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Abstract 
The life-cycle environmental impacts of geothermal power generation are highly variable and depend 

on many site-specific conditions. The objective of this work is the identification of the most influential 

parameters for estimating the environmental impacts of geothermal electricity production. First, we 

developed a general model for computing the impacts of both conventional and enhanced geothermal 

technologies. The model is validated against selected literature studies for the climate change 

category. We then use Global Sensitivity Analysis (GSA) to evaluate the contribution of each parameter 

to the overall variance of the model’s output. The results of the GSA suggest that i) the uncertainty of 

environmental impact estimates can be significantly reduced by obtaining more accurate values for a 

small number of key parameters, such as the installed capacity of the plant, operational emissions of 

CO2 and the depth and capacity of wells; and ii) the majority of parameters do not affect significantly 

the environmental impact estimates and therefore can be fixed anywhere within their range of 

variability. Finally, we discuss some of the limitations of the present study and propose approaches 

that could be implemented to overcome such limitations. 
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 A novel model for estimating environmental impacts of geothermal energy is developed 
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 Most parameters affect the model output only marginally 

 Installed capacity and operational CO2 emissions are among the most influential parameters 
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1 Introduction 
The contribution of the geothermal sector to worldwide electricity production is still minuscule, 

although it is growing steadily. In 2019, the industry generated 92 TWh of electricity, approximately 

0.3% of global electricity generation from all sources and 1.3% of that generated from renewables 

(IEA, 2020). The sector output is projected to grow by 5% annually to 2024; according to the 

International Energy Agency (IEA), this is about half of what is required to meet carbon neutrality by 

2050 (IEA, 2019). As a renewable source of base-load power that is independent from seasonal and 

climatic conditions, geothermal energy is expected to have a significant role in the decarbonisation of 

the power generation sector and thus in the transition to a low-carbon economy. Of note, geothermal 

energy is also used for heat generation purposes, e.g. district heating; for simplicity, in this article we 

focus specifically on electricity generation. 

Conventional geothermal systems, which make up the vast majority of geothermal installed capacity 

(Bertani, 2016; IGA, 2015), take advantage of high-enthalpy hydrothermal reservoirs using well-known 

technologies such as dry steam, and single- and double-flash plants to convert thermal energy into 

electricity. The Geysers Complex in California (US) is the largest geothermal field in the world with a 

total electric capacity of ~1.5GW (Bertani, 2016; IGA, 2015). In recent years, a novel geothermal 

technology, known as Enhanced Geothermal Systems (EGS), has attracted considerable interest. The 

technology enabled harnessing geothermal energy in locations that lack water or sufficient 

permeability in the rocks, by artificially creating an “engineered” reservoir using stimulation 

techniques (MIT, 2006). The Upper Rhine Valley - which extends across France, Germany and 

Switzerland - has been at the centre of the European efforts to develop  EGS: the first worldwide 

commercial-scale power plant was commissioned at Soultz-sous-Forêts, France (Gérard et al., 2006). 

Other important sites for EGS development are located in Australia and in the United States (Lu, 2018). 

In the United Kingdom, the United Downs Deep Geothermal Power (UDDGP) project is investigating 

the technical and commercial viability of producing electricity from heat produced by the Cornish 

granites exploiting the natural permeability of a significant structural fracture zone (Ledingham et al., 

2019).  In Switzerland, the government’s Energy Strategy 2050 (Swiss Federal Office of Energy, 2018) 

projects a substantial contribution from EGS in the order of 4-5 TWh; EGS has in fact been a major 

research topic within the past years, addressing e.g. environmental performance and costs 

(Hirschberg et al., 2015), risks (Trutnevyte and Wiemer, 2017), and social acceptability (Knoblauch et 

al., 2019). 

Numerous Authors have in recent years attempted to quantify the life-cycle environmental 

performance of electricity from geothermal energy, focusing in particular on carbon emissions; this is 

primarily as part of a global effort to decarbonise the power generation sector. Life Cycle Assessment 

(LCA) is a standardised and widely adopted framework to quantify the environmental impacts 

associated with a product or service throughout its life-cycle (ISO, 2006a, 2006b). The life-cycle 

perspective and the consideration of a number of environmental issues enables identification of trade-

offs, thus providing a robust framework for decision support (Hauschild et al., 2018). The 

environmental impacts of conventional geothermal energy were investigated by Bravi and Basosi 

(2014), Buonocore et al. (2015), Parisi et al. (2019) and Tosti et al. (2020) for plants located in Tuscany, 

Italy, and by Karlsdottir et al. (2020) and Paulillo et al. (2019a) for Hellisheidi, the largest combined 

heat-and-power geothermal plant in Iceland. For Enhanced Geothermal Systems (EGS), Frick et al. 

(2010) investigated multiple scenarios with the objective of quantifying a range of environmental 

performances. Lacirignola and Blanc (2013) and Pratiwi et al. (2018) evaluated existing or under 

construction EGS plants in the Soultz-sous-Forêts area, whilst Paulillo et al. (2020a) predicted the 

environmental performance of the United Downs Deep Geothermal Power (UDDGP) project in 

Cornwall, UK. Bayer et al. (2013) and Tomasini-Montenegro et al. (2017) provide comprehensive 
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reviews of relevant LCA studies. The application of LCA on geothermal energy demonstrated that its 

environmental performance is dependent on site-specific conditions, such as the composition of 

geothermal fluid, the enthalpy of reservoir or the expected trend of long-term productivity (Bayer et 

al., 2013). For example, the carbon footprint of geothermal electricity generation spans over two order 

of magnitudes, from ~5 and up to ~800 gCO2-eq./kWh (Paulillo et al., 2019a). Because site-specific 

data is not always available and data collection is time-consuming and expensive, it is useful to identify 

which parameters are the most important for obtaining accurate LCA estimates.   

The objective of this study is to identify the most influential parameters that affect the variability of 

the environmental impacts of geothermal energy for the generation of electricity. To the best of our 

knowledge, no other article in the literature has attempted this, covering both conventional and 

enhanced geothermal technologies and including a wide array of environmental categories that are 

not limited to climate change. To this end, we first developed a novel model, based on a selected 

number of parameters that were obtained from an extensive critical literature analysis, for estimating 

(ex-ante or ex-post) the environmental impacts of both conventional and enhanced geothermal 

technologies. Notably, our model, unlike others available in the literature (e.g. Lacirignola et al., 2014), 

accounts for the possibility of failure in the drilling of wells. The model is validated by comparison with 

literature data for the climate change category only. We then used Global Sensitivity Analysis (GSA) to 

quantify the contribution of each parameter to the overall variance of the model output. Global 

methods take into account interaction effects among inputs and model nonlinearities (Saltelli et al., 

2008), and are therefore appropriate for models with complex input dependencies (Saltelli et al., 

2019). They are more computationally demanding than simpler sensitivity methods (e.g. local and 

screening) but, in part because of recent computational advancements, they are increasingly applied 

within LCA for different aims, including supporting the decision-making process (Ventura et al., 2015), 

prioritizing data collection for regionalization (Patouillard et al., 2019), assessing the robustness of the 

results (Wei et al., 2015), and calibrating or simplifying existing models - e.g. for several geothermal 

plant archetypes (Douziech et al., 2020), for EGS (Lacirignola et al., 2014), for wind power (Padey et 

al., 2013) and urban planning (Mastrucci et al., 2017). The remainder of the article is organised as 

follows: the model and the GSA method are introduced in Section 2. In Section 3 the model outputs 

are compared against literature data and the GSA results are presented. The outcomes of the study 

and some of its limitations are discussed in Section 4, and the key messages are summarised in Section 

5. 

2 Methods 

2.1 The general parametric model  
The general parametric model proposed here estimates the life-cycle environmental impacts per kWh 

of electricity generated by either conventional or enhanced geothermal power plants. Notably, we 

assume that only enhanced plants employ binary cycles, with conventional plants covering dry-steam 

and single- and multi-stage flash technologies. The model considers all activities from “cradle to 

grave”, that is from the construction of the plant and wells up to their decommissioning. The model 

can be used both retrospectively, to quantify the environmental performance of an existing plant, and 

prospectively, to predict the environmental impacts of a future plant. In its current form, the model is 

not applicable to the case of heat and power co-generation. This would require allocating 

environmental impacts among the two functions of electricity and heat generation, to enable 

comparison with other energy sources. The choice of allocation strategy significantly affects the LCA 

results, but it is largely subjective, which makes it difficult to be considered within GSA.   

 In Equation (1) we illustrate the overall concept: the total impact for the environmental category k is 

obtained as the sum of the life-cycle impacts associated with geothermal wells, collection pipelines, 
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power plant and hydraulic stimulation, each divided by the net lifetime electricity generated, plus the 

impact of operational emissions (which are reported per unit of electricity generated, see Table 1).  

The approach underlying the calculation of life-cycle environmental impacts for the relevant 

component of Equation (1) is exemplified in Equation (2), whilst the specific mathematical expressions 

for each term used in Equation (1) are presented in Section 2.2. 

In Equation (2), Aj represents the total amount over the life-cycle of a geothermal plant of an 

intermediate or an elementary flow j; and ij,k corresponds to the life-cycle environmental impact in 

the category k associated with the provision of the intermediate flow or to the characterisation factor 

of the elementary flow. The overall impact for the environmental category k is obtained as the sum of 

the product of Ai and ij,k over all relevant energy or material flows j. An intermediate flow is by 

definition a man-made product that is produced and consumed within the Technosphere (i.e., the 

economy or the “man-made” world), whilst an elementary flow represents an exchange between the 

Technosphere and the Ecosphere (or Biosphere) (Bjorn et al., 2018). For example, steel required as 

casing for geothermal wells is an intermediate flow whilst an emission of CO2 during operation of the 

geothermal plant is an elementary flow.  

The total amounts of intermediate and elementary flows Aj are obtained as functions of multiple 

parameters such as the installed capacity of the plant or the average depth of the wells; these 

parameters are described in Section 2.2. The coefficients i are reported in Annex A; they were 

calculated for all environmental categories in the Environmental Footprint (EF) 2.0 method (Fazio et 

al., 2018) using the Ecoinvent database, cut-off system model version 3.6 (Wernet et al., 2016).  

2.2 Input parameters and mathematical expressions 
From an extensive critical literature review of LCA studies (see references in Table 1 and Table 2), we 

identified 25 parameters that were deemed sufficient to develop a model capable of estimating the 

environmental impacts of electricity production from geothermal energy. These parameters are listed 

in Table 1 and Table 2, and are described in Annex B. 

Table 1 reports 21 out of the 25 input parameters for which we could establish a range of variability 

based on literature data; these parameters are included in the Global Sensitivity Analysis (GSA). For 

most of these parameters, we assumed a uniform distribution because available data were not 

sufficient to justify the choice of an alternative distribution; when sufficient data were available, the 

most appropriate distribution to describe their variability was determined. Table 2 includes the 

remaining four parameters for which a range of variability could not be determined due to insufficient 

data.

𝐼𝑚𝑝𝑎𝑐𝑡𝑘 [
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑢𝑛𝑖𝑡

𝑘𝑊ℎ
]  =

𝑊𝑒𝑙𝑙𝑠 + 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠 + 𝑃𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡 + 𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑁𝑒𝑡 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 
+ 𝑂𝑝𝑒𝑟. 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (1) 

𝐼𝑚𝑝𝑎𝑐𝑡𝑘[𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑢𝑛𝑖𝑡] = ∑ 𝐴𝑗 ∙ 𝑖𝑗,𝑘

𝑗

 
(2) 
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Table 1 - Parameters of the proposed general parametric model, and their probability distributions that are employed in Global Sensitivity Analysis 

Parameter Unit 
Acrony
m 

Conventional Enhanced 

Range Distribution Source Range Distribution Source 

Power plant         

Installed capacity MW Pn,e 10-130* Uniform (Bertani, 2016, 2012) 0.4-11 Uniform 
(Frick et al., 2010; Lacirignola and Blanc, 2013; Marchand et al., 2015; Paulillo et al., 
2020a; Pratiwi et al., 2018; Treyer et al., 2015; Menberg et al., 2021) 

Auxiliary power - AP 0.032-0.048 Uniform (Karlsdóttir et al., 2015) 0.12-0.28 Uniform 
(Frick et al., 2010; Lacirignola and Blanc, 2013; Pratiwi et al., 2018; Menberg et al., 
2021) 

Capacity factor - CF 0.7-0.95 Uniform 

(Frick et al., 2010; Karlsdóttir et al., 2015; 
Lacirignola and Blanc, 2013; Marchand et al., 
2015; Pratiwi et al., 2018; Rule et al., 2009; 
Basosi et al., 2020) 

0.7-0.95 Uniform 
(Frick et al., 2010; Karlsdóttir et al., 2015; Lacirignola and Blanc, 2013; Marchand et 
al., 2015; Pratiwi et al., 2018; Rule et al., 2009; Menberg et al., 2021) 

Lifetime years LT 20-40 
Normal. 
µ=30; σ=5 

(Buonocore et al., 2015; Hondo, 2005; 
Karlsdóttir et al., 2015; Basosi et al., 2020) 

20-40 
Normal 
µ=30; σ=5 

(Frick et al., 2010; Lacirignola and Blanc, 2013; Marchand et al., 2015; Pratiwi et al., 
2018; Sullivan et al., 2010; Treyer et al., 2015; Menberg et al., 2021) 

Collection pipelines length m/well CP 250-750 Uniform (Karlsdóttir et al., 2015) 50-200 Uniform This work** 

Operational CO2 emissions kg CO2/kWh ECO2 0.004-0.740 
Lognormal 
σ=0.98; µ=0.077*** 

(Bertani and Thain, 2002a)      

Wells         

Primary wells number # WPn      2-3 
Discrete 
uniform 

(Frick et al., 2010; Lacirignola and Blanc, 2013; Marchand et al., 2015; Paulillo et al., 
2020a; Pratiwi et al., 2018; Treyer et al., 2015; Menberg et al., 2021). 

Producers capacity MW/well CWn,e 0-20 
Lognormal  
σ=0.73; µ=5.89*** 

(IFC, 2013)    

Depth m/well Wd 660-4000 Uniform 
(Bravi and Basosi, 2014; Buonocore et al., 2015; 
Hondo, 2005; Karlsdóttir et al., 2015; Rule et al., 
2009; Basosi et al., 2020) 

2500-6000 Uniform 
(Frick et al., 2010; Lacirignola et al., 2014; Paulillo et al., 2020a; Pratiwi et al., 2018; 
Sullivan et al., 2010; Treyer et al., 2015) 

Diesel MJ/m D 1600-2800 Uniform (Karlsdóttir et al., 2015; Basosi et al., 2020) 3000-14000 Uniform 
(Frick et al., 2010; Lacirignola and Blanc, 2013; Paulillo et al., 2020a; Pratiwi et al., 
2018) 

Steel kg/m Cs 75-125 Uniform (Karlsdóttir et al., 2015; Basosi et al., 2020) 75-150 Uniform 
(Frick et al., 2010; Lacirignola and Blanc, 2013; Paulillo et al., 2020a; Pratiwi et al., 
2018; Menberg et al., 2021) 

Cement kg/m Cc 30-50 Uniform (Karlsdóttir et al., 2015; Basosi et al., 2020) 16-100 Uniform 
(Frick et al., 2010; Lacirignola and Blanc, 2013; Paulillo et al., 2020a; Pratiwi et al., 
2018) 

Drilling mud m3 water DM 0.5-0.8 Uniform 
(Frick et al., 2010; Paulillo et al., 2020a; Pratiwi 
et al., 2018; Treyer et al., 2015) 

0.5-0.8 Uniform (Frick et al., 2010; Paulillo et al., 2020a; Pratiwi et al., 2018; Treyer et al., 2015) 

Initial harmonic decline rate - Di 0.01-0.10 Uniform This work*      

Producers-injectors ratio - PIratio 1-3 Uniform (IFC, 2013)     

Success rate         

Exploratory wells % SRe 0-100 
Truncated triangular 
min=0; peak=100 

(IFC, 2013) 0-100 

Truncated 
triangular 
min=0; 
peak=100 

(IFC, 2013) 

Primary wells % SRp 0-100 
Truncated triangular 
min=16.9; peak = 100 

(IFC, 2013) 0-100 

Truncated 
triangular 
min=16.9; 
peak = 100 

(IFC, 2013) 

Make-up wells % SRm 0-100 
Truncated triangular 
min=42.1; peak = 100 

(IFC, 2013)      

Stimulation         

Water m3/well Sw      10000-60000 Uniform (Lacirignola and Blanc, 2013; Treyer et al., 2015) 

Diesel 
kWh/m3 
water 

Sel      10-140 Uniform (Lacirignola and Blanc, 2013; Treyer et al., 2015) 

Wells - SWn      0.5-1.5 Uniform This work** 

*The lower boundary is inferred from Bertani (2012), who maintains that the majority of geothermal plants below 10MW use binary cycles. 
**See Annex B. 
***µ and σ are the mean and standard deviation of the underlying normal distribution. 
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Table 2 - Fixed parameters of the proposed general parametric model. 

The specific mathematical expressions for each term of the general parametric model (see Equation 

(1)) are reported in Equations from (3) to (14). Some expressions are relevant to both conventional 

and enhanced plants, whilst others are specific to each technology; for example, the relation for 

hydraulic stimulation (eq. (12)) is only applicable to enhanced geothermal plants. This is how the 

model is made specific to either conventional or enhanced plants.   

LCA studies in the literature indicate that a significant portion of the environmental impacts originate 

from the drilling of the wells. Therefore, the total number of wells drilled represent a critical 

parameter for estimating the environmental impacts. In our approach, the number of wells for 

conventional plants is estimated from other parameters. Explicitly, the number of production wells is 

estimated as the ratio between the maximum gross electric output of power plants (i.e., installed 

capacity) and that of individual production wells (i.e., producers capacity(Sanyal, 2004)),  whilst the 

number of injection wells is obtained from the number of production wells and the ratio between 

producers and injectors. On the other hand, for enhanced geothermal technologies the model 

assumes either a single doublet or a single triplet configuration (i.e., with a total number of 2 or 3 

respectively). We assumed that only conventional geothermal plants require make-up wells to 

maintain production of electricity over the lifetime; the number of make-up wells is estimated from 

the initial harmonic decline rate of the wells productivity (Sanyal, 2004). When the number of wells is 

estimated (i.e., for conventional plants), this is rounded to the least greater integer. For both 

conventional and enhanced technologies, we assume that the number of exploratory wells equals 3 

(see Table 2), and that each of these exploratory wells has life-cycle requirements equivalent to one 

third of that of primary wells (i.e., producers and injectors), to account for the lower diameters of 

exploratory wells (Marchand et al., 2015). Finally, the model incorporates the probability that each 

well is successful; a well may be unsuccessful for a number of reasons, including unexpected 

mechanical problems encountered during drilling and inadequate conditions of the reservoir (e.g. low 

temperature or static pressure) (IFC, 2013). Therefore, the total number of wells drilled is usually 

higher than the number of wells required to sustain the plant’s installed capacity; this number is also 

rounded to the least greater integer. The expressions for the total number of wells including (𝑊𝑛,𝑆𝑅) 

and excluding success rate (𝑊𝑛) for conventional and enhanced geothermal technologies are reported 

in Equation (5) to (6) whilst those for exploratory wells (𝑊𝐸𝑒𝑛 and 𝑊𝐸𝑒𝑛,𝑆𝑅) are reported in Equations  

(7) and (8).  

𝑊𝑛 (𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙) = ⌈
𝑃𝑛,𝑒

𝐶𝑊𝑛,𝑒

⌉ +   ⌈
𝑃𝑛,𝑒

𝐶𝑊𝑛,𝑒 ∙ 𝑃𝐼𝑟𝑎𝑡𝑖𝑜

⌉ + ⌈
𝑃𝑛,𝑒

𝐶𝑊𝑛,𝑒

∙ 𝐷𝑖 ∙ 𝐿𝑇⌉ 
(3) 

𝑊𝑛,𝑆𝑅  (𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙) = ⌈
1

𝑆𝑅𝑝

∙ (⌈
𝑃𝑛,𝑒

𝐶𝑊𝑛,𝑒
⁄ ⌉ +   ⌈

𝑃𝑛,𝑒

𝐶𝑊𝑛,𝑒 ∙ 𝑃𝐼𝑟𝑎𝑡𝑖𝑜

⌉)⌉ + ⌈
⌈
𝑃𝑛,𝑒

𝐶𝑊𝑛,𝑒
⁄ ∙ 𝐷𝑖 ∙ 𝐿𝑇⌉

𝑆𝑅𝑚

⌉ 

(4) 

𝑊𝑛 (𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑) =   𝑊𝑃 𝑛 (5) 

𝑊𝑛,𝑆𝑅  (𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑) =   ⌈
𝑊𝑃 𝑛

𝑆𝑅𝑃𝐼

⌉ 
(6) 

𝑊𝐸𝑒𝑛 =   𝑊𝐸𝑛 ∙ 0.3 (7) 

𝑊𝐸𝑒𝑛,𝑆𝑅 =   ⌈
𝑊𝐸𝑛 ∙ 0.3

𝑆𝑅𝐸

⌉ 
(8) 

Parameter Unit Acronym 
Value 

Source 
Conventional Enhanced 

Exploratory wells  # WE,n 3 3 (DiPippo, 2016a) 
Organic working fluid kg/MWel OF 0 300 (Rogge, 2004; Treyer et al., 2015) 
Cooling towers #/MWel CTn 0.023 0.023 (Karlsdóttir et al., 2015) 
Drilling waste  kg/m of well DW 450 450 This work* 
*See Annex B. 
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The impacts associated with geothermal wells are obtained from the total number of wells including 

success rate, the average depth of the wells and the specific amounts per metre of well of diesel (used 

for powering the drilling rig), steel and cement for casing, drilling mud and drilling waste generated, 

according to Equation (9). We assumed that diesel engines are used to drill the wells, reflecting 

common practices; the amount of diesel consumed is dependent on many factors, including wells’ 

depth and type of rock. It must be noted that recent studies have demonstrated that using electricity 

from the grid can yield significant reductions in environmental impacts (Karlsdottir et al., 2020; 

Menberg et al., 2016) .Besides the drilling phase and the treatment of drilling waste, the wells’ impacts 

also include construction of wellheads and closure of the wells.  

The impacts of collection pipelines are obtained from the number of wells (excluding success rate) and 

the average distance between the wells and the power plant (Equation (10)); whilst those associated 

with the power plant are estimated using the installed capacity and, when applicable, the amount of 

organic working fluid, as shown in Equation (11).  It should be noted that the material requirements 

(and therefore the environmental impacts) of the power plant are also linked to other parameters, 

including the wellhead temperature and the conversion efficiency; these were not considered in our 

model for the sake of simplicity. We made the following additional simplifying assumptions for the 

power plant (see Annex B): first, both conventional and enhanced plants rely on the same life-cycle 

inventory for construction; second, only enhanced geothermal plants employ binary cycles (and 

therefore an organic working fluid, see Section 2.1) for electricity generation; third, both conventional 

and enhanced technology use a water-based cooling system. Of note, we could not develop the model 

to be specific to different conventional technologies (e.g. dry-steam or single-flash plants) because of 

insufficient data available in the literature; however, the potential differences among technologies are 

accounted for in GSA. 

Hydraulic stimulation is only considered for enhanced geothermal plants, in which case a fraction of 

the number of wells is expected to be stimulated; this is estimated as the rounded product of the 

number of wells and an independent parameter ranging between 0.5 and 1.5 (to ensure that at least 

one well is stimulated; see Annex B). The impacts are calculated considering water and diesel (for 

electricity production) requirements, according to Equation (12). 

The total electricity generated during the lifetime of the plant is calculated considering the expected 

lifetime of the plant, power requirements by auxiliary components and the capacity factor, according 

to Equation ((13). (In Equation (13), 8760 is the number of hours in a year and 1000 converts MW to 

kW.) 

Operational emissions represent non-condensable gases that are released upon condensation of the 

geothermal fluid prior to reinjection. They are only significant for dry steam and flash power plants 

(i.e. conventional technologies), because in binary plants the geo-fluid flows in a virtual closed-cycle. 

Furthermore, we assume that conventional technologies only release CO2 during standard operations; 

this is quantified by Equation (14). Our model does not account for discharges of other non-

condensable gases (such as methane, H2S, NH3, and heavy metals) from conventional plants because 

sufficient data on their rate of emissions could not be found.  

𝑊𝑒𝑙𝑙𝑠 = (𝑊𝑛,𝑆𝑅 + 𝑊𝐸𝑒𝑛,𝑆𝑅) ∙ [𝑖1,𝑘 + 𝑊𝑑 ∙ (𝐷 ∙ 𝑖2.1,𝑘 + 𝐶𝑆 ∙ 𝑖2.2,𝑘 + 𝐶𝐶 ∙ 𝑖2.3,𝑘 + 𝐷𝑀 ∙ 𝑖2.4,𝑘 + 𝐷𝑊 ∙ 𝑖2.5,𝑘 +  𝑖2.6,𝑘)] (9) 

𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠 =  𝑊𝑛 ∙ 𝐶𝑃 ∙ 𝑖3,𝑘 (10) 
𝑃𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡 =  𝑃𝑛,𝑒 ∙ (𝑖4.1,𝑘 + 𝐶𝑇𝑛  ∙ 𝑖4.2,𝑘  + 𝑂𝐹 ∙ 𝑖4.3,𝑘)  (11) 

𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  [𝑆𝑊𝑛 ∙ 𝑊𝑛] ∙ 𝑆𝑤 ∙ (𝑖5.1,𝑘 + 𝑆𝑒𝑙 ∙ 𝑖5.2,𝑘) (12) 

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 =  𝑃𝑛,𝑒 ∙ 𝐶𝐹 ∙ (1 − 𝐴𝑃) ∙ 𝐿𝑇 ∙  8760 ∙ 1000 (13) 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =  𝐸𝐶𝑂2
∙ 𝑖6,𝑘 (14) 
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We quantified the variability of the general model output via Monte Carlo simulations, using the data 

provided in Table 1 and a number of iterations equal to 10,000 (following Paulillo et al., 2019a). 

2.3 Global Sensitivity Analysis 
We use Global Sensitivity Analysis (GSA) to quantify the contribution of each input parameter to the 

overall variance of model output. Our analysis does not include uncertainties in the Ecoinvent 

database because we focus on the parameters that are specific to geothermal power plants (see 

Section 2.2). A plethora of GSA methods exist, including but not limited to variance-based methods 

(Homma and Saltelli, 1996), screening techniques to filter out non-influential inputs (Campolongo et 

al., 2011), computation of moment-independent indicators (Plischke et al., 2013) probabilistic 

methods based on Bayesian approach (Oakley and O’Hagan, 2004). Pianosi et al. (2016) presents a 

comprehensive literature review on GSA approaches, whilst Igos et al. (2019) provides an overview of 

sources, types and characterization of uncertainties, as well as sensitivity analysis methods.  

Here, we first assign uncertainty distributions to model parameters, then propagate the uncertainties 

by means of Monte Carlo simulations, and analyse the resulting model distribution to estimate 

sensitivity indices for all parameters (a schematic flowchart is depicted in Figure S1 in the Supporting 

Information). We use the variance-based sensitivity method originally developed by Sobol' (2001) with 

estimators for first and total order Sobol' indices proposed by Saltelli et al. (2010). Sobol’ method, 

which has already been deployed for LCA applications, is advantageous because it allows exploration 

of the whole parameter space including non-linear and interaction effects. In our nomenclature, we 

refer to two parameters as ‘independent’ when they are not related by any functional or probabilistic 

function, whilst they are defined as ‘interacting’ if the model output cannot be expressed as the sum 

of the effects due to each of the two parameters (Saltelli et al., 2008). 

First and total order Sobol’ indices are computed for each model parameter and represent the 

contribution of the variance of a given parameter to the variance of the model output respectively 

without and with consideration of interaction effects with all other parameters. When a model does 

not contain interaction effects (i.e., additive models), first and total order indices coincide, and each 

sums to one. However, if the sum of first order indices is lower than one and the sum of total order 

indices is higher, then interactions between the model parameters are present (Saltelli et al., 2008). A 

key requirement of the Sobol’ methodology is that the parameters are independent from each other. 

We made this assumption for the parameters in Table 1; some parameters could present some degree 

of correlation, but this is either not obvious or not easily quantifiable.  

We used quasi-random Sobol' sequences and radial sampling strategies for faster convergence of the 

Monte-Carlo simulations. We implemented the GSA approach in Python, using Brightway2 tool for 

LCA computations (Mutel, 2017), SALib Python package for sensitivity analysis (Herman and Usher, 

2017), and DASK-parallel computation framework (Dask Development Team, 2016). The latter allowed 

to compute converged GSA indices for all methods and both conventional and enhanced technologies 

within 3 hours on a 2.6 GHz Intel Core i7 processor. The amount of time can be reduced to the order 

of tens of minutes if more computational resources are deployed, e.g. by employing a cluster. 

The Sobol’ indices estimator developed by Saltelli et al. requires N(k+2) model runs with all parameters 

varied simultaneously - where N is a constant and k is the number of parameters. We set N to 500, 

which resulted in 9500 and 9000 simulations for conventional and enhanced technologies, 

respectively, per impact category. Figures S1 and S2 in the Supporting Information show that 

convergence was reached after N=100 (i.e. 1900 and 1800 simulations). 
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3 Results 

3.1 Model validation: carbon footprint of selected studies 
In Figure 1 we compare the variability of the general parametric model for conventional and enhanced 

geothermal technologies with selected results from literature (Atilgan and Azapagic, 2016; Basosi et 

al., 2020; Bauer et al., 2017; Bravi and Basosi, 2014; Buonocore et al., 2015; De Rose et al., 2020; Frick 

et al., 2010; Hondo, 2005; Lacirignola and Blanc, 2013; Marchand et al., 2015; Menberg et al., 2021; 

Paulillo et al., 2020b, 2020a, 2019a, 2019b; Pratiwi et al., 2018; Sullivan et al., 2010). The comparison 

includes nine LCA studies on conventional and eight on enhanced geothermal technologies, 

respectively, and a total of 14 and 15 scenarios respectively (see Table S1 and S2 in the Supporting 

Information). Only some of these LCA studies use site-specific data and thus estimate the performance 

of actual geothermal plants. Figure 1 reports the results of Monte Carlo simulations for the climate 

change category; numerical results, including those for other environmental categories, are provided 

in Table S3 and S4 in theSupporting Information. A box-and-whisker plot is used to visualize the 

variability: horizontal lines represent median values, the boxes correspond to 25th and 75th percentiles, 

and the whiskers indicate 1st and 99th percentiles. The comparison was restricted to the climate change 

category (100-year time horizon) for two reasons. First, because the majority of selected LCA studies 

focused on this category (Tomasini-Montenegro et al., 2017); and second, because even when other 

environmental impact categories were considered, impact assessment methods other than EF2.0 

were used to quantify the environmental impacts, and therefore no systematic comparison was 

possible.  

Figure 1 shows that the proposed model for conventional geothermal technologies captures most of 

the variability in carbon footprint reported by published LCA studies. The model’s median value equals 

77 gCO2-eq./kWh, whilst the 25-75 percentile range approximately corresponds to 45-150 gCO2-

eq./kWh. The comparison shows that three carbon footprint estimates (21% of all data points) fall 

within the 25-75 percentile range and seven estimates (50%) in the 1-25 and 75-99 percentile ranges. 

The four estimates developed by Bravi and Basosi (2014) are above the 99th percentile, with values 

ranging from ~600 to ~800 gCO2-eq./kWh; this is chiefly caused by CH4 emissions which are not 

accounted by our model (see Section 2.2). 

The comparison for enhanced geothermal technologies encompasses eight estimates (53% of all data 

points) within the 25-75 percentile range, with a median value of ~30 gCO2-eq./kWh, and 25-75 

percentiles results in 20-60 gCO2-eq./kWh. Two estimates (13%) are included in the 1-25 percentile 

range, whilst the remaining three are below and above the 1st and 99th percentile; notably, two of 

these represent best and worst-case estimates (Frick et al., 2010). 
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Figure 1 - Comparison of the results from the proposed general parametric model with carbon footprints from literature 
studies for conventional (left) and enhanced (right) geothermal technologies. The box-and-whisker plots report the 1st, 
25th, 50th, 75th and 99th percentiles. Circles and triangles represent generic and site-specific studies, respectively.  

3.2 Global Sensitivity Analysis: first and total order Sobol’ indices 
Figure 2 and Figure 3 present results of GSA (Section 0) for conventional and enhanced geothermal 

technologies respectively, in terms of Sobol’ first and total order indices. The indices were calculated 

for the parameters in Table 1 for which a distribution was determined. The numerical values are 

reported in Tables from S4 to S7 in the Supporting Information. 

With the sole exception of the climate change category for conventional technologies, the sums of 

first and total order indices for each environmental category are respectively slightly lower and higher 

than one. As noted in Section 0, this indicates the existence (albeit small) of interactions between 

parameters. For conventional technologies and the climate change category (Figure 2), the sums of 

first and total order indices are similar and close to one (0.95 and 0.98 respectively). In this case the 

parameter “operational CO2 emissions” has the highest first and total order indices whilst the indices 

of the remaining parameters are negligible. (Note that the sum of total order indices is lower than one 

because we are using estimators for Sobol’ indices.) In the remaining categories for conventional 

technologies, the two parameters with the highest index values are “producers capacity” and “depth 

(of wells)”. The former with first and total order indices equal to 0.55-0.66 and 0.67-0.74 respectively; 

and the latter with values within 0.16-0.22 and 0.22-0.36 ranges for first and total order indices 

respectively. Amongst the remaining parameters, only “initial harmonic decline rate” features indices 

higher than 0.05 in both first and total order indices. 
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Figure 2 – Sobol’ first and total order indices for conventional geothermal technologies. 

For enhanced geothermal technologies (Figure 3), the parameter “installed capacity” features the 

highest first and total order indices in all categories, with first and total order indices included in the 

ranges 0.71-0.81 and 0.92-0.96, respectively. The remaining parameters feature first order indices 

lower than 0.05. However, for total order indices two parameters stand out. Diesel consumption for 

wells drilling presents the second highest values, ranging between 0.09 and 0.15, in eight 

environmental categories including climate change, ionising radiation, ozone layer depletion, 

photochemical ozone creation, freshwater and terrestrial acidification, marine eutrophication, 

terrestrial eutrophication and fossil resources. The “Depth (of wells)” shows the second-highest 

indices in the remaining categories, ranging between 0.06 and 0.08. “Success rate, primary wells” is 

the only one among the remaining parameters to yield values above 0.05. 
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Figure 3 – Sobol’ first and total order indices for enhanced geothermal technologies. 

4 Discussion 

4.1 Validation 
The validation of the results (Section 3.1) shows that the proposed model reproduces most of the 

variability of the carbon footprint estimated by available literature studies. For enhanced 

technologies, around four fifths of all data points fall within the lower and upper quartiles (i.e., 25th 

and 75th), and only three data points are outside the 1-99th percentile range. However, for 

conventional technologies only around one fifth of the data points fall within the lower and upper 

quartiles (i.e., 25th and 75th); this is explained by the presence of four outliers (26% of all data points), 

from Bravi and Basosi.  The presence of these outliers can be fully explained by either site-specific 

conditions or modelling assumptions, as detailed in what follows. 

Bravi and Basosi (2014) quantified the carbon footprint of two conventional, dry-steam geothermal 

power plants in the Mount Amiata region in southern Tuscany, Italy, being over 600 gCO2 eq./kWh 

generated, i.e., comparable to that of conventional natural gas and coal power plants. Emissions of 

methane as high as 280 gCO2-eq./kWh drive up the carbon footprint; these are currently not 

accounted for by the general parametric model, primarily because we could not find sufficient data to 

estimate a range of variability or ascertain a median value. On the other hand, CO2 emissions are 

comprehensively reported by Bertani and Thain (2002). Therefore, when the geothermal fluid 

presents above-average concentrations of methane, the general parametric model is likely to 

underestimate the carbon footprint. Notably, the general parametric model does not account for 

releases of other non-condensable gases like ammonia and hydrogen sulphide which can have non-

negligible contributions to the acidification category. 

Frick et al. (2010) developed four location-generic scenarios for EGS plants. One estimate falls below 

the 1st percentile, and another above the 99th percentile of the proposed model variability. These 

represent best- and worst-case conditions, respectively, in terms of reservoir depth, geothermal fluid 

temperature, auxiliary power requirements and other parameters that lead to exceptionally low and 

high electricity generation. The worst-case scenario in particular features a carbon footprint higher 
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than 700 gCO2-eq./kWh, which is considerably above the 99th percentile and comparable with fossil 

fuels power plants. 

4.2 Global Sensitivity Analysis 
The results from GSA (Section 3.2) can be interpreted in two ways, according to the two “settings” 

(which indicate the ultimate objective of the analysis) proposed by Saltelli et al. (2008): “Factor 

prioritization” and “Factor fixing”. “Factor prioritization” is used to identify a parameter (or a group of 

parameters) which, when fixed to its true value (i.e. a value that is measured or determined for a 

specific site) while all other parameters vary, leads to the greatest reduction in the variance of the 

output. This is quantified by first order indices, which represent the contribution of the variance of a 

given parameter to the variance of the model output without considering interactions effects (Section 

0). The chart on the left in Figure 4 shows that for enhanced geothermal technologies one parameter 

- “installed capacity” – can lead to an average reduction of 70% of the variance of the model output 

when fixed to its true value. For conventional technologies three parameters are required to reduce 

by an average of 70% the variance of the model; these are: “operational CO2 emissions”, “producers 

capacity” and “depth (of wells)”. For both technologies the number of parameters increases to 4 for a 

reduction of 80%. These results suggest that future LCA studies should endeavour to obtain the most 

accurate values possible for these parameters to reduce the uncertainty of the correspondent 

environmental impact estimates. For instance, because the variability of the model’s carbon footprint 

for conventional geothermal technologies can be attributed in practice only to operational emissions 

of CO2 (Figure 2), it is not recommended to use values that represent the operation of another 

geothermal plant in a different location, or to estimate carbon emissions without appropriate 

knowledge and data on the geothermal plant and reservoir. Rather, our results suggest that having 

accurate estimates of operational CO2 emissions for a specific operation is of paramount importance 

for calculating the carbon footprint of conventional geothermal technologies.   

Douziech et al. (2020) applied GSA to four geothermal plant archetypes, representing EGS and ORC 

plants for heat production, and flash and combined heat-and-power plant for electricity generation. 

The underlying models share several assumptions with the models we developed, but also present 

notable differences; as an example, their models explicitly consider the flow rate of the geothermal 

fluid and the content of non-condensable gases. Douziech et al calculated first order Sobol’ indices 

which they used as proxy (in place of total order indices) for generating simplified models (i.e. the 

factor fixing approach described below). The findings from Douziech et al. are in line with ours in many 

aspects. Two to six parameters explain 75% or more of the variance of their model’s output, depending 

on the plant archetype and environmental category; this is compared with two to four in our study for 

both conventional and enhanced plants. The installed capacity (electrical and/or thermal) has among 

the highest first order indices across all plant archetypes. This agrees with our results for enhanced 

plants; however, the variability of our model for conventional plants is dominated by the producers’ 

capacity (which determines the number of wells to be drilled). Like in our study, Douziech et al. find 

that the climate change category for flash/CHP plants is significantly affected by carbon emissions 

(including CO2). Notably, they estimate carbon emissions based on the geo-fluid flow rate and the 

content of non-condensable gases and/or CO2; whilst we use CO2 emission values per kWh of 

generated obtained from a global survey of geothermal plants (Bertani and Thain, 2002b). Other 

parameters that are found to be influential in both studies include the number and depth of primary 

wells, and the number of make-up wells (which in our model are predicted via the initial harmonic 

decline rate). A notable difference is that Douziech et al. identify the electricity consumption of 

production and/or injection pumps amongst the most influential parameters for EGS/ORC plant. We 

hypothesise that this is because their model envisages that this electricity is (at least in part) obtained 

from the grid. In our study, EGS plants are assumed to generate electricity; we embedded the pumps’ 
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electricity consumption within the auxiliary power parameter, which yields low to negligible first order 

indices (see Figure 2 and Figure 3).  

 

The “Factor Fixing” approach is used to identify those parameters which, left free to vary over their 

range of uncertainty, make no significant contribution to the variance of the output. Total order 

indices, which represent the fraction of the variance of the model output that is explained by a given 

parameter considering interaction effects, are used to this end. The parameters with the lowest total 

order index can then be fixed at any given value within their range of variation without affecting the 

output variance. The chart on the right in Figure 4 shows that this can be done for a large number of 

parameters. In fact, a total of 7 and 6 parameters for conventional and enhanced technologies 

respectively are individually responsible for less than 1% of the variance of the model output 

considering interactions effects (i.e. total order indices lower than 0.01). The number rises to 12 

parameters for a threshold of 5% of the variance. These results suggest that, when quantitative 

information on any of these parameters is not immediately available, LCA practitioners can choose 

any value within their range of variability reported in Table 1 without altering significantly their results. 

Blanc et al. (2020) provide additional default parameter values. 

A notable application of the Factor Fixing setting is to develop simplified models (Douziech et al., 2020; 

Lacirignola et al., 2014; Padey et al., 2013) that rely on a smaller subset of parameters for, e.g., 

estimating the environmental impacts of a technology such as geothermal power. To this end, the 

results for higher thresholds are particularly interesting. Figure 4 shows that only three and one 

parameter are individually responsible for more than 20% of the variance of the model for 

conventional and enhanced geothermal technologies respectively; these parameters are “operational 

CO2 emissions”, “producers capacity” and “depth (of wells)” for the former, and “installed capacity” 

for the latter. The number of parameters increases by one for a threshold of 10%; in this case the 

additional parameters are “initial harmonic decline rate” and “diesel consumption” for conventional 

and enhanced geothermal technologies respectively. Our results suggest that simplified models 

relying on e.g. 1-4 parameters could be developed for conventional and enhanced technologies. Such 

simplified models are currently being developed by the Authors. 

 

 
Figure 4 –   Left: Least number of parameters for enhanced and conventional technologies whose sum of first order indices 

in all categories is below given threshold values (i.e. 0.5, 0.6, 0.7, 0.8). Right: Number of parameters for enhanced and 
conventional technologies whose total order indices are below given threshold values (i.e. 0.01, 0.05, 0.1, 0.15, 0.2) in all 

categories. The blue and orange dotted lines correspond to the number of parameters in the general model for 
conventional and enhanced technologies, respectively. 
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4.3 Limitations and recommendations for future work 
The main limitation of this study concerns the distributions of the model’s parameters. Whilst the 

parameters’ variability ranges can be inferred from a few studies available in the literature, a large 

amount of data is required to make reasonable assumptions regarding their distribution. For most 

parameters (13 out of 21) we assumed uniform distributions because sufficient data was lacking to 

infer other distributions. This assumption is conservative because it increases the contributions to the 

variance output; however, it may substantially affect the GSA results especially if the parameter has a 

particularly skewed distribution such as that of operational CO2 emissions. For this reason, we tested 

the robustness of our results by changing all uniform distributions to triangular, with peaks located at 

their median values. The results, which are reported in Figure S4 and S5 in the Supporting Information, 

show that the Sobol’ indices, and therefore the ranking of the parameters, are not significantly altered 

compared to those reported in Section 3.2. Our model is therefore robust to this assumption. Future 

work should focus on investigating different distributions for other parameters too, and different 

combinations of these distributions as proposed by Lacirignola et al. (2017). 

For some parameters used in our model we could determine neither a range of variability nor a median 

value. The parameters for which a range of variability could not be established (e.g. the number of 

exploratory wells; see Table 2) are included in the model but are not investigated by means of GSA. 

However, the parameters for which we could not ascertain a median value (e.g., operational emissions 

of non-condensable gases other than CO2) are not considered by the model. The former represents a 

limitation of the GSA study whilst the latter to both the GSA analysis and the general model. Notably, 

the validation of the general parametric model demonstrated the importance of operational 

emissions of methane in conventional power plants (see Figure 1) and that our model is likely to 

underestimate climate change impacts when the concentration of methane in the geothermal fluid is 

significant (e.g. for plants in Tuscany, Italy).  Future studies should quantify whether the variability on 

the parameters we have assumed as constant, or in the parameters that were not included in our 

model strongly affects the predictions of the environmental footprint of geothermal energy 

operations. These studies can only be completed when sufficient field data are available. 

The general parametric model presented here relies on several simplifying assumptions on the plant 

construction; these are described in Section 2.2 and include, but are not limited to, the assumption 

that the material requirements for the construction of the plants only scale with the installed capacity, 

or that both conventional and enhanced plants use a water-based cooling system. These assumptions 

stem from poor data availability in the literature; future studies could develop more detailed 

modelling of the plant construction when more data become available. Furthermore, previous studies 

demonstrate that the cooling system has minor contributions to the environmental impacts (e.g., see 

Menberg et al., 2021; Paulillo et al., 2019a); therefore, our assumption on the type of cooling system 

is likely to have minor effects on the model output and the GSA results.  

The model has only been validated with respect to climate change impacts obtained from literature 

studies. This represents an additional limitation because of two reasons. First, the model needs to be 

validated using site-specific data from operational plants and compared with a conventional LCA 

models. This cannot be done for most of the carbon footprints data points because the studies do not 

report many of the parameters that the general model requires. Second, the validation needs to be 

extended to environmental categories other than climate change; at present, our assumption that the 

model is valid for other environmental categories remains to be tested. 

5 Conclusions 
In this work we identified the most influential parameters for quantifying the environmental impacts 

of geothermal power generation because (i) site-specific data is not always available and (ii) data 
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collection can be time-consuming and expensive. First, we developed a general parametric model for 

estimating the life-cycle environmental impacts per unit of electricity generated by both conventional 

and enhanced geothermal plants. We validated the general model by comparison with literature data 

for climate change impacts; the results show that the model is able to reproduce most of the variability 

of literature data.  Then, we used Global Sensitivity Analysis (GSA) to quantify the contribution of each 

parameter to the variance of the general model output, using estimators for first and total order Sobol' 

indices based on Monte-Carlo simulations. We used first order indices to identify the parameters that, 

when fixed to their true values, lead to the greatest reduction in the variance of the output. The 

parameters with the highest first order indices include operational CO2 emissions”, “producers 

capacity” and “depth (of wells)” for conventional technologies and “installed capacity” for enhanced 

technologies. On the other hand, we used total order indices to identify the parameters that can be 

fixed at any given value within their range of variation without affecting the output variance. Our 

analysis showed that a large number of parameters are non-influential, suggesting that (i) LCA 

practitioners can choose any value within the range of variability of these parameters when site-

specific data is not available, and (ii) the general model could be considerably simplified by fixing all 

non-influential parameters. The Authors are investigating the development of such simplified models.  

Finally, we recommended potential future works, for example investigating different distributions and 

different combinations of distributions for the input parameters. 

6 Acknowledgments 
This work has received funding from the European Union’s Horizon 2020 research and innovation 

programme under grant agreement No 764810, Science for Clean Energy (S4CE) project; and from the 

Swiss National Science Foundation (SNSF) within the framework of the National Research Programme 

“Sustainable Economy: resource-friendly, future-oriented, innovative” (NRP 73) Grant-N° 

407340_172445, Open Assessment of Swiss Society and Economy (OASES) project. This research was 

also partially supported by the Swiss Competence Center for Energy Research (SCCER) – Supply of 

Electricity (SoE) that is funded by Innosuisse – the Swiss Innovation Agency, Contract CTI-

No.1155002546. 

7 References 
Atilgan, B., Azapagic, A., 2016. Renewable electricity in Turkey: Life cycle environmental impacts. 

Renew. Energy 89, 649–657. https://doi.org/10.1016/j.renene.2015.11.082 

Basosi, R., Bonciani, R., Frosali, D., Manfrida, G., Parisi, M.L., Sansone, F., 2020. Life Cycle Analysis of a 
Geothermal Power Plant : Comparison of the Environmental Performance with Other Renewable 
Energy Systems. 

Bauer, C., Hirschberg, S., Bauerle, Y., Biollaz, S., Calbry-Muzyka, A., Cox, B., Heck, T., Lehnert, M., Meier, 
A., Prasser, H.-M., Schenler, W., Treyer, K., Vogel, F., Wieckert, H.C., Zhang, X., Zimmerman, M., 
Burg, V., Bowman, G., Erni, M., Saar, M., Tran, M.Q., 2017. Potentials, costs and environmental 
assessment of electricity generation technologies. [Final report in English with summaries in 
German and French]. 

Bayer, P., Rybach, L., Blum, P., Brauchler, R., 2013. Review on life cycle environmental effects of 
geothermal power generation. Renew. Sustain. Energy Rev. 26, 446–463. 
https://doi.org/10.1016/j.rser.2013.05.039 

Bertani, R., 2016. Geothermal power generation in the world 2010-2014 update report. Geothermics 
60, 31–43. https://doi.org/10.1016/j.geothermics.2015.11.003 

Bertani, R., 2012. Geothermal power generation in the world 2005-2010 update report. Geothermics 
41, 1–29. https://doi.org/10.1016/j.geothermics.2011.10.001 

Jo
urn

al 
Pre-

pro
of



Bertani, R., Thain, I., 2002a. Geothermal Power Generating Plant CO2 Emission Survey. IGA News. 

Bertani, R., Thain, I., 2002b. Geothermal Power Generating Plant CO2 Emission Survey. Newsl. Int. 
Geotherm. Assoc. https://doi.org/10.1084/jem.191.12.2053 

Bjorn, A., Mikolaj, O., Laurent, A., Olsen, S.I., Corona, A., Hauschild, M.Z., 2018. Scope Definition, in: 
Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I. (Eds.), Life Cycle Assessment. Theory and Practice. 
Springer International Publishing. https://doi.org/10.1007/978-3-319-56475-3 

Blanc, I., Damen, L., Douziech, M., Fiaschi, D., Harcouët-Menou, V., Manfrida, G., Mendecka, B., Parisi, 
M.L., Pérez-López, P., Ravier, G., Tosti, L., 2020. First version of harmonized guidelines to perform 
environmental assessment for geothermal systems based on LCA and non LCA impact indicators: 
LCA Guidelines for Geothermal Installations. 

Bravi, M., Basosi, R., 2014. Environmental impact of electricity from selected geothermal power plants 
in Italy. J. Clean. Prod. 66, 301–308. https://doi.org/10.1016/j.jclepro.2013.11.015 

Buonocore, E., Vanoli, L., Carotenuto, A., Ulgiati, S., 2015. Integrating life cycle assessment and emergy 
synthesis for the evaluation of a dry steam geothermal power plant in Italy. Energy 86, 476–487. 
https://doi.org/10.1016/j.energy.2015.04.048 

Campolongo, F., Saltelli, A., Cariboni, J., 2011. From screening to quantitative sensitivity analysis. A 
unified approach. Comput. Phys. Commun. 182. https://doi.org/10.1016/j.cpc.2010.12.039 

Dask Development Team, 2016. Dask: Library for dynamic task scheduling [WWW Document]. URL 
https://dask.org 

De Rose, A., Harcouet-Menou, V., Laenen, B., Caia, V., Facco, L., Guglielmetti, L., Olivieri, N., Rocco, E., 
Strazza, C., Vela, S., Venturin, A., Urbano, G., 2020. Study on ‘Geothermal plants’’ and 
applications’ emissions: overview and analysis’.’ https://doi.org/10.2777/755565 

DiPippo, R., 2016a. Geothermal Power Generation: Developments and Innovation. Woodhead 
Publishing. 

DiPippo, R., 2016b. Geothermal Power Plants: Principles, Applications, Case Studies and 
Environmental Impact, 4th editio. ed. Butterworth-Heinemann. 

Douziech, M., Blanc, I., Damen, L., Dillman, K., Eggertsson, V., Ferrara, N., Guðjónsdóttir, S.R., 
Harcouët-Menou, V., Parisi, M.L., Pérez-López, P., Ravier, G., Sigurjónsson, H., Tosti, L., 2020. 
Generation of simplified parametrised models for a selection of GEOENVI geothermal 
installations categories. 

Fazio, S., Castellani, V., Sala, S., Schau, E., Secchi, M., Zampori, L., Diaconu, E., 2018. Supporting 
information to the characterisation factors of recommended EF Life Cycle Impact Assessment 
method. https://doi.org/10.2760/671368 

Frick, S., Kaltschmitt, M., Schröder, G., 2010. Life cycle assessment of geothermal binary power plants 
using enhanced low-temperature reservoirs. Energy 35, 2281–2294. 
https://doi.org/10.1016/j.energy.2010.02.016 

Gérard, A., Genter, A., Kohl, T., Lutz, P., Rose, P., Rummel, F., 2006. The deep EGS ( Enhanced 
Geothermal System ) project at Soultz-sous-Forets ( Alsace , France ). Geothermics 35, 473–483. 
https://doi.org/10.1016/j.geothermics.2006.12.001 

Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., 2018. Life Cycle Assessment: Theory and Practice. 
Springer International Publishing. https://doi.org/10.1007/978-3-319-56475-3 

Herman, J., Usher, W., 2017. SALib: An open-source Python library for Sensitivity Analysis. J. Open 
Source Softw. 2. https://doi.org/10.21105/joss.00097 

Hirschberg, S., Wiemer, S., Burgherr, P., 2015. Energy from the Earth Deep Geothermal as a Resource 
for the Future?, Energy from the Earth. vdf Hochschulverlag AG, Zurich, Switzerland. 
https://doi.org/10.3218/3655-8 

Homma, T., Saltelli, A., 1996. Importance measures in global sensitivity analysis of nonlinear models. 

Jo
urn

al 
Pre-

pro
of



Reliab. Eng. Syst. Saf. 52. https://doi.org/10.1016/0951-8320(96)00002-6 

Hondo, H., 2005. Life cycle GHG emission analysis of power generation systems: Japanese case. Energy 
30, 2042–2056. https://doi.org/10.1016/j.energy.2004.07.020 

IEA, 2020. World Energy Outlook 2020. 

IEA, 2019. Renewables 2019. Market analysis and forecast from 2019 to 2024. 

IFC, 2013. Success of geothermal wells: A global study. Washington, USA. 

IGA, 2015. Geothermal power database [WWW Document]. URL https://www.geothermal-
energy.org/explore/our-databases/geothermal-power-database/#electricity-generation-by-
plant (accessed 7.24.19). 

Igos, E., Benetto, E., Meyer, R., Baustert, P., Othoniel, B., 2019. How to treat uncertainties in life cycle 
assessment studies? Int. J. Life Cycle Assess. 24, 794–807. https://doi.org/10.1007/s11367-018-
1477-1 

ISO, 2006a. Environmental Management - Life Cycle Assessment - Principles and Framework. EN ISO 
14040:2006. 

ISO, 2006b. Environmental Management - Life Cycle Assessment - Requirements and guidelines. EN 
ISO 14044:2006. 

Karlsdottir, M.R., Heinonen, J., Palsson, H., Palsson, O.P., 2020. Life cycle assessment of a geothermal 
combined heat and power plant based on high temperature utilization. Geothermics 84, 101727. 
https://doi.org/10.1016/j.geothermics.2019.101727 

Karlsdóttir, M.R., Pálsson, Ó.P., Pálsson, H., Maya-Drysdale, L., 2015. Life cycle inventory of a flash 
geothermal combined heat and power plant located in Iceland. Int. J. Life Cycle Assess. 20, 503–
519. https://doi.org/10.1007/s11367-014-0842-y 

Knoblauch, T.A.K., Trutnevyte, E., Stauffacher, M., 2019. Siting deep geothermal energy: Acceptance 
of various risk and benefit scenarios in a Swiss-German cross-national study. Energy Policy. 
https://doi.org/10.1016/j.enpol.2019.01.019 

Lacirignola, M., Blanc, I., 2013. Environmental analysis of practical design options for enhanced 
geothermal systems (EGS) through life-cycle assessment. Renew. Energy 50, 901–914. 
https://doi.org/10.1016/j.renene.2012.08.005 

Lacirignola, M., Blanc, P., Girard, R., Pérez-López, P., Blanc, I., 2017. LCA of emerging technologies: 
addressing high uncertainty on inputs’ variability when performing global sensitivity analysis. Sci. 
Total Environ. 578, 268–280. https://doi.org/10.1016/j.scitotenv.2016.10.066 

Lacirignola, M., Meany, B.H., Padey, P., Blanc, I., 2014. A simplified model for the estimation of life-
cycle greenhouse gas emissions of enhanced geothermal systems. Geotherm. Energy 2, 1–19. 
https://doi.org/10.1186/s40517-014-0008-y 

Ledingham, P., Cotton, L., Law, R., 2019. The United Downs Deep Geothermal Project, in: 44th 
Workshop on Geothermal Reservoirs Engineering. 

Lu, S.M., 2018. A global review of enhanced geothermal system (EGS). Renew. Sustain. Energy Rev. 
81, 2902–2921. https://doi.org/10.1016/j.rser.2017.06.097 

Marchand, M., Blanc, I., Marquand, A., Beylot, A., Bezelgues-Courtade, S., Traineau, H., 2015. Life Cycle 
Assessment of high temperature geothermal energy systems, in: Proceedings of World 
Geothermal Congress 2015. 

Mastrucci, A., Pérez-López, P., Benetto, E., Leopold, U., Blanc, I., 2017. Global sensitivity analysis as a 
support for the generation of simplified building stock energy models. Energy Build. 149, 368–
383. https://doi.org/10.1016/j.enbuild.2017.05.022 

Menberg, K., Heberle, F., Bott, C., Brüggemann, D., Bayer, P., 2021. Environmental performance of a 
geothermal power plant using a hydrothermal resource in the Southern German Molasse Basin. 
Renew. Energy 167, 20–31. https://doi.org/10.1016/j.renene.2020.11.028 

Jo
urn

al 
Pre-

pro
of



Menberg, K., Pfister, S., Blum, P., Bayer, P., 2016. A matter of meters: State of the art in the life cycle 
assessment of enhanced geothermal systems. Energy Environ. Sci. 9, 2720–2743. 
https://doi.org/10.1039/c6ee01043a 

MIT, 2006. The Future of Geothermal Energy. Impact of Enhanced Geothermal Systems (EGS) on the 
United States in the 21st Century. 

Mutel, C., 2017. Brightway: An open source framework for Life Cycle Assessment. J. Open Source 
Softw. https://doi.org/10.21105/joss.00236 

Oakley, J.E., O’Hagan, A., 2004. Probabilistic sensitivity analysis of complex models: A Bayesian 
approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 66. https://doi.org/10.1111/j.1467-
9868.2004.05304.x 

Padey, P., Girard, R., Le Boulch, D., Blanc, I., 2013. From LCAs to simplified models: A generic 
methodology applied to wind power electricity. Environ. Sci. Technol. 47, 1231–1238. 
https://doi.org/10.1021/es303435e 

Parisi, M.L., Ferrara, N., Torsello, L., Basosi, R., 2019. Life cycle assessment of atmospheric emission 
profiles of the Italian geothermal power plants. J. Clean. Prod. 
https://doi.org/10.1016/j.jclepro.2019.06.222 

Patouillard, L., Collet, P., Lesage, P., Tirado Seco, P., Bulle, C., Margni, M., 2019. Prioritizing 
regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-
analysis based on ecoinvent v3. Int. J. Life Cycle Assess. 24, 2238–2254. 
https://doi.org/10.1007/s11367-019-01635-5 

Paulillo, A., Cotton, L., Law, R., Striolo, A., Lettieri, P., 2020a. Geothermal energy in the UK: the life-
cycle environmental impacts of electricity production from the United Downs Deep Geothermal 
Power project. J. Clean. Prod. 249. https://doi.org/10.1016/j.jclepro.2019.119410 

Paulillo, A., Cotton, L., Law, R., Striolo, A., Lettieri, P., 2020b. Life-cycle Inventory and impacts on 
electricity production at the United Downs Deep Geothermal Power project in the UK. Data Br. 
29, 105117. https://doi.org/10.1016/j.dib.2020.105117 

Paulillo, A., Striolo, A., Lettieri, P., 2019a. The environmental impacts and the carbon intensity of 
geothermal energy: A case study on the Hellisheiði plant. Environ. Int. 133(Pt B), 105226. 
https://doi.org/10.1016/j.envint.2019.105226 

Paulillo, A., Striolo, A., Lettieri, P., 2019b. Data on the environmental impacts and the carbon intensity 
of geothermal energy: A case study on the Hellisheiði plant. Data Br. 27, 104771. 
https://doi.org/10.1016/j.dib.2019.104771 

Pianosi, F., Beven, K., Freer, J., Hall, J.W., Rougier, J., Stephenson, D.B., Wagener, T., 2016. Sensitivity 
analysis of environmental models: A systematic review with practical workflow. Environ. Model. 
Softw. https://doi.org/10.1016/j.envsoft.2016.02.008 

Plischke, E., Borgonovo, E., Smith, C.L., 2013. Global sensitivity measures from given data. Eur. J. Oper. 
Res. https://doi.org/10.1016/j.ejor.2012.11.047 

Pratiwi, A., Ravier, G., Genter, A., 2018. Life-cycle climate-change impact assessment of enhanced 
geothermal system plants in the Upper Rhine Valley. Geothermics 75, 26–39. 
https://doi.org/10.1016/j.geothermics.2018.03.012 

Rogge, S., 2004. Geothermische Stromerzeugung in Deutschland e Ökonomie. Ökologie und 
Potenziale. [PhD Thesis; in German]. Technische Universität Berlin. 

Rule, B.M., Worth, Z.J., Boyle, C.A., 2009. Comparison of life cycle carbon dioxide emissions and 
embodied energy in four renewable electricity generation technologies in New Zealand. Environ. 
Sci. Technol. 43, 6406–6413. https://doi.org/10.1021/es900125e 

Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S., Wu, Q., 2019. Why so 
many published sensitivity analyses are false: A systematic review of sensitivity analysis 
practices. Environ. Model. Softw. 114, 29–39. https://doi.org/10.1016/j.envsoft.2019.01.012 

Jo
urn

al 
Pre-

pro
of



Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S., 2010. Variance based 
sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. 
Phys. Commun. 182. https://doi.org/10.1016/j.cpc.2009.09.018 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, Michaela Tarantola, 
S., 2008. Global Sensitivity Analysis: The Primer. John Wiley & Sons. 
https://doi.org/10.1111/j.1751-5823.2008.00062_17.x 

Sanyal, S.K., 2004. Cost of geothermal power and factors that affect it, in: Twenty-Ninth Workshop on 
Geothermal Reservoir Engineering. pp. 24–29. 

Sanyal, S.K., Menzies, A.J., Brown, P.J., Enedy, K.L., Enedy, S., 1989. A Systematic Approach To Decline 
Curve Analysis for the Geysers Steam Field, California. Trans. - Geotherm. Resour. Counc. 13. 

Schulze, C., Thiede, S., Herrmann, C., 2019. Life Cycle Assessment of Industrial Cooling Towers, in: 
Schebek, L., Herrmann, C., Cerda, F. (Eds.), Progress in Life Cycle Assessment. Springer. 

Sobol’, I.M., 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo 
estimates. Math. Comput. Simul. 55. https://doi.org/10.1016/S0378-4754(00)00270-6 

Sullivan, J.L., Clark, C.E., Han, J., Wang, M., 2010. Life-Cycle Analysis Results of Geothermal Systems in 
Comparison to Other Power Systems, Argonne National Laboratory. 
https://doi.org/10.2172/993694 

Swiss Federal Office of Energy, 2018. Energy Strategy 2050 [WWW Document]. URL 
https://www.bfe.admin.ch/bfe/en/home/policy/energy-strategy-2050.html (accessed 4.30.20). 

Tomasini-Montenegro, C., Santoyo-Castelazo, E., Gujba, H., Romero, R.J., Santoyo, E., 2017. Life cycle 
assessment of geothermal power generation technologies: An updated review. Appl. Therm. 
Eng. 114, 1119–1136. https://doi.org/10.1016/j.applthermaleng.2016.10.074 

Tosti, L., Ferrara, N., Basosi, R., Parisi, M.L., 2020. Complete data inventory of a geothermal power 
plant for robust cradle-to-grave life cycle assessment results. Energies 13. 
https://doi.org/10.3390/en13112839 

Treyer, K., Oshikawa, H., Bauer, C., Miotti, M., 2015. WP4: Environment, in: Hirschberg, S., Wiemer, 
S., Burtherr, P. (Eds.), Energy from the Earth. Deep Geothermal as a Resource for the Future? 

Trutnevyte, E., Wiemer, S., 2017. Tailor-made risk governance for induced seismicity of geothermal 
energy projects: An application to Switzerland. Geothermics. 
https://doi.org/10.1016/j.geothermics.2016.10.006 

Ventura, A., Kiess, T.S., Bogdan, C., Idir, R., van der Werf, H.M.G., 2015. Sensitivity Analysis of 
Environmental Process Modeling in a Life Cycle Context: A Case Study of Hemp Crop Production. 
J. Ind. Ecol. 19, 978–993. https://doi.org/10.1111/jiec.12228 

Wei, W., Larrey-Lassalle, P., Faure, T., Dumoulin, N., Roux, P., Mathias, J.D., 2015. How to conduct a 
proper sensitivity analysis in life cycle assessment: Taking into account correlations within LCI 
data and interactions within the LCA calculation model. Environ. Sci. Technol. 49, 377–385. 
https://doi.org/10.1021/es502128k 

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., Weidema, B., 2016. The ecoinvent 
database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230. 
https://doi.org/10.1007/s11367-016-1087-8 

 

  

Jo
urn

al 
Pre-

pro
of



ANNEX A - Coefficients of the Generic parametric model 
The coefficients i, which represent either the life-cycle environmental impact (in a specific category) 

associated with the provision of the intermediate flow or the characterisation factor of the elementary 

flow, are introduced below: 

i1 impact of wellhead. Material requirements are obtained from Karlsdóttir et al. (2015) 

i2.1 impact per MJ of fuel burnt in a diesel-electric generating set (10MW) 

i2.2 impact per kg of low-alloyed steel, for casing 

i2.3 impact per kg of generic concrete, for casing 

i2.4 impact per m3 of drilling mud (water). Material requirements are obtained from Paulillo 
et al. (2020b) and assume 15 kg of bentonite and 20 kg of generic organic chemicals for 
m3 of water 

i2.5 impact of drilling waste per m of well 

i2.6 impact of well closure per m of well 

i3 impact per m of collection pipelines. Material requirements are based on Karlsdóttir et 
al. (2015) 

i4.1 impact per unit of electric power of machineries and facilities, based on Karlsdóttir et al. 
(2015) 

i4.2 impact per unit of electric power of cooling towers, obtained from Schulze et al. (2019) 

i4.3 impact per unit of electric power of working fluid 

i5.1 impact per m3 of water 

i5.2 
impact per kWh of thermal energy (obtained from a diesel-electric generating set of 
18kW) 

i6 impact of carbon dioxide emissions per kWh of electricity generated 

 

The numerical values, which are calculated using the Ecoinvent database - cut-off model, version  3.6 

(Wernet et al., 2016) - are reported in Table A1 for all categories included in the Environmental 

Footprint (EF) 2.0 method (Fazio et al., 2018). 

 Jo
urn

al 
Pre-

pro
of



TABLE A1 – NUMERICAL COEFFICIENTS OF THE SPECIFIC EXPRESSIONS OF THE GENERAL PARAMETRIC MODEL (REPORTED EQUATIONS FROM (3) TO (14) IN 
THE MAIN ARTICLE) FOR ENVIRONMENTAL CATEGORIES IN THE EF2.0 METHOD. 

 

 i1 i2.1 i2.2 i2.3 i2.4 i2.5 i2.6 i3 i4.1 i4.2 i4.3 i5.1 i5.2 i6 

Climate change total 4.20E+04 8.78E-02 1.92E+00 8.72E-01 4.17E+01 7.22E-03 1.62E+00 6.19E+02 1.36E+05 2.90E+05 1.93E+01 1.10E-03 9.33E-01 1 

Carcinogenic effects 9.33E-03 1.34E-10 6.01E-07 3.49E-09 5.33E-07 9.40E-08  9.24E-09 1.25E-04 1.67E-02 1.21E-02 2.08E-07 8.02E-11 4.19E-09 0 

Ionising radiation 1.13E+03 5.18E-03 5.17E-02 1.28E-02 8.93E-01 6.42E-04  3.55E-02 1.57E+01 4.16E+03 2.17E+04 2.32E-01 7.55E-05 5.40E-02 0 

Non-carcinogenic effects 2.21E-02 1.94E-09 1.38E-06 4.70E-08 5.49E-06 2.91E-07  1.10E-07 3.00E-04 6.10E-02 1.32E-01 1.49E-06 3.34E-10 3.05E-08 0 

Ozone layer depletion 2.77E-03 1.92E-08 1.14E-07 3.16E-08 4.21E-06 2.23E-09  8.98E-08 3.89E-05 1.27E-02 1.48E-01 7.84E-04 7.16E-11 1.99E-07 0 

Photochemical ozone creation 1.99E+02 1.59E-03 9.23E-03 1.97E-03 1.90E-01 6.00E-05  4.85E-03 2.82E+00 5.92E+02 8.93E+02 4.30E-02 3.30E-06 1.64E-02 0 

Respiratory effects, inorganics 3.73E-03 1.57E-09 1.75E-07 1.96E-08 2.03E-06 7.92E-10 5.23E-08 5.07E-05 9.88E-03 1.36E-02 6.22E-07 5.60E-11 1.84E-08 0 

Freshwater and terrestrial acidification 2.25E+02 1.24E-03 9.81E-03 2.42E-03 1.98E-01 5.60E-05  5.68E-03 3.46E+00 9.57E+02 1.77E+03 6.21E-02 5.63E-06 1.30E-02 0 

Freshwater ecotoxicity 1.18E+05 1.46E-02 7.24E+00 1.63E-01 2.97E+01 5.24E+00  6.02E-01 1.59E+03 2.90E+05 3.39E+05 8.93E+00 1.30E-03 2.03E-01 0 

Freshwater eutrophication 1.97E+00 1.37E-07 1.13E-04 1.09E-05 2.13E-03 1.52E-05 2.47E-05 2.87E-02 7.57E+00 3.85E+01 2.96E-04 6.68E-08 3.24E-06 0 

Marine eutrophication 5.05E+01 5.55E-04 2.04E-03 6.77E-04 5.29E-02 1.85E-05  1.61E-03 6.90E-01 1.72E+02 7.23E+02 8.61E-03 9.56E-07 5.73E-03 0 

Terrestrial eutrophication 5.48E+02 6.08E-03 2.18E-02 7.83E-03 4.14E-01 2.04E-04  1.86E-02 7.84E+00 1.71E+03 3.45E+03 9.59E-02 1.06E-05 6.27E-02 0 

Minerals and metals 4.48E+00 8.07E-08 2.96E-05 8.63E-05 4.87E-04 2.27E-07  1.16E-04 1.38E-02 7.47E+00 8.73E+00 6.71E-04 3.23E-08 5.01E-06 0 

Dissipated water 1.66E+04 1.57E-03 9.46E-01 6.29E-02 3.29E+01 7.22E-04  1.69E-01 2.37E+02 6.23E+04 3.83E+05 6.02E+00 6.00E-04 2.74E-02 0 

Fossil resources 5.46E+05 1.17E+00 2.70E+01 4.38E+00 1.24E+03 1.62E-01  1.09E+01 8.01E+03 1.87E+06 4.78E+06 1.23E+02 1.72E-02 1.24E+01 0 

Land use 2.68E+05 4.91E-02 1.10E+01 3.43E+00 1.48E+02 5.73E-01 1.15E+01 4.17E+03 1.05E+06 2.47E+06 3.65E+01 5.39E-03 6.69E-01 0 
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Annex B - Description of parameters 
 

Power plant parameters: 

Installed capacity: Maximum gross electric power output of the power plant (i.e. without 

considering auxiliary power requirements). The lower boundary of the installed capacity range for 

conventional technologies is based on Bertani (2012) who maintains that the majority of plants 

smaller than 10 MW employ binary cycle units. 

Auxiliary power: Power requirements of auxiliary services of the power cycle and of downhole 

pumps (for enhanced geothermal technologies only). 

Capacity factor: Unitless ratio of actual electrical energy output to maximum possible over a period 

of time. (Sometimes this is also referred to as Load or Availability factor.) 

Lifetime: Time span over which the power plant is estimated to operate. 

Collection pipelines length: Average length of collection pipelines between each primary/make-up 

well and power plant. A range of variability for enhanced geothermal technologies could not be 

determined from literature; however, based on the variability for conventional technologies, we 

assumed a representative range of 50-200 m. 

Wells parameters: 

Primary wells number: Primary wells include injection and production wells. The variability range 

represents a double or triple configuration. 

Producers capacity: Maximum gross electrical energy that can be generated from production wells. 

Wells depth: Average length of wells measured along the actual well path; this is known as “average 

measured depth”. 

Diesel: Specific consumption (as thermal energy) per metre of well of diesel burnt in a diesel-electric 

generating set. The generated electricity is used for powering the drilling rig.  

Steel: Specific consumption per metre of well of stainless steel, used for casing. 

Cement: Specific consumption per metre of well of generic Portland cement (used to hold the well’s 

casing in position). 

Drilling mud: Specific consumption per metre of well of drilling mud, which is used to remove and 

to bring to surface drilled cuttings, as well as for cooling the drill bit, lubricating the drill string and 

preventing the collapse of the well during the drilling. The drilling mud inventory assumes usage of 

20 kg of generic organic chemicals and 15 kg of bentonite per m3 of water. 

Initial harmonic decline rate: Sanyal (2004) and Sanyal et al. (1989) argue that geothermal wells 

typically undergo a harmonic decline rate. This means that the wells productivity at any point in 

time can be estimated from the initial productivity and the initial harmonic decline rate. This 

parameter is essential in estimating the number of make-up wells that are required over a plant’s 

lifetime to maintain electricity production. We could not determine a range of variability from the 

literature, but given the importance of this parameter we assumed a representative range of 

variability of 1 to 10% based on the work of Sanyal et al. 

Production/Injection ratio: Ratio of producers to injectors. 

Success rate: Percentage of successful exploration, primary and make-up wells. 

Stimulation: 

Water: Amount of water required for hydraulic stimulation of one well. 
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Diesel: Specific diesel consumption for pumping 1 m3 of water for hydraulic stimulation. Diesel is 

burnt in a diesel-electric generating set to generate electricity. 

Wells: We assumed that a minimum of one well in enhanced geothermal systems will undergo 

stimulation; the maximum number is equal to the number of primary wells.  To ensure that the 

parameters are independent from each other (a necessary condition for Sobol’ variance-based 

method), we calculate the number of wells that are stimulated as the rounded product of the 

number of primary wells and a number varying between 0.5 and 1.5 (this parameter). Note that the 

number varies between 0.5 and 1.5 (instead of 0 and 1) to ensure that at least one well is stimulated. 

Operational CO2 emissions: CO2 make-up most of non-condensable gases that are present in 

geothermal fluids. Discharge of CO2 occurs during cooling of geothermal fluids and prior to their 

reinjection into geothermal reservoirs. 

Fixed parameters: 

Exploratory wells: Number of exploratory wells (i.e. test wells) that are drilled at the outset of a 

new geothermal development to e.g. confirm the depth of the reservoir. Our assumption of three 

wells is based on DiPippo (2016b). 

Cooling towers: For simplicity, we assume that both conventional and enhanced geothermal plants 

make use of cooling towers to condense the geothermal fluid prior to reinjection. The numbers of 

cooling tower is scaled per MW of installed capacity from Karlsdóttir et al. (2015). 

Organic working fluid: Amount of organic working fluid per MW of installed capacity. The model 

assumes that the working fluid is perfluoropentane (the same assumption is made in the Ecoinvent 

database) and that there are no losses of working fluid during the lifetime of the plant. It must be 

noted that including leakages of working fluid and choosing a different working fluid with a higher 

global warming potential (GWP) - e.g. R134 or others - may lead to a higher contribution of this 

parameter to climate change impact as well as to the variability of the model output. However, 

Menberg et al. (2021) demonstrated that fluid leakages have negligible effect on the carbon 

footprint when low-GWP fluids are employed, which is expected as climate change mitigation 

strategies are tightened. 

Drilling waste: Amount of drilling waste generated per metre of well. The amount of drilling waste 

is estimated assuming an open hole diameter of 8.5 in, a factor of 3 between the volume of the 

production liner to the total volume drilled, and a composition of 50% water and 50% drilling 

cuttings. We used a representative value for the cuttings density of 3 g/cm3, approximately equal 

to that of basalt. 
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