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Figure 1: Given a dynamic scene with rigidly moving objects, RigidFusion performs 4D reconstruction from RGB-D frames (left) and
outputs camera motion (shown in green curves), fused object geometries (rendered with light blue and golden yellow), and their respective
trajectories (shown in brown/purple curves). Two novel-view reconstructions from two time steps are shown on the middle panel, with frame
numbers Fi corresponding to different time steps.

Abstract
Although surface reconstruction from depth data has made significant advances in the recent years, handling changing envi-
ronments remains a major challenge. This is unsatisfactory, as humans regularly move objects in their environments. Existing
solutions focus on a restricted set of objects (e.g., those detected by semantic classifiers) possibly with template meshes, as-
sume static camera, or mark objects touched by humans as moving. We remove these assumptions by introducing RigidFusion.
Our core idea is a novel asynchronous moving-object detection method, combined with a modified volumetric fusion. This is
achieved by a model-to-frame TSDF decomposition leveraging free-space carving of tracked depth values of the current frame
with respect to the background model during run-time. As output, we produce separate volumetric reconstructions for the back-
ground and each moving object in the scene, along with its trajectory over time. Our method does not rely on the object priors
(e.g., semantic labels or pre-scanned meshes) and is insensitive to the motion residuals between objects and the camera. In
comparison to state-of-the-art methods (e.g., Co-Fusion, MaskFusion), we handle significantly more challenging reconstruc-
tion scenarios involving moving camera and improve moving-object detection (26% on the miss-detection ratio), tracking (27%
on MOTA), and reconstruction (3% on the reconstruction F1) on the synthetic dataset. Please refer the supplementary and the
project website for the video demonstration (geometry.cs.ucl.ac.uk/projects/2021/rigidfusion).

CCS Concepts
• Computing methodologies → Reconstruction; Tracking; Video segmentation; Image segmentation;

1. Introduction

Capturing accurate 3D scene geometry from RGB-D input in un-
controlled setups is a long-standing challenge in shape acquisi-
tion. Robust solutions now exist for capturing static scenes by

fusing raw depth scans across multiple frames to recover from
incomplete and noisy measurements [CL96, RHHL02, NIH∗11,
CBI13, NZIS13, KPR∗15, KDSX15, DNZ∗17]. However, there are
only limited options for capturing dynamic scenes (e.g., requir-
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Figure 2: RigidFusion’s reconstruction preview and timeline. Our
method runs at 1 fps with a delay of ∆ frames. The short delay
between the background and foreground module allows the system
to accumulate more free space information.

ing background initialization [MS14, RA17], using semantic pri-
ors [RBA18,XLT∗19a,SS19,HGDG17,XLT∗19b,SS19,MCB∗18],
exploiting scene flow information [BIZ18, GKM∗17], or handling
deformable objects [NFS15, IZN∗16, DKD∗16, SBCI17]). This is
rather surprising since our surroundings are mostly dynamic as ob-
jects are moved around in course of our regular interactions, for
instance, a person moves a box, table, or chair. The ability to faith-
fully record indoor environments with moving objects would open
up many possibilities to capture our environments in their natural
settings using commodity hardware and, in turn, provide rich data
priors in terms of object shape, motion, and interactions.

The primary challenge in reconstructing dynamic scenes is to
mask out any human movements, and factorize individual object(s)
and camera motion from raw depth scans to produce 4D reconstruc-
tions in the form of fused static objects along with their respective
motion trajectories in addition to the inferred camera trajectory.
This information allows generating a motion-compensated fused
output that integrates information from multiple frames, while ac-
counting for individual objects’ motions. Note that in absence of
prior knowledge about object shape, its deformation model, or mo-
tion trajectories, dynamic scene reconstruction amounts to seg-
menting the scene into (moving) objects and tracking their motion
through time. Here, we focus on scenes with rigidly-moving ob-
jects, arising due to human interactions. The problem is particu-
larly difficult due to a cyclic dependency: on the one hand, in order
to track and group pixels into segments, we have to rely on the co-
herence of their estimated (rigid) movement; on the other hand, in
order to estimate per-pixel trajectories, we need to know segment
groupings.

In order to account for the cyclic dependency above, previ-
ous work breaks cyclic dependency by discovering foreground
objects using motion residuals [RA17] or grouping local mo-

tions [GKM∗17]. However, the motion cues can be ambiguous,
especially when the camera are moving, and the local patches of
indoor objects are usually under-constrained [GIRL03]. Our key
idea is to discover the foreground object through the accumulated
free space information and the background model from multiple
frames, which has been shown as an effective signal for outlier re-
moving [PBL∗19]. The free-space grid and the background model
are used to separate moving elements using a frame-to-model back-
projection of the input frames. Instead of performing an expensive
global optimization for solving a complete background model, we
employ a delayed process at the beginning to regularize the prob-
lem, as shown in Figure 2. In addition, we segment out pixels of
humans in image space to facilitate real-world scanning scenarios
with an operator interacting with moving objects. The prediction
of human segmentation may be inaccurate or missing. To purge
outlier pixels, we utilize free space information in the foreground
model. Aside from this off-the-shelf human segmentation method,
our method requires no learning or training data, is agnostic to the
underlying volumetric fusion framework, and runs at interactive
frame rates after the initialization step.

In addition to real-world scanning cases for qualitative evalua-
tion and comparisons on established datasets (Co-Fusion, MaskFu-
sion), we introduce a new benchmark dataset using synthetic scene
models and suitably adapted motion planning library [ŞMK12] to
generate physically plausible object motions recorded as RGB-D
frames from synthesized camera trajectories. This synthetic data
provides ground truth geometry and motion trajectories that we use
for quantitative comparison against related methods (Co-Fusion,
MaskFusion). The dataset consists of a training set for fine tun-
ing segmentation network for evaluation purpose and a test set as
a benchmark dataset. The training set covers 39,068 scenes and
has a total of 151,335 RGB-D frames and the test set covers 20
scenes and containing 7851 frames. An evaluation protocol is also
proposed for quantifying performance of 4D reconstructions. In a
series of experiments, we show that RigidFusion outperforms state-
of-the-art methods by a significant margin, can handle significantly
more challenging real-world cases, and provide reconstruction pre-
view at the run-time.

In summary, our main contributions are:

• a novel joint formulation of segmentation-by-reconstruction and
object pose tracking that enables 4D reconstructions through de-
composing the underlying TSDF rotations in individually recon-
structed fused volumes;
• an end-to-end pipeline that runs at interactive rates combined

with a human semantic segmentation network to address a wide
range of real-world scanning cases;
• in addition to challenging real-world scenes, we introduce a new

dataset for quantitative evaluation (20 scenes) and training se-
mantic priors (39,068 scenes), where our method shows substan-
tial improvements, especially for foreground reconstruction and
tracking, over competing methods.

2. Related Works

RGB-D Reconstruction. With the wide availability of consumer-
grade RGB-D sensors, such as the Microsoft Kinect, a wide range
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of dense, RGB-D reconstruction approaches have been introduced.
The core idea of these methods is to accumulate a series of RGB-
D frames into a shared voxel representation, often a signed dis-
tance field [CL96], even at interactive rates [RHHL02]. Most re-
cent approaches are highly parallelized and run on the GPU with
KinectFusion being one of the most popular methods [NIH∗11].
In order to tackle larger environments, sparse scene representa-
tions, such as hierarchical data structures [CBI13] or spatial voxel
hashes [NZIS13] were introduced that even run on mobile de-
vices [KPR∗15, KDSX15]. While these approaches have achieved
remarkable success, the main shortcoming is the inability to handle
dynamic scenes.

Background Reconstruction in Dynamic Scenes. Generalizing
static methods to handle dynamic scenes requires handling of a
significant number of background outliers (i.e., moving objects),
which must be detected. Therefore, tracking with robust kernel
based methods have been proposed [SJP∗18, PBL∗19] and space
information embedded in distance field is used as additional outlier
rejection signals [Zha13, PBL∗19]. This family of methods, how-
ever, does not track and reconstruct foreground objects.

Sparse Motion Estimation and Transformation Cluster-
ing. Feature-based tracking has demonstrated impressive results
in SLAM applications [MAMT15] and provides another avenue
to address multiple motions in dynamic scenes, such as cluster-
ing sparse point trajectory [HYZ∗19] or solving via a graph la-
beling formulation [JGN18]. Dense motion segmentation problem,
however, still remains unsolved. Bertholet et al. [BIZ18] proposed
an offline method that invokes multiple optimization steps, includ-
ing sparse optical flow clustering, sparse-to-dense association using
Euclidean distance, dense pose estimation, and sparse label assign-
ment using a graph formulation. However, sparse-to-dense associ-
ation is non-trivial and limited to discriminative texture regions.

Dense Reconstruction in Dynamic Indoor Scenes. Reconstruct-
ing dynamic surfaces is also related to our approach. In the con-
text of RGB-D scanning, we have seen several popular recon-
struction frameworks running in real-time, including Dynamic-
Fusion [NFS15], VolumeDeform [IZN∗16], Fusion4D [DKD∗16],
KillingFusion [SBCI17]. These works focus on the joint recon-
struction on tracking of a single, deformable object using either a
single or multiple RGB-D stream input with known object segmen-
tation. Our work is complementary to this line, as we aim to re-
construct large scenes in uncontrolled settings with rigidly-moving
objects and do not require object segmentation in the input.

Dense Motion Segmentation with Rigid Transformation. Dense
reconstruction in the dynamic indoor scenes with rigid motion con-
straint is still a relatively new research topic. The main challenge
is simultaneously handling the uncertainty of detecting unknown
moving objects and tracking static background under a moving
camera. Ma and Sible [MS14] proposed to detect moving objects in
frame-to-frame fashion by examining the background model built
in the static initialization stage. Multiple moving objects are ex-
tracted by finding the disjoint region on the outlier mask. CoFu-
sion [RA17] follows a similar concept but requires a static pe-
riod to initialize background models. Then, moving objects are de-
tected using a conditional random field (CRF) with alignment er-

rors, color, depth, and 2D position as features. Note that the above
methods [MS14,RA17] relies on using the alignment errors to find
moving objects, which implicitly assumes camera motion is static
or distinguishable from object motions.

Dense Motion Segmentation with Object Priors. More recently,
MaskFusion [RBA18] leverages semantic labels from MaskR-
CNN [HGDG17] for detecting objects and identifies moving ob-
jects using color, geometry cues, and motion residuals. While such
semantic prior is useful, it only provides a rather weak initialization
for motion segmentation in complex scenes with rigidly moving
objects (i.e., many semantic objects but only a few moving ones)
and suffers from low recall. To alleviate the low recall issue, MID-
Fusion [XLT∗19b] and EMFusion [SS19] accumulate instance pre-
diction and back-project instance priors using volumetric grids.
These methods require to know the semantic classes of moving ob-
jects and still assume background objects can be filtered out using
alignment errors. Other interesting directions include incorporat-
ing dense scene flow [MWH∗19], or using known object shapes
as foreground priors [RPMR13,RPK∗17]. In contrast, RigidFusion
can handle non-static camera motion, without relying on user input,
and is not limited to particular object classes or shapes.

Datasets. In an effort to generate large-scale repositories along
with ground truth data in the context of 3D indoor setting, ef-
forts have been devoted to static scenes [ASZS17, DCS∗17] or
for simulating robotic perception [XRZH∗18]. Recent frame-
works have started investigating synthetic setups with dynamic ob-
jects [KMG∗17,PRB∗18]. However, they either focus on a handful
of interactions using static cameras [PRB∗18] (e.g., making a cup
of coffee), or target on simulating specific object-agent interactions
such as Open-and-Pickup [KMG∗17]. We introduce a new dataset
of synthetic objects rigidly moving along with ground truth trajec-
tories and object reconstructions, and also a set of real world scenes
where objects are rigidly moved by human operators.

3. Algorithm

3.1. Overview

Our method takes as input a sequence of RGB-D frames {Fi}
captured using a moving camera recording a dynamic scene with
rigidly moving object(s). We assume the setup to satisfy two con-
ditions: dense recording, i.e., the input frames come as a continuous
RGB-D video; and objects either remaining static or rigidly being
moved, one at a time, by a human operator. Note that although we
assume a single object to be moving at any time, we do not require
any object segmentation priors, such as in MaskFusion [RBA18].
As output, we produce a 4D reconstruction in the form of consol-
idated static background mesh, camera trajectory, and the consol-
idated foreground object meshes along with the respective object
trajectories over time.

In order to break the cyclic dependency between rigid track-
ing and motion segmentation, RigidFusion proceeds in the follow-
ing steps: (i) background reconstruction and camera estimation,
(ii) asynchronous foreground reconstruction, (iii) optional post-
processing, and (iv) mesh extraction. We now describe the indi-
vidual steps.
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Figure 3: RigidFusion’s system flowchart. (a) The background model and input depth at the early frame. Humans are detected and masked
out.(b) The background model and input depth at the time i (equal to j+∆). (c) The foreground model and the unknown segmentation u j.
(d) The background model is reset (due to the status change of the tracked object trigger the model de-activation). (e) The foreground models
and the unknown segmentation at the later frame.

3.2. Background Reconstruction and Camera Estimation

Human Detection and Masking Since we focus on captur-
ing background and rigidly moving objects, we first perform hu-
man detection in each frame Fi. We apply a DensePose [GNK18,
WKM∗19] detector to acquire a human mask. We reset the depth of
the pixels under the detected mask to be zero for each frame to serve
as the input for subsequent processing. This masking stage not only
avoids the existence of non-rigid objects interfering with the cam-
era tracking but also removes the requirement that humans should
continuously move, as commonly assumed in [PBL∗19, SJP∗18].

Free-Space Aware TSDF Fusion To reconstruct a (static) scene,
we employ volumetric fusion using sparse voxel hashing on an oc-
cupancy grid [CL96, NZIS13]. Specifically, in a volumetric grid,
at each voxel we store a signed distance to the closest (recorded)
surface as calculated by back-projection from the input depth.

Recall that in the standard implementation, only the voxels
near the recorded surface are stored, i.e., a truncated signed dis-
tance field (TSDF) is progressively built. Additionally, RigidFusion
maintains, using voxel hashing, free space counts to identify free

space (outside) voxels, i.e. the voxels that have been frequently ob-
served and have positive distance larger than the truncation margin.
In Figure 4, red/blue denote negative/positive SDF values (under-
lying surface marked in green) that are within the truncation range,
while gray cells denote outside free cells. We use this free-space
information to prevent foreground signals from polluting the back-
ground model.

Camera Tracking Optimization In our tracking formulation, we
use 6D vectors ξ ∈ se3, encoded as instantaneous velocity us-
ing Lie algebra, to represent a 4× 4 rigid transformation T . To
transform a spatial point, we convert ξ to a 4× 4 transformation

Figure 4: TSDF illustration. The green curve, gray, blue, and red
cells represent the surface, free space, positive and negative trun-
cation regions, respectively.
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matrix using exponential map, denoted by exp, as described in
[NIH∗11,MSL94]. To perform camera tracking, we employ frame-
to-SDF registration [BSK∗13,PBL∗19]. Given the input as a RGB-
D frameFi at time i, we solve for the best increment transformation
ξ to align the input frame to the TSDF model as,

T(c)
i = exp(ξ) ·T(c)

i−1, (1)

where T(c)
i represents the estimated camera pose at the frame i.

Our tracking objective E includes both geometry and color inten-
sity cost functions and is defined as

E(ξ) = ESDF (ξ)+αEI(ξ), (2)

where α is a scalar weight for balancing the two terms. The geo-
metric cost term ESDF minimizes the signed distance value of the
transformed input point set P, as any surface voxel has zero singed
distance values, and hence a perfectly aligned point set should have
a zero residual. The input points are firstly transformed into the
world space using the accumulated pose T(c)

i−1.

ESDF (ξ) = ∑
p∈P

(ψg(T(c)
i p))2 = ∑

p∈P
(ψg(exp(ξ) ·T(c)

i−1 p))2, (3)

where ψg represents a signed distance function ψg : R3 → R that
takes a 3D point and returns a truncated signed distance value from
the TSDF model. The photometric cost term EI minimizes the dif-
ference of color intensity between the transformed input points
p ∈P to the corresponding voxels in the model, where I represents
the input intensity map by converting the input RGB to relative lu-
minance as,

EI(ξ) = ∑
p∈P

(ψI(T
(c)
i p)− I(p))2. (4)

Here, ψI represents a color interpolation function ψI : R3 → R,
which takes a point and returns an interpolated color intensity from
the TSDF model. To optimize our objective (2), we apply Gaussian
Newton solver while linearizing the objective around the initial ξ.

Background Model Update We take the estimated pose and trans-
form the input frame to integrate the new information. Note that we
prevent any surface (depth pixels) being integrated into free voxels.
Please refer to [CL96] and our supplementary for details about the
integration steps.

3.3. Asynchronous Foreground Reconstruction

We regularize the foreground segmentation problem by assuming
only one rigidly moving object at any point. Note that our proposed
scheme still captures multiple moving objects over an entire scan
session, and perform well when camera motion is large. We tested
our method on medium-scale scenes, e.g., 30-100 sqm.

Segmentation by Reconstruction We define the unknown fore-
ground segmentation u j at the time j as the depth pixels that un-
project to the free space of the background model. We apply con-
nected component filtering to remove small blobs and initialize a
new active object if the area of u j is larger than a threshold. We
empirically set the threshold to 1% of image size. Note that remain-
ing false positives are later removed in our foreground deactivation

step (see later) due to the lack of correspondences detected using
tracking failures.

Delayed Processing For motion segmentation, a frame-to-frame
approach, such as [RA17, SJP∗18], cannot guarantee the observed
motion signals are sufficient because an object may move slowly.
Instead, we delay foreground tracking by a pre-defined window size
∆ (60 frames), leading to a delayed reconstruction in the foreground
modules at run-time to gather more background information as
shown in Figure 2. In other words, when the foreground module
is processing the frame at the time i, the background module has
processed the frames until the time i+∆. Hence, the extracted un-
known foreground segments u j at the time j can directly access the
future background model during segmentation-by-reconstruction
step. This step is similar to doing scene completion during regis-
tration [SC18], in the sense that the foreground module can use a
completed background model. Note that our asynchronous process-
ing does not add any extra memory overhead and only has a short
delay in the beginning.

Foreground Tracking and Reconstruction To estimate the pose
Tk

j of the active object k at the time j, as well as reconstruct its
geometry, we apply the same tracking optimization and free-space
aware fusion used in background module (in Sec. 3.2). Note that,
during foreground tracking, we still perform frame-to-SDF track-
ing without an instance mask since the non-foreground pixels will
receive zero gradients in the foreground TSDF model.

Handling Multiple Objects by Deactivation In RigidFusion, we
assume multiple objects do not move simultaneously. We deactivate
any active object under any of the following conditions: (i) an active
object becomes static over a period of time (i.e., accumulated pose
difference is less than 1e-4 over the last ∆/2 frames); (ii) an active
object moves out of the camera view; or (iii) an active object cannot
be successfully tracked for more than ten frames.

Once a deactivation event is triggered, we temporarily reset the
background model (i.e., allocate a new TSDF model) and freeze
foreground detection for ∆ frames to prevent inactive objects being
re-detected in the unknown segment proposal u j.

3.4. Post-Processing

After processing all input frames, we can perform an optional post-
process step (PS). During this step, we re-optimize full 4D recon-
struction. First, given the captured foreground models and trajecto-
ries, we perform backward tracking for each object from its first de-
tected frame to the first frame. This step can recover some missing
frames. Second, we re-build background reconstruction by using a
high-resolution grid and re-optimize the camera trajectory

{
T (c)

i

}
.

During this optimization, the already inferred foreground models
are used to mask out foreground pixels by depth ray-casting. Thus
it improves the camera tracking accuracy.

3.5. Mesh Extraction

To output surface reconstruction, we perform Marching Cube on
both foreground and background models, and extract respective 3D
meshes along with their corresponding trajectories.
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4. Benchmark Dataset

In this section, we introduce our data generation pipeline and
benchmark tasks supported by our dataset. We derive our dataset
from a synthetic collection of 3D scene layouts and a set of
publicly-sourced CAD models. Our goal is to create ground truth
data where we virtually move objects around by simulating real-
world scanning scenarios with dynamic environments with rigidly-
moving objects. To this end, we simulate the motion of moving
objects over a series of time steps (frames). We observe the scene
from a virtual static/moving camera in a given scenery to render
out RGB-D frames, along with ground truth semantic segmenta-
tion, and per-object instance labels with associations over frames.
Our frame resolutions for RGB-D and labels are 640×480. Along
with the respective camera poses and camera intrinsics, this forms
the ground truth of our benchmark dataset. In total, our dataset con-
tains 39K scenes, consists of 159K RGB-D frames, poses, and seg-
mentations.

4.1. Data Generation

We developed an automatic data synthesis toolkit to generate mo-
tion in indoor scenes. By considering the complexity of the 4D
reconstruction problem, our design choices are made to avoid
some object tracking challenges, including object re-identification,
heavy occlusion, and tracking small objects, to focus on the joint
tracking-and-segmentation problem. We selected scenes with suffi-
cient scene complexity with objects that are being moved around,
identify a target motion position, and compute a representative mo-
tion pattern from source to target motion positions. For each such
scene, we select a start camera position and generate a virtual cam-
era trajectory.

In the following, we detail each step:

• Room selection: we calculate free space ratio of a room as the
amount of empty space left on the floor mask and reject the
overly cluttered ones.
• Object selection: we (uniform) randomly select objects to be

moved using the surface normals to avoid selecting flat objects
(e.g., a whiteboard), which does not has good geometry signals
for tracking.
• Goal position sampling: we sample collision-free positions by

moving the selected model in the room.
• Motion generation: based on the original object position and

the goal position, we generate a motion trajectory while avoiding
collisions. We use a tree-based path planner [ŞMK12] to solve
for such motions. Note that we restrict movements to 2D rigid
rotation and translation on the XZ plane (floor plane) in order to
create a more reasonable motion (instead of flying motion).
• Camera selection: we sample several camera positions in a

room by estimating both 2D and 3D occlusion ratios of the target
object using rendered binary images and 3D bounding box of the
target. We prefer less occluded views.
• Generate camera motions: we generate random translation to

move a camera locally and rotate the XZ direction of a camera
by using the dynamic object’s position and gradually following
the moving object.

4.2. Dataset Analysis

By using our toolkit, we generated 39,068 motion sequences span-
ning 151,335 RGB-D frames and 14 object categories (such as
chair, sofa, and bed). The generated sequences are used as a train-
ing data for fine-tuning a segmentation network [HGDG17], which
is required for instance segmentation based methods [RBA18,
XLT∗19a, SS19]. Then, for the evaluation purpose (in Section 5),
we generated another 20 sequences with longer motion as a test set,
which contains 7851 frames in total. The average length of camera
movement is 5.1m and object trajectory length is 8.6m. The rooms
have an average of 6 models leaving out walls, floors, and ceilings.
We select moving objects from the sofa, table, desk categories in or-
der to focus on joint tracking-and-segmentation instead of handling
small objects. Two examples are shown in the supplementary.

4.3. Benchmark Tasks

Reconstruction (Precision/Recall) In order to assess surface re-
construction quality on our benchmark, we reconstruct ground truth
fusion [CL96] using the ground truth poses, ground truth segmen-
tation, and depth frames. We consider the fusion result to be the
ground truth reconstruction mesh Mg. Note that this mesh Mg is
different from the actual 3D mesh in the synthetic model since it
contains occlusions from the virtual scanning. This usage of Mg
aims to evaluate the reconstruction quality instead of the hidden
surface prediction. We formulate the evaluation metric between this
ground truth mesh Mg and the reconstruction result Mr using a bi-
directional Chamfer distance (denoted as CD). Specifically, we cal-
culate Precision and Recall based on the squared distance between
every vertex in one mesh and the corresponding nearest vertex in
the other mesh; i.e., a point is considered to be captured if there is a
nearest neighbor within 3cm (Recall); a point is considered to be an
outlier if there is no neighbor within 3cm (Precision). Please refer
Figure 2 in the supplementary for the visualization.

Tracking (MOTA/MISS/BAD/MOTP) Our dataset provides
ground truth trajectories for both the camera and the mov-
ing objects. We employ multiple object tracking metrics in-
cluding multiple object tracking accuracy (MOTA) and preci-
sion (MOTP) [BS08]. MOTA shows the percentage of frames are
tracked using ground truth mesh centroid c as a landmark (i.e.,
the frames have position error smaller than 5cm) and penalize
drift (BAD), and missing detection (MISS); MOTP estimates the
average position error of the tracked frames,

MOT P({T e
i }) :=

√
1
N

N

∑
i
‖T e

i c−T g
i c‖2, (5)

where T e
i and T g

i respectively represent an estimated pose and a
ground truth pose of at each frame Fi and N being the total number
of tracked frames. Note that MOTP does not include the errors from
the lost tracked frames (BAD frames).

Note that the standard MOTA and MOTP measures are designed
for 2D visual tracking and allow trackers to switch targets. In con-
trast, we enforce one-to-one mapping between the ground truth and
the output by calculating MOTA on each trajectory independently
and selecting the best pair to evaluate its tracking and reconstruc-
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tion. Please refer to Section 2 and Figure 3 in the supplementary
for corresponding visualization.

5. Results and Discussions

We compare RigidFusion with different state-of-the-art recon-
struction methods, including VoxelHashing (VH) [NZIS13],
BundleFusion (BF) [DNZ∗17], StaticFusion (SF) [SJP∗18], Re-
Fusion (RF) [PBL∗19], CoFusion (CF) [RA17], MaskFusion
(MF) [RBA18], EM-Fusion (EM) [SS19], and MID-Fusion
(MID) [XLT∗19a] on both synthetic and real-world datasets. We
use the above abbreviation of comparison throughout the rest of
the paper.

To evaluate with the prior based approach [RBA18], we fine-
tuned MaskRCNN on our synthetic dataset (Section 4.2) and pre-
computed instance segmentation. Our trained model reaches 70.2
average precision (AP) on instance segmentation task, which shows
the model is capable of providing reasonable object priors. For
evaluating on real-world data, we used the pre-trained model on
CoCo dataset [LMB∗14] and manually select the semantic class of
moving objects for each testing example.

Computational Time and Implementation Details We mea-
sure the computational time of RigidFusion for processing a single
frame in each module (Figure 3 and Section 3) as follows - Hu-
man detection: 0.38s. BG tracking and model updating: 0.07s. FG
tracking and model updating: 0.10s. Segment-by-Reconstruction
takes: 0.44s. Due to the asynchronous process (as shown in Fig-
ure 2), our system has (0.38+ 0.07)×∆ seconds delay at the be-
ginning (includes human detection and background tracking). Each
frame contains an active foreground object takes around one sec-
ond (0.38+ 0.07× 2+ 0.44) to process. The post-process step in
Section 3.4 takes 0.45 second for each frame. We summarize the
system parameters in the supplementary. All the experiments are
performed on a desktop machine with Intel Core i7-6700K 4.00
GHz CPU, 32GB memory, and GTX 1080Ti GPU.

5.1. Evaluation on Our Synthetic Benchmark

In Table 1 and Figure 5, we conduct a quantitative and qualitative
evaluation on our synthetic dataset along the two main axes: recon-
struction and tracking, as introduced in Section. 4. The reconstruc-
tion F1 score shows the balance between reconstructing surfaces
and removing noises, and the MOTA metric shows the accuracy and
the completeness of tracking results. The missing detection metric
(MISS) is only employed for the foreground because a system must
first detect a target then perform tracking.

Background Tacking and Reconstruction In Table 1, we eval-
uate different methods’s background tracking and reconstruc-
tion performance. VoxelHashing [NZIS13] and BundleFusion
[DNZ∗17] are the off-the-shelf methods designed for static scenes,
which can be seen as a performance reference. Their reconstruction
and tracking performance are low due to the existence of dynamic
elements.

ReFusion [PBL∗19] is an example of robust background recon-
struction methods and reaches a F1 of 0.63 on background recon-

struction and a MOTA of 66% on camera tracking. ReFusion aver-
ages out foreground voxels in the TSDF model by additionally in-
tegrating free-space voxels and remove high residuals pixels using
a flood-filling algorithm. However, its performance is still affecting
by pixels from the foreground.

CoFusion [RA17] and MaskFusion [RBA18] are state-of-the-art
methods based on ElasticFusion [WSMG∗16]. Interestingly, their
MOTA for background tracking is 16-19% lower than ReFusion.
We found this is due to two reasons: The false positives of the
moving object detection remove many geometry signals for cam-
era tracking. And the weighting mechanism adapted from Elastic-
Fusion, which prefers not using newly observed points.

RigidFusion achieves the best F1 (0.74) and MOTA (68%) on the
background tasks without performing the post-processing step (w/o
PS, Section 3.4). This is benefited from our aggressive outlier purg-
ing strategy (Section 3.2, free-space aware fusion). With the post-
processing step, our system’s performance can be further enhanced
by 0.12 on background reconstruction F1 and 2% on background
tracking MOTA.

Foreground Detection, Tracking, and Reconstruction In Ta-
ble 1, we evaluate RigidFusion’s foreground reconstruction, detec-
tion, and tracking accuracy against other methods. To reconstruct
foreground objects in a RGB-D sequence, a system needs to firstly
detect the moving objects. This step is non-trivial because too many
false positive detections not only increase the computation costs but
also remove the geometry signals for background tracking.

Both CoFusion [RA17] and MaskFusion [RBA18] detect a new
foreground object by examing the estimated camera motion resid-
uals. This approach’s major disadvantage is being sensitive to the
actual camera motion (moving direction and magnitude) and the
selection of the detection threshold. This causes a high missing de-
tection ratio (MISS) and makes these two methods require a static
or slow camera setup. This observation is also reported in the pre-
vious work [SJP∗18].

MaskFusion utilizes a very good segmentation prior (73 mAP)
and hence achieves a higher recall and F1 on foreground recon-
struction. However, the semantic segmentation does not directly
solve the motion segmentation. When the motion segmentation
is given, such as TUM f3w sequences in Table 4 (major moving
objects are humans), MaskFusion has better background tracking
than CoFusion and achieves competitive performance as ReFu-
sion [PBL∗19]. Inversely, when motion segmentation is non-trivial,
i.e. input masks may contain static objects, such as our dataset (Ta-
ble 1 and Figure 6) and CoFusion dataset (Table 5), MaskFusion
does not have performance gains on the tracking.

Notably, RigidFusion’s foreground miss detection is signifi-
cantly lower than the comparisons (15% and 26% lower than CoFu-
sion and MaskFusion). This is benefited by employing the segment-
by-reconstruction strategy, which is insensitive to the relative mo-
tion between the moving object and the camera. Hence, Rigid-
Fusion can detect foreground quickly when both foreground and
background have non-static movements. With the post-process step
(Section 3.4), the reconstruction F1 and MOTA can be enhanced by
0.05 and 4% respectively. In Figure 5, we shows a qualitative com-
parison.
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(a) GT (b) CF [RA17] (c) MF [RBA18] (d) Ours

Figure 5: Result comparison on RigidFusion dataset. Note that the moving object is positioned at the first detected frame. In contrast to ours,
both CoFusion and MaskFusion result in ghosting in the background due to delayed moving object detection.

Table 1: 4D reconstruction quality on our benchmark comparing against state-of-the-art methods. Overall, our method achieves a sig-
nificantly lower missing detection ratio and better recall/outlier balance than the other approaches. Symbol ‘-’ denotes that the metric is
non-applicable. Please refer to supplemental material for the examples of the employed error metrics and 4D reconstruction videos.

Object
Priors

Background Foreground

Reconstruction Tracking Reconstruction Tracking

F1 Recall Prec. CD (m) MOTA (%) BAD (%) MOTP (m) F1 Recall Prec. CD (m) MOTA (%) MISS (%) BAD (%) MOTP (m)

VH no 0.58 0.66 0.52 0.15 49 51 0.024 - - - - - - - -

BF no 0.44 0.61 0.37 0.18 38 60 0.017 - - - - - - - -

RF no 0.64 0.67 0.62 0.09 66 34 0.023 - - - - - - - -

CF no 0.73 0.72 0.74 0.07 50 50 0.030 0.38 0.27 0.70 0.26 32 39 29 0.030

MF yes 0.67 0.70 0.64 0.08 47 53 0.030 0.53 0.47 0.70 0.29 33 50 17 0.031

Ours w/o PS no 0.74 0.69 0.79 0.08 68 32 0.025 0.51 0.41 0.74 0.31 55 24 21 0.026

Ours no 0.86 0.83 0.90 0.04 70 30 0.025 0.56 0.44 0.88 0.13 59 13 28 0.025

5.2. Evaluation on Real-world Data

Scenes with different levels of camera motion We recorded four
dynamic scenes with different settings, including a small desktop
scene with a near static camera and medium scale scenes with non-
static camera motions, using a Structure Sensor developed by Oc-
cipital Inc. mounted to an iPad AIR2. The scene settings are sum-
marized in Table 2. We rank the ambiguity of the camera motion
from low to high using the estimated camera trajectories and the
annotated foreground masks on the frame that a dynamic object
appears or starts to move. In addition, to achieve a fair comparison,
we passed to other methods input frames with the human regions
masked out.

In Figure 6, we compare RigidFusion against CoFusion [RA17]
and MaskFusion [RBA18]. In Table 3, we show the frame index
of the foreground being detected by each method and the corre-
sponding delay frame number. The results of Scene 1 show when
the camera motion is very small, both CoFusion and MaskFusion
can detect foreground objects within a short delay. When a camera
has non-static motion, as in Scene 2 to Scene 4, both CoFusion and
MaskFusion suffer from long delayed detection and cause severe
errors in tracking and reconstruction. This observation coincides
with the evaluation results in Table 1, where both CoFusion and
MaskFusion suffer from high MISS ratios. RigidFusion produces
significantly better reconstruction results in all four examples, out-
put visually completed object trajectories, and maintain low detec-
tion latency as shown in 6.

Camera Tracking Accuracy In Table 4, we carry out an evalua-
tion on camera tracking in dynamic scenes using the TUM RGB-
D dataset, freibur3, and report ATE-RMSE. Note that this dataset

contains many far-range pixels. RigidFusion ’s camera tracking is
comparable to alternate methods, especially in high-dynamic walk-
ing examples, although not the best.

What if the camera tracking fails? In this case, our method and
all comparison [PBL∗19, RA17, RBA18, SS19, XLT∗19a] will fail
to produce a reasonable reconstruction result since camera tracking
(or reconstruction) is used for identifying foreground objects.

Does the proposed method mainly benefit from having the fore-
ground movement assumption? While the foreground movement
assumption (i.e., objects do not move simultaneously) helps to sim-
plify the instance segmentation step, the evaluation results in Sec-
tion 5.1 and Section 5.2 show the major limitation of previous work
is the moving object detection step in scenes with moving cameras,
i.e., when to initialize the first foreground tracking and which pix-
els to group. The multiple object association-and-tracking problem
comes after a system having more than one tracked foreground ob-
jects. From Table 3 and Figure 6, we can see a long delayed de-
tection such as CoFusion’s result on Scene3 produces a noisy and
rather partial reconstruction.

5.3. Evaluation on CoFusion Dataset

In Table 5, we evaluate RigidFusion on the CoFusion’s synthetic
data [RA17] and report ATE-RMSE. For Airship object in Room4
sequence, both MaskFusion [RBA18] and EMFusion [SS19] fails
to associating segments across frames and output a fragmented tra-
jctories. Compared to the other methods, RigidFusion consistently
produces better camera tracking and improves foreground tracking
in Room4 sequence without using object priors.
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Input Depth CF [RA17] MF [RBA18] Ours

Scene 1

Scene 2

Scene 3

Scene 4

Figure 6: Qualitative evaluation on real-world data. In each scene, the first row: full 4D reconstructions; the second row: foreground
trajectories and reconstruction results. The scene settings are listed in Table 2. The scenes are ordered based on camera motion and the
scene size. Our method can work on both low-dynamic and high-dynamic setting and output plausible results.
submitted to EUROGRAPHICS 2021.
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Table 2: The statistics of our real-world examples.

Scene1
(two objects)

Scene2
(two objects)

Scene3
(one object)

Scene4
(one object)

Scene size 2.4x0.6 m2 4.5x3.0 m2 4.3x2.2 m2 5.9x4.5 m2

Camera motion 2.7 cm/s 25.3 cm/s 10.5 cm/s 39.2 cm/s
BG’s median

motion residuals
4.32E-04 9.65E-05 1.22E-04 4.85E-04

FG’s median
motion residuals

9.70E-01 1.01E-04 1.43E-04 7.87E-04

Motion
ambiguity

Low Medium High High

First dynamic
frame / total frame #

11 / 350 134 / 635 26 / 270 1 / 209

Table 3: The evaluation of moving object detection on our real-
world examples. We show the number of delayed detection frames
(Delay #) using the output trajectories. Clearly, RigidFusion has
the lowest detection latency. Symbol ’n/a’ represents the object is
not detected and ’-’ indicates there are no object 2.

Scene1
(two objects)

Scene2
(two objects)

Scene3
(one object)

Scene4
(one object)

FG ID
Detection
Methods

Delay # Delay # Delay # Delay #

CF 11 27 145 144
MF 11 12 120 21

Ours w/o PS 3 10 5 0
Object1

Ours 3 0 0 0
CF 3 n/a - -
MF 7 0 - -

Ours w/o PS 4 6 - -
Object2

Ours 3 0 - -

Tracking methods versus moving object detection meth-
ods Table 5 shows that the accuracy of the moving object de-
tection step is more important than the underlay tracking meth-
ods. Note that both CoFusion and MaskFusion use surfel track-
ing [WSMG∗16], while EMFusion uses volumetric based tracking
but employs a similar moving object detection step as MaskFu-
sion using semantic priors. EMFusion utilizes its volumetric model
to improve semantic segmentation. Therefore its object tracking
is better than MaskFusion. However, EMFusion and MaskFusion
still have similar error patterns in camera tracking, and both have
higher ATE-RMSE than CoFusion. In contrast, RigidFusion em-
ploys segment-by-reconstruction strategy and volumetric based
tracking and achieves the best in class camera tracking perfor-
mance.

What if our foreground movement assumption is not hold?
RigidFusion assume foreground objects are not moves simultane-
ously. If this assumption is not hold, our method will only track
the dominated foreground object. One example is the ToyCar3 se-
quence in Table 5. where the two cars moves simultaneously and
Car1 is the dominated foreground object.

6. Conclusion

We investigated the problem of 4D reconstruction of scenes with
moving objects as recorded from a moving camera and proposed
RigidFusion to simultaneously solve for objects’ motion and seg-

Table 4: Background tracking on TUM RGB-D dataset. f3s and f3w
represent sitting and walking cases in freiburg3 respectively.

AT-RMSE (in cm)

Methods
Human
Priors

Object
Priors

f3s
static

f3s
xyz

f3s
halfsphere

f3w
static

f3w
xyz

f3w
halfsphere

SF no no 1.3 4.0 4.0 1.4 12.7 39.1

RF no no 0.9 4.0 11.0 1.7 9.9 10.4

CF no no 1.1 2.7 3.7 55.1 69.6 80.3

MF yes yes 2.1 3.1 5.2 3.5 10.4 10.6

MID yes yes 1.0 6.2 3.1 2.3 6.8 3.8
EM yes yes 0.9 3.7 3.2 1.4 6.6 5.1

Our yes no 1.9 5.4 12.9 1.8 9.0 7.6

Table 5: Comparison of foreground tracking on CoFusion’s syn-
thetic dataset. Symbol ‘†’ represents the corresponding moving ob-
ject is not detected. MaskFusion does not detect Horse due to the
delay detection and camera tracking drift, as reported in [SS19].
Our method does not detect Car2 and Horse due to they simultane-
ously move with other objects, but our approach achieves the best
tracking accuracy on Airship, Car and Camera.

AT-RMSE (in cm)

ToyCar3 Room4
Object
Priors

Camera Car1 Car2 Camera Car Airship Horse

CF no 0.61 7.78 1.44 0.93 0.29 0.96 5.8

MF yes 20.6 1.53 0.58 1.41 2.66
6.46

(13.6 / 2.3 / 3.5)
†

EM yes 0.95 0.77 0.18 1.37 2.1
0.91

(0.6 / 1.4 / 0.8)
3.57

Ours no 0.46 1.9 † 0.58 1.0 0.55 †

mentation. We conducted both qualitative and quantitative evalu-
ations and reported systematic improvement in terms of tracking
and reconstruction errors. Our approach, being non-learning based,
is not restricted to objects with semantic labels, and hence can be
used to collect training data for typical object movements under
real-world interactions.

Limitations Our approach has two main limitations: (i) only al-
lows one active object at a time: we believe this can be addressed
by incorporating class-agnostic priors across multiple frames;
(ii) large run time: as mentioned in Section 5, the major bottle-
necks are the human detector [GNK18], which we believe can be
improved by adapting a real-time human detector, and the segment-
by-reconstruction step, which can be sped up by using parallel pro-
cessing on GPU as the volumetric fusion step.

Future work We would like to investigate supplementing our ac-
tive object detection step with motion segmentation priors. Such
an approach, however, requires bridging the synthetic real gap in
terms of generalization as we do not have supervision datasets with
ground truth motion for dynamic scenes, like those we consider in
our paper.
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