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Abstract—This paper proposes a multi-agent deep reinforce-
ment learning-based buffer-aided relay selection scheme for an
intelligent reflecting surface (IRS)-assisted secure cooperative
network in the presence of an eavesdropper. We consider a
practical phase model where both phase shift and reflection
amplitude are discrete variables to vary the reflection coefficients
of the IRS. Furthermore, we introduce the buffer-aided relay
to enhance the secrecy performance, but the use of the buffer
leads to the cost of delay. Thus, we aim to maximize either the
average secrecy rate with a delay constraint or the throughput
with both delay and secrecy constraints, by jointly optimizing the
buffer-aided relay selection and the IRS reflection coefficients.
To obtain the solution of these two optimization problems,
we divide each of the problems into two sub-tasks and then
develop a distributed multi-agent reinforcement learning scheme
for the two cooperative sub-tasks, each relay node represents
an agent in the distributed learning. We apply the distributed
reinforcement learning scheme to optimize the IRS reflection
coefficients, and then utilize an agent on the source to learn
the optimal relay selection based on the optimal IRS reflection
coefficients in each iteration. Simulation results show that the
proposed learning-based scheme uses an iterative approach to
learn from the environment for approximating an optimal solution
via the exploration of multiple agents, which outperforms the
benchmark schemes.

Index Terms—Physical layer security, intelligent reflecting
surface, multi-agent reinforcement learning, buffer-aided relay
selection, throughput

I. INTRODUCTION

W ITH the development of the fifth-generation (5G) wire-
less communication, physical layer security has been

widely studied to provide secure wireless communications in
recent years [1]. Unlike cryptographic techniques, physical
layer security exploits the dynamics of fading channels for
achieving the perfect secrecy performance and dose not require
encryption keys [2]–[4]. Security is also particularly relevant
for cooperative communication networks, which has been
investigated in [5]–[7]. In [5], the secrecy rate performance
of full-duplex (FD) decode-and-forward (DF) cooperative net-
works was studied with a self-interference cancellation technol-
ogy. The authors in [6] proposed two linear precoding schemes
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to improve the secrecy rate performance in half-duplex (HD)
amplify-and-forward (AF) relaying systems. To maximize the
diversity gain, relay selection was also proposed in cooperative
networks to reduce the secrecy outage probability in [7]. To
further enhance the secrecy performance, a novel max-ratio
buffer-aided relay selection was proposed to select the link with
the largest signal-to-interference-ratio (SIR) in cooperative
networks with buffering technology [8]. Then, the trade-off
between the average delay and secrecy rate for the max-ratio
scheme was investigated in a buffer-aided cooperative network
[9]. In [10], the max-ratio and state-based schemes were amal-
gamated to reduce the secrecy outage probability and average
delay for buffer-aided cooperative networks. Furthermore, in
[11], the average secrecy rate in an energy-harvesting based
buffer-aided cooperative network was enhanced by an adaptive
transmission algorithm considering power constraints, buffer
and energy storage. Although using buffer improves outage
performance, it increases the instantaneous delay, which is a
key issue in Internet of Things (IoT) networks [12]. A buffer-
state-based probabilistic relay selection method was proposed
to enhance the outage performance with delay constraint in
[13]. In [14], the delay constrained throughput was investigated
via deep reinforcement learning (DRL). However, the physical
layer security has not been considered in delay-constraint
buffer-aided cooperative networks. This motivates us to study
security communication systems to satisfy instantaneous delay
constraints.

On the other hand, intelligent reflecting surface (IRS) is an
emerging technique for beyond 5G wireless communications
[15]–[17]. IRS is an array which consists of low-cost passive
reflecting elements, each of which can be appropriately re-
configured to control its reflection coefficient independently to
provide controllable phase shift and amplitude for reflecting
or refracting the signals to the intended receiver. Therefore,
the IRS-assisted secure networks have attracted much attention
recently [18]–[20]. In [18], a joint design of the transmit covari-
ance and the IRS phase shifts was proposed to maximize the
secrecy rate via an alternating optimization-based algorithm. A
joint beamforming vectors and IRS phase shifts optimization
scheme based on the combination of the alternating optimiza-
tion and semidefinite relaxation (SDR) methods were proposed
to enhance the secrecy rate in [19]. In [20], a successive convex
approximation based algorithm was proposed to improve the
secrecy rate by considering the trajectory and power control of
an unmanned-aerial-vehicle (UAV), and the phase shifts of the
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IRS. The effect of main parameters on secrecy performance
in IRS-assisted wireless networks was investigated in [21]. To
improved the average secrecy rate, a alternating optimization
method was proposed to jointly optimize the UAV’s trajectory,
beamforming matrix and transmit power for a IRS-assisted
UAV communication network in [22]. However, the above
works focused on point-to-point communications. Therefore,
to amalgamate the benefits of both IRS and cooperative com-
munications, the authors in [23] and [24] investigated the IRS
phase shifts optimization to maximize the achievable rate for
hybrid IRS with HD and FD relay networks. Two hybrid
relay and IRS-assisted transmission scheme were proposed in
[25] to achieve higher error performance and achievable rate,
compared with IRS-only and relay-only transmissions. In [26],
to further enhance the transmission quality, relay selection was
investigated in IRS-assisted cooperative networks. Motivated
by this, this paper proposes an IRS-assisted secure buffer-
aided relay network. Moreover, we consider the practical phase
shift model [27], where both the reflection amplitude and the
phase shift vary with the reflection coefficient. Therefore, the
design of the IRS reflection coefficient vectors and buffer-aided
relay selection will be given to maximize the secrecy rate and
throughput with secure and delay constraints in this paper.

The traditional optimization algorithms in most IRS-assisted
networks require huge amount of computational resource with
low-efficiency. Deep reinforcement learning was therefore in-
troduced to solve the complicated optimization problems [28].
In [29], a joint optimization of transmit beamforming vectors
and IRS continuous phase shifts was proposed via DRL to
enhance the average sum rate. Furthermore, the DRL algorithm
was applied to jointly optimize the beamforming vectors and
IRS continuous phase shifts to enhance the secrecy rate for
IRS-assisted networks in [30]. However, the phase-dependent
amplitude variation has not been considered. Moreover, joint
optimization of the buffer-aided relay selection and IRS reflec-
tion coefficients is a much more complicated high-dimensional
problem for the proposed system. To solve this, we introduce
the multi-agent DRL (MA-DRL) algorithm as in [31] to solve
two related sub-problems, namely, buffer-aided relay selection
and IRS reflection coefficients optimization. Considering the
limitations of storage, computation ability, delay and energy
for a single device, we further apply distributed DRL in [32]
on multiple relay nodes to reduce the training cost and improve
the convergence efficiency for IRS reflection coefficients opti-
mization. The main contributions of this paper are summarized
as follows:

• We propose a joint buffer-aided relay selection and IRS
reflection coefficient optimization scheme in IRS-assisted
secure cooperative networks. Two optimization problems
are considered: maximizing the average secrecy rate with
the delay constraint and maximizing the throughput with
the delay and secrecy constraints.

• We introduce the MA-DRL method to solve the compli-
cated optimization problem. In terms of optimizing the
IRS reflection coefficients, an asynchronous distributed

Fig. 1. System model of the secure hybrid buffer-aided relay and IRS
network.

framework is proposed to apply multi-agent on relay
nodes to train the global model without sharing the local
data. On the other hand, the agent at the source for solving
the buffer-aided relay selection problem learns its strategy
by using the IRS reflection coefficients optimization so-
lution from the distributed framework.

• Simulation results show that the proposed MA-DRL algo-
rithm can apply multi-agents to explore the environment
to learn approximate solutions. Based on the rewards, the
agents can build a global model to solve the two related
sub-problems to generate the joint optimization strategy
and achieve higher performance than the benchmark.

The rest of this paper is organized as follows: The system
model and problem formulation are introduced in Section II. In
Section III, MA-DRL scheme is proposed. Section IV provides
the simulation results and verifies the performance of the
proposed scheme. Finally, Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, we focus on a two-hop IRS-assisted secure
relay network which is consisted of one source S, one IRS
I , one destination D, which is equipped with N reflecting
elements, and K half-duplex (HD) randomize-and-forward1

relays Rk (k ∈ {1, 2, ...,K}), each of which is equipped with
a data buffer of finite size L. The system model is shown in
Fig. 1. Based on the buffer-aided relaying technique, a S → Rk
transmission is considered available when the buffer of Rk is
not full, and a Rk → D transmission is considered available
when the buffer of Rk is not empty. Furthermore, there is

1Randomize-and-forward strategy applies different codebooks for two
hops, each hop can ensure a secure transmission independently. Thus, the end-
to-end transmission is secure when both two hops support secure transmissions
[33], [34].
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an untrusted node2 E which can eavesdrop the signal sent
from the S and R. All nodes are assumed to be equipped
with a single antenna. The IRS can control the reflection
coefficients to change the phase shift and reflection amplitude
for each IRS reflecting element independently. We assume that
S is the controller of the network3 to determine the relay
selection and IRS reflection coefficients, and can receive the
required information from all relay nodes, while each relay
node Rk can receive the channel state information (CSI) of
channels for the transmissions to and from itself4, and receives
the related CSI of the eavesdropper5 from S. Furthermore,
we assume no direct link between nodes S and D due to
severe blocking or deep fading. The channels of S → Rk
and Rk → D links are assumed to experience Non-Line-of-
Sight (NLoS) Rayleigh fading, and the channels from and to I
are assumed to experience Rician fading [45]. Therefore, the
channel coefficient hij between nodes i and j is given by

hij =

{ h̄ij , Rayleigh√
κij

κij+1
Ĥij +

√
1

κij+1
ĥij , Rician,

(1)

where κij is the Rician factor for hij . We assume
h̄ij = ḡijd

−ᾱ/2
ij in NLoS Rayleigh channels, where ij ∈

{SRk, SE,RkD,RkE}, ḡij is modeled by a complex Gaus-
sian fading with zero-mean and unit-variance, dij is the dis-
tance between nodes i and j, ᾱ is the path loss exponent of
NLoS Rayleigh fading links. On the other hand, we assume
Ĥij = ĝijd

−α̂L/2
ij and ĥij = ĝijd

−α̂N/2
ij are the Line-of-Sight

(LoS) component and the NLoS component in Rician fading
channels, respectively, where ij ∈ {SI, IRk, IE,RkI, ID},
α̂L and α̂N are the path loss exponents for the LoS and
NLoS Rician fading channel, respectively, ĝij is modelled by
a complex Gaussian fading with zero-mean and unit-variance,
and ĝij is given by

ĝij =
√
β[1, e−jπ sin ∂ij , ..., e−jπ(M−1) sin ∂ij ]T , (2)

where β denotes the signal attenuation for the reference dis-
tance d0 = 1 m [46], ∂ij ∈ [0, 2π] denotes the angle of arrival
(AoA) or the angle of departure (AoD) of the corresponding
signal.

2In this paper, we only consider a single untrust relay as an eavesdropper in
the proposed network to give a clear exploration and results. Considering that
the effect of multiple eavesdroppers, including colluding and non-colluding
cases, has been studied for other scenarios in our previous works, we will
consider multiple eavesdroppers scenario more complex challenge to solve in
our future work.

3The source S can be a Macro/Micro base station or an access point
in cellular networks. Generally, S has sufficient resource to receive related
channel information by using a backhaul link and control the transmissions in
the wireless network. In many optimization works, a centralized node (e.g. a
base station or an access point) is required to receive global information and
make decisions [35]–[39].

4Obtaining the CSI is a key issue in IRS-assisted communications, and
there are some existing works about the channel estimation for IRS-assisted
networks [40], [41]. However, the channel estimation details are out of the
scope of this work.

5The untrusted node may have malicious behaviour, e.g. eavesdropping;
however, it belongs to the proposed networks so that the channel estimation
is available between other nodes and itself [42]–[44].

At a given time slot, when a S → Rk link is selected, S
transmits the signal xS to both Rk and I . Then, I reflects the
signal to Rk. The received signal at Rk is thus given by

ySRk =
√
P
(
hSRk + hHIRk

ΘhSI
)
xS + nRk , (3)

where P is the transmit power at all nodes, nRk
denotes the

additive-white-Gaussian-noise (AWGN) with variance σ2
n at

Rk, Θ = diag(η1e
jθ1 , η2e

jθ2 , ..., ηNe
jθN ) denotes the diag-

onal reflection matrix for I , with θn ∈ [0, 2π) and ηm ∈ [0, 1]
denoting the phase shift and reflection amplitude of the nth
IRS reflecting element, respectively. Without loss of generality,
we denote v = [v1, v2, ..., vN ] as the reflection coefficient
vector for I , ηn = |vn| and θn = arg(vn) for the nth IRS
reflecting element. We adopt the practical IRS phase shift
model to achieve the discrete reflection amplitudes and phase
shifts based on the reflection coefficients from [27, Fig. 3(b)],
where the effective resistance R is 2 Ω. Moreover, in order to
support the practical implementation [47], we assume discrete
phase shifts for IRS reflecting elements. The range of discrete
phase shifts is

χ ,

{
0,

2π

λ
, ...,

(λ− 1)2π

λ

}
, (4)

where λ is the number of quantization levels.

Then, based on (3), the channel capacity for a S → Rk link
is given by

CSRk = log2

(
1 +

P
∣∣hSRk + hHIRk

ΘhSI
∣∣2

σ2
n

)
. (5)

Notice that E can also receive signals from S during the S →
Rk transmission. Therefore, the received signal at E can be
expressed as

ySE =
√
P
(
hSE + hHIEΘhSI

)
xS + nE , (6)

where nE denotes the AWGN with variance σ2
n at E. The

channel capacity for the S → E link is given by

CSE = log2

(
1 +

P
∣∣hSE + hHIEΘhSI

∣∣2
σ2
n

)
. (7)

Similarly, when a Rk → D link is selected, the received
signals at D and E can be expressed as

yRkD =
√
P
(
hRkD + hHIDΘhRkI

)
xRk + nD,

yRkE =
√
P
(
hRkE + hHIEΘhRkI

)
xRk + nE ,

(8)

respectively, where xRk
denotes the signal from relay node

Rk. Therefore, the channel capacities for the Rk → D and
Rk → E links can be expressed as

CRkD = log2

(
1 +

P
∣∣hRkD + hHIDΘhRkI

∣∣2
σ2
n

)
,

CRkE = log2

(
1 +

P
∣∣hRkE + hHIEΘhRkI

∣∣2
σ2
n

)
,

(9)

respectively. Then, the secrecy rates for the S −→ Rk and
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Rk −→ D links can be expressed as

Cs(SRk) = [CSRk − CSE ]+,

Cs(RkD) = [CRkD − CRkE ]+,
(10)

respectively, where [x]+ = max(0, x).

B. Problem Formulation
We assume the link between nodes i and j is available for

single-packet transmission when its capacity satisfies C(ij) ≥
ω, where ω denotes the target rate. Moreover, a secure trans-
mission between i and j happens when Cs(ij) ≥ ς , where
ς denotes the target secrecy rate. Because the use of buffer
leads to delay of data transmissions, we consider the delay
constraint in this paper. The delay ∆ of a given packet is
defined as the time of transmitting this packet from S to D.
To be specific, if a packet is transmitted successfully from
S to Rk at time slot t, and then arriving at D at time slot
t + 1 successfully, it takes two time slots to arrive at D and
its delay is ∆ = 2. Furthermore, the use of the buffer-aided
relay selection, therefore, at a given time slot, selecting a relay
Rk to transmit one packet from its buffer to the destination,
or receive one packet from the source and save it in its buffer.
Notice that only one link can be selected for transmission at a
given time slot. Simultaneously, the IRS reflection coefficient
vector v is used to alter the reflected signal to boost the signal
quality collaboratively. We use F = 0 to specify that S → Rk
transmission is selected and F = 1 to denote that Rk → D
transmission is chosen. We aim to design an algorithm to
obtain solutions to two different optimization problems in
IRS-assisted secure cooperative networks. Thus, we have the
following two cases:

Case 1 - To find out the optimal k, F and v to maximize
the achievable average secrecy rate6 with delay constraint for
the end-to-end transmission, the optimization problem can be
formulated as

O(1) = max
k(t),F (t),v(t)

1

T

T∑
t=1

(
F (t)µ(∆(t) ≤ ∆T )

× µ
(
CRkD(t) ≥ ω

)
µ
(
CSRk

(t−∆(t)) ≥ ω
)

×min
{
Cs(SRk)(t−∆(t)), Cs(RkD)(t)

})
, (11)

s.t. k(t) ∈ {1, 2, ...,K}, (11a)
F (t) ∈ {0, 1}, (11b)
v(t) = [v1(t), v2(t), ..., vN (t)], (11c)
θn(t) = arg(vn(t)) ∈ χ,∀m, (11d)
ηn(t) = |vn(t)|, (11e)
lk(t) > 0, when F (t) = 1, (11f)
lk(t) < L, when F (t) = 0, (11g)

where T denotes the number of total time slots, µ(·) = 1 if the
input event is true and µ(.) = 0 otherwise, and ∆(t) denotes

6We assume that the fixed data transmission rate is ω in the proposed
buffer-aided system. The achievable secrecy rates are obtained by letting
CSRk

= CRkD = ω when CSRk
≥ ω and CRkD ≥ ω.

the delay of the corresponding packet which is transmitted at
time slot t, and ∆T denotes the target delay, and lk denotes
the buffer state of relay Rk. (11f) and (11g) ensure that the
buffer should not be empty for Rk → D transmissions and not
full for S → Rk transmissions constraints.

Case 2 - To find out the optimal k, F and v to achieve the
maximum throughput with delay and secrecy constraint, the
optimization problem can be formulated as

O(2) = max
k(t),F (t),v(t)

1

T

T∑
t=1

(
F (t)µ(∆(t) ≤ ∆T )

× µ
(
Cij(t) ≥ ω

)
µ
(
Cs(ij)(t) ≥ ς

))
, (12)

s.t. k(t) ∈ {1, 2, ...,K}, (12a)
F (t) ∈ {0, 1}, (12b)
v(t) = [v1(t), v2(t), ..., vN (t)], (12c)
θn(t) = arg(vn(t)) ∈ χ,∀m, (12d)
ηn(t) = |vn(t)|, (12e)
lk(t) > 0, when F (t) = 1, (12f)
lk(t) < L, when F (t) = 0, (12g)

where the constraints are similar to that in (11). Due to the
discrete integer decision variables in the function and discrete
set in each constraint, the functions and constraints are non-
convex in (11) and (12). Thus, they are complicated non-
convex optimization problems and impossible to be solved
by an exhaustive search method in large-scale networks. Be-
sides, many traditional algorithms require high computational
complexity to solve the IRS phase shift optimization problem
with fixed reflection amplitude [28], and traditional methods
for IRS-assisted wireless communications only consider the
continuous ideal IRS model. Furthermore, considering the
buffering technology provides more choices for relay selection
at each time slot, maximizing the throughput with secrecy
and delay constraints at D in T time slots is a challenge for
traditional optimization algorithms in buffer-aided cooperative
networks. Therefore, we introduce the MA-DRL algorithm to
obtain the feasible k, F and v to solve these two optimiza-
tion problems. The DRL algorithm can be used to optimize
IRS coefficients with discrete practice phase shift model, and
buffer-aided relay selection with secrecy and delay constraints.
Moreover, multi-agent framework is applied to reduce the
training cost for each single node and communication cost
for the proposed network, compared with the centralized DRL
training.

III. MA-DRL-BASED ALGORITHM

Considering both the optimization problems in (11) and
(12) which contain variables k and F for buffer-aided relay
selection, and v for adjusting IRS reflection coefficients, we
split each of the optimization problems into two sub-tasks:
1) IRS reflection coefficient optimization, and 2) the buffer-
aided relay selection, to reduce the space of exploration for the
proposed algorithm. We propose a multi-agent framework for
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Fig. 2. The framework of multi-agent DRL in the proposed network.

DRL in secure IRS-assisted buffer-aided cooperative networks,
as shown in Fig. 2. The framework of the proposed scheme
consists of a controller S and K relay nodes participating in
the training process. Considering the large state-action space
for IRS reflection coefficient optimization in large-scale IRS
systems, we apply the distributed DRL algorithm for IRS
reflection coefficient optimization to reduce the training cost of
each device for data processing and improve the convergence
efficiency. Each relay node represents an agent which learns
the solution for IRS reflection coefficient optimization to build
its local model (local solution for the IRS reflection coefficient
optimization problem), then an agent on S updates the global
model (global solution for the IRS reflection coefficient opti-
mization problem) based on the local models from all relay
nodes. In each iteration, the proposed approach first learns to
address the task of optimizing the IRS reflection coefficient via
the asynchronous distributed DRL algorithm, and subsequently
train the model for buffer-aided relay selection based on the
optimized solution from the former task, finally aggregates the
results from the two sub-tasks to generate the joint optimization
model (joint solution for the optimization problem in (11) or
(12)). Thus, rather than directly exploring the large space of
the whole environment, MA-DRL can obtain the optimized K,
F and v efficiently for (11) and (12) with low computational
complexity.

A. Asynchronous Distributed DRL Algorithm for IRS Reflec-
tion Coefficient Optimization

Considering the fact that the complexity of the exhaustive
search algorithm is KLM for searching the optimal IRS
reflection coefficients for each iteration, the space of
exploration for DRL is huge in large scale networks.
Therefore, distributed DRL is introduced to solve this
problem. The asynchronous method is considered to improve
the convergence efficiency among all nodes participating in
the training process. We will first introduce the framework of
the distributed DRL and the elements of DRL, then give the
details of DRL algorithm.

Fig. 3. The framework of the asynchronous distributed DRL network
for IRS reflection coefficient optimization.

1. The Distributed Learning Framework and Basic Elements
of DRL

As shown in Fig. 3, the process of the asynchronous dis-
tributed learning framework has the following steps.

• Step 1: Each of the relay nodes can train and update its
own model in parallel. For example, the local agent on
relay node Rk trains its local model based on its local
data, which contains its buffer state and CSI information.
To be specific, relay node Rk explores its environment
to train the local deep neural network (DNN) model via
DRL. After WL local iterations of training, Rk updates
its local model and obtains the accumulated gradients.

• Step 2: After updating the local model, the agent on Rk
uploads its accumulated gradients to the controller S for
updating the global model of IRS reflection coefficient
optimization. Considering the differentiation between the
computational resources of all relay nodes, we apply the
asynchronous updating method to improve the efficiency
of convergence for the global model. Thus, each local
model uploads its accumulated gradients to update the
global model on S asynchronously.

• Step 3: After updating the global model on S in Step 2,
the corresponding relay node Rk downloads the global
model from S to update its local model.

To be specific, there is an agent on each relay node to learn
from its own environments with the local data via DRL, then
train its local model to find out the local solution of IRS
reflection coefficient optimization. In terms of training local
models, the DRL algorithm generally consists of states, actions
and rewards, which are defined for Case 1 and Case 2 as
follows.

1) Case 1: To achieve the maximum average secrecy rate
with delay constraint.
State: In the IRS-assisted transmissions, we define the
state s(t) = {hij(t), hHIj(t)hiI(t), hiE(t), hHIE(t)hiI(t)}
at time slot t, to describe the dynamic IRS-assisted
network according to (5), (7) and (9). In DRL, the
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environment can transit from one state to another possible
future state by taking an action, which will be defined as
follows.
Action: For a secure IRS-assisted buffer-aided relay net-
work, an action for the task of IRS reflection coefficient
optimization is to control v in (11) to reflect or refract
the signal to the receiver. Therefore, we define the action
a(t) = [v1(t), v2(t), ..., vN (t)] at time slot t to provide
controllable phase shifts and reflection amplitudes. Based
on the action and state, the DRL algorithm can learn to
make decisions for the proposed network with the pre-
defined rewards, which will be introduced to help the DRL
algorithm converge.
Reward: The objective of this sub-task is to adjust the
IRS reflection coefficients to improve the secure trans-
mission quality with a delay constraint. To be specific,
the design of IRS reflection coefficients can improve the
secure transmission between nodes i and j with the delay
constraint. In other words, the requirements of C(ij) ≥ ω
and ∆ ≤ ∆T are satisfied in Case 1. The reward in DRL
is designed to help the agent learn the solution of the
task, and we give the agent a positive reward when the
channel rate of the transmission satisfies the requirements
based on the current state-action pair. To be specific, in
Case 1, when the transmission requirements are satisfied,
a packet is transmitted to D within the target delay and the
agent can receive a positive reward. Moreover, the agent
is designed to receive a negative reward when the cor-
responding transmission cannot support the requirements.
Therefore, the proposed DRL based algorithm can map
the relationship between the states and actions using the
rewards.

2) Case 2: To achieve the maximum throughput with delay
and secrecy constraints.
State: In Case 2, the states are designed as the same as
in Case 1.
Action: In Case 2, the actions are designed as the same
as in Case 1.
Reward: In Case 2, the goal is to achieve the maximum
throughput with delay and secrecy constraints. Therefore,
the secure transmission in Case 2 requires C(ij) ≥ ω,
Cs(ij) ≥ ς , and ∆ ≤ ∆T . On the other hand, in Case
2, when the requirements are satisfied, to encourage the
agent giving higher priority to selecting high-security
links, the positive reward is designed based on the se-
crecy rate of the transmitted packet. Moreover, the agent
receives a negative reward when the requirements are not
satisfied. This design can help to find out the optimal
state-action pair for reinforcement learning.

Moreover, unlike traditional reinforcement learning, to
combine the advantage of value-based or policy-based
algorithms for efficient convergence, we will introduce
a distributed asynchronous advantage actor-critic (A3C)
algorithm [48] without sharing the global training environment,
as the DRL-based solution for the task of IRS reflection

coefficient optimization.

2. The Distributed Asynchronous Advantage Actor-Critic
Algorithm

To enhance the convergence performance and robustness of
training in DRL, we apply the A3C algorithm to train the local
models for each agent on relay nodes. In the A3C algorithm,
there is an actor network and a critic network to evaluate the
relation and advantage of each state-action pair, respectively.
For example, at time slot t, the input for both the actor and
critic networks is the current state s(t). At the same time, the
outputs are the probabilities for each corresponding action-state
pair and the evaluation value Q for estimating the advantage
of the state, respectively. Therefore, the estimation value V for
s(t) is given by

V (s(t)) = rs(t),a(t) + ρrs(t+1),a(t+1) + ...

+ ρT−1rs(t+T−1),a(t+T−1) + ρTQ
(
s(t+ T ); θc

)
,

(13)

where ρ is the discount factor of the critic network, rs(t),a(t)

denotes the reward for the
(
s(t), a(t)

)
pair, θc is the DNN

weights set of the critic network, the actions are estimated
from the actor network. Then, we can obtain the advantage of
the
(
s(t), a(t)

)
pair as

A
(
s(t)

)
= V

(
s(t)

)
−Q

(
s(t+N); θc

)
, (14)

which is used to help the agent learn the advantage (or the
disadvantage) of the corresponding state-action pairs from the
actor network.

We introduce the DNN to form the actor and critic networks.
The actor network θa is designed to estimate actions for
optimizing a policy π to achieve the maximum throughput
with delay and secrecy constraints. In the A3C algorithm,
the estimated action for a given state is determined with
the maximum probability value from the results of the actor
network, where the loss function of the actor network can be
expressed as

ϕA(t) = logπ
(
a(t), s(t); θa

)(
V
(
s(t)

)
−Q

(
s(t); θc

))
. (15)

On the other hand, the critic network is used to calculate the
loss for the actor network, to evaluate the advantage or the
disadvantage of the current policy π in the actor network.
The critic network can be trained by the corresponding loss
function, which is given by

ϕC(t) =
(
V
(
s(t)

)
−Q

(
s(t); θc

))2
. (16)

To calculate the gradients based on the loss functions in (15)
and (16), we apply the RMSProp method [49] in DNN. In A3C,
each agent in the proposed distributed DRL algorithm performs
the advantage actor-critic (A2C) algorithm asynchronously in
its thread, then upload its accumulated gradients to update the
global model. To be specific, each relay node has its own
agent to perform A2C asynchronously to train its local model
and obtain the accumulated gradients as in Step 1. In each
local iteration, the local agent generates a training sample
as {s(t), a(t), rs(t),a(t)} to calculate the gradients. After WL
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local iterations, the relay node will upload its accumulated
gradients to update the global model on S as in Step 2, and
then download the global model to update its local model as
in Step 3. Besides, the output of the global model on S can
provide a solution for adjusting the reflection coefficients of
IRS elements to meet the requirements of the channel rate and
secrecy rate. This result can help the agent on S to solve the
other sub-task, which is for buffer-aided relay selection.

B. DRL Algorithm for Buffer-Aided Relay Selection

Now we introduce DRL to select the best buffer-aided relay
with delay and secrecy constraints. By considering the long
term benefit in buffer-aided relay networks, we apply a DRL
agent on the source S to solve the buffer-aided relay selection.
The states, actions and rewards in this sub-task are defined as
follows.

1) Case 1: To achieve the maximum average secrecy rate
with a delay constraint.
State: We introduce A3C algorithm to solve the IRS
reflection coefficients problem. The channel capacities for
S → Rk, S → E and Rk → D/E can be obtained from
(5), (7), (9), respectively, and the secrecy rate can be ob-
tained based on (10). We assume that a valid transmission
satisfies C(ij) ≥ ω in Case 1. Thus, the channel state of
relay Rk can be described as ck ∈ {1, 2, 3, 4}, where
ck denotes the availability of S → Rk and Rk → D
transmissions as

• ck = 1: none of the two transmission is valid,
• ck = 2: S → Rk is valid,
• ck = 3: Rk → D is valid,
• ck = 4: both transmissions are valid.

Therefore, it is easy for each relay to find out its channel
states for secure transmission. Furthermore, the buffer
state lk(t) of relay Rk denotes the number of packets
in relay node Rk’s buffer at time slot t. Thus, we
form the state of DRL for buffer-aided relay selection
as sr(t) = {c1(t), c2(t), ..., cK(t), l1(t), l2(t), ..., lK(t)},
which includes the buffer states and the channel states of
the proposed network.
Action: At a given time slot, the buffer-aided relay net-
work needs to select a link for transmission. Considering
that there are 2K links for transmission in the proposed
network, we design the action as ar(t) = {k, F}, where
k ∈ {1, 2, ...,K}, F = 0 means to select S → Rk
transmission and F = 1 denotes the fact that Rk → D
transmission is selected. Therefore, the action is used
to determine the variables k and F of the optimization
problem in (12).
Reward: This sub-task aims to select the best link
in the buffer-aided cooperative network to achieve the
maximum average secrecy rate with a delay constraint.
To be specific, the optimization of relay selection can
help avoid invalid transmissions and address the delay
issue. Therefore, we design the positive reward for the
proposed scheme similar to that in Section III-A.1. Based

Algorithm 1 MA-DRL:

1: Initialize the variables.
2: Initialize the actor network θra and critic network θrc for

buffer-aided relay selection.
3: Train the sub-task for IRS reflection coefficient optimiza-

tion:
4: Initialize the global actor network θa and critic network
θc.

5: Initialize the local actor network θ
′

a and critic network θ
′

c

for each relay node.
6: repeat for each relay node thread:
7: Synchronize the local networks θ

′

a = θa and θ
′

c = θc.
8: for t = 1, 2, ...,WL do
9: Use the policy π

(
a(t), s(t); θ

′)
to select the action

a(t).
10: Obtain the reward rs(t),a(t).
11: Save the sample {s(t), a(t), rs(t),a(t)}.
12: end for

13: V (s(t)) =

{
0, for final convergence

Q
(
s(t); θ

′

c

)
, otherwise

14: for t = WL − 1,WL − 2, ..., 1 do
15: V (s(t)) = rs(t),a(t) + ρV (s(t+ 1)).
16: Get the gradients ν(t) and νc(t) for θ

′
and θ

′

c

based on (15) and (16) via RMSProp.
17: Accumulate gradients ν for θ

′
: ν = ν + ν(t).

18: Accumulate gradients νc for θ
′

c: νc = νc + νc(t).
19: end for
20: Asynchronous update θa with ν and θc with νc.
21: Train the sub-task for buffer-aided relay selection:
22: for t = 1, 2, ...,WL do
23: Use the policy πr

(
ar(t), sr(t); θ

r
a

)
to select the

action a(t).
24: Obtain the reward rrsr(t),ar(t).
25: Save the sample {sr(t), ar(t), rrsr(t),ar(t)}.
26: end for

27: V (sr(t)) =

{
0, for final convergence
Q
(
sr(t); θ

r
c

)
, otherwise

28: for t = WL − 1,WL − 2, ..., 1 do
29: V (sr(t)) = rrsr(t), ar(t) + ρV (sr(t+ 1)).
30: Obtain the gradients νr(t) and νrc(t) for θra and θrc

based on (15) and (16) via RMSProp.
31: Accumulate gradients νr for θ

′
: ν = ν + ν(t).

32: Accumulate gradients νrc for θ
′

c: νc = νc + νc(t).
33: end for
34: Update θra with νr and θrc with νrc .
35: νr = 0 and νrc = 0.
36: Update the global model for joint optimization.
37: until final convergence.

on this reward, the DRL algorithm can learn to achieve the
maximum delay constrained average secrecy rate for Case
1. Furthermore, we assign a negative reward for selecting
an invalid transmission, unless all possible transmissions
are invalid at a given time slot. This design can encourage
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the agent to avoid taking invalid actions and improve the
convergence efficiency.

2) Case 2: To achieve the maximum throughput with delay
and secrecy constraints.
State: In Case 2, the state are designed as the same as in
Case 1, except that a valid transmission between nodes i
and j is assumed to satisfy C(ij) ≥ ω and Cs(ij) ≥ ς .
Action: In Case 2, we design the actions as the same as
in Case 1.
Reward: In Case 2, we aim to achieve the maximum
throughput with delay and secrecy constraints. Therefore,
the reward is designed to encourage the agent selecting
links with high secrecy rate. To be specific, we give the
positive reward to the agent based on the secrecy rate
of the transmitted packet, while the negative reward is
used when the requirements of the transmission are not
satisfied.

Similar to the task of optimizing IRS reflection coefficients,
we apply the A2C algorithm on S to address the problem of
buffer-aided relay selection. Then, after training the models
for two sub-tasks, we can form the states s(t) and sr(t) as the
input, the variables k, F , and v as the outputs, to train a global
model for joint design of buffer-aided relay selection and IRS
reflection coefficients. Furthermore, the space of exploration
for the DRL algorithm is significantly reduced from 2K ×λN
to 2K+λN by splitting each of the optimization problems into
the two sub-tasks. Thus, the convergence efficiency of the DRL
can be enhanced by the proposed algorithm. The pseudo-code
of MA-DRL is summarized in Algorithm 1. Notice that the
proposed algorithm is designed for both cases, but the states,
actions and rewards are different in the two cases, as mentioned
before.

IV. SIMULATION RESULTS

In this section, we analyze the performance of the proposed
scheme via simulations. For comparison, we consider selecting
the max-ratio buffer-aided relay selection scheme [8] with
random IRS reflection coefficients as the benchmark. Unless
otherwise stated, the parameters for the proposed network and
algorithm are shown in Table I. Furthermore, the locations
of S, I , D, R1, R2, R3, R4, R5 and E are (0, 0) m,
(2, 24) m, (0, 40) m, (0, 20) m, (-0.88, 18.32) m, (-4.1,
21.92) m, (0.88, 19.52) m, (5.28, 18.8) m and (-28.4, 10.2)
m, respectively7. Notice that the positions of relay nodes are
randomly generated because the DRL algorithm can learn from
different environments to achieve corresponding satisfactory
solutions. The AOD or AOA ∂ij between nodes i and j is
randomly distributed within [0, 2π) [23], [45], [50]. We build
both the actor network and critic network with 256, 128 and
128 neurons for DRL algorithms in two tasks. We run the
simulations on GPU Geforce GTX-2080 with the deep learning
library TensorFlow.

7Notice that the proposed DRL algorithm can learn from different en-
vironment, i.e., the different locations of the raleys, to achieve corresponding
satisfactory solutions. Therefore, to clearly show the related simulation results,
we use the one of the snapshots of the relay locations as an example.

TABLE I: Simulation Parameters

Parameter Value
Number of relays, K 5

Buffer size, L 10
Number of IRS elements, N 32

Quantization bit of IRS, B = log2(λ) 4 bits (λ = 16)
Transmit power to noise ratio, P /σ2

n 40 dB
Path loss exponent, α̂, ᾱL (LoS) 2
Path loss exponent, ᾱN (NLoS) 2.5

Rician factor, κ 10 dB
Target rate, ω 2 bps/Hz

Target secrecy rate, ς 0.5 bps/Hz
Target delay, ∆T 12 time slots

Discount factor in MA-DRL, ρ 0.9
Number of local iterations, WL 500
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Fig. 4. Average secrecy rate versus training iterations in Case 1.

Fig. 4 shows the average secrecy rate with delay constraint
versus training iterations for the proposed scheme in Case
1. According to the results, it is clear that the average se-
crecy rate with delay constraint increases with the number of
training iterations. The proposed MA-DRL algorithm achieves
approximately 0.4 bps/Hz when B = 5 bits after 7,000
iterations, while the case with B = 2 bits obtains a solution of
0.35 bps/Hz after 5,000 iterations. Thus, the average secrecy
rate increases with the quantization bits, resulting from the
increase in the quantization levels as B increases. Moreover,
more quantization bits lead to slower convergence due to
the larger exploration space for reinforcement learning. Due
to exploration mode of DRL in training, the curve of the
convergence is not very stable. In terms of the implementation
for IRS, the quantization bits vary in different scenarios. This
result shows that the proposed reinforcement learning-based
algorithm can learn from the environment to find the optimal
solution in dynamic networks.

The comparison of the average secrecy rate with delay
constraint between the proposed scheme and the benchmark
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Fig. 5. Average secrecy rate versus target delay in Case 1.

in Case 1 is provided in Fig. 5 . First, we can see that the
average secrecy rate increases when the target delay becomes
larger. This is because a larger value of target delay leads
to decreasing the average delay of packets. Secondly, the
results illustrate that the proposed learning-based algorithm
can analyze the network to optimize its solution. For example,
the proposed MA-DRL algorithm achieves approximately 0.37
bps/Hz when the target delay is ς = 10 time slots and the
transmit power to noise ratio is P /σ2

n = 40 dB, while the max-
ratio scheme only achieves 0.07 bps/Hz. In addition, compared
with the case of P /σ2

n = 35 dB, high signal-to-noise ratio
(SNR) has more performance gain when the target delay is
small. The reason is that if the target delay is large, each packet
can be stored in the corresponding buffer for a long period,
the relay selection algorithm has more possible choices at a
given time slot to reduce the impact of low SNR. Moreover,
the proposed MA-DRL achieves more performance gain with a
larger value of IRS elements N , while the performance of the
benchmark max-ratio with different N is similar. The reason
is that the proposed algorithm optimizes the IRS reflection
coefficients to improve the signal quality, while max-ratio
selects random IRS reflection coefficients.

As we can see in Fig. 6, the average secrecy rate in
each result decreases as the target rate increases due to the
increasing outage probability. Furthermore, the proposed al-
gorithm performs much better than the benchmark, and the
reason is that the MA-DRL algorithm can learn to obtain the
solution, which includes the buffer-aided relay selection and
IRS reflection coefficients optimization under all constraints,
while max-ratio only considers the buffer-aided relay selection
in secure transmissions. Results show that the proposed MA-
DRL algorithm achieves approximately 0.25 bps/Hz when the
target rate ω = 3 bps/Hz and the number of relay K = 5, while
the max-ratio scheme only achieves 0.1 bps/Hz. Moreover,
MA-DRL also performs much better than max-ratio when
K = 2; this result shows the learning-based algorithm can
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Fig. 6. Average secrecy rate versus target rate in Case 1.
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Fig. 7. Throughput versus training iterations in Case 2.

adjust its variables for different environments to find out the
solution.

The results in Fig. 7 show the investigation of throughput
with delay and secrecy constraints under increasing training
iterations for the proposed scheme in Case 2. As we can see,
the MA-DRL converges to a good solution after thousands
of training iterations, and we also compare the convergence
performance of MA-DRL under different quantization bits.
The proposed MA-DRL algorithm achieves approximately 0.34
packets/time slot when B = 5 bits after 6,500 iterations, while
the case with B = 2 bits obtain a solution of 0.3 packets/time
slot after 5,000 iterations. This result shows that due to the
quantization error and the space of exploration, a larger value
of quantization bits leads to better throughput in IRS-assisted
networks, but slower convergence.

Fig. 8 indicates the impact of target delay on the throughput
with the secrecy constraint in Case 2. From this figure, we can
see that the throughput increases with the target delay because
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Fig. 8. Throughput versus target delay.
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Fig. 9. Throughput versus target rate.

the packets can stay in the corresponding buffer for more
time slots, leading to the decreasing of the outage probability.
Furthermore, the proposed MA-DRL obtains a better solution
from learning experience, compared with the benchmark. The
proposed MA-DRL algorithm achieves approximately 0.33
packets/time slot when the target delay ς = 10 time slots
and the transmit power to noise ratio P /σ2

n = 40 dB, while
the max-ratio scheme only achieves 0.18 packets/time slot.
In addition, the comparison between P /σ2

n = 40 dB and
P /σ2

n = 35 dB shows that higher SNR leads to better
performance, due to the decreasing of average delay of packets.
Moreover, with a larger value of IRS element N , the proposed
algorithm obtains better throughput with constraints, while it
is difficult for the benchmark to get gain from the increasing
number of N . This result shows the benefit of IRS reflection
coefficient optimization in IRS-assisted cooperative networks.

In Fig. 9, we analyze the performance of the proposed
scheme and the benchmark under different target rate. It can be
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Fig. 10. Throughput versus target secrecy rate.

seen that in all results, the throughput decreases as the target
rate increases. This is because a larger value of target rate
leads to more outages in the proposed network. As expected,
MA-DRL can optimize the solution from learning experience
and achieve better result than the benchmark. As we can see,
MA-DRL algorithm achieves approximately 0.21 packets/time
slot when the target rate ω = 3 bps/Hz and the number
of relay K = 5, while the max-ratio scheme only achieves
0.08 packets/time slot. Moreover, when the number of relay
K varies, the proposed MA-DRL algorithm always improves
the performance compared with max-ratio. This comparison
shows the MA-DRL algorithm exhibits robust performance in
dynamic networks.

The results in Fig. 10 show that all performance decrease as
the target secrecy rate increases due to the increasing secrecy
outage probability. The proposed MA-DRL algorithm learns
from the environments with different target secrecy rates, and
obtains a solution of approximately 0.34 packets/time slot
when the target secrecy rate ς = 0.5 bps/Hz and the transmit
power to noise ratio P /σ2

n = 40 dB, while the max-ratio
scheme only achieves 0.17 packets/time slot. As the target
rate, high SNR helps achieve high throughput with delay
and secrecy constraints when the target secrecy rate is high.
Moreover, compared with the max-ratio scheme, the proposed
MA-DRL algorithm can learn to reduce the impact of low
SNR efficiently and gain better performance. The MA-DRL
algorithm not only optimizes the buffer-aided relay selection
rule to improve the throughput but also adjusts the IRS
reflection coefficients to reduce the secrecy outage probability
for the selected transmission.

V. CONCLUSION

In this paper, the multi-agent DRL-based joint design of
relay selection and IRS reflection coefficients was investigated
in IRS-assisted secure buffer-aided cooperative networks. For
practical implementation, discrete IRS phase shifts and reflec-
tion amplitudes were considered. Two optimization problems
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were considered, namely, maximizing the average secrecy rate
with the delay constraint, and maximizing the throughput with
the delay and secrecy constraints. To obtain the solution, we
split each of the optimization problems into two sub-tasks
to reduce the space of exploration in DRL, and combine
the solutions from sub-tasks as a joint optimization scheme.
Considering the limitation of computation ability for wireless
devices, we applied the distributed framework to address the
sub-task of IRS reflection coefficient optimization by sharing
the accumulated gradients instead of the sharing training data.
The simulation results showed the benefits of jointly optimizing
buffer-aided relay selection and IRS reflection coefficients, and
provided a possible way for solving optimization problems in
future wireless networks. Finally, we note that the proposed
scheme can also be applied with the 3D mmWave channel
model. This is a worthy research direction and would be left
as our future work.
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