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Background and Objective. Electronic health records (EHRs) contain free-text information on symptoms, diagnosis, treatment,
and prognosis of diseases. However, this potential goldmine of health information cannot be easily accessed and used unless
proper text mining techniques are applied. 'e aim of this project was to develop and evaluate a text mining pipeline in a
multimodal learning architecture to demonstrate the value of medical text classification in chest radiograph reports for car-
diovascular risk prediction. We sought to assess the integration of various text representation approaches and clinical structured
data with state-of-the-art deep learning methods in the process of medical text mining. Methods. We used EHR data of patients
included in the Second Manifestations of ARTerial disease (SMART) study. We propose a deep learning-based multimodal
architecture for our text mining pipeline that integrates neural text representation with preprocessed clinical predictors for the
prediction of recurrence of major cardiovascular events in cardiovascular patients. Text preprocessing, including cleaning and
stemming, was first applied to filter out the unwanted texts from X-ray radiology reports. 'ereafter, text representation methods
were used to numerically represent unstructured radiology reports with vectors. Subsequently, these text representation methods
were added to prediction models to assess their clinical relevance. In this step, we applied logistic regression, support vector
machine (SVM), multilayer perceptron neural network, convolutional neural network, long short-term memory (LSTM), and
bidirectional LSTM deep neural network (BiLSTM). Results. We performed various experiments to evaluate the added value of the
text in the prediction of major cardiovascular events. 'e two main scenarios were the integration of radiology reports (1) with
classical clinical predictors and (2) with only age and sex in the case of unavailable clinical predictors. In total, data of 5603 patients
were used with 5-fold cross-validation to train the models. In the first scenario, the multimodal BiLSTM (MI-BiLSTM) model
achieved an area under the curve (AUC) of 84.7%, misclassification rate of 14.3%, and F1 score of 83.8%. In this scenario, the SVM
model, trained on clinical variables and bag-of-words representation, achieved the lowest misclassification rate of 12.2%. In the
case of unavailable clinical predictors, the MI-BiLSTM model trained on radiology reports and demographic (age and sex)
variables reached an AUC, F1 score, and misclassification rate of 74.5%, 70.8%, and 20.4%, respectively. Conclusions. Using the
case study of routine care chest X-ray radiology reports, we demonstrated the clinical relevance of integrating text features and
classical predictors in our text mining pipeline for cardiovascular risk prediction. 'e MI-BiLSTM model with word embedding
representation appeared to have a desirable performance when trained on text data integrated with the clinical variables from the
SMART study. Our results mined from chest X-ray reports showed that models using text data in addition to laboratory values
outperform those using only known clinical predictors.
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1. Introduction

Electronic health records (EHRs) data have become increasingly
available to researchers as more hospitals, clinics, and practices
have adopted data digitization. EHRs store data in different
modalities, such as structured data (e.g., demographic values,
laboratory results, and medications) and unstructured texts (e.g.,
referral letters, clinical notes, discharge summaries, and radiology
reports). 'is digitization creates an opportunity to mine the
health records to increase the quality of care and clinical out-
comes. Yet, clinicians have limited time to process all the available
data and detect patterns across similar medical records. Deep
learning andmachine learning, on the other hand, are suitable for
discovering useful patterns from a vast amount of data.

Unstructured texts contained within the EHRs are rec-
ognized as a rich but not easily accessible and usable source of
medical information [1–6]. Recent studies have attempted to
derive information from unstructured medical texts to classify
disease codes [7–10], detect patient’s disease history [11, 12],
and predict hospital readmission or clinical outcomes [13–15].
X-ray radiology reports are an example of such unstructured
data describing radiologist’s observations on patient’s medical
conditions associated with medical images. 'e majority of
previous decision support systems for radiology reports are
developed using rule-based approaches applied on unstruc-
tured and semistructured texts [16–19]. However, these
methods are often impractical because they do not generalize to
new data and often are not applicable for big data analysis [20].

Recent studies have shown promising results using free-
text radiology reports and deep learning models to predict
clinical outcomes [17, 21–25]. Convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs) are
two common deep learning techniques that have been ef-
fective in text mining and natural language processing
(NLP), as well as EHR applications [7, 15, 21, 26, 27]. Deep
learning-based modelling of radiology reports has been
proposed to supersede the simple grammatical patterns and
hand-crafted regular expressions of the traditional clinical
rule-based software, such as PEFinder [28], MedLEE
[29, 30], and CTakes [31]. While these neural networks
models gained tremendous momentum in knowledge dis-
covery from EHR texts, there are very seldom studies that
used both free-texts and structured information in EHRs for
clinical prediction and classification [32–35].

In this paper, we leveraged structured features in EHR
data to combine with free-text radiology reports to uncover
patterns to improve cardiovascular risk prediction. Free-text
within EHRs might contain additional information for
clinical prediction modelling, either as an added variable to
improve prediction performance compared to current
models or as an auxiliary variable to increase the flexibility of
prediction in the case of inaccessible clinical data.

'e contributions of this study are twofold. 'e first
contribution is to develop and evaluate a text mining
pipeline for capturing additional information from text. 'e
second is the use of chest X-ray reports from routine care as
free-text in combination with the laboratory values, collected

in the Second Manifestations of ARTerial disease (SMART)
study [36], in a multimodal architecture to predict the re-
currence of cardiovascular events in cardiovascular patients.

2. Materials and Methods

In this section, we describe the case study, data ethics and
privacy, and the details of our proposed text mining pipeline.

2.1. Case Study

2.1.1. Patient Population. 'e patients included in this study
were originally included in the SMART study. 'e design of
the SMART study is published elsewhere [36]. In short, the
SMART study is an ongoing single-center prospective cohort
study designed to establish the presence of additional arterial
disease and risk factors for atherosclerosis in patients with
vascular disease or a vascular risk factor. Patients visiting the
University Medical Center (UMC) Utrecht for evaluation of
any atherosclerotic cardiovascular condition are eligible for
inclusion in SMART.'e inclusion criteria are presenting with
an atherosclerotic cardiovascular condition and age >18 years.
Exclusion criteria are life expectancy <3 months, unstable
vascular disease, and insufficient fluency in theDutch language.
A total of 5603 SMART patients were included in this analysis.
'e characteristics of the patients are listed in Table 1.

2.1.2. Clinical Variables. Variables that are predictors in the
SMART study [36] (age; sex; smoker; systolic blood pres-
sure; diabetes; HDL cholesterol; total cholesterol; renal
function according to the MDRD formula; history of car-
diovascular disease stratified for stroke, peripheral artery
disease, abdominal aortic aneurysm, and coronary heart
disease; and years since diagnosis of first cardiovascular
disease) were used for prediction modelling for all patients.

2.1.3. Chest X-Ray Reports. Free-text reports from chest X-rays
that were taken in SMART patients, which were made in routine
care, were extracted from their EHR and included in this analysis.

2.1.4. Ethics and Privacy. Informed consent was obtained
through established procedures. 'e SMART study was
approved by the Medical Ethical Committee of the UMC
Utrecht. All data are handled according to local data pro-
tection guidelines and privacy regulations.

2.2. Text Mining Pipeline. Figure 1 illustrates the text mining
pipeline for the prediction task. 'e goal is to forecast the
major cardiovascular events (MACE) during follow-up as the
outcome prior to clinical variables and chest X-ray reports.

2.2.1. Preprocessing. Clinical variables were preprocessed by
missing value imputation and a normalization step. Miss-
ingness of data was solved using the MICE package [37] with
one imputation for each missing value. As an additional
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normalization step, the clinical variables were rescaled to
homogenize their levels of variance.

In preprocessing the radiology reports, the following steps
were performed to improve the quality of text data for the
subsequent steps: (1) all characters were transformed into
lowercase; (2) we removed numbers and some meaningless
punctuation marks, such as semicolons and colons; and (3)
stop words were then removed. Dutch stop words used in this
study are shown in Table 2. (4) We then applied Porter’s
stemming algorithm [38, 39] to texts. Figure 2 shows the 20
most frequent words before and after the preprocessing step for
the X-ray radiology report in the SMART study. “Klinisch
(clinical)” and “xthorax (chest X-ray)” appeared in all reports as
they denote the indication of the test and type of X-ray;
therefore, we removed them as noninformative stop words.
Other words were merged into their stem words.

2.2.2. Representation and Feature Extraction. Text repre-
sentation includes dimensions in which text is represented in
a vector space model. We explored three text representation
techniques used in the text mining pipeline:

(i) Bag-of-words (BOW)
(ii) Clustering-based representation
(iii) Word embedding

We used three different techniques: an interpretable
method, a method with a low-dimensional output, and a less
interpretable and more semantic-based technique to be able
to assess their differences in performance in mining addi-
tional information for clinical prediction modelling.

(i) Bag-of-Words. 'e BOW representation is the most com-
monly used representation for text mining applications [11].
Words in the reports were converted into a sparse multidi-
mensional representation, which was leveraged for further clas-
sification and clustering purposes. Representation of text includes
frequencies of words per patient’s text report. 'is is a method
that is relatively easy to understand and interpret for clinicians.

(ii) Clustering-Based Representation. We applied latent
Dirichlet allocation (LDA) [40] to further cluster the BOW
representation of patient radiology reports. LDA is a topic
modelling approach that groups a collection of documents to
obtain the probabilities of the distributions of doc-
ument–topic and topic–word in the data set. 'is method has
the advantage of using an interpretable lower-dimensional
representation of text and the disadvantage of lacking the
capacity of methods that use all features of unstructured
medical notes. We ran the experiments fitting the LDA topic
model with Gibbs sampling [11, 40] using 10 topics. Figure 3
shows two topics of the output of LDA applied to the X-ray
radiology reports in the SMART study. Potential clinical
scenarios that fit these topics are (a) possible cardiac de-
compensation and (b) possible pneumonia.

(iii) Word Embedding. Neural network-based word em-
bedding incorporates not only the contexts of a word but
also the semantic relation with other words [1, 41, 42]. We
used a window of five words for the context words that were
used in this representation technique. Subsequently, word
vectors were aggregated for each patient report.

2.2.3. Classification Algorithms. In the text mining pipeline,
independent variables are the clinical variables and features
extracted from radiology reports, though these features differ per
text representation approach. MACE as defined by the SMART
study was used as an outcome variable. We made a total of six
different algorithms to be able to study both baseline and the
state-of-the-art machine learning methods and their additional
value for clinical risk prediction.

(i) Baseline Models. Using traditional machine learning
classifiers, we applied an LR model and a support vector
machine (SVM) algorithm to data from the SMART case
study. If the interpretation of a model is of primary interest,
LR parameters can easily be interpreted in terms of the log
odds. SVM on the other hand is a supervised learning
technique that produces nonlinear boundaries by con-
structing a linear boundary in a large, transformed version of

Table 1: Characteristics of the patients.

Characteristics Total n� 5603
Age, years, mean (SD) 56.2 (12.5)
Female sex, n (%) 1926 (34.4)
Current smoker, n (%) 1549 (27.6)
History of CVD
CHD, n (%) 2166 (38.7)
Stroke, n (%) 1076 (19.2)
PAD, n (%) 631 (11.3)
AAA, n (%) 306 (5.5)
Years since first diagnosis of CVD, median
(IQR) 0 (0–4)

Risk factors for CVD
Diabetes mellitus, n (%) 1047 (18.7)
Hypertension, n (%) 2353 (42.0)
Dyslipidemia, n (%) 432 (7.7)

BMI, kg/m2 (mean (SD)) 26.8 (4.3)
SBP, mmHg (mean (SD)) 140 (21)
DBP, mmHg (mean (SD)) 83 (13)
Total cholesterol, mmol/L (mean (SD)) 5.14 (1.38)
LDL-cholesterol, mmol/L (mean (SD)) 3.1 (1.16)
HDL-cholesterol, mmol/L (mean (SD) 1.27 (0.38)
Triglycerides, mmol/L (median (IQR)) 1.7 (1.2–2.5)
MDRD, ml/min/1.73m2 (median (IQR)) 80 (68–91)
HbA1c, mmol/mol (median (IQR)) 5.7 (5.4–6.1)
Glucose, mmol/L (median (IQR)) 5.7 (2.6–6.4)
Hemoglobin, mmol/L (mean (SD)) 6.0 (2.04)
Creatinine, μmol/L (median (IQR)) 84 (73–97)

CRP, mg/L (median (IQR)) 1.95
(0.90–4.20)

TSH, mU/l (mean (SD)) 0.9 (0.09)
MACE during follow-up, n (%) 1385 (24.7)
CVD: cardiovascular disease; CHD: coronary heart disease; PAD: pe-
ripheral arterial disease; AAA: abdominal aortic aneurysm; BMI: body mass
index; SBP: systolic blood pressure; DBP: diastolic blood pressure; LDL:
low-density lipoprotein; HDL: high-density lipoprotein; MDRD: modifi-
cation of diet in renal disease; HbA1c: hemoglobin; A1c CRP: C-reactive
protein; TSH: thyroid-stimulating hormone; MACE: major cardiovascular
events.
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the feature space, and it scales relatively well to high di-
mensional data, such as unstructured texts [43].

(ii) Deep Learning Models. We studied using the state-of-the-
art deep learning methods: a CNN, a long short-term memory
(LSTM) RNN, and a bidirectional LSTM (BiLSTM)
[7, 15, 21, 26]. We also employed a feed-forward multilayer
perceptron neural network for the case of no text presented to
the model. However, multilayer perceptron is not well adapted
to textual data [1, 8, 26]. 'is is because it is defined for vectors
as input data; hence, to apply it to texts, we must transform the
texts into vectors. CNN, LSTM, and BiLSTM are deep learning
architectures that have removed the manual extraction of
features from text data.

2.2.4. Multimodal Neural Network. Figure 4 illustrates the
proposed deep learning-based architecture for the text
mining pipeline. In this architecture, we propose a multi-
modal learning model using a BiLSTM deep neural network.

'e multimodal neural network architecture consists of
an embedding layer, a BiLSTM layer, a dropout, a concat-
enation layer, and dense layers.

2.2.5. Embedding Layer. To extract the semantic information
of radiology reports, each text is firstly represented as a se-
quence of word embeddings. Word embedding is an im-
provement over the bag-of-words models where large sparse
vectors were used to represent each word. On the contrary, in
an embedding, words are represented by dense vectors where a
vector represents the projection of the word into a continuous
vector space [41, 42]. Denote s as an X-ray report withm words
and each word is mapping to a vector; then, we have

s � e
→

1, e
→

2, . . . , e
→

m , (1)

where vector e
→

i represents the vector of i-th word with a di-
mension of d. 'e vectors of word embeddings are concate-
nated together tomaintain the order of words in a patient report.

2.2.6. Bidirectional-LSTM Layer. After the embedding layer,
the sequence of word vectors is fed into a bidirectional LSTM
layer to achieve another representation of radiology reports.
Interest in incorporating a BiLSTM layer into the architecture
of our model arises from their ability to learn long-term de-
pendencies and contextual features from both past and future
states [44]. 'e BiLSTM layer calculates two parallel LSTM
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Figure 1: Methodology text mining pipeline overview.

Table 2: Dutch stop words used in this case study.

de informatie je al na worden tegen
en eerdere mij waren reeds zelf gegevens
van klinisch uit doen wil ons klinische
ik er der toen kon kunnen tot
te maar daar moet uw ook omdat
dat om haar ben iemand bij ge
die hem naar kan geweest zich nu
in dan heb hun andere gegevens had
aan zou hoe dus klinisch voor als
een of heeft onder informatie hier thorax
hij wat hebben ja gegeven men u
het mijn deze eens xthorax zijn doch
is dit want wie conclusie met me
was zo nog werd onderzoek ze zij
op door zal altijd opname wordt eerder
over ter x/x
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layers, a forward hidden layer, and a backward hidden layer, to
generate an output sequence y as illustrated:

hft
� σ Wxhf

xt + Whfhf
hft−1

+ bhf
 ,

hbt
� σ Wxhb

xt + Whbhb
hbt−1

+ bhb
 ,

yt � Whfyhft
+ Whbyhbt

+ by,

(2)

where σ is the sigmoid activation function; xt is a
d-dimensional input vector at time step t; W are the weight
matrices; b are bias vectors; and hf and hb are the output of the
LSTM forward and backward layers, respectively.

'e multimodal BiLSTM integrates the neural text repre-
sentation with clinical predictors and feeds them into a fully
connected neural network. We used a BiLSTM network to

connect both previous and future information to the present
information in text reports. 'is was made possible by having
two propagating networks in opposite directions: one network
running from the beginning of the text to the end and the other
in the opposite direction.'ese forward and backward networks
memorize information about the report from both directions.
'us, the context window around each word consists of in-
formation both prior to and after the current word. In this way,
BiLSTM can model the entire sequence of words in a radiology
report to capture dependencies between the feature space and
the relationship with the outcome variable.

2.2.7. Other Deep Neural Networks. When applying a CNN
model to our architecture, we used a convolution layer with a
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Figure 2: Most frequent words in the X-ray radiology reports in the SMART study. (a) Initial top frequent words. (b) Top frequent words
after preprocessing.
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max pooling layer instead of the BiLSTM layer in the ar-
chitecture in Figure 4. For employing an LSTM model, only
the left to the right direction in the text is monitored inside
the hidden RNN layer.

2.3. Evaluation Measures. To evaluate the classification per-
formance of our text mining pipeline, we used five available
metrics: area under the curve (AUC), misclassification rate,
precision (positive predictive value), recall (sensitivity), and F1
score. AUC is the area under the receiver operating charac-
teristic curve, which is created by plotting the true positive rate
against the false positive rate. Misclassification rate is the
proportion of incorrectly classified instances made by a model.
Precision is the fraction of relevant instances among the re-
trieved instances, while recall is the fraction of relevant

instances that have been retrieved over the total amount of
relevant instances. 'e F1 score can be interpreted as a
weighted average of precision and recall. 'e relative con-
tributions of precision and recall to the F1 score are equal.'e
formulae of precision, recall, and the F1 score are defined in
the following:

precision �
true positive

true positive + false positive
,

recall �
true positive

true positive + false negative
,

F1 score �
2∗ precision∗ recall
precision + recall

.

(3)
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Figure 4: Proposed multimodal learning architecture with a deep learning model.
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Figure 3: LDA clustering. 'e y-axis shows the top words in the selected cluster (topic). 'e x-axis shows the probability of the word in the
topic. (a) Possible cardiac decompensation. (b) Possible pneumonia.
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3. Results

Our pipeline was implemented in Python and R using
various text mining, NLP, and machine learning packages.
'e multimodal learning architecture was implemented on
Keras with a TensorFlow backend (https://keras.io). 'e
source code is publicly available at GitHub (https://github.
com/bagheria/CardioRisk-TextMining). We performed 5-
fold cross-validation for all experimental analyses. We used
the hyperparameter setting as shown in Table 3. 'ese
hyperparameters were tuned based on the validation set. We
used the embeddings with a vector size equal to 500 and a
window size equal to 5. In addition, we set the number of
filters in the CNN to 128 and the filter size to 5. 'e hidden
dense layers contained 64 units and used the ReLU activation
function, and the output layer used a sigmoid activation
function. We set the same number of hidden units in the
LSTM layers at 100. Both dropout and recurrent dropout
were added at 0.2 to avoid overfitting [45]. We set the batch
size and number of epochs to 64 and 20, respectively.

To assess the added value of text for the prediction of
MACE, we compared various scenarios of clinical variables
and text reports in the proposed text mining pipeline:

(1) Prediction using only radiology reports (models
starting with T)

(2) Prediction using only clinical variables (models
starting with V)

(3) Prediction using the integration of clinical variables
and radiology reports (models starting with VB, VC,
and MI)

(4) Prediction using only sex and age variables (models
starting with D)

(5) Prediction using the integration of sex and age
variables and radiology reports (models starting with
DB, DC, and D-MI)

Table 4 lists the experimental results for AUC and the
misclassification rate for the first three scenarios. In these
experiments, we evaluated different models using only clinical
variables, only radiology reports, and their integration.

V-LR, V-SVM, and V-NN are the models trained on only
clinical variables. 'e features in these models included the
SMART variables as independent variables and MACE during
follow-up as the outcome in prediction models. T-SVM, T-LR,
and T-BiLSTM are the models with only text reports as their
predictors. T-SVM was trained on the BOW representation of
the reports. T-LR used the clustering-based representation. In
this scenario, we reported each model’s best result among
representation methods. T-SVM achieved the highest perfor-
mance in this scenario with an AUC of 62.5% and a mis-
classification rate of 18.6%. VB and VC are the models trained
on clinical variables combined with the BOW and clustering-
based representations, respectively. VC-SVM gained the lowest
AUC of 65.5%, while the VB-SVM model obtained the lowest
misclassification rate of 12.2%.

MI represents the models that used the proposed
multimodal learning architecture with the neural word
embedding representation. In this scenario, MI-BiLSTM,

MI-LSTM, and MI-LR achieved promising results. MI-
BiLSTM obtained the highest AUC of 84.7% and the lowest
misclassification rate of 14.3% in this case. MI-LR still has
the second ranking AUC at 81.1%.

Precision, recall, and F1 score evaluation measures are
recommended for imbalanced data, where the AUC and
misclassification rate may provide an optimistic view of the
performance [46]. Figure 5 shows the performance of the
models using precision, recall, and F1 score metrics. 'e
deep learning models achieved better performance com-
pared to other models in different scenarios. 'e MI-
BiLSTM model achieved the highest performance in terms
of all evaluation measures. 'e F1 score was 83.8%. MI-
LSTM and MI-CNN obtained F1 score performances of
78.9% and 74.7%, respectively. 'ese results are evidence of
the performance of text mining techniques with multimodal
learning architecture in extracting knowledge from radiol-
ogy reports and combining them with classical clinical
predictors. It is notable that the multilayer perceptron neural
network achieved promising results when trained only on
clinical variables. 'is model obtained a precision of 75.1%,
recall of 79.4, and F1 score of 77.2%. 'is shows the effi-
ciency of the neural network model and the relatedness of
the laboratory results in predicting cardiovascular risk.

Table 3: Hyperparameter setting.

Hyperparameter Value
Embedding size 500
Window size 5
#filters 128
Filter size 5
#hidden units 64
Hidden activation function ReLU
Output activation function Sigmoid
#LSTM units 100
Dropout 0.2
Recurrent dropout 0.2
Batch size 64
#epochs 20

Table 4: Performance comparison of different experimental sce-
narios using AUC and misclassification rate.

Classifier AUC Misclassification rate
V-LR 0.799 0.195
V-SVM 0.648 0.196
V-NN 0.651 0.201
T-LR 0.512 0.247
T-SVM 0.625 0.186
T-BiLSTM 0.570 0.300
VB-LR 0.808 0.193
VB-SVM 0.784 0.122
VC-LR 0.809 0.194
VC-SVM 0.655 0.197
MI-LR 0.811 0.203
MI-SVM 0.694 0.237
MI-CNN 0.730 0.214
MI-LSTM 0.794 0.176
MI-BiLSTM 0.847 0.143
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To assess the value of text as additional variables if
clinical predictors are not available, we again compared the
abovementioned scenarios but with only sex and age as
clinical variables. Table 5 lists the results of this evaluation of
the text mining pipeline. We named the models in this
scenario D-models to show that they have been trained on
demographic (age and sex) features.

'e D-MI-BiLSTM model gained the highest AUC of
74.5%. D-MI-BiLSTM was trained using the multimodal
architecture, meaning that it used the neural word em-
bedding representation and BiLSTM hidden layer output to
concatenate the radiology reports with age and sex. DB-SVM
gained the lowest misclassification rate of 16.3%. 'is model
was trained on the combination of the BOW representation
and the age and sex variables.

In Figure 6, the results of precision, recall, and F1 score
are compared for the scenarios when clinical predictors are
not available. 'is setting also confirms that text mining-
based models achieved better performance when predicting
the MACE variable. 'e D-MI-BiLSTM, D-MI-LSTM, and
D-MI-CNN models gained F1 scores of 70.8%, 67%, and
64.3%, respectively.'e LRmodel with only age and sex only
reached 44.2%, 49.4%, and 46.66%, respectively.

4. Discussion

'is study aimed to develop and evaluate a text mining
pipeline integrating clinical and text variables applied to

cardiovascular risk prediction. Our research (1) integrates
EHR structured laboratory results and unstructured radi-
ology text in a text mining pipeline to make an accurate
decision for classifying cardiovascular events; (2) uses
routine care data including X-ray reports in Dutch for
cardiovascular risk prediction; and (3) incorporates free-text
reports as auxiliary variables when classical predictors are
not available. In our experiments for the SMARTcase study,
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Figure 5: Comparison of precision, recall, and F1 score for experimental scenarios.

Table 5: Performance comparison of different experimental sce-
narios using AUC and misclassification rate when clinical pre-
dictors are not available.

Classifier AUC Misclassification rate
D-LRa 0.685 0.242
D-SVM 0.572 0.246
D-NN 0.567 0.214
DB-LRb 0.703 0.247
DB-SVM 0.674 0.163
DC-LRc 0.705 0.239
DC-SVM 0.534 0.247
D-MI-LRd 0.708 0.235
D-MI-SVM 0.568 0.247
D-MI-CNN 0.667 0.228
D-MI-LSTM 0.708 0.209
D-MI-BiLSTM 0.745 0.204
aLR trained on demographic variables. bLR trained on demographic var-
iables and BOW representation. cLR trained on demographic variables and
clustering-based representation. dMultimodal learning LR trained on de-
mographic variables and word embeddings.
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we found that neural text representation and prediction
modelling significantly add to baseline models with classical
clinical predictors to predict MACE. In the case of un-
available clinical predictors, the proposed MI-BiLSTM
model with just age, sex, and word embedding attains a
similar discriminative performance to that of the models
trained on the classical SMART variables. Deep learning
methods are increasingly being adopted in the medical field.
For example, in radiology, deep learning has shown re-
markable results in image analysis [47], and in intensive care,
RNNs have been used to determine variables that are proxies
for clinician decision-making [48]. 'e application of text
mining and NLP in the predictive setting is not new;
unlocking the full potential of EHR data is contingent on the
development of text mining pipelines to automatically
transform free-text into structured clinical data that can
guide clinical decisions [1, 2, 4, 49]. Yet, text as auxiliary
variables to classical clinical variables has only been con-
sidered in a few studies [32–34, 50, 51]. One study [51]
predicted several clinical interventions combining struc-
tured data and clinical notes. Each clinical narrative note was
transformed to a 50-dimensional vector of topic proportions
for each note using an LDA algorithm. 'is resulted in a
lower-dimensional representation of text, losing the depth of
information in unstructured text. Another study [33]
extracted structured information from clinical notes using
regular expression and a heuristic rule-based tool. Again,

this is a method that uses a general framework for predicting
the onset of diseases, combining both free-text medical notes
and structured information.'emined text was then used to
predict congestive heart failure, kidney failure, and stroke via
deep learning models, achieving good performance in dis-
ease prediction. Lastly, one study [34] combined unstruc-
tured text, semistructured text, and structured data in
machine learning models. Separate models were developed
to handle data from different modalities to create an en-
semble model that predicts diagnostic codes of the inter-
national classification of diseases (ICD-10). Hence, in this
study, we combine all advantages of prior research by de-
veloping a machine learning-based modelling of radiological
language, to integrate clinical variables and textual features,
to supersede traditional algorithms using only clinical
variables. In this paper, we explained how we used text
preprocessing techniques and applied text representation
methods to chest X-ray reports. 'ese representations were
then used as auxiliary variables to the clinical variables from
the SMART study to predict MACE using six different
classification techniques.

'ere are strengths and limitations to our case study.
Because patients must have had an indication for a routine
care chest X-ray, there was a selection in the case study.
However, this does not in fact mean there is selection bias; it
merely restricts the generalizability of the clinical prediction
model to cardiovascular patients without an X-ray report
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Figure 6: Comparison of precision, recall, and F1 score for experimental scenarios when clinical predictors are not available.
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available. Pragmatically, we hypothesize that using available
information–including bodies of text, such as this chest
X-ray report–for predictions rather than a strict set of
predictors will make predictions more flexible and more
tailored to individuals. 'e use of advanced techniques, such
as text mining, in clinical practice requires support for
implementation. Implementation includes the application of
the mining pipeline and integration in the care process using
technologies, such as computerized decision support
(CDSS). CDSS allows technical results from algorithms, such
as text mining, to be translated to practical suggestions for
clinical practice. To help clinicians interpret results that
come from text mining, collaborations between technical
text mining experts (biostatisticians, mathematicians, data
scientists, and software engineers) and practical experts
(clinicians) are needed to safeguard the technical quality and
medical relevance. Future studies will focus on two points.
First, our multimodal learning architecture will be validated
for other similar scenarios, such as adverse event moni-
toring, hospital readmission, or disease classification, in
which both EHR structured variables and free-text reports
would contribute to the judgement of final outcomes.
Secondly, we will expand our pipeline to a model to use the
available clinical dictionaries with machine learning and
deep learning models. 'e publicly available source code of
our model (https://github.com/bagheria/CardioRisk-
TextMining) can be used to evaluate performance on po-
tentially clinically relevant classification tasks based on
clinical notes and EHR variables.

5. Conclusions

Medical free-text potentially contains valuable information
for clinical decision-making. Text mining methods are the
key to the successful extraction of clinically important
findings from these free-text reports. Medical text mining is
a step-by-step process that requires tailoring to the aim of
the project and the context of reports. Text mining poten-
tially opens the door to valuable information captured in
free-text medical data. We believe that such models are
useful in reducing work overload for clinicians by providing
the needed clinical decision support.
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