The powder-averaged signal was estimated by averaging over the ac-
quired diffusion encoding directions. The cumulant model, higher-order
model, and gamma model were fit to the estimated powder-averaged
signal using a non-linear least squares trust region reflective algorithm
(Branch et al., 1999) in Scipy (Virtanen et al., 2020). Sy, MD, V,jiso»
Viso» and P; were used as fit parameters from which pFA was estimated
using Egs. (2), (5), and (6). The fit parameters were constrained to
be non-negative real numbers. The initial values of the fit parameters
were: S, = average signal over acquisitions without diffusion-weighting,
MD = | ym?/ms, Vypio = 0.1 pm*/ms?, Vi, = 0.1 pm*/ms?, and P; = 0.

QTI was fit to data using the following linear equation:

= (X"Cx)”' (X"C)S, (15)

where

p=(ns, D c), (16)
1 bl (b, ®@b)T

X=]: S : , a7
1 —b" %(b,, ®b,)T
In .S,

S=| : | 18)
In.S

n

where n is the number of acquisitions and D, C, b;, and (b; ® b;) are
column vectors in Voigt notation (Westin et al., 2016). The diagonal
matrix C with elements C;; = .S; was used to correct for heteroscedastic-
ity in the log-transformed data (Jones and Cercignani, 2010). The matrix
inversion in Eq. (15) was performed using the Moore-Penrose pseudoin-
version (Strang and Borre, 1997) in Numpy (Walt et al., 2011). uFA was
calculated according to Egs. (13) and (14).

3.2. Imaging experiments

Data was acquired using a prototype spin echo sequence
(Szczepankiewicz et al.,, 2019a) on a Siemens Magnetom Prisma 3T
(Siemens Healthcare, Erlangen, Germany) with a maximum gradient
strength of 80 mT/m, maximum slew rate of 200 T/m/s, and 64-channel
head coil at Great Ormond Street Hospital, London, United Kingdom.
Data was preprocessed with random matrix denoising (Veraart et al.,
2016) and Gibbs ringing correction (Kellner et al., 2016) using MRtrix3
(Tournier et al., 2019) and distortion correction using FSL’s topup and
eddy (Andersson and Sotiropoulos, 2016; Jenkinson et al., 2012).

Twelve diffusion encoding directions were used for b-values 0.1, 0.5,
and 1 ms/um? and 32 directions for b-values 1.5 and 2 ms/um?. The
directions were distributed uniformly around the surface of a sphere
by combining the vertex coordinates of the icosahedron and dodecahe-
dron (Westin et al., 2016). The protocol also included 15 images without
diffusion-weighting, one of which had the phase encoding direction re-
versed. Other relevant imaging parameters were: voxel size = 2 X 2 X
2 mm?, FOV = 256 x 256 mm?, TE = 103 ms, and phase partial Fourier
=6/8.

Data was acquired using numerically optimized (Sjolund et al., 2015)
and Maxwell-compensated (Szczepankiewicz et al., 2019c) gradient
waveforms encoding linear and spherical b-tensors (Fig. 1A-B). To avoid
peripheral nerve stimulation and gradient coil heating, the slew rate was
constrained to a maximum of 65 T/m/s when calculating the gradient
waveforms using the software provided by Sjolund et al. (2015). The
waveforms for both linear and spherical encoding were rotated accord-
ing to the diffusion encoding directions (Szczepankiewicz et al., 2019a).

Under the Gaussian phase approximation, the diffusion time of a QTE
gradient waveform can be quantified by calculating the power spectrum
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of the corresponding wave vector (Stepisnik, 1993):
2

TE
PSD(w) = ‘/ q(t) exp (—iwt)dt| , (19)
0

where PSD stands for power spectral density, q is the wave vector mag-
nitude along a single direction, and w is the diffusion frequency. The
power spectra of the Cartesian components of the unrotated waveforms
used in the imaging experiments are shown in Fig. 1E-F.

Since the STE waveform exhibits spectral anisotropy, which may lead
to an orientationally variant signal (Jespersen et al., 2019), the orien-
tational variance of the STE acquisition was quantified using the corre-
lation between the FA values estimated from LTE and STE data. If the
STE acquisition is orientationally invariant, non-zero values of FA cal-
culated from the STE data are caused by noise and they are uncorrelated
with the FA values calculated from the LTE data. DTI was fit separately
to LTE and STE data using a weighted linear least squares fit in Dipy
(Garyfallidis et al., 2014).

3.2.1. Volunteer experiments

The experiments were approved by the UCL Research Ethics Com-
mittee. Each participants gave written and informed consent prior to
the scan.

Three healthy adult volunteers (two females and one male with ages
ranging from 27 to 42 years) were scanned with whole-brain coverage
and the following imaging parameters: 60 slices, TR = 10 s, and 2 repeti-
tions. The total scan time was approximately 40 minutes per volunteer.
Areas of cerebrospinal fluid were excluded from the analysis by exclud-
ing the voxels where MD > 2.5 um?/ms.

The agreement between the uFA maps was quantified using the con-
cordance correlation coefficient p, (Lin, 1989), which quantifies the
agreement between two variables measuring the same quantity. The val-
ues of p, range from -1 to 1, with perfect agreement at 1.

3.2.2. Phantom experiments

A phantom consisting of highly hydrophilic hollow polycaprolactone
microfibres (Zhou et al., 2018) was imaged with the following imaging
parameters: TR = 3 s, 10 slices, and 1 repetition. The phantom contained
three regions of interest (ROI) with different fibre configurations: par-
allel fibres, perpendicularly crossing fibres, and fibres with random ori-
entations. The inner diameter of the fibres was 9.9 + 1.2 um (mean +
standard deviation) in the ROI containing parallel and crossing fibres,
and 7.8 + 0.5 pm in the ROI containing randomly oriented fibres. Scan-
ning electron microscope images illustrating the microstructure of the
phantom are shown in Fig. 2.

The acquisition protocol was repeated 11 times to study the precision
of uFA. The coefficient of variation (CV) was calculated at each voxel as
CV = (6/u) - 100%, where ¢ is the standard deviation of uFA estimated
using a given method over the repeated acquisitions and y is the mean
UFA averaged over all acquisitions and methods. A single value of y was
used to not penalize the methods that produce lower values of uFA.

3.3. Simulation experiments

GPU-accelerated Monte Carlo random walk simulations were per-
formed using Disimpy (Kerkeld et al., 2020) to compare the signal
models in a scenario where the ground truth was known and to as-
sess UWFA bias due to time-dependent diffusion. The functionality of
the simulator has been confirmed by comparing the simulated sig-
nals to analytical solutions using simple geometries, such as cylinders
and spheres. Validation examples are available on the documentation
(https://disimpy.readthedocs.io).

3.3.1. Simulated microstructure

The simulated microstructure, shown in Fig. 3A, consisted of
1,713,598 triangles generated using ConFiG numerical phantom gen-
erator (Callaghan et al., 2020) to represent a white matter region with
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(A) LTE (B) STE (QTE) (C) STE (TDE1) (D) STE (TDE2) Fig. 1. The diffusion encoding gradient waveforms
—_ used in the imaging experiments (A-B) and simula-
—y tions (A-D), and the corresponding power spectra
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Fig. 2. Representative scanning electron microscope im-
ages illustrating the microstructure of the parallel microfi-
bres phantom (A) and the randomly oriented microfibres
phantom (B). The phantom with crossing microfibres was
made from the same sample as the one with parallel mi-
crofibres.

Fig. 3. (A) The simulated voxel containing 381 axon-
mimicking fibres. (B) A histogram of the fibre radii (mean
along the fibre length). The dashed line denotes the proba-
bility distribution from which the target radii where sam-
pled. The fibre radii skew towards smaller radii than the
target distribution due to the fact that as the fibres grow in
ConFiG, they often have to shrink to fit into the available
space.

(B) M
50 —
5401 -
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S 30 1 \
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g 20
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dispersed axons. Palombo et al. (2019) have shown that the triangula-
tion of a simulated cell membrane has a small effect on the simulated
signal. The target orientation distribution of the fibres was drawn from
a Watson distribution with k¥ = 2 (Mardia and Jupp, 2009), target radius
distribution was drawn from a gamma distribution with mean of 1 um
and standard deviation of 0.1 pm, and target fibre density was 70%.
The resulting voxel contained 381 irregular and impermeable axon-
mimicking fibres at a fibre density of 60%. The fibre radii skew towards
smaller radii than the target distribution, as seen in Fig. 3B, due to the
fact that as the fibres grow in ConFiG, they often have to shrink to fit
into the available space. Periodic boundary conditions were used, i.e.,
the random walkers that left the voxel encountered repeating identical

copies of the shown microstructure. To ensure that the ends of the fibres
matched, cut fibres were extended with mirrored copies of themselves
in the directions aligned with the main fibre direction, and the final
voxel included 50% of the mirrored copies. In the plane perpendicular
to the direction of the fibres, the fibres were grown in a way that ensures
periodicity. The volume of the simulated voxel was 39 x 39 x 32 um?.

3.3.2. Simulation details

Three simulation experiments were performed. Simulation 1 was
performed using QTE and simulations 2 and 3 using TDE. The TDE wave-
forms encoding spherical b-tensors consist of three gradient pulse pairs
with orthogonal directions and with identical diffusion encoding times
(8), diffusion times (A), and gradient magnitudes. Similarly to DDE, the
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difference between the onset of the subsequent gradient pulses with or-
thogonal directions is referred to as mixing time (7).

In each simulation, 3 - 10° random walks were generated using dif-
fusivity of 2 pm?/ms. 5 - 103 random walkers were randomly placed
inside each fibre and 1.095 - 10° in the extra-axonal space. Step length
| was 0.31 um and duration d¢ was 8.1 ps. When a random walker col-
lided with a surface, it was elastically reflected off the collision point in
such a way that the walkers total path length during dt was equal to /.

3.3.3. Simulation 1
Simulation 1 was performed using the same waveforms as the imag-
ing experiments (Fig. 1A-B). 10* time steps were used.

3.3.4. Simulation 2

Following the approach proposed by Lundell et al. (2019, 2017),
Simulation 2 was performed with the waveforms shown in Figs. 1A and
1 C (6 =35ms, A = 7 = 44 ms) to reduce the parameter bias due to spec-
tral anisotropy of the spherical waveform and the discrepancy between
the diffusion times of the waveforms encoding linear and spherical b-
tensors. The power spectra of the Cartesian components of the unrotated
TDE waveform (Fig. 1G) matches that of the linear waveform (Fig. 1E).
It is important to note that the power spectrum of the unrotated TDE
waveform is identical along x, y, and z but not along arbitrary direc-
tions. 31,720 time steps were used to keep the step length consistent
with Simulation 1.

3.3.5. Simulation 3

To further reduce the effects of time-dependent diffusion, Simula-
tion 3 was performed with TDE waveforms with short pulses, and long
diffusion and mixing times (§ = 3 ms, A = = = 100 ms). The long mixing
time allows the random walkers to more fully sample their environ-
ments, minimizing the correlations between their positions during the
different gradient pulse pairs. This is an important requirement for pFA
estimation with DDE and TDE, which does not require the assumption
of time-independent Gaussian intra-compartmental diffusion (Jespersen
etal., 2013; 2019). The waveform encoding spherical b-tensors is shown
in Fig. 1D. The waveform encoding linear b-tensors was a TDE wave-
form with the same direction for the three pulse pairs and with the same
pulse length, diffusion time, and mixing time as the spherical waveform.
62,195 time steps were used to keep the step length consistent with Sim-
ulation 1.

3.3.6. Noise addition

To study the precision of pFA, SNR of the simulated signals was low-
ered to 25. Signals with Rician noise (Gudbjartsson and Patz, 1995) were
generated as

Shoisy = V(S + X)* + Y2, (20)

where S is the simulated signal without noise and X and Y are ran-
domly sampled from a normal distribution with zero mean and standard
deviation o. Here, SNR refers to the signal without diffusion-weighting
divided by ¢. Noise addition was performed 10* times.

To confirm that the noise due to finite number of spins was much less
than the added noise, Simulation 1 was repeated 5 times with different
pseudorandom number generator seeds. SNR, estimated as the signal
without diffusion-weighting divided by the mean standard deviation of
the signals generated with different seeds, was 5,027.

3.3.7. Ground-truth uFA

The ground-truth pFA was calculated according to Eq. (2) by sep-
arately fitting diffusion tensors to the LTE signals from each com-
partment, i.e., the individual fibres and extra-axonal space. The dif-
fusion tensors were estimated by fitting diffusion and kurtosis tensors
(Jensen et al., 2005) to data using a weighted linear least squares algo-
rithm in Dipy (Garyfallidis et al., 2014). To vary the ground-truth pFA,
three signal fractions for the spins in the intra-axonal space (fi,a) Were
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Fig. 4. Representative axial slices of the pFA maps in one of the volunteers
calculated using the cumulant model (A), higher-order model (B), gamma model
(C), and QTI (D).

used: 0.2, 0.6, and 1. The total signal was calculated as a weighted sum
of the signals from the walkers in the intra- and extra-axonal spaces.

4. Results
4.1. Imaging experiments

4.1.1. Volunteer experiments

Representative axial slices of the uFA maps in one of the volunteers
are shown in Fig. 4. A visual inspection reveals that the higher-order
model and gamma model result in greater uFA values than the cumu-
lant model and QTI. The best agreement, as measured by the concor-
dance correlation coefficient, was found between the cumulant model
and QTI (p, = 0.91), followed by the cumulant model and gamma model
(p, = 0.85), higher-order model and gamma model (p, = 0.85), gamma
model and QTI (p, = 0.81), higher-order model and QTI (p, = 0.64), and
cumulant model and higher-order model (p. = 0.64).

Fig. 5 shows representative axial slices of the difference maps in one
of the volunteers. The cumulant model and QTI produced very simi-
lar maps. WFA maps estimated using the higher-order model exhibited
smaller contrast between gray matter and white matter than the other
methods, as can be seen particularly clearly in Fig. 5D. The gamma
model produced greater values of pFA than the cumulant model and
QTI consistently across the brain. In white matter, the gamma model
also produced greater values of pFA than the higher-order model.

The Bland-Altman plots in Fig. 6 show the voxel-wise differences
between the methods’ pFA estimates against their mean values across
all volunteers. The good agreement between the cumulant model and
QTI can be seen in the small mean difference (0.02) and the relatively
small width of the 95% central range of the differences (0.18). Because
P; was constrained to be negative, the higher-order model resulted in
higher values of uFA than the cumulant model in each voxel. On aver-
age, the higher-order model produced greater values of pFA than the
other methods, especially at lower values of uFA, which are found in
gray matter. When averaged over the whole brain, pFA values produced
by the gamma model were 0.12 greater than the cumulant model and
0.10 greater than QTI.
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Fig. 5. Representative axial slices of the difference
maps highlighting the differences between the meth-
ods’ UFA estimates in one of the volunteers.

Fig. 6. Voxel-wise comparison of the pFA maps. The
differences are plotted against their mean value. The
solid lines depict the mean difference. The dashed
lines show the 2.5th and the 97.5th percentiles of
the distribution of the differences. Colour represents
data point density.
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A significant correlation (R? = 0.13, p < 10~3) was found between the
FA maps (provided in the supplementary information) calculated from
the data acquired with linear and spherical b-tensors, revealing that the
acquisition with isotropic diffusion-weighting was moderately orienta-
tionally variant.

The average SNR, as quantified by the mean signal divided by the
standard deviation over the images without diffusion-weighting, was 28.

4.1.2. Phantom experiments

UFA values averaged over the phantom ROIs from the repeated acqui-
sitions are shown in Fig. 7A-C. The gamma model consistently resulted
in the greatest values of pFA, followed by the higher-order model, cu-
mulant model, and QTI. The differences in mean pFA calculated using
the different signal models were statistically significant in all pair-wise
comparisons using an independent samples t-test (p < 10~3). Despite the
smaller fibre radius, uFA was the lowest in the ROI with randomly ori-
ented fibres due to the lower packing density of the microfibres.

The distributions of the voxel-level CVs are shown in Fig. 7D-F. The
median CVs were well below 2%, indicating good repeatability in voxels
with high puFA. The higher-order model stood out for having the lowest
repeatability, especially in the phantom ROIs with crossing or randomly
oriented fibres. A significant correlation (R? = 0.11, p < 10~3) was found
between the FA maps calculated from the data acquired with waveforms
encoding linear and spherical b-tensors.

The average SNR was 123 as quantified by the mean signal divided
by the standard deviation over the images without diffusion-weighting.

4.2. Simulation experiments

The results of the simulation experiments are presented in Fig. 8.
The ground-truth uFA was 0.34 for fi,;a = 0.2, 0.59 for fi,a = 0.6, and
0.97 for fiya = 1. Furthermore, Bland-Altman plots of the simulation
results are presented in Fig. 9.

In Simulation 1, all methods overestimated pFA and the bias was
greater at lower values of ground-truth pFA (Fig. 8A-C). In Simulation
2, the application of the TDE waveform whose power spectrum along
three orthogonal directions matches that of the linear waveform reduced
the overestimation of uFA for all methods (Fig. 8D-F). In Simulation 3,

the application of the TDE waveforms with short pulses, long diffusion
times, and long mixing times further reduced the bias (Fig. 8G-I). These
results show that both the discrepancy between the diffusion times of
the waveforms encoding different b-tensor shapes, and the correlations
between the spins’ positions during the diffusion encoding along differ-
ent directions can result in overestimation of uFA. However, the simu-
lations suggest that the bias is small in white matter, where pFA is high.
The average positive bias caused by time-dependent diffusion, i.e., the
difference between the expected pFA in simulations 1 and 3, was 0.11
for fingra = 0.2, 0.09 for fiya = 0.6, and 0.04 for fiy,, = 1.

The accuracy of the signal models for pFA estimation was assessed
using the results from Simulation 3 which are not confounded by the bias
induced by time-dependent diffusion. The mean squared error (MSE) be-
tween the expected value of uFA and the ground-truth value was 1.8 -
1073 for the cumulant model, 5.4 - 10~3 for the higher-order model, 12.7
- 1073 for the gamma model and 1.6 - 1073 for QTL In terms of preci-
sion, the average CV of uFA was 6.6% for the cumulant model, 10.6%
for the higher-order model, 6.6% for the gamma model, and 8.5% for
QTI. However, pFA is heteroscedastic and the precision of each method
strongly depended on the ground-truth pFA.

The higher-order model is motivated by the b-value-dependent un-
derestimation of pFA using the cumulant model. Indeed, the higher-
order model produced more accurate estimates of pFA when the cumu-
lant model underestimated pFA. However, because P; was constrained
to be non-negative, the higher-order model could not produce lower
values of pFA and thus it provided even more inaccurate estimates in
situations where the cumulant model overestimated uFA. Allowing Py
to take negative values improved the accuracy (MSE = 2.0 - 1073.) but
greatly destabilized the fit (mean CV = 24%). In most cases, at the b-
values used in the simulations, the underestimation due to the invalidity
of the cumulant expansion of the powder-averaged signal was not strong
enough to cancel the overestimation.

5. Discussion

Over recent years, MDE methods have gained significant attention
for their ability to disentangle the orientation dispersion of anisotropic
microscopic diffusion environments and the size variance of microscopic
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Fig. 8. The distributions of the uFA estimates cal-

culated from the simulated signals after 10* repe-
titions of noise addition to lower SNR to 25. f,,,
is the signal fraction of the intra-axonal space. (A-
C) Results of Simulation 1. (D-F) Results of Simula-
tion 2. (G-I) Results of Simulation 3. The dashed
line denotes the ground-truth pFA. The blue line
denotes the median. The box spans the interquar-
tile range. The whiskers extend to the furthest data
point within 1.5 - IQR from the 1st or the 3rd quar-
tile.
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diffusion environments, enabling microscopic diffusion anisotropy to be
measured without a priori information about tissue microstructure. Sev-
eral microscopic diffusion anisotropy estimation methods have been in-
troduced (de Almeida Martins and Topgaard, 2016; Henriques et al.,
2020a; Ianus et al., 2018; Jespersen et al., 2013; Lasi¢ et al., 2014;
Westin et al., 2016), yet the differences between the methods have re-
ceived little attention thus far. The purpose of this study was to as-
sess the accuracy and precision of pFA estimates calculated using dif-
ferent signal models. pFA was chosen as the metric of interest for its
connection to conventional FA that is well known in the neuroscience
community. The cumulant model, gamma model, and QTI were chosen
as the signal models of interest for their numerous applications in re-
cent neuroimaging studies (Andersen et al., 2020; Kamiya et al., 2020;
Lampinen et al., 2020; Szczepankiewicz et al., 2015; 2016; Westin et al.,
2016; Yang et al., 2018). The higher-order model was included in the
study for it being a simple extension to the cumulant model that has
been shown to improve the accuracy of pFA estimation in animal stud-
ies using DDE (Ianus et al., 2018). To our knowledge, only two studies
have previously focused on comparing pFA estimation methods: Ianus
et al. (2015) compared the cumulant model using DDE to the gamma
model using TDE, and Reymbaut et al. (2020) compared the gamma
model, QTI, and Monte Carlo inversion methods by explicitly modelling
the tissue as a distribution of microscopic diffusion tensors using Eq. (1).

T T T T
PFAcum WFAno nFAgam nFAqm

In another relevant study, Martin et al. (2020) estimated the covariance
tensor using QTI and investigated how pFA relates to other microscopic
diffusion anisotropy indices in terms of contrast-to-noise ratio. In this
study, four pFA estimation methods were applied on MRI data acquired
using a clinical whole-body scanner and on synthetic data generated by
simulating time-dependent diffusion.

In this study, the gamma model suffered from the greatest bias in
the simulation experiments and consistently produced greater pFA val-
ues than the other methods in healthy white matter, fibre phantom,
and simulations. The disagreement between the gamma model and the
other methods was expected as the gamma model assumes the distribu-
tion of apparent microscopic diffusivities to follow a gamma distribu-
tion whereas the other methods are based on the truncated cumulant
expansion. It is important to emphasize that although the assumption of
gamma-distributed axon radii may be justified in real tissues (Lee et al.,
2019), the radii of our simulated axons did not follow a gamma dis-
tribution (Fig. 3B). Furthermore, gamma-distributed axon radii is not
a sufficient condition for the apparent diffusivities to follow a gamma
distribution. Reymbaut et al. (2020) have also reported that the gamma
model produces biased estimates when the signal strongly deviates from
a monoexponential decay, as is the case in white matter. However, they
also reported that QTI results in biased estimates in the case of signif-
icant size variance of microsocpic diffusion environments. Therefore,
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given the microstructure-dependent bias, the results presented here can
not be generalized to all situations. Nevertheless, our results showed
a consistent disagreement between the gamma model and the second
order cumulant expansion, which must be taken into account when in-
terpreting reported results.

In terms of precision, the higher-order model stood out for being the
most sensitive to noise. This is most likely explained by the third order
polynomial fit’s sensitivity to signal variation. Allowing P; to take neg-
ative values further destabilized the fit. The higher-order model’s low
precision probably prevents it from being useful in most human neu-
roimaging studies. In the phantom experiments, the voxel-specific CV of
UFA from all methods was low with the majority CV values being well
below 2%, indicating very good repeatability in voxels with high mi-
croscopic diffusion anisotropy. However, since the phantom contained
highly anisotropic microfibres, this result was expected based on pre-
vious reports of how the precision of uFA is high in voxels with high
WFA but quickly diminishes with a decreasing value of uFA (Ianus et al.,
2016; Kerkeld et al., 2020; Lasic et al., 2014; Szczepankiewicz et al.,
2015; 2019b).

The pFA estimation methods used here assume intra-compartmental
kurtosis to be negligible, which can result in biased estimates in the
case of time-dependent diffusion (Henriques et al., 2020a; 2021). Our
simulation experiments showed that the combination of trapezoidal lin-
ear gradient waveforms and isotropic encoding with QTE can lead to a
significant overestimation of uFA, a result that has been discussed in de-
tail by Lundell et al. (2019). As a solution, they proposed designing the
linear waveform so that its power spectrum matches that of the spher-
ical waveform at least along one direction. Indeed, in the simulations,
the accuracy of pFA estimates was improved when the power spectra
were matched. However, the simulations also showed that this is not
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Fig. 9. Comparison of the uFA estimates calcu-
lated from the simulated data. The differences
are plotted against their mean value. The solid
lines depict the mean difference. The dashed
lines show the 2.5th and the 97.5th percentiles
of the distribution of the differences. Colour
represents data point density.
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sufficient for accurate estimation of uFA. The accuracy of puFA further
improved when a TDE waveform with short pulses, long diffusion time,
and long mixing time was applied, eliminating the correlations between
the positions of the random walkers during the applications of the gradi-
ent pulse pairs, an important assumption in the theory of pFA estimation
with DDE (Jespersen et al., 2013). However, the simulated TDE wave-
forms are completely unrealistic in today’s human neuroimaging exper-
iments because of their duration and gradient strength requirements.
Considering that the bias in pFA induced by time-dependent diffusion
was small when the ground-truth pFA was high, as is the case in white
matter, and the effects of time-dependent diffusion are easier to observe
in Monte Carlo random walk simulations than in the brain (Gyori et al.,
2020), these results support using QTE for pFA estimation in human
white matter.

This study has several limitations. Most importantly, the accuracy
and precision of uFA estimation depend on the details of the acquisi-
tion protocol which was kept constant here. For instance, the effect of
b-values and diffusion encoding directions was outside the scope of this
study. Also, the problem of designing optimal gradient waveforms for
MDE experiments, discussed in detail by Szczepankiewicz et al. (2020),
was outside the scope of this study. Furthermore, our acquisitions with
the lowest b-value may be affected by perfusion effects that may cause
parameter bias. However, the focus of this study was to assess the per-
formance of the signal models relative to each other when applied on
the same data. It also must be mentioned that the microfibre phantom
used for studying the precision of uFA contains fibres that are too large
to be representative of white matter microstructure. In the simulations,
the effects of orientation dispersion, distribution of axon radii, packing
density, and membrane permeability were not assessed because the sim-
ulated geometry was kept constant across the simulations. Also, the pe-
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riodic boundary conditions introduced unrealistic periodicity into the
simulated microstructure. Nevertheless, the simulated fibre geometry,
generated using the algorithm by Callaghan et al. (2020), resembles real
axons and enabled the uFA estimates to be compared to a known ground
truth. Finally, although Lee et al. (2021, 2020) have shown that a larger
number of random walkers may be necessary to accurately calculate the
moments of the displacement distribution, we only analyzed the simu-
lated signal, which had converged, as shown by our results that are in
good agreement with previously reported results (Callaghan et al., 2020;
Hall and Alexander, 2009; Rafael-Patino et al., 2020). Future studies
should address the mentioned limitations to facilitate the optimal use of
UFA.

6. Conclusion

The gamma-distributed diffusivities assumption produced greater
values of uFA than the second order cumulant expansion. The simula-
tions showed that matching the power spectrum of the linear waveform
to the power spectrum of a component of the spherical waveform is not
sufficient for accurate estimation of pFA. Nevertheless, the simulations
suggest that the bias in uFA caused by time-dependent diffusion is small
in human white matter.

Data and code availability

Code for reproducing the results will be made available at https:
//github.com/kerkelae/ufa-model-comparison.
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