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Abstract 

For over a decade, noise in gene expression has been the focus of experimental and theoretical studies. 
It is currently accepted that gene expression noise can be decomposed into extrinsic and intrinsic 
components, which have orthogonal contributions to the total noise. Intrinsic noise stems from the 
random occurrence of biochemical reactions and is inherent to gene expression. Extrinsic noise 
originates from fluctuations in the concentrations of regulatory components or random transitions in the 
cell’s state and is imposed to the gene of interest by the intra- and extra-cellular environment. The basic 
assumption has been that extrinsic noise acts as a pure input on the gene of interest, which exerts no 
feedback on the extrinsic noise source. Consequently, multiple copies of a gene would be uniformly 
influenced by an extrinsic noise source. Here we report that this assumption falls short when multiple 
genes share a common pool of a regulatory molecule. Due to competitive utilization of the molecules 
existing in this pool, genes are no longer uniformly influenced by the extrinsic noise source. Rather, 
they exert negative feedbacks on each other. Thus, extrinsic noise calculated using the currently 
established method becomes ill-defined. 
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For just over a decade, stochastic gene expression has 
been the focus of several experimental and theoretical 
studies. It is now widely accepted that noise in gene 
expression can be decomposed to extrinsic and intrinsic 
components, which have orthogonal contributions to the 
total noise, in the sense that their variances add up to the 
total variance (Swain et al. 2002). Intrinsic noise stems 
from the random occurrence of biochemical reactions and 
is inherent to gene expression. Extrinsic noise originates 
from fluctuations in the concentrations of regulatory 
components or random transitions in the cell’s state and is 
imposed to the gene of interest by the intra- and extra-
cellular environment. 

This approach treats the gene expression process as a 
“noisy-machine” (Figure 1) which receives a noisy signal 

and performs a random transformation of that signal. 
Thus, the output of this machine will contain two noise 
components: the input (extrinsic) noise and the generated 
(intrinsic) noise. Considering two identical, 
non-interacting noisy machines, one would expect that 
their outputs have (i) perfectly correlated extrinsic 
components, since both “machines” receive the same 
input, (ii) perfectly uncorrelated intrinsic components, 
since the “machines” do not interact. Under these 
assumptions one can define the extrinsic variables as the 
noisy input variables to the “noisy-machine”, and the 
intrinsic variables as the state variables of the “noisy-
machine”. Swain et. al (2002) give examples of extrinsic 
variables being the state of the cell or the contents of 
regulatory components, and examples of intrinsic 



  
 

 

variables being the mRNA and protein contents for the 
gene of interest and demonstrate how one can calculate the 
extrinsic and intrinsic noise components in theory and 
experiment. 

This approach is based on two assumptions, which we 
will refer to as follows: (i) The “pure-input assumption” 
stating that the gene of interest has no way to exert any 
feedback back to the extrinsic noise source; therefore, 
extrinsic noise acts as a pure-input to the process of gene 
expression. This assumption allows one to perform the 
partitioning of extrinsic and intrinsic variable as proposed 
by Swain et al. (2002). (ii) The “independent-genes 
assumption” stating that multiple identical copies of a 
gene do not influence one-another. This assumption 
allows one to calculate the intrinsic and extrinsic noise 
components by measuring the protein contents of two 
identical gene copies (otherwise, Eq. 9 in Swain et al. 
2002 would not be valid because P(E,I1,I2) ≠ 
P(E,I1)⋅P(E,I2)). 

Even though the decomposition of noise into extrinsic 
and intrinsic components is a useful tool for analyzing 
stochasticity in gene expression, such an analysis is 
ill-defined unless both of the aforementioned assumptions 
hold true. The aim of this paper is to demonstrate a case 
where these assumptions are violated and thus one cannot 
even partition the overall noise into extrinsic and intrinsic 
components. We will use mathematical modeling to a 
system similar to that used experimentally by (Elowitz et 
al. 2002), that comprises two reporter-gene variants under 
the influence of identical promoters repressed by LacI. We 
will show that the “pure-input assumption” does not hold, 
because the state of the gene (repressed or not) affects the 
free repressor content, and neither does the “independent-
genes assumption”, because if one gene is in the repressed 
state this prevents one repressor molecule from repressing 
the other gene. Thus, the competitive utilization of a 
common pool of repressor molecules results in mutual 
negative feedback interactions and subsequently in 
negatively correlated protein contents. As a matter of fact 
if one tries to calculate the extrinsic noise for this system, 
negative values with no physical meaning may be 
encountered. 

The rest of the paper is organized as follows: we will 
first present a network of reactions that captures the salient 
features of the underlying biochemical interactions and 
will subsequently derive a stochastic model for the 
transitions of the two operators to the repressed and 
unrepressed states. We will show that the “pure input 
assumption” and the “independent genes assumption” only 
hold in the limit of infinitely large repressor pool, or 
otherwise meaningless negative extrinsic noise values may 
be encountered. Finally, we will discuss when it is 
meaningful to consider partitioning the noise into extrinsic 
and intrinsic components.  

 

“Noisy Machine” 

 

Figure 1: a gene can be viewed as a “noisy 
machine” that accepts a noisy signal as input, 
transforms it, and subsequently adds its own 

inherent noise. This process generates an 
output with two noise components: extrinsic, 

due to the input noise, and intrinsic due to the 
noise produced within the “machine”. 
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Figure 2: schematic representation of the 
interactions taken into account in the two 

promoter-reporter system. For species notation 
see Table 1. + and − denote positive and 

negative regulation respectively. 

Table 1: Symbols used for the lac operon 
species 

Symbol Species denoted 
Lac LacI repressor 
OYfp yfp lacO operator 
OCfp cfp lacO operator 
RYfp yfp m-RNA 
RCfp cfp m-RNA 
Yfp Yfp 
Cfp Cfp 
∅ Generic source or sink 

Competitive Repressor Utilization Model 

The molecular mechanisms included in our model are 
depicted in Figure 2, the species notation is shown in 
Table 1 and the reaction network is summarized in Table 
2. In constructing the reaction network we assume 
constitutive LacI production, single lacO operator sites per 
promoter, abundant RNA polymerases and ribosomes and 
1st order degradation reactions. We ignore cell growth, 
division and DNA duplication effect as we want to 
concentrate on the effects of competitive utilization of a 
repressor pool. Thus, the stochastic model for this system 
is the following Chemical Master Equation which can be 
simulated with the Gillespie algorithm (Gillespie 1976; 
Gillespie 1977):  



  

 

( )( )

( )( )

( )( )
( )( )
( ) ( )
( )( )
( ) ( )
( ) ( )

1

1

1 1

1

1

1

1

1

1

1

1

1

1

Yfp Yfp

Yfp Yfp

Yfp

Yfp Yfp

Cfp Cfp

Lac Lac

Lac Lac

O Lac O Lac r Yfp

O Lac O Lac r Yfp

R m Yfp

R R Yfp

Yfp m Yfp

Yfp Yfp

O Lac O Lac

P k P
t

Lac P

k O Lac P

k O Lac P

k O P

R P

k R P

Yfp P

−

−

− −
−

−

−

∂
= − ⋅ +

∂

− ⋅ ⋅ +

− ⋅ ⋅ ⋅ +

− ⋅ ⋅ +

− ⋅ ⋅ +

− ⋅ ⋅ +

− ⋅ ⋅ +

− ⋅ ⋅ +

λ

λ

λ

E

E

E E E

E E E

E

E

E

E

E E E( )( )
( )( )
( )( )
( )( )
( )( )
( )( )

1

1 1

1

1

1

1

1

1

1

1

Cfp Cfp

Cfp

Cfp Cfp

r Cfp

O Lac O Lac r Cfp

R m Cfp

R R Cfp

Cfp m Cfp

Cfp Cfp

k O Lac P

k O Lac P

k O P

R P

k R P

Cfp P

−

− −
−

−

−

− ⋅ ⋅ ⋅ +

− ⋅ ⋅ +

− ⋅ ⋅ +

− ⋅ ⋅ +

− ⋅ ⋅ +

− ⋅ ⋅

λ

λ

E E E

E

E

E

E
 (1) 

where we have made use of the step operator as follows 
(van Kampen 1992): 

( ) ( ), , , ,... , , , ,...p
m f k l m n f k l m p n= +E  (2) 

The state vector with the numbers of molecules is x = 
(Lac, OYfp, OYfpLac, OCfp, OCfpLac, RYfp, Yfp, RCfp, Cfp). 

Let us now focus on the operator states under the 
assumption of fast operator fluctuations. Noting that OYfp 
and OCfp are zero or unity and operator sites are conserved, 
let us define: 

,

,

1

1
Yfp Yfp Yfp T

Cfp Cfp Cfp T

O O Lac O

O O Lac O

+ = =

+ = =
 (3) 

Furthermore, the operator fluctuations between the 
free and the repressed state do not change the overall 
repressor content, which is defined as: 

T Yfp CfpLac Lac O Lac O Lac= + +  (4) 

We can further apply the summing operator: 

0 0 0 0Yfp CfpR Yfp R Cfp≥ ≥ ≥ ≥
∑ ∑ ∑ ∑ i  (5) 

to Eq. (1) to eliminate RNA and protein species.  

Table 2: Reaction Network 

(i) lack Lac∅ ⎯⎯→  

(ii) rk
Yfp YfpO Lac O Lac+ ⎯⎯→  

(iii) rk
Yfp YfpO Lac O Lac−⎯⎯→ +  

(iv) mk
Yfp Yfp YfpO O R⎯⎯→ +  

(v) pk
Yfp YfpR R Yfp⎯⎯→ +  

(vi) rk
Cfp CfpO Lac O Lac+ ⎯⎯→  

(vii) rk
Cfp CfpO Lac O Lac−⎯⎯→ +  

(viii) mk
Cfp Cfp CfpO O R⎯⎯→ +  

(ix) pk
Cfp CfpR R Cfp⎯⎯→ +  

(x) LacLac λ⎯⎯⎯→ ∅  

(xi) m
YfpR λ⎯⎯→ ∅  

(xii) pYfp λ⎯⎯→ ∅  

(xiii) m
CfpR λ⎯⎯→ ∅  

(xiv) pCfp λ⎯⎯→ ∅  

 
Finally, assuming fast operator fluctuations: 

r r
r rk k −

−= =
κ κ
ε ε

and  (6) 

allows us to introduce asymptotic expansions for the 
following probability mass functions: 
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Then from Eq. (1) using Eq. (3) − (7) the O(ε−1) 

expression is: 
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where the new state vector yielding 0P
�

 is x = (LacT, OYfp, 

OCfp). 
 
By solving Eq. (8) one obtains the extrinsic and intrinsic 
noise contributions given LacT = q: 
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Immediately apparent is the fact that the operator 
“extrinsic noise squared” is always calculated to be 
negative, which has no physical meaning. This happens 
because of the negative correlations resulting from the 
competitive utilization of the common repressor pool. 
Furthermore, it is interesting to investigate the limiting 
behavior of the two noise components for high repressor 
contents (q → ∞) and for very strong repression (Kr → ∞): 
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Non-Competitive Repressor Utilization 

In order to show that indeed it is the competitive 
repressor utilization that results in the negative feedback 
between genes and the paradox of negative extrinsic noise 
values, we considered the case where genes do not alter 
the free repressor concentration. Thus, reactions (ii) and 
(iii) are substituted with the following: 

rk
Yfp YfpO Lac O Lac Lac+ ⎯⎯→ +  (ii) 

rk
Yfp YfpO Lac O−⎯⎯→  (iii) 

Performing the analysis as previously described, the 
intrinsic and extrinsic noise values, given the total Lac, 
can now be calculated: 

2
| Toper Lac r

int
q K= ⋅η  (12) 

2
| 0

Toper Lac
ext

=η  (13) 

Evidently, the extrinsic noise is always zero in this 
case due to the fact that the free repressor concentration 
remains constant. 

Conclusions 

Starting from a reaction network for the two promoter 
system, used by Elowitz et al. (2002) to quantify the 
contributions of extrinsic versus intrinsic noise, we 
focused on the operator states and calculated the 
corresponding noise values. We found that due to the 
competitive repressor utilization, the extrinsic noise value 
will always be negative if the total repressor is assumed 
constant. This unrealistic situation is due to the negative 
correlations that result from the fact that a LacI molecule 
bound to the yfp operator is unavailable for repressing the 
other operator (cfp). These negative correlations 
essentially result in an underestimation of the extrinsic 
noise.  

Our analysis shows that these effects become less 
pronounced and finally disappear in the limit of abundant 
repressor contents (infinitely many molecules).  

Hence, the presumption that noise can be partitioned 
into extrinsic and intrinsic components is subject to 
limitations. In particular, the species’ concentrations that 
act as inputs to the genes of interest must be high enough 
so that depletion effects are negligible. Otherwise, the 
calculated (or experimentally measured) extrinsic and 
intrinsic noise values may not be meaningful. 
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