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Purpose: We introduce a novel, generalized tracer kinetic model selection framework 
to quantify microvascular characteristics of liver and tumor tissue in gadoxetate-
enhanced dynamic contrast-enhanced MRI (DCE-MRI).
Methods: Our framework includes a hierarchy of nested models, from which physi-
ological parameters are derived in 2 regimes, corresponding to the active transport 
and free diffusion of gadoxetate. We use simulations to show the sensitivity of model 
selection and parameter estimation to temporal resolution, time-series duration, and 
noise. We apply the framework in 8 healthy volunteers (time-series duration up to 24 
minutes) and 10 patients with hepatocellular carcinoma (6 minutes).
Results: The active transport regime is preferred in 98.6% of voxels in volunteers, 
82.1% of patients’ non-tumorous liver, and 32.2% of tumor voxels. Interpatient vari-
ations correspond to known co-morbidities. Simulations suggest both datasets have 
sufficient temporal resolution and signal-to-noise ratio, while patient data would be 
improved by using a time-series duration of at least 12 minutes.
Conclusions: In patient data, gadoxetate exhibits different kinetics: (a) between liver 
and tumor regions and (b) within regions due to liver disease and/or tumor hetero-
geneity. Our generalized framework selects a physiological interpretation at each 
voxel, without preselecting a model for each region or duplicating time-consuming 
optimizations for models with identical functional forms.
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1  |   INTRODUCTION

1.1  |  Gadoxetate-enhanced MR imaging of 
the liver

Gadoxetate disodium (Eovist or Primovist, Bayer Healthcare, 
Berlin, Germany) is a gadolinium-based hepatobiliary con-
trast agent taken up by hepatocytes and excreted by the bil-
iary pathway, allowing more direct measurement of liver 
function than standard extracellular contrast agents. It is 
regularly used in the clinical assessment of chronic liver dis-
ease and cancer.1-4 In recent meta-analyses of hepatocellular 
carcinoma (HCC, most common primary malignancy of the 
liver5 and second leading cause of cancer mortality world-
wide6) detection, gadoxetate-enhanced MRI returned the 
highest overall per-lesion sensitivity and positive predictive 
value, compared with contrast-enhanced ultra-sound, CT, 
and MRI with extracellular contrast agents.7,8

In addition to diagnosing HCC, relative lesion intensity 
to surrounding liver tissue has been shown to characterize 
subtypes of the tumor, indicating progression of nodules to 
hypervascular HCC,9 microvascular invasion,10 and correlat-
ing with prognostic histological biomarkers.11 Gadoxetate-
enhanced imaging may also help identify and grade chronic 
liver disease, including portal hypertension12 and fibrosis,13 
often co-present in patients with HCC.

1.2  |  Tracer kinetic modeling in  
DCE-MRI of the liver

Quantitative dynamic contrast enhanced (DCE) MRI, where 
tracer kinetic models are fitted to image time series, enables 
estimating parameters reflecting tissue microvascular func-
tion. In metastatic liver tumors, there is a long history of tracer 
kinetic modeling using standard gadolinium-based contrast 
agents.14-17 A common approach assumes metastases recruit 
an arterial-only supply, with passive exchange of contrast 
agent between separately measurable plasma and interstitial 
spaces, enabling the fit of a 2-compartment extended-Tofts 
model.18 Model parameters, and in particular, the intercom-
partment volume transfer constant Ktrans, can provide clini-
cally useful endpoints in trials of antivascular drugs.14,17

To account for liver parenchyma’s arterial and hepatic por-
tal vein blood supply, a dual-input single-compartment model 
was proposed for application outside tumors,19 and used in 
patient studies showing a correlation between perfusion pa-
rameters and the severity of cirrhosis or fibrosis.20 The single-
compartment model was generalized into a 2-compartment 
model suitable for parameterizing tracer kinetics in liver tis-
sue and neuroendocrine metastatic lesions.21,22 In an alterna-
tive approach, the dual-input single-compartment model and 
an extended-Tofts model were fitted to metastatic cancers,15 

and the Aikake information criterion (AIC)23 used to select 
the most appropriate model at each voxel.

There have been far fewer quantitative DCE-MRI studies 
of HCC than metastatic lesions: applying an extended-Tofts 
model, decreased Ktrans on first scan has been shown to pre-
dict survival,24 and the dual-input single-compartment model 
used to quantify HCC perfusion.25 In the only study we are 
aware of applying quantitative DCE-MRI to gadoxetate en-
hanced HCC tumors,26 fitting a single-input (arterial only) 
Tofts model showed correlations for Ktrans and the extracellu-
lar, extravascular volume ve to histological grade and tumor 
microvascular density, respectively.

Other tracer kinetic modeling studies of gadoxetate in-
clude initial attempts to estimate intracellular uptake frac-
tion as a marker of liver function27,28; however, these were 
limited by using models comprising a single-input blood 
supply, which further failed to account for active transport of 
gadoxetate into the intracellular space. These shortcomings 
were resolved in a dual-input, uptake model29,30 that pro-
vided significantly better fit than the single-compartment 
model. To model gadoxetate dynamics through to the 
hepatobiliary phase (typically reached 20 minutes post-
injection), an efflux term was added, and applied to time 
series acquired using an 50-minute protocol in healthy vol-
unteers.31 Recently, a 3-compartment model was proposed 
to quantify hepatic perfusion and hepatocyte function in 
patients with chronic liver disease, applied to a 38-minute 
acquisition.13

1.3  |  Modeling challenges

With limited previous studies, and different models applied 
in each study, there is no common method for applying tracer 
kinetic modeling to gadoxetate-enhanced images. There are 
several challenges to consider: contrast dynamics in tissue 
where hepatocytes actively transport gadoxetate will be very 
different to tumor cells where gadoxetate behaves more like a 
passively transported agent, indicating the need for (at least) 
2 forms of tracer-kinetic model. Moreover, in tumors native 
to the liver such as HCC, there may be residual uptake of 
contrast agent through the organic anion polypeptide (OATP) 
pathway due to varying OATP function in the cells of dif-
ferent tumor subtypes,1 meaning that even with well-defined 
tumor regions-of-interest (ROIs), it is not certain a priori 
which model will be appropriate in any voxel. Thus com-
puting parameter estimates over a whole ROI risks including 
voxels that do not meet a model’s physiological assumptions, 
potentially leading to unreliable estimates and misleading 
interpretations. This suggests voxel-wise model selection 
may be a more suitable method for analyzing the data.15,32 
Common co-morbidities associated with HCC provide ad-
ditional complications, with patients having a range of liver 
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function and signs of cirrhosis, fibrosis and splenomegaly 
which may further confound model assumptions if analysis 
is extended to the non-tumorous liver.

We investigate fitting tracer kinetic models to individual 
voxels of gadoxetate-enhanced MRI sequences, using mod-
els developed to explain the active transport of gadoxetate 
and the 2-compartment exchange model (and its derivatives 
including the Tofts model).18,19,29,31,33 We introduce a novel 
model selection framework in which previously applied 
models can be derived as specific instances of generalized 
functional forms. In doing so, we highlight mathematical 
connections between the models, using these to hypothesize 
which will better fit different tissue types. We test these hy-
pothesizes using extensive Monte Carlo simulations, explor-
ing model selection criteria. We compute expectations on 
the precision and accuracy of derived model parameters, and 
show how these are affected by sequence duration, temporal 
resolution, and signal noise. Finally, we test our hypothesizes 
on 2 in vivo datasets: the healthy volunteers presented in Ref. 
[31] and a new dataset of 10 patients with HCC, showing 
links between model selection and patient co-morbidities, de-
termining the limitations of the data and using these to make 
recommendations for designing further patient studies.

2  |   METHODS

2.1  |  Tracer-kinetic modeling

2.1.1  |  Tissue models

Georgiou et al31 presented a model to describe both the active 
uptake of gadoxetate contrast agent by hepatocytes and the 
subsequent efflux of the agent into the bile duct (Figure 1A). 
The model incorporates a dual-input function to allow for ar-
terial and hepatic portal vein blood supply, convolved with a 
biexponential impulse response function (IRF):

(1)CAUEM(t)=Fp

[
E+e−tT−1

i +
(
1−E+

)
e−tT−1

e

]
∗Cp(t)

(2)E+ =
Ei

1−Te∕Ti

(3)Ei =
Ki

Fp+Ki

Te =
vecs

Fp+Ki

Ti =
vi

Kef

(4)Cp(t)= faCa(t−�a)+ (1− fa)Cv(t−�v)

F I G U R E  1   DCE model diagrams A, The active uptake + efflux model (AUEM) is a 2-compartment biexponential model with dual arterial 
and portal vein plasma input, designed to model the active transport of gadoxetate contrast agent by hepatocytes. Contrast agent is assumed to be 
instantaneously well mixed in the extracellular volume vecs, and then actively transported into the intracellular volume vi with uptake rate Ki, which 
together comprise the whole voxel space. Gadoxetate is later excreted to the bile ducts at rate Kef . The model can be simplified first assuming zero 
efflux (Kef = 0), then zero uptake Ki = 0, which reduces to the dual-input single compartment model. B, In the 2-compartment exchange model 
(2CXM), the interstitial ve and plasma volumes vp are assumed separable, with measurable passive-exchange between them at a rate depending on 
the permeability surface area product PS. It is assumed cells in these voxels do not actively uptake contrast agent, and thus there is no contribution 
to signal change from the intracellular space. See Sourbron and Buckley34 for a comprehensive discussion of simplifications of the 2CXM to the 
other passive-exchange regime models such as the (extended-) Tofts model. The 2CXM is often considered with a single arterial input; however, 
our framework includes a portal vein supply (dashed box), generating a dual-input model with the same functional form as the AUEM
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where Ca and Cv are the arterial and venous input functions of 
plasma concentration, offset by �a(minutes) and �v(minutes) 
and fa ∈ [0, 1] controls the proportion of each input. The 
IRF is parameterized by: uptake rate Ki(min−1); efflux rate, 
Kef(min−1); plasma flow, Fp(mlmin−1ml−1), and extracellu-
lar volume vecs(mlml−1). The model assumes vecs comprises 
the plasma volume (vp) and interstitial space ve, with rapid ex-
change between the 2 (ie,, endothelial permeability →∞) that 
immediately reaches equilibrium, such that vecs acts as a single 
compartment.29,34 In addition, it is assumed the volume of non-
hepatocyte cells in the intracellular space vi is negligible, so that 
vi = 1 − vecs, and the contribution of contrast agent in bile can-
aliculi can be ignored.35,36

We label this the active uptake + efflux model (AUEM), 
noting it extended an earlier uptake-only model described 
by Sourbron et al,29 derived from the full AUEM by setting 
the efflux rate Kef = 0. Setting the uptake rate Ki = 0, fur-
ther reduces the uptake-only model to a dual-input single-
compartment model.19

This hierarchy of nested models evokes the analysis by 
Sourbron and Buckley,34 in which it is shown a biexponential 
2-compartment exchange model (2CXM,  Figure 1B), with 
physiological parameters Fp (plasma flow), PS (permeabil-
ity surface area product, min−1), ve, and vp, reduces to the 
extended-Tofts (assuming Fp =∞) and Tofts model (assum-
ing vp = 0).

In a similar vein, we note that while the 2CXM is usually 
considered with a single input function, the form of its IRF is 
identical to the AUEM, and thus if we fit a dual-input 2CXM, 
with no restrictions on the parameters, the modeled contrast 
time series is be identical to the AUEM—it is only the deri-
vation and interpretation of the physiological parameters that 
differ.

We hypothesize that the AUEM (or one of its simplifi-
cations) suitably describes the dynamics of gadoxetate in 
healthy liver tissue, whereas a 2CXM is more likely to fit 
tumor voxels, where hepatocytes are not present to actively 
transport gadoxetate, and the plasma and interstitial spaces 
are separable volumes vp and ve, with a measurable bisym-
metric exchange of gadoxetate between them.

This leads us to adopt the following approach: we fit as the 
most general model, a dual-input biexponential of the form

This has 6 free parameters to optimize: the IRF functional pa-
rameters �±, �±, and physiologically meaningful parameters 
controlling the arterial input fraction and delay time fa and 
�a = �v (Equation (4), see also Supporting Information: Delay 
parameters). We then derive 4 further physiological parameters 
from the functional parameters, using either the active uptake or 
passive exchange interpretations (see Supporting Information: 
Model derivations for full complete intermediary equations):

2.2  |  Active uptake (Fp, vecs = 1 − vi, Ki, Kef)

2.3  |  Passive exchange (Fp, PS, ve, vp)

Thus, the 2 model regimes share 3 physiological parameters  
(Fp, fa, and �a), differing only in the interpretation of the 2 com-
partment volumes and the transfer rates. Moreover, although 
they differ in physiological interpretation, the extracellular vol-
ume vecs in the active-uptake regime is functionally equivalent 
to the vascular volume vp in the 2CXM (both being the initial 
compartment receiving vascular input; Equations (7) and (13)).

These interpretations impose constraints on valid ranges 
for the parameters—in the active-uptake regime vecs ≤ 1 
and in the passive-exchange regime, ve + vb ≤ 1 (where 
vb = vp∕(1 − Hct)). However, we do not impose these con-
straints during model fitting. Instead, the 4 functional pa-
rameters �±, �± are simply constrained to be non-negative, 
and then post-fit, we analyze whether there is a valid physio-
logical interpretation of the parameters under either regime. 
This allows the optimizer to explore the complete parameter 
space of both physiological models without requiring a prior 
assumption of which specific instance should be preferred.

2.4  |  Nested models

In addition to the full biexponential model, we fit a hierar-
chy of progressively simplified models, setting first �+ = 0,  

(5)CI4 (t)=
[
�+e−t�+ +�−e−t�−

]
∗Cp(t)

(6)Fp =�++�−

(7)vecs =
(�++�−)2

�+�++�−�−

(8)Ki =
�+(�++�−)(�−−�+)

�+�++�−�−

(9)Kef =�+

[
1−

(
�++�−

)2

�+�++�−�−

]

(10)Fp =�++�−

(11)PS=
�+�−(�++�−)(�+−�−)2

(�+�++�−�−)2

(12)ve =
�+�−(�+−�−)2

�+�−(�+�++�−�−)

(13)vp =
(�++�−)2

�+�++�−�−
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then �+ = 0. The nested models are defined by the form of 
their impulse responses, taking 4, 3, and 2 parameters, re-
spectively, labeled as the I4, I3, and I2 models. When we 
derive physiological parameters in either the active-uptake 
or passive-exchange regimes from a nested model, we ob-
tain parameters that match one of the reduced forms of the 
AUEM or 2CXM previously outlined in Tissue models. We 
present these specific forms below.

2.5  |  I3 model: 
CI3(t) =

[

�
+
+ �

−
e− t�

−

]

∗ Cp(t), �
+
= 0

In the active-uptake regime, when Bpos = 0 from Equations 
(6)-(9), we see that Fp, vecs, and Ki are well-defined and posi-
tive, while Kef = 0. Thus, the I3 model is functionally equiva-
lent to the uptake-only model.29 In the passive-exchange 
regime, vecs is ill-defined, while Fp, PS, and vp are positive. 
This is described as the 2-compartment uptake model in Ref. 
[33], and may be appropriate in tissues where backflow of 
the tracer into the plasma space is negligible, where there 
are poorly mixed compartments, or extraction/convection/
diffusion into additional compartments. Moreover, from 
Equations (8) and (11), with �+ = 0 we have

thus given the prior observation that vecs = vp, with a simple 
relabeling, the 2 regimes generate equivalent physiological pa-
rameters in the I3 form.

2.6  |  I2 model: 
CI2(t) = �

−
e− t�

− ∗ Cp(t), �
+
= �

+
= 0

Fixing �+ = 0, sets Ki = 0; as a simplification of the AUEM, this 
matches the dual-input single-compartment model19 (although 
now there is no active transfer of contrast agent). In the passive-
exchange regime, the I2 functional form is most commonly in-
terpreted as a standard Tofts model,18 with negligible vascular 
component (vp = 0). However, as noted in Ref. [34], there are 
several other interpretations matching the same analytical form, 
one of which, with negligible exchange (PS = 0, vp > 0, ve un-
defined), is equivalent to the single-compartment model derived 
from the AUEM. Thus again, subject to a simple relabeling, the 
2 regimes produce identical physiological parameters.

2.6.1  |  Model optimization and selection

Given the framework outline above, there are 2 aspects to 
model selection: choosing a suitable analytical form, and 

choosing the best interpretation of parameters given this 
form.

Analytical form
An analytical form can be selected examining residuals be-
tween the signal-derived and modeled concentration time 
series and determining which model best fits the data—
choosing the model with minimum sum-of-squares errors 
(SSE) or applying model selection criteria such as AIC (23) 
to take into account model complexity.

Our results suggest that the percentage of voxels in a 
region attributed to each model form using AIC may it-
self be a useful marker. We label these as %AICj

 where 
j ∈ {2, 3, 4 | Ij(t)}.

Physiological interpretation of parameters
We assign voxels to the active-uptake or passive-exchange 
regimes based on the physiologically plausible limits on 
compartmental volume parameters derived from the I4 
model, defining

and the percentage of all valid voxels in a region-of-interest 
assigned to the active-uptake regime as %a (see Supporting 
Information: Selecting physiological regime for details).

2.7  |  Monte Carlo simulations

Given model parameters, a set of time points and correspond-
ing arterial and portal vein input functions (AIF/PIF), we can 
use Equations (5)-(13) to simulate dynamic time series. We 
generated multiple 1,000 sample datasets, each defined by 
their model form i, temporal resolution �, post-contrast 
duration d and noise distribution �. We used a single fixed 
ground truth parameter set for each of 4 model forms (units 
omitted for clarity):

•	1 AUEM (I4): Fp = 0.5, vecs = 0.1, Ki = 0.07, Kef = 0.05, 
fa = 0.2, �a = 0.2

•	2 Active-uptake only (I3): as 1 except for Kef = 0

•	3 Single-compartment (I2): Fp = 0.5, vecs = 0.1, Ki = 0, 
Kef = 0, fa = 0.2, �a = 0.1

•	4 2CXM (I4): Fp = 0.5, PS = 0.1, ve = 0.07, vp = 0.05, 
fa = 0.6, �a = 0.05

For each form, physiological parameters were converted to 
functional parameters (�±, �±) using the active-uptake (1-3) 
and passive-exchange (4) regimes. The functional parameters 
were then used to compute modeled concentration time series 
using all combinations of:

(14)PS=
�+(�++�−)

�−

=Ki

I4 − volume criterion

{
ve+vb ≤1, assign to passive-exchange regime

ve+vb >1, assign to active-uptake regime
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•	 Temporal resolution � = 3.8  seconds (≈ patient dataset), 
6.0 seconds (≈ volunteers dataset), 12.0, 30.0 seconds.

•	 Post-bolus duration d = 6, 12, 18 minutes.

In each case, a population AIF37 and derived PIF (Supporting 
Information: Input functions,15) were sampled at the generated 
times.

Each concentration time series was converted to simulated 
signals with baseline S(0) = 100 (Supporting Information: 
Computing signal from concentration), and replicated 1,000 
times with randomly sampled Rician noise distributions 
�� = Rice(S(t), �) for � = 10, 20, 30, 40. These signal data 
were then converted back to concentration time series.

In addition, using the group average AIF and derived 
PIF from the patient dataset, we generated “real” noise 
datasets with temporally varying noise distribution �r, by 
(1) randomly sampling 1,000 voxels from across the pa-
tient dataset; (2) subtracting the fitted I4 model concentra-
tion from the signal-derived concentration; and (3) adding 
the resulting residuals to the simulated concentration time 
series for each model form 1-4. A second experiment 
using varying parameters randomly sampled from mea-
sured distributions of real data is described in Supporting 
Information.

2.7.1  |  Model fitting

The I2, I3, and I4 models were fitted to each Monte Carlo 
sample, and AIC used to compute %AIC2

, %AIC3
, and %AIC4

 
for each dataset. Physiological parameter sets in the active-
uptake and passive-exchange regimes were derived for each 
fitted model, and the I4 − volume criterion used to compute 
%a. In addition, for each dataset, parameter distributions were 
generated using (a) the AIC-selected model at each sample; 
and (b) the model with minimum SSE.

2.8  |  In vivo data

2.8.1  |  Healthy volunteers

The healthy volunteer dataset comprised of 8 volunteers  
(5 male, aged 18-29 years; 3 female aged 18-22 years; mean 
age 23 years) and were imaged with contrast injection at 2 
visits on a Philips 1.5 T Achieva MRI scanner. DCE-MRI 
was performed (see Supporting Information: In vivo data 
for protocol details), with contrast agent gadoxetate diso-
dium (Primovist/Eovist, Bayer) was administered at the 
20th time point (120 seconds) using a power injector (dose 
0.025 mmolkg−1; 3 mLs−1 flow rate, flushed with 20 mL of 
saline at the same rate).

These data were collected for a previous study (approved 
by the university’s ethics committee; all subjects gave in-
formed consent prior to imaging) by Georgiou et al, with full 
acquisition details and parameter estimates for the active-
uptake and efflux model fitted to ROI-averaged time series 
presented in.31 For the experiments presented here, to enable 
efficient motion correction and voxel-by-voxel model fitting, 
the volumes were cropped to the margins of the liver, and 
only the first 264 time points used.

Patients with HCC
The second dataset collected for this study comprised of 10 
patients with HCC (8 males and 2 females, aged 46-80 years; 
median 63 years) who were yet to begin treatment and had at 
least 1 lesion that could be measured in one dimension, ac-
cording to the Response Evaluation Criteria in Solid Tumors 
(RECIST, see Supporting Information for eligibility criteria, 
tumor properties, and known co-morbidities). The study re-
ceived Institutional Board Approval. Informed consent was 
obtained from all patients.

Each patient underwent a free-breathing coronal 3D 
FLASH DCE-MRI protocol on a Siemens 1.5 T Avanto sys-
tem (see Supporting Information: In vivo data for protocol 
details). Gadoxetate was administered at the 8th time point 
( 30 seconds) using a power injector (dose 0.025 mmolkg−1; 
3 mLs-1 flow rate).

2.8.2  |  Model fitting and selection

Each dataset were motion corrected, annotated, and used to 
compute vascular input function (Supporting Information: 
Data preparation). The I2, I3, and I4 models were fitted to 
the DCE time series of all voxels in the liver volume for 
each patient (Supporting Information: Model optimization). 
For healthy volunteers, the model framework was applied, 
testing 3 durations of sequence: 6 minutes post-contrast 
(≈ patient dataset; nt = 80), 12 minutes (nt = 138), and 24 
minutes (nt = 264). Due to the computational cost of fitting 
models to longer time series, the models were fitted to 1000 
randomly selected voxels across the liver volume, and for 
a spatial visualization, to all voxels in the central slice of 
the liver.

Model parameters were converted to physiological param-
eters in both regimes, and the I4 − volume criterion used to 
assign each voxel as active uptake or passive exchange. In 
addition, both AIC and minimum SSE were used to assign 
a model form at each voxel, with the percentage of AIC se-
lections of each form used to analyze trends in the data, and 
minimum SSE used to select a single parameter set at each 
voxel. Parameters were summarized for each ROI taking the 
median over all voxels assigned to each regime.
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3  |   RESULTS

3.1  |  Monte Carlo model selection and 
parameter estimation

3.1.1  |  Effect of temporal resolution

Increasing temporal resolution led to improved parameter 
estimates (Figure 3 shows Ki estimation for model form 1,  
see Supporting Information Figures S14-S37 for all other pa-
rameters), and better ability to select the ground-truth model 
form (Figure 2, Supporting Information Figures S7-S9).  
At low resolution (� = 30 seconds), with the exception of 
the single-compartment model form, parameter estimation 
is generally unreliable (at long duration, it may be possible 
to estimate vecs and Ki in active-uptake forms, and ve in the 
passive-exchange form, although precision is significantly 
worse than at higher temporal resolutions). As a result, at 
all but the lowest noise levels, the I2 model is selected by 
AIC score in the majority of samples, for all model forms 
(Supporting Information Figure S9).

As � reduces from 3.8 to 12.0 seconds, some parameters 
appear more sensitive to the loss of resolution. For exam-
ple, fa, which is largely characterized by the shape of the 

contrast time series in a short period after bolus injection, is 
affected more than parameters such as vecs and Ki (Figure 3, 
Supporting Information Figures S14-S19).

3.1.2  |  Effect of duration

At short duration (d = 6 minutes), I3 is the AIC-preferred func-
tional form for both active-uptake forms at all but very low 
noise levels (Figure 2, Supporting Information Figure S7).  
Parameter predictions of Fp, vecs and Ki are consistent in 
both models (Supporting Information Figure S14, S17, 
S18). I4 predictions of Kef  lack precision but are not biased  
(Figure S19). As the duration increases (d = 12 minutes), it 
becomes possible to resolve Kef , which in turn reduces the 
ability of the I3 model to properly represent the latter time 
points of the time series, leading to the increasing preference 
for the I4 model in AIC selection (Figure 2) and the tendency 
for the I3 model to underestimate Ki (Supporting Information 
Figure S18). Despite this, at noise levels observed in the real 
datasets, the I3 model is still the AIC-preferred model in ap-
proximately half the samples, leading to the overall sample 
median of both Ki and Kef  being underestimates of the ground 
truth if AIC selection is used to generate final parameter 

F I G U R E  2   Analytical form and physiological regime model selection percentages for the fixed Monte Carlo datasets, with temporal 
resolution � = 3.8 seconds (see Supporting Information for other resolutions). Ground truth model forms are shown in columns: active uptake and 
efflux (AUEM); active-uptake only (AUM); single-compartment (no uptake, SCM); 2-compartment exchange (2CXM). At 6 minutes duration, 
solid colored circles show results for the “real” noise datasets (see main text). SNR was computed by dividing the mean signal by the root-mean-
squared error of the noisy signal from the ground truth signal
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estimates. This trend continues in longer durations, so that 
for time series d = 24 minutes, the I4 is preferred in the large 
majority of samples (>90% at real noise levels).

Similar effects are seen for the 2-compartment exchange 
ground truth form. At 6 minutes, while the I4 model is cor-
rectly selected with negligible noise, approximately half 
of samples at real noise levels are assigned to the I3 model 
(Figure 2), producing strongly biased estimations of Fp 
(Supporting Information Figure S20) and (unidirectional) 
rate constant PS (Supporting Information Figure S23), as 
well as leaving ve undefined. This is largely resolved at 12 
minutes, where the I4 model is consistently selected for the 
large majority of samples, and %a ≈ 0 at all noise levels.

3.2  |  In vivo data

3.2.1  |  Healthy volunteers dataset

Model selection
Table 1 shows model selection percentages and parameter es-
timates for the volunteers dataset. At all durations, nearly all 
voxels were categorized as active-uptake (95.5% at 6 minutes, 
97.8% at 12 minutes, and 98.3% at 24 minutes, Figure 4A), 

thus we only include active-uptake regime parameters in fur-
ther analysis.

At all durations, few voxels were best matched to the 
I2 model in AIC selection (0.7%, 0.3%, and 0.2%, respec-
tively). At 6 minutes, most voxels attributed to the I3 model 
over the I4 model (82.3% vs 16.4%), with model selection 
shifting to the I4 model as duration increased (27.4% vs 
71.9% at 12 minutes; 4.4% vs 94.8% at 24 minutes). These 
trends were spatially consistent (Figure 5A-C), and were 
observed in all 8 subjects, suggesting a consistent pattern 
of behavior in healthy liver tissue. This supports the hy-
pothesis that at durations before efflux significantly effects 
gadoxetate concentration an uptake only model is sufficient 
to fit the data. However as duration increases the additional 
efflux term is necessary.13,31

Parameter estimates
If, as suggested by the Monte Carlo simulations, esti-
mates for Fp, vecs, Ki, and Kef  are the most accurate using 
the I4 model over the longest duration time series, we 
can observe how well estimations from the less complex 
models and/or shorter post-contrast durations correspond 
with these. I4 estimations of Kef  correspond well at 12 
minutes (linear correlation coefficient � = 0.91, P < . 001,  

F I G U R E  3   Estimation of Ki for the AUEM in the fixed Monte Carlo datasets at a single noise level (most closely matching measured real 
noise). Dashed black lines show parameter ground truth (Ki = 0.07); circles show median estimation over the 1,000 samples in each dataset using 
each IRF form, AIC, and minimum SSE, with vertical lines extending from the 25th to 75th percentiles. For temporal resolution � = 3.8s and 
duration d = 6 mins, the cyan diamond and black lines show median and interquartile range for parameters estimation using minimum SSE on the 
dataset with directly sampled “real” noise added (see Supporting Information Figures S14-S37 for other parameters, model forms and noise levels)
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slope m = 1.09, offset c = 0.00) but not at 6 minutes 
(� = 0.45, P = . 08, m = 0.6, c = 0.01); I4 estimates of Fp,  
vecs and Ki were accurate at both 6 and 12 minutes (all 
𝜌 > 0.98, P < . 001, m ≈ 1). I3 estimates of Fp, vecs and Ki cor-
respond best at 6 minutes—at 12 and 24 minutes, estima-
tions become inaccurate because the model is insufficiently 
flexible to fit the plateauing concentration of gadoxetate as 
efflux starts to take effect, and thus the final fit reflects a 
compromise between fitting the early and later parts of the 
time series. Fp and vecs are poorly estimated by the single-
compartment I2 model at all durations.

The arterial fraction fa proved harder to fit in some volun-
teer visits than either the Monte Carlo or patient data, and re-
sulted in consistent over-estimations (ie,, fa ≈ 1 for the majority 
of voxels) in 3 DCE sequences. These data had lower SNR than 
the rest of the dataset, most likely due to unresolved motion 
artefacts. The lower temporal resolution of the volunteer data 
may also be a factor. Analysis suggests fa overestimation results 
in Fp under-estimation; however, other parameters are largely 
unaffected. Parameter medians varied more between visits than 
between subjects, although across the group no parameter me-
dian was significantly different between visits.

6 minutes 12 minutes 24 minutes

Visit 1 Visit 2 Visit 1 Visit 2 Visit 1 Visit 2

Parameter

Fp 1.06 (0.43) 0.74 (0.88) 1.01 (0.47) 0.75 (0.86) 1.01 (0.48) 0.76 (0.79)

fa 0.17 (0.06) 0.28 (0.74) 0.17 (0.07) 0.29 (0.76) 0.19 (0.07) 0.30 (0.66)

�a 0.15 (0.09) 0.17 (0.02) 0.15 (0.09) 0.17 (0.02) 0.15 (0.09) 0.17 (0.02)

vecs 0.11 (0.03) 0.10 (0.02) 0.11 (0.03) 0.10 (0.02) 0.11 (0.02) 0.10 (0.02)

Ki 0.07 (0.01) 0.08 (0.03) 0.07 (0.01) 0.08 (0.03) 0.07 (0.01) 0.08 (0.02)

Kef 0.00 (0.00) 0.00 (0.00) 0.02 (0.01) 0.02 (0.02) 0.02 (0.01) 0.02 (0.01)

IRF form

%AIC2
0.6 (0.6) 0.5 (0.6) 0.3 (0.4) 0.1 (0.4) 0.2 (0.4) 0.1 (0.3)

%AIC3
91.3 (7.6) 89.9 (9.5) 24.3 (24.3) 23.4 (30.0) 3.5 (4.7) 2.0 (1.6)

%AIC4
7.1 (7.6) 9.4 (9.6) 74.7 (23.1) 76.7 (30.4) 94.3 (4.3) 97.0 (2.0)

Regime

%a 92.9 (4.8) 96.7 (3.1) 98.0 (3.6) 98.9 (4.0) 98.2 (1.8) 98.6 (2.9)

Notes: Units are Fp: mlmin
− 1

ml
− 1

, fa: no units, �a: minute, vecs: mlml
− 1, Ki: min−1, Kef : min−1. In Ref. 

[31], Georgiou et al report mean values (± s. d.) of Fp = 1.00 ± 0.26, vecs = 0.20 ± 0.05, Ki = 0.22 ± 0.05, 
Kef = 0.02 ± 0.006, fa = 0.17 ± 0.12. The values for vecs and Ki differ significantly from our results however 
this is largely due to the analysis in31 using the blood plasma relaxivity of gadoxetate (see Discussion). *Cohort 
data for all parameters were tested for normality using the Anderson-Darling test. Several parameters had non-
normal distributions. For consistency, median and IQR are used to summarize the data for all parameters.

T A B L E  1   Healthy volunteer data: 
median (IQR)* values for each active-
regime physiological parameter and model 
selection percentages

F I G U R E  4   Parameter maps showing ve + vb for a 2CXM interpretation of the I4 functional parameters at each voxel. The colormap is capped 
at 1 (deep red) to highlight voxels that do not have a valid physiological interpretation in the passive-exchange regime and thus designated as 
active-uptake voxels. In a functioning liver, we expect the majority of voxels to be active uptake (red): this is observed in the healthy volunteer 
and both patients. For each patient, a single slice in the liver containing the most tumor ROI (pink dashed line) voxels is shown, with the tumor 
corresponding to areas where a passive-exchange regime interpretation is valid
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3.2.2  |  Patient dataset

Across the 10 patients, the I3 model form was selected by AIC 
analysis in 76.2% of voxels in the (non-tumorous) liver and 
48.8% of tumor voxels. The I2 and I4 models were more often 
selected in the tumor, 29.8% and 18.9%, respectively, compared 

with 7.1% and 16.5% in the liver. %a = 71.6% in the liver, com-
pared with %a = 34.6% in tumors. Compared with healthy 
volunteers, there was more variability in individuals; Table 2 
gives per patient data. Figures 4B,C and 5D,E show the spatial 
consistency of model selections and the extent to which they 
correspond with (independently demarcated) tumor borders.

F I G U R E  5   AIC selection maps for model functional form: magenta=I2, yellow = I3, cyan = I4. For 1 volunteer, a the central slice in the liver 
is shown for post-contrast duration A, 6 minutes; B, 12 minutes; D, 24 minutes. For each patient, a single slice in the liver containing the most 
tumor ROI (black dashed line) voxels is shown. In normal functioning liver, we expect the majority to be I3 (yellow). In patient 8, the preference 
for I2 (magenta) over I3 (yellow) throughout the slice highlights the loss of liver function associated with this patient’s chronic liver disease. The 
difference in tumor composition between patient’s 6 (largely I4, cyan) and 7 (largely I2, magenta) are also noticeable

T A B L E  2   Percentage of voxels in non-tumorous liver (L, white rows) and tumor (T, shaded rows) selected by functional form (%AIC2,3,4
) and 

under the active-uptake interpretation (%
a
) for each patient

Patient

IRF form Model % 1b  2 3 4 5b  6 7 8 9 10 Allc 

%AIC2
 L 2.8 1.6 10.5 5.2 4.1 5.9 2.5 33.2 1.0 4.5 4.5

T 0.0 50.0 26.7 11.2 9.1 9.9 80.2 55.2 21.9 33.9 26.7

%AIC3
 L 83.9 83.9 75.1 72.1 80.3 64.3 87.4 54.2 84.9 75.6 75.6

T 100.0 50.0 48.6 65.4 62.3 25.2 7.5 32.6 34.4 62.5 48.6

%AIC4
 L 13.3 14.5 13.8 22.7 15.6 29.8 10.0 11.9 14.0 19.9 14.5

T 0.0 0.0 24.7 11.2 26.1 55.6 12.3 12.2 43.8 3.6 12.3

Regime %a L 72.7 74.8 70.1 87.0 64.5 33.5 75.5 47.3 96.7 93.2 74.8

T 100.0 53.7 25.3 38.8 31.4 3.0 4.8 5.2 28.1 55.4 28.1
bTumor in patient 1 has only 6 voxels in ROI.
bAverage of 2 tumors in patient 5.
cComputed pooling voxels from all patients ROIs.
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Parameter estimates for the group are shown in Table 3.  
For the parameters shared in both model interpretations  
(Fp, fa,�a), mean plasma flow Fp was similar in liver and tumor 
(cohort median 0.45 vs 0.44 mlmin−1ml−1); arterial fraction 
fa was significantly higher in tumors (0.37 vs 0.18, Willcoxon 
signed rank test P = . 011), and arterial delay time significantly 
shorter (0.07 minutes vs 0.14 minutes, P = . 027).

Figure 6 depicts waterfall plots of active-uptake regime 
physiological parameter estimates in the liver in comparison 
with healthy volunteers. There were no significant differ-
ences in Ki, fa, and �a; however, the patient group has sig-
nificantly lower Fp (Wilcoxon ranked sum test P = .002) and 
higher vecs (P = .003).

Pathophysiology of non-tumorous liver
In patient data, the pattern of model selection in non-
tumorous tissue broadly matched the healthy volunteer co-
hort. However, there was a general reduction in gadoxetate 
uptake as seen in the average concentration time-series plots 
(Figure  7D,E), reflected in reduced estimates of Fp and 
vi = 1 − vecs, higher values for %AIC2

 and lower values for 
%a. This suggests reduced perfusion and a lower volume of 
hepatocytes in liver tissue, which may indicate reduced func-
tion associated with co-morbidities to HCC.

This deviation from the healthy pattern was particularly 
strong in 2 patients, both of whom had an abnormally low %a.  
One of these (patient 8, %a = 58.1) also had an abnormally 
high proportion of I2 voxels (%AIC2

= 33.2); SNR and model 
residuals were in the mid-range of the cohort, suggesting this 
was not caused by poor model fitting, but is instead consistent 
with restricted hepatocyte uptake of gadoxetate. This accords 

with the clinical observation that patient 8 has chronic hemo-
chromatosis, resulting in a severely cirrhotic liver.

The second (patient 6, %a = 65.7) had higher than aver-
age I4 voxels (%AIC4

= 29.8), and an uptake rate in the non-
tumorous liver Ki = 0.015 minutes−1 less than a third of any 
other patient or healthy volunteer. Again, SNR was in range, 
suggesting the results were a genuine reflection of abnormal 
liver tissue function, and is consistent with complications ob-
served in the subsequent treatment of patient 6, in which the 
location and size of the tumor caused a partial obstruction of 
the biliary tree.

Gadoxetate uptake within HCC
While it was expected tumor voxels would be more likely 
than non-tumorous liver voxels to be assigned to the passive-
exchange regime, there are significant variations between 
patients and the active-transport regime is still assigned 
to a significant number of tumor voxels (34.6% across the 
cohort). In some cases, these may correspond to misalign-
ment in ROI boundaries, or as a result of the dynamic dura-
tion being too short to properly resolve the I4 model form. 
However, an analysis of parameters for active-uptake voxels 
in the tumor suggests they are systematically different from 
those in non-tumorous tissue (Table 3). Specifically, they 
have increased arterial and reduced venous supply (ie, higher 
fa, 0.36 vs 0.17), and significantly reduced uptake parameter 
Ki (0.019 vs 0.064).

Plausible interpretations of these observations are that 
such voxels are composed of cells exhibiting residual OATP 
function, allowing uptake of gadoxetate through the OATP 
pathway, or that there is a partial volume effect between 

T A B L E  3   HCC patient data: median (IQR)a values for each physiological parameter of the active-uptake and passive-exchange regimes

2CXM voxels AUEM voxels All voxels

Parameter Liver Tumor Liver Tumor Liver Tumor

Fp 0.75 (0.44) 0.45 (0.19) 0.55 (0.47) 0.67 (0.60) 0.56 (0.48) 0.49 (0.46)

fa 0.24 (0.08) 0.40 (0.81)b  0.17 (0.09) 0.34 (0.16)b  0.18 (0.09) 0.37 (0.29)b 

�a 0.17 (0.06) 0.08 (0.13)c  0.14 (0.03) 0.10 (0.08)c  0.14 (0.03) 0.08 (0.12)

PS 0.07 (0.03) 0.04 (0.02)c  - - - -

ve 0.58 (0.17) 0.14 (0.17)c  - - - -

vp 0.09 (0.05) 0.07 (0.07)c  - - - -

vecs - - 0.14 (0.02) 0.11 (0.03) - -

Ki - - 0.06 (0.04) 0.02 (0.02)c  - -

Kef - - 0.00 (0.00) 0.00 (0.00) - -

Notes: For each parameter, a per-patient value in the liver or tumor is computed taking the median of voxels in the ROI for which the model is deemed to be the correct 
physiological interpretation. Median values for Fp, fa, and � over all voxels, regardless physiological interpretation, are also shown for the liver/tumor. Units are 
Fp: mlmin

− 1
ml

− 1, fa: no units, �a: minute; PS: min−1, ve: mlml
− 1, vp: mlml

− 1
;vecs: mlml

− 1, Ki: min−1, Kef : min−1.
aCohort data for all parameters were tested for normality using the Anderson-Darling test. Several parameters had non-normal distributions. For consistency, median 
and IQR are used to summarize the data, and paired Wilcoxon signed rank tests used to assess significance.
bIndicate tumor values significantly higher than the liver.
cIndicate tumor values significantly lower than the liver.
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F I G U R E  6   Waterfall plots of each active-uptake regime parameter for the 8 healthy volunteers and 10 HCC patients. Due to the short post-
contrast duration in the patient data, estimations of Kef  are not reliable, and should not be compared to the volunteer data

F I G U R E  7   Dynamic concentration time series. Top row, sample individual voxels from A, a healthy volunteer; B, a patient liver; C, a patient 
HCC. Each sample show signal-derived concentration (black dots), and the fits of the I2 (red), I3 (green) and I4 (blue) models. Bottom row: average 
modeled time series for each D, healthy volunteer liver; E, patient liver; F, patient HCC tumor. The lines are color coded with the percentage of 
voxels assigned to the active-uptake regime, %a. For the healthy volunteer time series in A,D only 6 minutes post-contrast is shown to compare 
directly with the HCC data. See Supporting information Figure S6 for the same time series shown to 24 minutes post-contrast
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tumor cells and functioning liver tissue (or a combination of 
both). In either interpretation, if further clinical or histolog-
ical information were available, a per tumor analysis of this 
effect may help understand clinically relevant physiological 
differences.

4  |   DISCUSSION

Analysis of the in vivo data conforms to our initial hypoth-
eses and reflects the results of the Monte Carlo simulations: 
dynamic time series in healthy liver tissue are best fitted by 
models that account for active transport of gadoxetate by 
hepatocytes from a well-mixed arterial and venous blood sup-
ply. In comparison, tumors tend to exhibit passive-exchange 
of contrast agent, with a more rapid and arterially dominated 
blood supply. However, there are also significant differences 
within the non-tumorous liver—where chronic disease such 
as cirrhosis and fibrosis may reduce (or even eliminate) por-
tal blood supply or inhibit hepatoctye function—and within 
tumor sub-types.

These results highlight the necessity of fitting multiple 
models to characterize tissue across the liver volume. Relying 
on a single preselected model interpretation risks fitting a 
model that does not adequately match the data and thus pro-
duces unreliable parameter estimates. Instead, fitting mod-
els in the functional space, and then post-fit, choosing the 
most appropriate physiological interpretation at each voxel 
provides a more robust analysis, capable of dealing with vari-
ations between individual patients and between/within het-
erogeneous tissues. Moreover, the data, and in particular the 
varying ways in which patients 6 and 8 differ from the cohort 
norm, suggest analyzing both the appropriate physiological 
interpretation and the selected level of model complexity 
provides clinically relevant information.

Analyzing model functional form helps clarify the re-
lationship between different physiological interpretations 
and their associated assumptions of tissue microstructure. 
From a practical perspective, it is much more efficient to ex-
tract multiple physiological derivations from a single opti-
mization, as the former has negligible cost compared with 
the computationally intensive process of fitting a complex 
non-linear model to each voxel. The functional forms in our 
framework do not allow direct measurement of sinusoidal 
backflux. This could be incorporated by extending the top-
level 2-compartment models to a 3-compartment model,13 
although this would significantly increase computation and 
may require longer acquisitions to provide sufficient data 
points to unambiguously resolve all model parameters.

In common with many previous studies of DCE-MRI in 
the liver, we did not take steps to suppress liver fat in these 
data. This may lead to errors in T1 estimation and that may 
subsequently bias the model parameters. The relaxivity of 

gadoxetate should also be carefully considered. This is re-
ported as 6.9 mmol−1 s−1 plasma at 1.5 T38; however, a sub-
sequent study measured values approximately twice as high 
in liver tissue (14.0  mmol−1 s−1,39). We used the former 
for converting signal to concentration for AIF generation, 
and the latter for model fitting in the liver (see Supporting 
Information), while accepting the limitation that patient dis-
ease may also effect gadoxetate relaxivity (eg, due to reduced 
albumin).

With only 10 patients imaged once using a 6-minute post-
contrast acquisition, there are limits to the conclusions that 
can be drawn from the HCC data. A larger cohort, longer 
DCE protocol, with repeat baseline imaging would enable 
us to assess the repeatability of the analysis, while follow-on 
imaging would allow testing of the clinical utility of specific 
parameters as biomarkers in tracking disease progression or 
treatment response. However, our results correlate with the 
clinical presentation of the patients. Moreover, the spatial 
consistency of model selection and parameter maps suggests 
that the framework is suitable for quantifying the microvas-
cular characteristics of both non-tumorous liver tissue and 
HCCs on a per voxel basis, despite the challenging data qual-
ity resulting from a free-breathing protocol. Thus we pro-
pose that while HCC patients are a study group of clinical 
significance, there is sufficient evidence to repeat the anal-
ysis described here in a larger cohort featuring longitudinal 
imaging.

4.1  |  Recommendations for future studies

The in vivo data, together with the Monte Carlo simulations, 
suggest using a DCE protocol of at least 12 minutes post-
contrast when using gadoxetate as a contrast agent. This al-
lows estimation of efflux (Kef ) in the active-uptake regime, 
and significantly improved estimation of the extracellular, 
extravascular volume fraction ve in the 2CXM, as well as 
improving the differentiation between the 2 regimes in po-
tentially ambiguous tissue (eg,, in HCC, or compromised 
non-tumorous liver).

If only shorter acquisitions are possible, as with the pa-
tient data in this study, it must be accepted that estimations 
of Kef  will lack precision, and there will be greater ambigu-
ity in determining the appropriate physiological regime, and 
thus care should be taken in any conclusions drawn from the 
data. Where longer protocols are used, it is necessary to fit a 
full biexponential (I4) model form (or alternative model with 
sufficient complexity) to describe both the initial uptake and 
subsequent plateauing of gadoxetate concentration. A sim-
pler mono-exponential (I3) form may appear to fit the time 
series (and may even by preferred under AIC selection in a 
significant proportion of voxels), but parameter estimates de-
rived from the I3 model will likely be biased.
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A corollary of these observations is that if using a nested 
model approach, it is better to use the model with minimum 
SSE (rather than model selection criteria such as AIC or an 
F-test) from which to estimate physiological parameters. 
Despite this, there are still potential advantages in fitting 
the nested I3 and I2 models and applying AIC selection. 
A consistent pattern in model selection was observed in 
non-tumorous liver tissue across the healthy volunteers and 
in patients that did not have clinical observations of sig-
nificant liver co-morbidity. This suggests that deviations 
from this pattern are a sign that either there is insufficient 
data quality to fit a full I4 model to individual voxels, or 
that there may be clinically relevant reduction in liver func-
tion to assess. Such observations may be noticed more eas-
ily by a simple check on the model selection percentages 
than trying to interpret a more complicated distribution of 
multi-variate physiological parameters. Although there is a 
computational cost to fitting the additional models, optimi-
zation search space scales combinatorially with additional 
parameters, and thus the I2 and I3 models do not add signif-
icant overhead to fitting the I4 model.

As with the limitations of AIC analysis, it is not possi-
ble to state definitively the most appropriate physiological 
interpretation at all voxels, and it is inevitable some will be 
miscategorized by the framework. Nevertheless we propose 
it is beneficial to compute summary statistics over only those 
voxels assigned to each regime, and present these with the re-
gime’s percentage composition. The alternative, preselecting 
a model for each region, and then averaging over all voxels, 
will almost certainly include more voxels that do not meet the 
physiological assumptions of the model, with greater risk of 
producing invalid parameter summary statistics.

The difficulty in fitting fa to individual voxels in some 
healthy volunteer datasets, together with the results of vary-
ing temporal resolution in the fixed Monte Carlo simulations 
(Figure 3), suggest a temporal resolution of at least 6 seconds 
(and ideally higher) is necessary to adequately separate the 
arterial and venous components of vascular input to the liver. 
If accurate estimations of fa (and �a) are not required, a tem-
poral resolution of 12 seconds appears sufficient to estimate 
all other parameters in the framework (above 12 seconds and 
estimations of several other parameters become unreliable).

5  |   CONCLUSIONS

Although the individual tracer kinetic models used in this 
study are not new, we believe their presentation here—
grouped by functional form, cross-matched with vascular 
input and then physiologically interpreted post-fitting on a 
per-voxel basis—is novel and reveals a general framework 
within which to understand the family of models. Extensive 
Monte Carlo simulations, and the application of the 

framework to real datasets show the value in this approach, 
and that attempting to model the dynamics of gadoxetate in 
HCC using a single model, or with fixed prior assumptions 
about which model will be appropriate in a specific region, 
may not adequately cope with the varying physiology of indi-
vidual patients, and ultimately will produce unreliable tracer-
kinetic parameter estimates.

The unique physiology of HCC, together with varying 
levels of associated chronic disease in the surrounding liver, 
makes these tumors a challenging target for quantitative 
DCE imaging. We have shown that using gadoxetate as a 
contrast agent and applying a framework of tracer kinetic 
models, it is possible to investigate and quantify different 
aspects of tumor microvascular and general liver function 
in a free-breathing DCE protocol tolerated by patients. 
However, careful consideration should be given to sequence 
length and temporal resolution, to maximize the ability of 
model selection to differentiate between potentially ambig-
uous tissue types and increase the robustness of parameter 
estimation.
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FIGURE S1 A, Liver region in central slice of a dynamic 
volume acquired approximately 1 minute post-contrast. B,C 
Per voxel estimates of temporal-signal error

FIGURE S2 Mean translation along each axis of the defor-
mation field predicted to register each DCE volume to the 
target volume
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FIGURE S5 Residual errors for estimating temporal noise, 
before and after motion correction
FIGURE S6 Dynamic concentration time series for healthy 
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FIGURE S7-S9 Analytical form (by AIC) and physiological 
regime selection percentages for the fixed Monte Carlo data-
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FIGURE S7-S13 Analytical form (by minimum SSE) 
and physiological regime selection percentages for the 
fixed Monte Carlo datasets, with temporal resolution 
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FIGURE S7-S37 Estimation of active-uptake and passive-
exchange regime parameters for the fixed Monte Carlo 
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FIGURE S7-S49 Error box plots for varying ground truth 
active-uptake and passive-exchange regime parameters (5000 
samples), at 6-, 12-, and 18-minute durations

How to cite this article: Berks M, Little RA, Watson 
Y. A model selection framework to quantify 
microvascular liver function in gadoxetate-enhanced 
MRI: Application to healthy liver, diseased tissue, and 
hepatocellular carcinoma. Magn Reson Med. 
2021;86:1829-1844. https://doi.org/10.1002/mrm.28758

https://doi.org/10.1002/mrm.28758

