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CONTINUITY OF EIGENVALUES AND SHAPE
OPTIMISATION FOR LAPLACE AND STEKLOV PROBLEMS

Alexandre Girouard, Mikhail Karpukhin and Jean Lagacé

Abstract. We associate a sequence of variational eigenvalues to any Radon measure
on a compact Riemannian manifold. For particular choices of measures, we recover
the Laplace, Steklov and other classical eigenvalue problems. In the first part of
the paper we study the properties of variational eigenvalues and establish a general
continuity result, which shows for a sequence of measures converging in the dual of
an appropriate Sobolev space, that the associated eigenvalues converge as well. The
second part of the paper is devoted to various applications to shape optimization.
The main theme is studying sharp isoperimetric inequalities for Steklov eigenvalues
without any assumption on the number of connected components of the boundary. In
particular, we solve the isoperimetric problem for each Steklov eigenvalue of planar
domains: the best upper bound for the k-th perimeter-normalized Steklov eigenvalue
is 8πk, which is the best upper bound for the kth area-normalised eigenvalue of the
Laplacian on the sphere. The proof involves realizing a weighted Neumann problem
as a limit of Steklov problems on perforated domains. For k = 1, the number of
connected boundary components of a maximizing sequence must tend to infinity,
and we provide a quantitative lower bound on the number of connected components.
A surprising consequence of our analysis is that any maximizing sequence of planar
domains with fixed perimeter must collapse to a point.

1 Introduction

For a compact, connected Riemannian manifold (M, g) of dimension d, with or
without C1 boundary ∂M , the Laplace eigenvalue problem consists in determining
all λ ∈ R for which the following eigenvalue problem admits a nontrivial solution:{

−Δgu = λu in M,

∂nu = 0 on ∂M, when ∂M �= ∅,

where ∂nu is the outward normal derivative of u. Similarly, when ∂M �= ∅ the
Steklov problem consists in determining all σ ∈ R such that the following boundary
value problem admits a nontrivial solution:{

Δgu = 0 in M,

∂nu = σu on ∂M.
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The eigenvalues of these problems form nondecreasing sequences

0 = λ0(M, g) < λ1(M, g) � λ2(M, g) � . . . ↗ ∞,

0 = σ0(M, g) < σ1(M, g) � σ2(M, g) � . . . ↗ ∞,

where each eigenvalue is repeated according to multiplicity. For each k ∈ N, we
investigate sharp upper bounds for λk(M, g) and σk(M, g). To that end, we define
the scale invariant quantities

λk(M, g) := λk(M, g) Volg(M)
2
d and σk(M, g) := σk(M, g)

H d−1(∂M)

Volg(M)
d−2

d

.

Here, Volg(M) is the Riemannian volume of M and H d−1
g is the associated (d − 1)-

dimensional Hausdorff measure. These normalisations are natural for both problems,
see e.g. [GNY04, CEG11, FS11, GL21].

In the present paper we study the relation between σk(M, g) and λk(M, g). In
order to do so, we introduce the unifying framework of variational eigenvalues as-
sociated with a Radon measure. Given a Radon measure μ on M , we define

λk(M, g, μ) := inf
Fk+1

sup
f∈Fk+1\{0}

∫
M |∇gf |2g dvg∫

M f2 dμ
, (1.1)

where Fk+1 is a (k + 1)-dimensional subspace of C∞(M) ∩ L2(M, μ). To the best
of our knowledge, variational eigenvalues for Radon measures were first defined to
describe Laplacians on fractal sets, see e.g. the survey of Triebel [Tri08]. In the
context of spectral bounds and shape optimisation, they first appeared in the work
of Kokarev [Kok14] as a relaxation of the optimisation constraint. One should also
see the influential work of Korevaar [Kor93] and especially of Grigor’yan–Netrusov–
Yau [GNY04] where the spectrum of energy forms is investigated. The variational
eigenvalues admit a natural normalisation

λk(M, g, μ) := λk(M, g, μ)
μ(M)

Volg(M, g)
d−2

d

.

One of the main interest of introducing these variational eigenvalues is that they
unify the presentation of several eigenvalue problems. For instance, for μ = dvg the
volume measure associated to metric g, λk(M, g, μ) = λk(M, g), while for μ = ι∗dAg,
the pushforward by inclusion of the boundary measure, λk(M, g, μ) = σk(M, g).

We present results of two types. On one hand, we study variational eigenvalues on
their own. In Sect. 3 we establish the necessary functional analysis preliminaries. We
define p-admissible measures, which are essentially measures that can be viewed as
elements of the dual space (W1,p(M))∗ with certain compactness properties, and give
various examples of p-admissible measures. Section 4 is concerned with the proper-
ties of variational eigenvalues. For example, we show that the eigenvalues associated
with a 2-admissible measure form a discrete unbounded sequence accumulating only
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at +∞. The main result of this section is Proposition 4.11, which states that con-
vergence of measures in (W1,p(M))∗ for appropriate values of p implies convergence
of the eigenvalues.

On the other hand, we apply this continuity result to obtain the aforementioned
relations between σk and λk. We start with isoperimetric inequalities when d = 2,
where the form of the results are cleaner. We also obtain quantitative bounds for
the first non-trivial eigenvalue in terms of the number of boundary components and
describe applications to the free boundary minimal surfaces. Convergence results
and isoperimetry for an arbitrary d � 2 are formulated in Theorem 1.11 below. We
finish the introduction by stating some results in spectral flexibility which follow
from our results on approximations.

1.1 Optimal isoperimetric inequalities for surfaces. Maximisation of
Steklov eigenvalues normalised by perimeter goes back to the work of Weinstock
[Wei54]. He proved that for simply-connected planar domains, σ1(Ω) ≤ 2π, with
equality if and only if Ω is a disk. This was followed by works of Hersch–Payne–
Schiffer [HPS75], then later Girouard–Polterovich [GP12] and Karpukhin [Kar17]
who proved that

σk(M) ≤ 2π(k + γ + b − 1),

this time for compact surfaces M of genus γ with b connected boundary components.
It follows from Girouard–Polterovich [GP10] that for γ = 0 and b = 1, this bound
is saturated by a sequence of simply-connected domains Ωε ⊂ R

2 that degenerates
to a union of k identical disks as ε → 0. Bounds for σk which do not depend on
the number of boundary components are notably more elusive. For M a compact
orientable surface of genus γ with boundary, it was proved by Kokarev [Kok14] that

σ1(M) � 8π(γ + 1). (1.2)

The bound (1.2) was later generalized in [KS20] in the following way. The con-
formal eigenvalues of a compact Riemannian manifold (M, g) are defined as

Λk(M, [g]) = sup
h∈[g]

λk(M, h).

By the work of Korevaar [Kor93] Λk(M, [g]) < +∞. See also Hassannezhad [Has11]
and Colbois–El Soufi [CE03].

Theorem 1.1 (Karpukhin–Stern [KS20]). Given any closed Riemannian surface
(M, g) and any C1 domain Ω ⊂ M , one has

σ1(Ω, g) < Λ1(M, [g]) and σ2(Ω, g) < Λ2(M, [g]). (1.3)

One obtains (1.2) from (1.3) by using the Yang–Yau bound λ1(M, g) � 8π(γ +1)
[YY80]. The first result of the present paper is a non-strict version of (1.3) valid for
all values of k.
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Theorem 1.2. Let (M, g) be a compact Riemannian surface and let Ω ⊂ M be a
smooth domain such that ∂Ω ∩ ∂M is either empty or equal to ∂M . Then one has

σk(Ω, g) � Λk(M, [g]). (1.4)

This inequality is sharp for each k.

Remark 1.3. The corresponding inequality with Λk(M, g) replaced with λk(M, g)
is not true in general. This will be made explicit in Theorem 1.14. The proof of
Theorem 1.2 is very different from that of Theorem 1.1. It is simpler, works for
all values of k as well as for surfaces with boundary, but does not imply the strict
inequality.

The proof of Theorem 1.2 has two main parts. First, to prove inequality (1.4),
we construct a sequence of conformal metrics efng concentrating near the boundary
∂Ω. By concentrating the metric on M close to the boundary we can approximate
transmission eigenvalues on M accross ∂Ω with the corresponding Laplace eigen-
values in any given conformal class. This procedure is reminiscent of the construc-
tion of Lamberti–Provenzano [LP15] and Arrieta–Jiménez-Casas–Rodŕıguez-Bernal
[AJCRB08]. Those transmission eigenvalues are always larger than the Steklov eigen-
values. The assumption on ∂Ω is purely technical: it ensures that a tubular neigh-
bourhood of ∂Ω is a smooth domain in M , which in turn greatly simplifies the
convergence estimates.

On the other hand, sharpness of inequality (1.4) follows from the next theorem
for closed surfaces.

Theorem 1.4 (Girouard–Lagacé [GL21]). For any closed Riemannian surface (M, g),
any f ∈ C∞(M) and any k � 0 there exists a sequence of domains Ωε ⊂ M such
that

σk(Ωε, g) ε→0−−−→ λk(M, efg).

The domains Ωε are obtained via homogenisation, by removing small disks from
M , in such a way that the boundary measure of Ωε converges to the volume measure
of (M, efg). While the first process involved concentrating all the weight of the
domain at the boundary, here we equidistribute boundary weight inside the manifold
to approximate the interior measure. To see that this theorem implies the sharpness
of inequality (1.4), one can repeatedly apply it to a sequence of conformal metrics
gn = efng such that λk(M, gn) → Λk(M, [g]). We extend Theorem 1.4 to manifolds
with boundary below in Theorem 1.12.

Both parts of the proof of Theorem 1.2 have a very similar structure. With that
in mind, we develop general results about continuity of eigenvalues with respect to
measures used in the definition of their Rayleigh quotient. The continuity criteria
that we develop in this paper are natural and flexible. In addition to being used in
the proof of Theorem 1.2, we also use them to stufy various spectral convergence
problems that had not been considered in the litterature so far.
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The following notations allows us to clarify the statement of our results:

Σk(M, g) = sup
Ω⊂M

σk(Ω, g),

Λk(M) = sup
g

λk(M, g),

Σk(M) = sup
g, Ω⊂M

σk(Ω, g),

where M is a compact surface and Ω is a C1 domain. For these optimal eigenvalues
the results of this section can be summarized as follows.

Corollary 1.5. For any compact surface M , any conformal class [g] on M and
any k � 0 one has

Σk(M, g) = Λk(M, [g]), Σk(M) = Λk(M).

In particular, using the known results on the exact values of Λk(M) obtained in
[KNPP21, Kar21] respectively,

Σk(S2) = 8πk,

Σk(RP
2) = 4π(2k + 1). (1.5)

1.2 Optimal isoperimetric inequalities for planar domains. Because any
domain Ω ⊂ R

2 is diffeomorphic to a domain in the sphere S
2, it follows from (1.5)

that σk(Ω, g0) ≤ 8πk. Following the ideas of [GL21] we show that this inequality
remains sharp for planar domains.

Theorem 1.6. Let Ω ⊂ R
2 be a bounded simply-connected domain with C1 bound-

ary. There exists a sequence Ωε ⊂ Ω of subdomains, with ∂Ω ⊂ ∂Ωε, such that

σk(Ωε, g0) = σk(Ωε, g0)H 1(∂Ωε) ε→0−−−→ 8πk.

In particular,

Σk(R2) := sup
Ω⊂R2

σk(Ω, g0) = 8πk.

The domains Ωε are obtained by removing small disks from Ω. In particular, this
solves [GP17, Open problem 2] for d = 2.

1.3 Quantitative isoperimetric bounds for σ1. Following [FS16, Theorem
4.3], it was suggested in [GP17] that the number of boundary components in a
maximizing sequence for Σ1(S2) needs to be unbounded. Indeed, let M0,b be a a
compact orientable surface of genus 0 with b boundary components and define

Σ1(0, b) = sup
g

σ1(M0,b, g).

The monotonicity results of [FS16, Theorem 4.3] and [MP20, Theorem 1.3] imply
that Σ1(0, b) is strictly monotone in b. Thus, Theorem 1.4 yields

Σ1(0, 1) < · · · < Σ1(0, b) < Σ1(0, b + 1) < . . . ↗ 8π,

which confirms the claim, yielding the direct corollary.
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Corollary 1.7. Any sequence of surfaces M ε of genus 0 such that σ1(M ε) ε→0−−−→ 8π
has unbounded number of connected boundary components.

We refine Corollary 1.7 and obtain at the same time a quantitative improvement
to Kokarev’s bound (1.2).

Theorem 1.8. For every ε > 0 there exists C > 0 such that for every b � 1 and
every metric g

σ1(M0,b, g) � 8π − C exp(−(1 + ε)b). (1.6)

This theorem follows from the more general Theorem 2.1 and the constant C is
explicitly computable in terms of ε. It seems unlikely that this bound is sharp, yet
there does not seem to be any obvious candidate for the sharp bound. We discuss
in more details in Sect. 2 the parts of the proof where sharpness may be lost.

For planar domains, Theorem 2.1 also leads to the following bound, which implies
that any Σ1(R2)-maximising sequence of domains with fixed perimeter shrinks to a
point.

Theorem 1.9. For every ε > 0 there is C > 0 such that for every connected
bounded domain Ω ⊂ R

2 with smooth boundary,

σ1(Ω) � 8π − C exp
(−(1 + ε)

2
H 1(∂Ω)
diam(Ω)

)
.

Remark 1.10. It follows from the seminal work of Fraser–Schoen [FS16] that free
boundary minimal surfaces in the unit ball are intimately related to the maximal
Steklov eigenvalues. In particular, given an embedded free boundary minimal surface
in the unit ball, its coordinates are Steklov eigenfunctions with eigenvalue σ = 1.
In [FL14, Conjecture 3.3], Fraser and Li conjectured that for each free boundary
minimal surfaces M properly embedded in B ⊂ R

3, this Steklov eigenvalue is always
the first one, so that in such a case 2 Areag(M) = H 1(∂M) = σ1(M, g). We can
read Theorem 2.1 in this setting. Let M0,b be a free boundary minimal surface of
genus 0 with b boundary components properly embedded in B ⊂ R

3 by its first
Steklov eigenfunctions. Then, for every ε > 0, with the constant C > 0 given by
Theorem 1.8,

Areag(M0,b) � 4π − C

2
exp(−(1 + ε)b).

Under the Fraser–Li conjecture, this holds for all free boundary minimal surfaces
of genus 0 with b connected boundary component that are properly embedded in
the unit ball B ⊂ R

3. In other words, if the Fraser–Li conjecture is true properly
embedded free boundary minimal surfaces of genus 0 with area close to 4π must
have a large number of boundary components.
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1.4 Isoperimetry and homogenisation for domains in R
d. Theorem 1.6

is a consequence of a more general result valid for domains in R
d. Let Ω ⊂ R

d be
a domain, that is a connected bounded open set with C1 boundary. For β : Ω → R

nonnegative and non trivial, consider the weighted Neumann problem{
−Δf = λβf in Ω,

∂nf = 0 on ∂Ω.

We assume that β ∈ Ld/2(Ω) if d � 3, and β ∈ L1(log L)1(Ω) if d = 2 (see p. 9 for
the definition of this space which contains Lp, p > 1). If the flat metric on R

d is
denoted by g0, then the eigenvalues of this problem can be understood in the weak
sense as in (1.1), as the variational eigenvalues λk(Ω, g0, βdvg0).

Theorem 1.11. For any domain Ω ⊂ R
d, and any nonnegative 0 �≡ β ∈ Ld/2(Ω)

(d � 3) or β ∈ L1(log L)1(Ω) (d = 2), there exists a family Ωε ⊂ Ω of domains such
that for each k ∈ N,

σk(Ωε, g0)
ε→0−−−→ λk(Ω, g0, βdvg0).

For the same family Ωε,

λk(Ωε, g0)
ε→0−−−→ λk(Ω, g0), and Volg0(Ω

ε) ε→0−−−→ Volg0(Ω).

We note that combining the methods of [GHL21, GL21], we could have proved a
weaker form of this result, i.e. with β continuous, using an intermediate dynamical
boundary value problem. The proof that we present here is more direct, allows for a
more singular β, and gives more information on domains that are nearly maximizing
λk.

In order to prove this result, we realise the domains Ωε by removing tiny balls
from Ω whose centres are periodically distributed. The construction is in the spirit
of homogenisation theory, with the distinction that the radius of the balls removed
is not uniform, but rather varies according to the a continuous approximation of the
function β, and is chosen so that the total boundary area tends to ∞ in a controlled
way as ε → 0. Variation within periods in homogenisation theory has also been
explored in [Pta15]. In our method of proof, the number of boundary components
tends to ∞. By Theorem 1.8, this is unavoidable in dimension 2 since we can obtain
planar domains with σ1 as close to 8π as we want. In higher dimension, it is possible
to achieve the same result with only one boundary component, see [FS13, GL21].

Finally, we remark that a straightforward modification of our method yields an
analogous result for compact Riemannian manifolds, see Remark 6.1 and a similar
result for β continuous on closed Riemannian manifolds in [GL21, Theorem 1.1].

Theorem 1.12. For any compact Riemannian manifold (M, g) of dimension d, and
any nonnegative 0 �≡ β ∈ Ld/2(M) (d � 3) or β ∈ L1(log L)1(M) (d = 2), there
exists a family Ωε ⊂ M of domains such that for each k ∈ N,

σk(Ωε, g) ε→0−−−→ λk(M, g, βdvg).
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Harmonic extensions of the associated eigenfunctions from Ω to M converge strongly
to eigenfunctions of the limit problem in W1,2(M).

For the same family Ωε,

λk(Ωε, g) ε→0−−−→ λk(M, g), and Volg(Ωε) ε→0−−−→ Volg(M).

Here, harmonic extensions of the associated eigenfunctions converge weakly to eigen-
functions of the limit problem in W1,2(M).

1.5 Flexibility in the prescription of the Steklov spectrum. Bucur–
Nahon [BN21] have recently shown that the Weinstock and Hersch–Payne–Schiffer
inequalities are unstable, in the sense that there are simply-connected domains that
are very far from the disk—or from a union of k identical disks—with their kth nor-
malised eigenvalue arbitrarily close to 2πk. In fact, they prove the following result.

Theorem 1.13. (Bucur–Nahon, [BN21, Theorem 1.1]) Let Ω1, Ω2 ⊂ R
2 be two

bounded, conformally equivalent domains with smooth boundary. Then, there exists
a sequence of open domains Ωε with uniformly bounded perimeter such that

dHaus(∂Ωε, ∂Ω1)
ε→0−−−→ 0, and, for all k ∈ N, σk(Ωε) ε→0−−−→ σk(Ω2).

The domains Ωε constructed in [BN21] are diffeomorphic to the original domains.
They are obtained by a local perturbation of the boundary. We remark that a similar
result can be obtained as an application of Theorem 1.11, see Remark 5.4 for details.
However, the domains Ωε obtained this way have many small holes concentrated near
the boundary ∂Ω1.

We further investigate flexibility results for the Steklov spectrum of domains in
Euclidean space. In many ways, the Neumann and Steklov problems have similar fea-
tures. This has led to an investigation of bounds for one eigenvalue problem in terms
of the other, see e.g. [HS20, KS68]. It was previously thought that some universal
inequalities between perimeter-normalised Steklov eigenvalues and area-normalised
Neumann eigenvalues could exist. It is known from [GP10, Section 2.2] that nor-
malised Steklov eigenvalues can be arbitrarily small while keeping the normalised
Neumann eigenvalues bounded away from zero. We use Theorem 1.11 to prove that
there are also domains with arbitrarily small area-normalised Neumann eigenvalues
λk(Ω, g0), for which the Steklov eigenvalues are bounded away from zero.

Theorem 1.14. There exists a sequence of planar domains Ωε such that the nor-

malised Steklov eigenvalue σ1(Ωε) ε→0−−−→ 8π while for each k ∈ N, the normalised

Neumann eigenvalues satisfy λk(Ωε) ε→0−−−→ 0.

The reader should compare with the results of [BHM21, Section 5], where another
family of examples where σ1(Ω) ≤ λ1(Ω) fails is constructed.

Remark 1.15. Similarly to Theorem 1.14, on any closed Riemannian surface (M, g)
there exists a sequence of conformal metrics gn = efng and a sequence of domains
Ωn ⊂ M such that σ1(Ωn, gn) ε→0−−−→ Σ1(M, g) while for each k ∈ N, the normalised
Laplace eigenvalues satisfy λk(M, gn) ε→0−−−→ 0.



GAFA CONTINUITY OF EIGENVALUES

1.6 Plan of the paper, heuristics, and strategies. The majority of the
paper is centred around Theorems 1.2 and 1.11; we either discuss their applications,
develop the theory towards their proof and justify some constraints that become
apparent in the proof. We note that the proof of both of these theorems are very
similar in nature under the scheme that we develop.

In Sect. 2, we start by presenting applications of Theorem 1.11, including the
proofs of Theorems 1.6 and 1.14. The proofs of Theorems 1.8, 1.9 are independent
of the rest of the paper and are also presented there.

In Sect. 3, we present the general framework of variational eigenvalues associ-
ated to a Radon measure. This is a unifying framework which allows one to compare
different, seemingly unrelated, eigenvalue problems on a manifold. We start with
a general description of the setup and give conditions on and examples of mea-
sures giving rise to eigenvalues behaving like Laplace eigenvalues. Finally, we obtain
continuity of the eigenvalues and eigenfunctions with respect to convergence of the
measures in the dual of some appropriate Sobolev space.

An immediate application of the framework presented in Sect. 3, is given in
Sect. 5. In particular, we prove that on any surface we can approximate Steklov-
type eigenvalues with Laplace eigenvalues associated with a degenerating sequence
of metrics, giving as an application a proof of Theorem 1.2.

1.7 Notation. We make here a list of notation that is explicitly reserved through-
out the paper.

Manifolds and their domains. Whenever we mention a manifold or a surface with-
out qualification, it may have nonempty boundary, which is always assumed to be
C1. In any PDE written in strong form, the boundary term may be ignored when
the manifold has empty boundary. Closed manifolds and surfaces are compact and
without boundary. We reserve the letter M for manifolds. When M has nonempty
boundary, we denote by int(M) the set M \ ∂M .

A domain in a manifold M is a bounded open connected subset of M with C1

boundary if its boundary is nonempty. We reserve the letters Ω and Υ for domains.

Standard measures and metrics. Let (M, g) be a Riemannian manifold. We denote
the volume measure dvg. If there is a canonical metric on M , it is denoted by g0.
This could be the flat metric on R

d or the round metric on the sphere. It is usually
a constant curvature metric. If M has a boundary, we write dAg for the boundary
measure induced by the metric. It is often useful to recall that dAg := H d−1�∂M ,
where H d−1 is the (d − 1)-dimensional Hausdorff measure induced by the metric g
on M . We abuse notation and make no distinction between dAg as a measure on
∂M , and the pushforward by inclusion ι∗dAg which is a measure on M .

In cases where confusion may arise, if we want to explicitly distinguish the re-
striction of dvg to a domain Ω ⊂ M we write

dvΩ
g := (dvg)�Ω,
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and similarly for Σ ⊂ ∂M ,

dAΣ
g := (dAg)�Σ := H d−1�Σ.

Standard function spaces and capacity. Every vector space under consideration is
defined over R. For X a topological vector space, ξ ∈ X∗, x ∈ X we denote by
〈ξ, x〉X := ξ(x) the duality pairing. Since all vector spaces are real, we use this
notation to denote an inner product as well, without confusion.

For p ∈ [1, ∞] we let p′ be its Hölder conjugate and for p ∈ [1, d) we let p� be its
Sobolev conjugate, given respectively by

p′ =
p

p − 1
and p� =

pd

d − p
.

In order to characterise critical scenarios in dimension 2, we will require a gen-
eralisation of the usual Lebesgue Lp and Sobolev W1,p spaces. The first spaces we
introduce are the Orlicz spaces Lp(log L)a, for p � 1 and a ∈ R and exp La for
a > 0. For a reference on Orlicz space, see e.g. [BS88, Chapters 4.6–4.8]. The space
Lp(log La)(M) consists of all measurable functions f such that∫

M
[|f | (log(2 + |f |))a]p dvg < ∞.

For p > 1 and a ∈ R, or p = 1, a � 0, it can be endowed with the Luxemburg norm

‖f‖Lp(log L)a(M) = inf
{

η > 0 :
∫

Ω

[
|f/η| (log(2 + |f/η|))a

]p
dvg � 1

}
,

under which it is a Banach space. For a > 0, we also define the Orlicz spaces exp La

to be

exp La :=
{

f : M → R measurable : ∃η > 0 s.t.
∫

M
exp (|f/η|a) dvg < ∞

}
.

Just like the spaces Lp(log L)a, they can be endowed with the Luxemburg norm

‖f‖expLa = inf
{

η > 0 :
∫

M
exp (|f/η|a) dvg � 1

}
,

under which it is also a Banach space. The space expL1 serves as a pairing space
for L1(log L)1, see [BS88, Theorem 4.6.5], in the sense that there is C > 0 so that
for f ∈ L1(log L)1, ϕ ∈ expL1,∫

fϕ dvg � C ‖f‖L1(log L)1 ‖ϕ‖exp L1 .

We identify exp L1 with the dual of L1(log L)1. For every p � 1 and a, ε > 0, we
have the relations

L∞(M) ⊂ exp La(M) ⊂ Lp(M)
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and

Lp+ε(M) ⊂ Lp(log L)a(M) ⊂ Lp(M) ⊂ Lp(log L)−a(M) ⊂ Lp−ε(M).

We also define for p � 1 and a ∈ R the Orlicz–Sobolev spaces W1,p,a(M) as

W1,p,a(M) := {f ∈ Lp(log L)a(M) : ∇f ∈ Lp(log L)a(M)} (1.7)

with the gradient being understood in the weak sense, see [Cia96, Section 2] for this
definition. We note that for every p � 1, a � 0, ε > 0 we have the relations

W1,p+ε(M) ⊂ W1,p,a(M) ⊂ W1,p(M) ⊂ W1,p,−a(M) ⊂ W1,p−ε(M).

Finally, we will make use of the notion of p-capacity. Given two sets Υ ⊂⊂ Ω �

M , we write

C∞
0 (Ω) := {f ∈ C∞(Ω) : f ≡ 0 on ∂Ω ∩ int(M)} .

The p-capacity of Υ with respect to Ω is defined as

capp(Υ, Ω) := inf
{∫

M
|∇f |p dvg : f ∈ C∞

0 (Ω), f ≡ 1 on Υ
}

,

and the p-capacity of Υ as

capp(Υ) := inf
{
capp(Υ, Ω) : Ω � M, 0 < Volg(Ω) � Volg(M)/2

}
.

We note that if Ω ∩ ∂M is not empty, we do not require in the definition of the
capacity that f vanishes on that set.

Asymptotic notation. We make extensive use throughout the paper of the so-called
Landau asymptotic notation. We write

• without distinction, f1 = O (f2) or f1 � f2 to mean that there exists C > 0
such that |f1| � Cf2;

• f1 � f2 to mean that f1 � f2 and f2 � f1;
• f1 ∼ f2 to mean that f1

f2
→ 1;

• f1 = o (f2) to mean that f1

f2
→ 0.

The limits in the last two bullet points will either be as some parameter tends to
0 or ∞ and will be clear from context. The use of a subscript in the notation, e.g.
f1 �M f2 or f1 = ok (f2), indicates that the constant C, or the quantities involved
in the definition of the limit may depend on the subscript.

2 Applications and Motivation.

In this section, we give application of Theorem 1.11 to shape optimisation for the
Steklov problem in R

2, and to spectral flexibility. We also provide the proofs of
Theorems 1.8 and 1.9.
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2.1 Approximation by Steklov eigenvalues. We start by proving Theo-
rem 1.6 from Theorems 1.2 and 1.11.

Proof of Theorem 1.6. Let Ω ⊂ R
2 be a simply-connected C1 domain. We know from

[Her70, Pet14, KNPP21] that Λk(S2) = 8πk. Let δ > 0, and g be a smooth metric
on S

2 such that such that

λk(S2, g) > Λk(S2) − δ = 8πk − δ.

Let Υ be S
2 with a small disk removed. It is well known that as the radius of that

disk goes to 0, the Neumann eigenvalues λk(Υ, g) converge to λk(S2, g), see [Ann86,
Théorème 2]. Thus, removing a small enough disk ,

λk(Υ, g) > λk(S2, g) − δ.

Let Φ : Ω → Υ be a conformal diffeomorphism. Since Dirichlet energy is a conformal
invariant, the kth Neumann eigenvalue of Υ is equal to the variational eigenvalue
λk(Ω, g0, Φ∗(dvg)). The homogenisation Theorem 1.11 guarantees the existence of
Ωε ⊂ Ω such that

σk(Ωε)H 1(∂Ωε) > λk(Ω, g0, |dΦ|2 dx)
∫

Ω
Φ∗(dvg) − δ. (2.1)

Putting this all back together yields the bound σk(Ωε)H 1(∂Ωε) > 8πk − 3δ. Since
δ > 0 is arbitrary Σk(R2) � 8πk, and by Theorem 1.2 this is in fact an equality. ��

The exact same proof can be used to obtain the comparison between Steklov and
Neumann eigenvalues.

Proof of Theorem 1.14. For δ > 0, proceed as in the proof of Theorem 1.6, but
start with Ω ⊂ R

2 such that λk(Ω) < δ
2 , for instance a very thin rectangle. By

Theorem 1.11, one can choose ε in (2.1) small enough that λk(Ωε, g0) < δ. This
concludes the proof. ��
2.2 Geometric and topological properties of maximising sequences. In
the present section we prove Theorems 1.8 and 1.9

The domains Ωε constructed in Theorem 1.11, are obtained by removing many
tiny balls whose total boundary length tends to +∞. In particular, the length of
each boundary component relative to the total length of the boundary tends to zero.
We show that any maximizing sequence of domains for Σ1(S2) or Σ1(R2) exhibits
this behaviour. Moreover, for any metric on M0,b one has the following quantitative
relation between the relative length of the longest boundary component and the
Steklov spectral defect

def(M0,b, g) := 8π − σ1(M0,b, g).
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Theorem 2.1. Let (M, g) be a compact Riemannian surface of genus 0 with b
boundary components and let L be the length of its longest boundary component.
Then, whenever def(M, g) � 4π,

b � H 1(∂M)
L

�
(

1 − def(M, g)
4π

)
log
(

8π

def(M, g)
− 1
)

. (2.2)

The first inequality is the trivial statement that H 1(∂M0,b) � Lb, the main content
of this theorem is the second inequality. One can interpret this result as a quantitative
improvement of Kokarev’s estimate (1.2). This is the essence of Theorems 1.8 and 1.9
which we now prove using Theorem 2.1.

Proof of Theorem 1.8. We may assume without loss of generality that σ1 > 4π and
therefore that b � 3, and that ε is sufficiently small. Exponentiating the leftmost
and rightmost side in (2.2) and rearranging yields

σ1 � 8π

1 + exp
(

−4πb
(σ1−4π)

) .

We see that when 8π > σ1 � 4π 2+ε
1+ε , then we get the upper bound

σ1 � 8π

1 + exp
(

−4πb
(σ1−4π)

) � 8π

1 + exp(−(1 + ε)b)
.

To arrive at (1.6) we use the inequality (1+x)−1 < 1−x+x2 and choose C depending
on ε to be such that

C exp(−3(1 + ε)) � 4πε

1 + ε
� exp(−3) − exp(−6)

for ε small enough. ��

Proof of Theorem 1.9. Let Ω be a connected bounded domain in R
2, and C ⊂ ∂Ω be

the boundary of the unbounded connected component of R
2 \Ω. Then, we have that

2 diam(Ω) � H 1(C ) � L, where L is the length of the longest boundary component.
The proof is completed in exactly the same way as above. ��

The proof of Theorem 2.1 is based on Hersch’s renormalisation scheme [Her70],
as well as on a quantitative version of Kokarev’s no atom lemma [Kok14, Lemma
2.1].

Let B be the unit ball in R
3. For ξ ∈ B, Hersch’s conformal diffeomorphism

Ψξ : S
2 → S

2 is defined as

Ψξ(x) :=
(1 − |ξ|2)x + 2(1 + ξ · x)ξ

|ξ + x|2 .
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Lemma 2.2. (Hersch’s renormalisation scheme, see [GNP09, Lau21]). Let μ be a
measure on S

2 such that for all x ∈ S
2, μ({x}) � 1

2μ(S2). Then, there exists a
unique ξ ∈ B such that the pushforward measure (Ψξ)∗μ has its center of mass at
the origin. In other words, for j ∈ {1, 2, 3}, the coordinate functions xj : S

2 → R

satisfy ∫
S2

xj d(Ψξ)∗μ =
∫
S2

xj ◦ Ψξ dμ = 0. (2.3)

Remark 2.3. In the classical formulation of Hersch’s scheme as in e.g. [GNP09] the
measure μ is precluded from having points of non-zero mass. In the form presented
here the measure μ is allowed to have point masses. The proof is different from the
classical topological arguments and can be found in [Lau21].

Given y ∈ S
2, we define the closed hemisphere

S
2
y :=

{
x ∈ S

2 : x · y � 0
}

.

For Ω ⊂ S
2
y, recall that we define the capacity of Ω in S

2
y as

cap2(Ω, S2
y) = inf

{∫
S2

y

|∇f |2 dvg : f ∈ C∞
0 (S2

y), f
∣∣
Ω

≡ 1

}
.

Lemma 2.4. Let Ka ⊂ S
2
y be a closed spherical cap of area a < 2π centred at y ∈ S

2.
The capacity of Ka in S

2
y is given by

cap2(Ka, S
2
y) =

4π

log(4π
a − 1)

.

Proof. Let Φ : D → S
2 be the stereographic parametrisation of S

2
y. By elementary

trigonometry, Φ−1(Ka) = B(0, ra) ⊂ D, where

ra =
√

a

4π − a
.

Let χa : D → R be the capacitary potential for B(0, ra), i.e. the radial function
defined in polar coordinates (t, θ) as

χa(t) :=

{
log t
log ra

for ra < t � 1,

1 for 0 � t � ra.

It follows by invariance of the Dirichlet energy under conformal transformations that
(Φ−1)∗χa is the capacitary potential of Ka, and thus that

cap2(Ka, S
2
y) =

∫
D

|∇χa|2 dvg0 =
∫ 1

ra

(
∂tχa(t)2

)
t dt =

4π

log(4π
a − 1)

. ��
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Proof of Theorem 2.1. The proof is based on Kokarev’s proof of (1.2), keeping a
precise track of all quantities involved. Note that the theorem is trivially true when
def(M, g) � 4π, so we assume that def(M, g) < 4π. Let C ⊂ ∂M be the longest
connected component of the boundary and fix y ∈ S

2. It follows from the Koebe uni-
formization theorem that there exists a diffeomorphism Φ : M → Ω ⊂ S

2
y, conformal

in the interior of M , sending C to the equator, i.e Φ(C ) = ∂S
2
y. Let μ := Φ∗ds. be

the pushforward of the boundary measure by Φ. The equator carries the length of
C :

μ(∂S
2
y) = H 1(C ) ≥ H 1(∂M)

b
.

We apply the Hersch renormalisation scheme to the measure μ. By Lemma 2.2, there
is a unique ξ ∈ B so that the measure ζ := (Ψξ)∗μ has its center of mass at the
origin. In other words, we can read from (2.3) that for j ∈ {1, 2, 3}, the functions
xj ◦ Ψξ ◦ Φ are trial functions for σ1 on M . Thus, by conformal invariance of the
Dirichlet energy,

3∑
j=1

σ1(M, g)
∫

∂M
x2

j ◦ Ψξ ◦ Φ ds �
3∑

j=1

∫
Ψξ(S2

y)
|∇g0xj |2 dAg0 .

Using the pointwise identities
∑3

j=1 x2
j = 1 and

∑3
j=1 |∇g0xj |2 = 2, this leads to a

strict form of Kokarev’s bound from [Kok14]:

σ1(Ω, g) � 2 Areag0(Ψξ(S2
y)) < 8π.

Because the total area of S
2 is 4π, it follows that the opposite hemisphere S

2−y is
mapped by Ψξ to a spherical cap with small area:

Areag0

(
Ψξ(S2

−y)
) ≤ 1

2
(8π − σ1(Ω, g)) =

def(Ω, g)
2

. (2.4)

Let z ∈ S
2 be the center of the spherical cap Ka = Ψξ(S2−y), where a = Areag0(Ka).

The center of the circle ∂Ka is κz ∈ B, where 2π(1 − κ) = a < def(Ω, g)/2. The
spectral defect is smaller than 4π by hypothesis. Hence,

κ > 1 − def(Ω, g)
4π

> 0.

Let πz : R
3 → R correspond to the projection on the subspace Rz. That is, πz(x) :=

(x · z). Then the measure ρ := (πz)∗ζ = (πz ◦ Ψξ)∗μ is supported in the interval
(−1, 1) and has an atom of weight μ(∂S2

y) = H 1(C ) located at κ ∈ (0, 1). Because
the center of mass of ζ is the origin 0 ∈ B, we have

0 =
∫ 1

−1
t dρ ≥

∫ 0

−1
t dρ + κρ({κ}) =

∫ 0

−1
t dρ + κH 1(C ).
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In particular

κH 1(C ) ≤
∫ 0

−1
−t dρ < ρ(−1, 0) = ζ(S2

−z).

It follows that

ζ(S2
−z) ≥

(
1 − def(Ω, g)

4π

)
H 1(C ) > 0. (2.5)

Let χa ∈ W1,2(S2) be the capacitary potential of Ka ⊂ S
2
z, and mχa

= 1
H 1(∂M)

∫
S2 χa dζ.

We can thus use χa − mχa
∈ W1,2(S2) as a trial function for σ1(M) = λ1(Ω, g0, μ).

By Lemma 2.4

σ1(M)
∫
S2

(χa − mχa
)2 dζ ≤ 4π

log(4π
a − 1)

.

Now, using that χa ≡ 1 on Ka together with (2.5) we get∫
S2

(χa − mχa
)2 dζ ≥

∫
Ka

(χa − mχa
)2 dζ +

∫
S
2
−z

(χa − mχa
)2 dζ

≥
(

(1 − mχa
)2 + m2

χa

(
1 − def(M, g)

4π

))
H 1(C )

=
((

2 − def(M, g)
4π

)
m2

χa
− 2mχa

+ 1
)
H 1(C )

=
(

σ1(M, g)
4π

m2
χa

− 2mχa
+ 1
)
H 1(C )

≥
(

σ1(M, g) − 4π

σ1(M, g)

)
H 1(C ),

(2.6)

where in the last step we have minimized the quadratic form. Putting all of this
together leads to

H 1(∂M)
H 1(C )

�
(

1 − def(Ω, g)
4π

)
log
(

4π

a
− 1
)

.

Recall that a = Areag0(Ka) ≤ def(Ω, g)/2 to finish the proof. ��
Remark 2.5. As was mentioned in the introduction, it is unlikely that the inequality
in Theorem 2.1 is sharp. In its proof, we identify two main arguments where a loss
of sharpness may have occured. First, in (2.4), we bound the deficit from below by
the area of a single disk, whereas it could be bounded from below by the total area
of all b disks in the complement of Ψξ(Ω). This would lead to an improvement if
all of those disks have comparable size. The arguments of [GL21] suggest that for
sequences maximising the first Steklov eigenvalues all disks in the complement will
have comparable size. However, we do not have a proof and it might not hold for all
domains whose first normalised eigenvalue is close to the maximum. Another loss of
sharpness is that the capacitary potential may not be the best trial function for σ1.
Finding a better trial function would improve the bounds obtained in (2.6).
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3 Admissible Measures and Associated Function Spaces

The goal of this section is to properly define which measures allow for the definition
of variational eigenvalues, and to define associated Sobolev-type spaces appropriate
for our purpose. At the end of this section, we will provide explicit examples of
admissible measures.

3.1 Sobolev-type spaces.

Definition 3.1. For 1 � p < ∞, M a compact Riemannian manifold and μ a
Radon measure on M , we define W 1,p(M, μ) to be the completion of C∞(M) with
respect to the norm

‖u‖p
W 1,p(M,μ) =

∫
M

|u|p dμ +
∫

M
|∇u|pg dvg = ‖u‖p

Lp(M,μ) + ‖∇u‖p
Lp(M,g) . (3.1)

This completion (3.1) gives rise to an embedding τμ
p : W 1,p(M, μ) → Lp(M, μ) of

norm 1.

In the classical setting where μ is the volume measure associated to g, the map
τμ
p is the natural embedding of the Sobolev space W1,p(M) ⊂ Lp(M). If we want

to make M explicit, we denote the embedding operator τμ
p,M . Since M is compact

W 1,p(M, μ) ⊂ W 1,q(M, μ) whenever p � q. For 1 < p < ∞, the closed unit ball
in W 1,p(M, μ) is clearly weakly compact so that W 1,p(M, μ) is a reflexive Banach
space.

Convention. We adopt the following conventions in order to make the notation a
bit lighter for spaces and operators that appear often. We write Lp(M) for Lp(M, dvg),
Lp(∂M) for Lp(M, dAg) and W 1,p(M) := W 1,p(M, dvg). In general, the measure μ
may be omitted from the notation when it is the natural volume measure given by
the Riemannian metric, for instance as λk(M, g) := λk(M, g, dvg).

Denote the average of a function f ∈ L1(M, μ) by

mf,μ :=
1

μ(M)

∫
M

f dμ.

Definition 3.2. We say that a Radon measure μ supports a p-Poincaré inequality
if there is K > 0 such that for all f ∈ W 1,p(M, μ)∫

M
(f − mf,μ)p dμ � K

∫
M

|∇f |p dvg.

We denote by Kp,μ the smallest such number K.

For general measures, the space W 1,p(M, μ) could be very different from the
Sobolev space W1,p(M) and solutions to (weak) elliptic PDEs in those spaces could
lack the natural properties one expects from them. For that reason we restrict our-
selves to a particular class of admissible measures, first introduced in [KS20] for
d = p = 2, see also [Kok14] for a similar definition.
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Definition 3.3. Let M be a Riemannian manifold, p ∈ (1, ∞), and μ be a Radon
measure on M not supported on a single point. The measure μ is called p-admissible
if it supports a p-Poincaré inequality and the operator τμ

p is compact. For p = 2, we
simply say that μ is admissible.

It is clear from that definition that dvg and the boundary measure dAg are p-
admissible for all p ∈ (1, ∞). The aim of the rest of this subsection is to prove the
following two theorems. The first one gives a characterisation of p-admissible mea-
sures. The second one essentially says that when μ is a p-admissible measure there
is an isomorphism between W 1,p(M, μ) and W1,p(M). Their proofs are intertwined
but they are better stated separately for ease of reference.

Theorem 3.4. Let μ be a Radon measure and p ∈ (1, ∞). Then, μ is p-admissible
if and only if the identity map on C∞(M) extends to a compact operator Tμ

p :
W1,p(M) → Lp(M, μ).

Theorem 3.5. Let p ∈ (1, ∞) and suppose that μ is not supported on a single point
and supports a p-Poincaré inequality. There exists cp,μ, Cp,μ > 0 so that for every
f ∈ C∞(M)

cp,μ ‖f‖W 1,p(M,μ) � ‖f‖W1,p(M) � Cp,μ ‖f‖W 1,p(M,μ) .

In particular, the completions W 1,p(M, μ) and W1,p(M) of C∞(M) are isomorphic.

We start by proving the first inequality in Theorem 3.5.

Proposition 3.6. Let p ∈ (1, ∞) and μ be a Radon measure on M supporting a p-
Poincaré inequality. Suppose furthermore that μ is not supported on a single point.
Then, there is cp,μ > 0 such that for all f ∈ C∞(M)

cp,μ ‖f‖W 1,p(M,μ) � ‖f‖W1,p(M) .

In particular, the identity map on C∞(M) extends to a bounded operator Tμ
p :

W1,p(M) → Lp(M, μ).

Proof. If p > d, this follows from the boundedness of the map W1,p(M) → C(M) →
Lp(M, μ). Suppose then that p � d. Since μ is not supported on a single point,
supports a p-Poincaré inequality and points have vanishing p-capacity, this means
that μ has no point masses.

We proceed in a similar manner to the proof of [Kok14, Lemma 2.2] where d =
p = 2 and μ is a probability measure. For any Ω ⊂ M with μ(Ω) > 0, define Kp,∗(Ω)
via

1
Kp,∗(Ω)

:= inf
supp(f)⊂Ω

f 
≡0

∫
Ω |∇f |p dvg∫

Ω |f |p dμ
.



GAFA CONTINUITY OF EIGENVALUES

Let f be a smooth function supported on Ω and assume that μ(Ω)p/p′
μ(M)−p � 2−p.

From this assumption and Hölder’s inequality,∫
M

|f − mf,μ|p dμ � 21−p

∫
M

|f |p dμ −
∫

M
|mf,μ|p dμ

�
(

21−p − μ(Ω)p/p′

μ(M)p−1

)∫
Ω

|f |p dμ

� 2−p

∫
Ω

|f |p dμ.

We therefore have that for such Ω

1
Kp,μ

� inf
supp(f)⊂Ω

f 
≡0

∫
Ω |∇f |p dvg∫

Ω |f − mf,μ|p dμ
� 2p

Kp,∗(Ω)
.

Since μ has no point masses there is a finite covering of M with domains {Ωj} such
that

0 < μ(Ωj) <
μ(M)p′

2p′ .

with associated smooth partition of unity
{

ρp
j

}
. Then, for all f ∈ C∞(M),

∫
M

|fρj |p dμ � 22p−1Kp,μ

(∫
M

|∇f |p ρp
j + |∇ρj |p |f |p dvg

)
.

Summing up those inequalities proves as we claimed that

‖f‖p
W 1,p(M,μ) � (1 + 22p−1)Kp,μ sup

j
‖ρj‖p

C1(M) ‖f‖p
W1,p(M) . ��

As an immediate corollary, we get the necessity in Theorem 3.4.

Corollary 3.7. Let p ∈ (1, ∞) and μ be a p-admissible measure on M . Then, the
identity map on C∞(M) extends to a compact operator Tμ

p : W1,p(M) → Lp(M, μ).

Proof. Proposition 3.6 implies that the identity map on C∞(M) extends to a bounded
map j : W1,p(M) → W 1,p(M, μ).

But then Tμ
p = τμ

p ◦ j is an extension of the identity which is the composition of
a compact and bounded operator, hence itself compact. ��

One of our main tools going forward is estimates on (weak) solutions to the
differential equation {

−Δϕξ,μ = μ − μ(M)
ξ(M) ξ in M,

∂νϕξ,μ = 0 on ∂M,



A. GIROUARD ET AL. GAFA

for measures ξ and μ. Note that μ − μ(M)
ξ(M) ξ vanishes on constant functions, if they

are shown to be in W1,p(M)∗ existence of a solution is easily guaranteed; we are
specifically interested in estimating its norm in terms of trace operators and the
Poincaré constants Kp. We require a generalisation of the Lax–Milgram theorem to
Banach spaces.

Theorem 3.8 (Banach–Nečas–Babuška Theorem, [EG04, Theorem 2.6]). Let X
and Y be real Banach spaces, with Y being reflexive. Let a be a bilinear form on
X × Y . Then, for every L ∈ Y ∗ there is a unique x ∈ X such that for all y ∈ Y ,

a(x, y) = 〈L, y〉

if and only if a satisfies the Brezzi condition, i.e. there exists κ > 0 such that

∀x ∈ X, κ ‖x‖X � sup
y∈Y

a(x, y)
‖y‖Y

and a is weakly nondegenerate, i.e. if a(x, y) = 0 for all x ∈ X, then y = 0.

Our goal is to use the Banach–Nečas–Babuška Theorem with a : W 1,p′
(M, μ) ×

W 1,p(M, μ) → R given by

a(ϕ, f) =
∫

M
∇ϕ · ∇f dvg.

It is clearly weakly nondegenerate if we restrict ourselves to functions of zero mean.
The following lemma establishes the Brezzi condition.

Lemma 3.9. Let M be a Riemannian manifold, p ∈ (1, ∞) with Hölder conjugate
p′ = p/(p − 1) and μ a Radon measure supporting a p-Poincaré inequality and such
that τμ

p′ is compact. Then, there exists κ > 0 such that for all ϕ ∈ W 1,p′
(M, μ),

κ ‖ϕ − mϕ,μ‖W 1,p′ (M,μ) � sup
0
≡f∈W 1,p(M,μ)

∫
M ∇ϕ · ∇f dvg

‖f‖W 1,p(M,μ)

.

Proof. Towards a contradiction, we assume that such a κ does not exist. This implies
the existence of a sequence ϕn ∈ W 1,p′

(M, μ) such that

‖ϕn − mϕn,μ‖p′

Lp′ (M,μ)
+ ‖∇ϕn‖p′

Lp′ (M)
= 1

and

sup
0
≡f∈W 1,p(M,μ)

∫
M ∇ϕn · ∇f dvg

‖f‖W 1,p(M,μ)

n→∞−−−→ 0. (3.2)
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We first prove that if (3.2) goes to 0, then |∇ϕn|Lp′ (M) does as well. Since μ supports
a p-Poincaré inequality, we have that

sup
0
≡f∈W 1,p(M,μ)

∫
M ∇ϕn · ∇f dvg

‖f‖W 1,p(M,μ)

� sup
0
≡f∈W 1,p(M,μ)

mf,μ=0

∫
M ∇ϕn · ∇f dvg

‖f‖W 1,p(M,μ)

� sup
0
≡f∈W 1,p(M,μ)

∫
M ∇ϕn · ∇f dvg

(1 + Kp,μ) ‖∇f‖Lp(M)

.

(3.3)

By density of smooth vector fields and duality, we have that

‖∇ϕ‖Lp′ (M) = sup
F∈Γ(TM)

∫
M ∇ϕ · Fdvg

‖F‖Lp(M)

,

where Γ(TM) is the set of smooth vector fields on M .
By the Lp-Helmholtz decomposition of vector fields on C1 domains, see e.g.

[SSV14], we can write F = F1 + F2 where div F1 = 0, F1 · ν
∣∣
∂M

= 0, F2 = ∇f
and ‖F1‖Lp(M) + ‖F2‖Lp(M) � Cp ‖F‖Lp(M). Here ν is the normal vector to the
boundary. By the divergence theorem∫

M
∇ϕ · F1dvg =

∫
M

div(ϕF1) − ϕ div F1 dvg =
∫

∂M
ϕF1 · ν dAg = 0.

As a result, one has

‖∇ϕ‖Lp′ (M) � Cp sup
f∈C∞(M)

∫
M ∇ϕ · ∇f dvg

‖∇f‖Lp(M)

.

Thus, from (3.3), we see that if (3.2) holds then |∇ϕn|Lp′ → 0. Therefore, we have
that ϕn is a sequence in W 1,p′

(M, μ) so that

‖ϕn − mϕn,μ‖Lp′ (M,μ)
n→∞−−−→ 1 and ‖∇ϕn‖Lp′ (M)

n→∞−−−→ 0.

By compactness of τμ
p′ there is ϕ ∈ W 1,p(M, μ) such that ϕn converges to ϕ weakly

in W 1,p′
(M, μ) and strongly in Lp′

(M). In other words, ϕ is such that

‖ϕ − mϕ,μ‖Lp′ (M,μ) = 1 and ‖∇ϕ‖Lp′ (M) = 0.

This means that ϕ is constant a.e., and since τμ
p′ extends the identity on C∞(M), ϕ

is also μ-a.e. constant. But then, ‖ϕ − mϕ,μ‖Lp′ (M,μ) = 0, a contradiction. ��

Lemma 3.10. Let M be a compact Riemannian manifold, p ∈ (1, ∞), ξ a Radon

measure that supports a p-Poincaré inequality and such that τ ξ
p′ is compact; and μ be

a Radon measure such that the identity on C∞(M) extends to a bounded operator
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T ξ,μ
p : W 1,p(M, ξ) → Lp(M, μ). Then, there exists a unique ϕξ,μ ∈ W 1,p′

(M, ξ) with
mϕξ,μ,ξ = 0 and such that for all f ∈ W 1,p(M, ξ)∫

M
∇f · ∇ϕξ,μ dvg =

∫
M

f dμ − μ(M)
ξ(M)

∫
M

f dξ. (3.4)

Moreover, if μ supports a p-Poincaré inequality, ϕξ,μ satisfies

‖∇ϕξ,μ‖Lp′ (M) � (1 + Kp,dvg
)μ(M)1/p′ ∥∥Tμ

p

∥∥ . (3.5)

Remark 3.11. The condition on the existence of T ξ,μ
p is later shown to always be

satisfied for p-admissible measures.

Proof. Let

Xp :=
{
f ∈ W 1,p(M, ξ) : mf,ξ = 0

}
and consider the bilinear form a : Xp′ × Xp → R given by

a(ϕ, f) =
∫

M
∇ϕ · ∇f dvg.

It follows from Lemma 3.9 that a satisfies the Brezzi condition, and it is weakly
nondegenerate on Xp′ × Xp. Furthermore, since μ has finite volume 1 ∈ Lp′

(M, μ).
This means that L := (T ξ,μ

p )∗1 ∈ X∗
p and for f ∈ Xp

〈L, f〉 :=
∫

M
f dμ. (3.6)

By the Banach–Nečas–Babuška theorem there exists a unique ϕμ,ξ ∈ Xp′ so that for
all f ∈ Xp, a(ϕξ,μ, f) = L(f). For f ∈ W 1,p(M, ξ), we obtain the identity (3.4) by
noticing that formula (3.6) extends from Xp to W 1,p(M, ξ) and computing

〈L, f〉 = 〈L, f − mf,ξ〉 + 〈L, mf,ξ〉 = a(ϕμ,ξ, f) +
μ(M)
ξ(M)

∫
M

f dξ.

We turn our attention to estimate (3.5). As in the proof of Lemma 3.9, we have
that there exists Cp > 0 so that

‖∇ϕξ,μ‖Lp′ (M) � Cp sup
f∈C∞(M)

∫
M ∇ϕξ,μ · ∇f dvg

‖∇f‖Lp(M)

. (3.7)

From the weak characterisation of ϕξ,μ that for any f ∈ C∞(M),∣∣∣∣
∫

M
∇f · ∇ϕξ,μ dvg

∣∣∣∣ =
∣∣∣∣
∫

M
f dμ − μ(M)

ξ(M)

∫
M

f dξ

∣∣∣∣ . (3.8)
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Since the left-hand side is invariant under addition of a constant to f , we may assume
that

∫
M f dξ = 0. By Hölder’s inequality, if μ supports a p-Poincaré inequality we

have that∣∣∣∣
∫

M
f dμ

∣∣∣∣ � μ(M)1/p′ ‖f‖Lp(M,μ) � μ(M)p′
(1 + Kp,dvg

)
∥∥Tμ

p

∥∥ ‖∇f‖Lp(M) ,

where Tμ
p is bounded from Proposition 3.6. Inserting this estimate into (3.8) and

(3.7) completes the proof. ��
We can now prove that the spaces W1,p(M) and W 1,p(M, μ) are isomorphic.

Proposition 3.12. Suppose that the identity on C∞(M) extends to a bounded
operator Tμ

p : W1,p(M) → Lp(M, μ). Then, there is Cp,μ such that

‖f‖W1,p(M) � Cp,μ ‖f‖W 1,p(M,μ) .

If moreover μ supports a p-Poincaré inequality, then we can take

Cp,μ =
(
1 + Kp,dvg

)(
1 +

Volg(M)1+
1
p

μ(M)1− 1
p′

)(
1 +
∥∥Tμ

p

∥∥) .
Before carrying on with the proof, we note that we have proved in Proposition 3.6
that supporting a p-Poincaré inequality implies that Tμ

p is bounded, so that this
proposition implies the second bound in Theorem 3.5.

Proof. We have that

‖f‖Lp(M) � ‖f − mf‖Lp(M) + ‖mf‖Lp(M)

� K
1/p
p,dvg

‖∇f‖Lp(M) + Volg(M)1/p |mf | .

From Lemma 3.10 with ξ = dvg, there is ϕ ∈ W1,p′
(M) such that

Volg(M)1/p |mf | � Volg(M)1+
1
p

μ(M)

[∣∣∣∣
∫

M
∇f · ∇ϕ dvg

∣∣∣∣+
∣∣∣∣
∫

M
f dμ

∣∣∣∣
]

� Volg(M)1+1/p

μ(M)1− 1
p′

[
‖∇ϕ‖Lp′ (M) ‖∇f‖Lp(M) + ‖f‖Lp(M,μ)

]
.

The estimate on Cp,μ can be then be read from the bound on ‖∇ϕ‖Lp′ (M) obtained
in Lemma 3.10 under the p-Poincaré inequality condition. ��

We can now prove sufficiency in Theorem 3.4.

Proposition 3.13. Let μ be a Radon measure on M and suppose that the identity
map on C∞(M) extends to a compact operator Tμ

p : W1,p(M) → Lp(M, μ). Then, μ
is p-admissible.
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Proof. Proposition 3.12 implies that the identity map on C∞(M) extends to a
bounded map j : W 1,p(M, μ) → W1,p(M) Thus, since it is the composition of a
compact and a bounded operator, τμ

p = Tμ
p ◦ j is also compact. We now prove that

the Poincaré inequality holds. Assume otherwise, then there exists a sequence of
smooth functions fn such that∫

M
fp

n dμ = 1,

∫
M

|∇fn|p dvg → 0,

∫
M

fn dμ = 0.

By Proposition 3.12, the functions fn are uniformly bounded in W1,p(M). Since Tμ
p

is compact, there is f ∈ W1,p(M) such that, up to choosing a subsequence, fn ⇀ f
weakly in W1,p(M) and fn → Tμ

p f strongly in Lp(M, μ). By lower semicontinuity,
‖∇f‖Lp(M) = 0, therefore, f is dvg-a.e. constant. Since Tμ

p extends the identity on
C∞(M), Tμ

p f is a μ-a.e. constant, which contradicts the fact that∫
M

(Tμ
p f)p dμ = 1,

∫
M

Tμ
p f dμ = 0. ��

We finally write the two following propositions that allow us to rewrite Lemma 3.10
with weaker conditions, for ease of reference. The first proposition indicates that
p-admissibility is a monotone condition.

Proposition 3.14. Suppose that Tμ
p : W1,p(M) → Lp(M, μ) is bounded. Then for

all q > p, Tμ
q is compact. In particular, μ is q-admissible and admissibility is a

monotone condition.

Proof. If q > d, Tμ
q is compact since the embedding W1,q(M) → C(M) is compact,

so we suppose now that p < q � d. Compactness of Tμ
q follows from general interpo-

lation theory. Given two compatible normed vector spaces, i.e. spaces X0, X1 that
are both subspaces of a larger topological vector space V , Peetre’s K-functional is
defined on f ∈ X0 + X1 as

K(f, t, X0, X1) := inf
{‖f0‖X0

+ t ‖f1‖X1
: f = f0 + f1, f0 ∈ X0, f1 ∈ X1

}
.

For 0 < θ < 1 and 1 � q < ∞, let (X0, X1)θ,q be the interpolation space between
X0 and X1 (see [BS88, Chapter 5]):

(X0, X1)θ,q :=

{
f ∈ X0 + X1 : ‖f‖θ,q :=

(∫ ∞

0

(
t−θK(f, t, X0, X1)

)q dt

t

) 1
q

< ∞
}

.

We use the interpolation theorem found in [CF89, Theorem 2.1] which states the
following. Given Y0, Y1 compatible Banach spaces; X0, X1 Banach spaces such that
X1 is continuously embedded in X0 and T is a linear operator such that T : X0 → Y0

is bounded and the restriction T : X1 → Y1 is compact. Then, for 0 < θ < 1 and
1 � q < ∞, the operator

T : (X0, X1)θ,q → (Y0, Y1)θ,q is compact.
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Let r > d and θ = r(q−p)
q(r−p) < 1. We take Y0 to be Lp(M, μ) and Y1 to be Lr(M, μ),

it follows from [BS88, Theorems 5.1.9 and 5.2.4] that (Y0, Y1)θ,q = Lq(M, μ).
On the other hand, taking X0 = W1,p(M) and X1 = W1,r(M) it follows from

[Bad09, Theorem 6.2, Corollary 1.3 and Remark 4.3], the later remark treating the
case with C1 boundary, that

(X0, X1)θ,q = W1,q(M).

Therefore, the interpolation theorem tells us that Tμ
q : W1,q(M) → Lq(M, μ) is

indeed compact. ��

Proposition 3.15. Let μ, ξ be two admissible measures. Then, the identity on
C∞(M) extends to a compact operator T ξ,μ

p : W 1,p(M, ξ) → Lp(M, μ).

Proof. Define T ξ,μ
p as the composition

W 1,p(M, ξ) W1,p(M)

Lp(M, μ)

j

T ξ,μ
p

Tμ

where by Theorem 3.5 j is bounded since ξ is p-admissible. By Theorem 3.4, Tμ
p is

compact. Thus, T ξ,μ
p is compact as the composition of a compact and a bounded

operator, and it is an extension of the identity on C∞(M). ��

We therefore rewrite the statement of Lemma 3.10 in the following way.

Lemma 3.16. Let M be a compact Riemannian manifold, p ∈ (1, 2], ξ and μ both
p-admissible measures. Then, there exists a unique ϕξ,μ ∈ W1,p′

(M) with mϕξ,μ,ξ = 0
and such that for all f ∈ W1,p(M),∫

M
∇f · ∇ϕξ,μ dvg =

∫
M

f dμ − μ(M)
ξ(M)

∫
M

f dξ.

Moreover,

‖∇ϕξ,μ‖Lp′ (M) � (1 + Kp,dvg
)μ(M)1/p′ ∥∥Tμ

p

∥∥ .

3.2 Examples and admissibility criteria. Let us now give a few examples
of admissible measures, as well as a local criterion that characterises them. We start
with basic examples.

Example 3.17. On a smooth compact manifold M with C1 boundary, the volume
measure dvg is p-admissible for every p ∈ (1, ∞), as is the pushforward by inclusion
of the boundary measure ι∗ dAg. Any linear combination of them is also p-admissible.
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Example 3.18. It follows from the definition of the capacity that measures sup-
ported on a set of p-capacity zero do not support a p-Poincaré inequality, and as
such are not admissible.

We now explore the edge cases of admissibility. We provide those examples for
p = 2 since that is the context where they will be relevant. This last example allows
us to obtain the weakest integrability condition on β in Theorem 1.11. We need
to introduce the following characterisation of compactness beforehand. Maz’ya’s
compactness criterion [Maz11, Section 11.9.1] states that Tμ

p is compact if and only
if

lim
r→0+

sup
{

μ(Υ)
capp(Υ)

: Υ ⊂ M, diam(Υ) � r

}
= 0. (3.9)

The isocapacitary inequality [Maz11, Equations 2.2.11 and 2.2.12] states that for
every Υ ⊂ M , with Volg(Υ) � Volg(M)/2 that

capp(Υ) �M

{
log(1/ Volg(Υ))1−d if p = d,

Volg(Υ)
d−p

d if d > p.
(3.10)

Example 3.19. Let 0 � β ∈ L1(log L)1(M) (for d = 2) or 0 � β ∈ Ld/2(M) (for
d > 2) be a positive density and μ = βdvg. Then, μ is admissible. For 1 � p < d/2
(for d ≥ 3), and for p = 1 (when d = 2), there exists β ∈ Lp(M) such that βdvg is
not an admissible measure. We split the proof of these claims in a few cases.

Case (i): p < d/2, d � 3. Consider any x ∈ M , ry = dist(x, y) and

β(y) = max

{
1

r
d/p
y log(1/ry)

, 1

}
.

It is easy to see that β ∈ Lp and that the measure βdvg fails Maz’ya’s compactness
criterion, hence Tμ is not compact and μ is not admissible.

Case (ii): p = 1, d = 2. Similarly to the previous case, for some 0 < δ < 1 let

β(y) = max
{

1
r2
y log(1/ry)1+δ, 1

}
.

This time, β ∈ L1(M) but we can see that Tμ is not even bounded on W1,2(M),
so certainly not admissible. Indeed, consider the function f(y) = − log(ry)a. It is a
standard computation to see that f ∈ W1,2(M) when a < 1/2. On the other hand,
choosing a = δ/2, for some ε > 0∫

M
f2β dvg �M

∫ ε

0

dr

r log(1/r)
= +∞.
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Case (iii): d = 2 and β ∈ L1(log L)1(M) or d � 3 and p � d/2. Suppose
without loss of generality that |β| � 1 a.e. For d = 2, it follows from Jensen’s
inequality with the convex function ϕ(x) = x log x that for any Υ ⊂ M ,

log
(

1
Volg(Υ)

∫
Υ

β dvg

)∫
Υ

β dvg �
∫

Υ
β log β dvg.

In other words,

log
(

1
Volg(Υ)

)−1

� μ(Υ)
‖β‖L1(log L)1(Υ) − μ(Υ) log(μ(Υ))

.

Here, we supposed that Υ is chosen with diameter small enough that log(μ(Υ)) < 0,
ensuring that all quantities involved are positive. Inserting into Maz’ya’s compact-
ness criterion (3.9) along with the isocapacitary inequality (3.10) gives

lim
r→0+

sup
{

μ(Υ)
cap2(Υ)

: diam(Υ) � r

}

� lim
r→0+

sup
{

‖β‖L1(log L)1(Υ) − μ(Υ) log(μ(Υ)) : diam(Υ) � r
}

.

Note that if ‖β‖L1(log L)1(Υ) goes to 0 uniformly in Υ, then so does μ(Υ), hence
μ(Υ) log(μ(Υ)) as well.

For every Υ, let Υm = Υ ∩ {β log β < m}, and observe that ‖β‖L1(log L)1(Υ) =
‖β‖L1(log L)1(Υm) + ‖β‖L1(log L)1(Υ\Υm). It follows from density of smooth functions in
L1 that for every ε > 0, there is mε large enough so that for every m > mε,

‖β‖L1(log L)1(Υ\Υm) � ‖β‖L1(log L)1(M\Mm) � ε,

which hence holds uniformly in Υ. On the other hand, if diam Υ � r,

‖β‖L1(log L)1(Υm) � m log mr2.

Taking m = r−1, we have that for r small enough m � mε and we deduce that for
every ε > 0,

lim
r→0+

sup
{

‖β‖L1(log L)1(Υ) : diam Υ � r
}

� ε

so that by Maz’ya’s compactness criterion Tμ is compact and μ is admissible.
For d > 2, it follows from Hölder’s inequality that

Volg(Υ)
2−d

d �
‖β‖Ld/2(Υ)

μ(Υ)
.

Therefore, inserting in Maz’ya’s criterion along with the isocapacitary inequality

lim
r→0+

sup
{

μ(Υ)
cap2(Υ)

: diam Υ � r

}
� lim

r→0+
sup
{

‖β‖Ld/2(Υ) : diam Υ � r
}

.

The same argument as earlier but with the sets Υm = Υ ∩ {βd/2 < m
}

shows that
this limit converges to 0, so that μ is admissible.
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4 Variational Eigenvalues

Eigenvalue convergence results are ubiquitous in the literature and the proofs of a
large number of them follow similar steps. In the present section we formulate these
steps explicitly in sufficient generality to allow direct application to many natural
eigenvalue problems, including both the Steklov and Laplace problems.

4.1 Variational eigenvalues associated to a Radon measure. We gen-
eralise to higher dimension the definition of eigenvalues associated to a measure,
introduced in [Kok14] for surfaces. Let (M, g) be a compact Riemannian manifold.

For a Radon measure μ on M , we define the variational eigenvalues λk(M, g, μ)
in the following way. For any f ∈ C∞(M) such that f �≡ 0 in L2(M, μ), we define
the Rayleigh quotient Rg(f, μ) by

Rg(f, μ) :=

∫
M

|∇f |2g dvg∫
M

f2 dμ

.

The eigenvalues λk(M, g, μ) are then given by

λk(M, g, μ) := inf
Fk+1

sup
f∈Fk+1\{0}

Rg(f, μ), (4.1)

where the infimum is taken over all (k + 1)-dimensional subspaces Fk+1 ⊂ C∞(M)
that remain (k + 1)-dimensional in L2(M, μ). A natural normalisation for these
eigenvalues is

λk(M, g, μ) := λk(M, g, μ)
μ(M)

Volg(M)
d−2

d

,

see e.g. [GNY04].
The following proposition states that the eigenvalues of admissible measures

possess all the natural properties one expects from eigenvalues of an operator of
Laplace-type.

Proposition 4.1. Let μ be an admissible measure. Then one has

0 = λ0(M, g, μ) < λ1(M, g, μ) � λ2(M, g, μ) � . . . ↗ ∞;

i.e. the first eigenvalue is positive, the multiplicity of each eigenvalue is finite, and the
eigenvalues tend to +∞. Moreover, there exists an orthogonal basis of eigenfunctions
fj ∈ W 1,2(M, μ) satisfying∫

M
∇fj · ∇u dvg = λj(M, g, μ)

∫
M

fju dμ

for all u ∈ W 1,2(M, μ).
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Proof. That λ1(M, g, μ) > 0 is readily seen to be equivalent to μ supporting a 2-
Poincaré inequality. The rest of the proof is standard. The bilinear form

a(f, ϕ) =
∫

M
∇f · ∇ϕ dvg

is bounded and coercive on the set of functions of μ-average 0 in W 1,2(M, μ).
The statement is therefore a direct application of [BB92, Theorem 6.3.4] and the
Courant–Fischer–Weyl minmax principle. ��

We revisit the examples from the previous section and how they give rise to
natural eigenvalues.

Example 4.2. If M is closed and μ = dvg, the volume measure associated to g,
then λk(M, g, dvg) are eigenvalue of the Laplace operator. In this case Tμ is the
usual embedding W1,2(M) ⊂ L2(M). If M is a compact manifold with boundary,
then λk(M, g, dvg) are Neumann eigenvalues.

Example 4.3. If M is a compact manifold with boundary and μ = ι∗dAg, the
pushforward by inclusion of the induced volume measure on ∂M , then λk(M, g, μ)
are Steklov eigenvalues.

Example 4.4. If M is a compact manifold, Σ ⊂ M is a closed smooth hypersurface
in the interior of M , and μ = ι∗dAΣ

g is the pushforward by inclusion of the induced
volume measure on Σ, then λk(M, g, μ) are the eigenvalues of the transmission prob-
lem {

Δu = 0 in M \ Σ,

(∂n+ + ∂n−)u = λu on Σ.

where ∂n± are normal derivatives in opposite directions on Σ.

Example 4.5. For β > 0, if μ = ι∗dAg + β dvg, then λk(M, g, μ) are eigenvalues
associated with a dynamical boundary value problem, see [BF05, GHL21], given by{

−Δf = λβf in M,

∂nf = λf on ∂M.

The corresponding Laplace-type operator acts in L2(M) ⊕ L2(∂M, dAg) and is not
densely defined. From the perspective of variational eigenvalues, this does not cause
any problem.

Example 4.6. For 0 � β ∈ Ld/2(M) (d = 3), or 0 � β ∈ L1(log L)1(M) (d = 2) and
μ = β dvg, then λk(M, g, μ) are the eigenvalues of the weighted problem{

−Δf = λβf in M,

∂nf = 0 on ∂M.

By Example 3.19 μ is admissible, so that the spectrum is indeed discrete.
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4.2 Continuity of eigenvalues. While the eigenvalues λk(M, g, μ) may not
necessarily be continuous under weak-∗ convergence of measures, they are always
upper-semicontinuous, see [Kok14, Proposition 1.1] for d = 2. We include the proof
in this context for completeness, but it is the same in essence.

Proposition 4.7. Let (M, g) be a Riemannian manifold and assume μn
∗−⇀ μ. Then

lim sup
n→∞

λk(M, g, μn) � λk(M, g, μ)

Proof. Let ε > 0 be arbitrary. Let F ⊂ C∞(M) be a (k + 1)-dimensional subspace
that remains (k + 1)-dimensional in L2(M, μ) and such that

sup
f∈F\{0}

Rg(f, μ) � λk(M, g, μ) + ε.

Convergence μn
∗−⇀ μ implies that for large n the subspace F is (k + 1)-dimensional

in L2(M, μn) and

lim
n→∞

sup
f∈F\{0}

Rg(f, μn) = sup
f∈F\{0}

Rg(f, μ).

As a result, for large n one has

λk(M, g, μn) � sup
f∈F\{0}

Rg(f, μn) � λk(M, g, μ) + 2ε. ��

For many applications it is important to establish continuity of eigenvalues.
To the best of the authors’ knowledge there is no sufficiently general condition
that guarantees continuity of λk(M, g, μ) which can be verified in an efficient man-
ner in our current setting. As an example, we note that all examples of conver-
gence covered in the present paper fail the integral distance convergence criterion
given in [Kok14, Section 4.2]. Many stronger convergence criteria exists, see e.g.
[AP21, BLLdC08, BL07], however they generally require explicit knowledge of some
transition operators between Hilbert spaces, which usually means having explicit
information about the eigenfunctions. Our goal is to obtain synthetic criteria for
eigenvalue and eigenfunction convergence which depends only on the measures μn,
and potentially on domains Ωn on which it is supported.

Let Ωn ⊂ M be a sequence of domains viewed as Riemannian manifolds with the
metric induced on M , and {μn : n ∈ N}, μ be Radon measures so that supp(μn) ⊂
Ωn. We use the same notation g, μn for their restrictions to Ωn. Suppose that

(M1) μn
∗−⇀ μ and Volg(M \ Ωn) → 0;

(M2) the measures μ, μn are admissible for all n;
(M3) there is an equibounded family of extension maps Jn : W 1,2(Ωn, μn) →

W 1,2(M, μn).
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The condition (M2) guarantees the existence of the μn-orthonormal collection of
eigenfunctions fn

j ∈ W 1,2(Ωn, μn) associated with λj(Ωn, g, μn). In any situation
where Ωn = M for all n, the third condition and the volume part of the first condition
are automatically satisfied. The map Jn is often built using harmonic extensions,
and the collection Jnfn

j remains μn orthonormal.
We now describe two conditions for the eigenfunctions.

(EF1) For all u ∈ W 1,2(M, μ), the functions fn
j satisfy

lim
n→∞

∣∣〈Jnfn
j , u〉L2(M,μ) − 〈fn

j , u〉L2(Ωn,μn)

∣∣ = 0.

(EF2) For every j, k ∈ N, the functions fn
j , fn

k satisfy

lim
n→∞

∣∣〈Jnfn
j , Jnfn

k 〉L2(M,μ) − 〈fn
j , fn

k 〉L2(Ωn,μn)

∣∣ = lim
n→∞

∣∣〈fn
j , fn

k 〉L2(M,μ) − δjk

∣∣ = 0,

where δjk is the Kronecker delta.

Condition (EF2) implies that
{

fn
j : n ∈ N

}
is bounded in W 1,2(M, μ), so that

up to a subsequence, fn
j ⇀ fj weakly in W 1,2(M, μ) and λj(Ωn, g, μn) → λj for some

λj � 0.
Condition (EF1) implies that the functions fj are eigenfunctions associated with

(M, g, μ) with the corresponding eigenvalues λj . At this point it is unclear whether
λj is indeed the j-th eigenvalue λj(M, g, μ). This will follow from condition (EF2),
which says essentially that the eigenfunctions do not lose mass in the limit. We
formalize this procedure in the following proposition.

Proposition 4.8. Assume that the domains Ωn ⊂ M and the Radon measures μn,
μ on (M, g) satisfy conditions (M1)–(M3), and that the eigenfunctions associated
with μn satisfy conditions (EF1)–(EF2). Then

lim
n→∞ λj(Ωn, g, μn) = λj(M, g, μ),

and, up to a choice of subsequence,

lim
n→∞ Jnfn

j = fj ,

weakly in W 1,2(M, μ). If λj(M, g, μ) is simple, the convergence is along the whole
sequence. Finally, if

lim
n→∞

∥∥∇Jnfn
j

∥∥
L2(M\Ωn,dvg)

= 0, (4.2)

the convergence is strong in W 1,2(M, μ).
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Proof. From the definition via Rayleigh quotient, we see that for all j and n,
λj(Ωn, g, μn) � λj(M, g, μn). By Proposition 4.7 along with Condition (M1), we
have that up to a subsequence λj(Ωn, g, μn) → λj � λj(M, g, μ). For each fixed j,
we have ∥∥Jnfn

j

∥∥2

W 1,2(M,μ)
=
∥∥Jnfn

j

∥∥2

L2(M,μ)
+
∥∥∇Jnfn

j

∥∥2

L2(M\Ωn,dvg)
. (4.3)

In view of condition (M3), the first term on the right-hand side converges to 1. By
condition (EF2) there exists C > 0 such that for all n,

∥∥∇Jnfn
j

∥∥2

L2(M\Ωn,dvg)
� ‖Jn‖2

∥∥fn
j

∥∥2

W 1,2(Ωn,μn)
� C(λj(Ωn, g, μn) + 1).

This means that the sequence
{

fn
j : n ∈ N

}
is bounded in W 1,2(M, μ) so that up to

a subsequence, there exists fj such that Jnfn
j ⇀ fj weakly in W 1,2(M, μ).

We now claim that fj is an eigenfunction associated with (M, g, μ) and corre-
sponding eigenvalue λj . Since all relevant quantities are equibounded in W 1,2(M, μ),
we may use smooth functions as trial functions for fj and λj . By weak convergence
we have that for any u ∈ C∞(M),

λj(Ωn, g, μn) +
∫

M\Ωn

∇Jnfn
j · ∇u dvg

=
∫

M
∇Jnfn

j · ∇u dvg
n→∞−−−→

∫
M

∇fj · ∇v dvg,

(4.4)

and by conditions (M1) and (M3)∫
M\Ωn

∇Jnfn
j · ∇u dvg � Volg(M \ Ωn)1/2 ‖Jn‖ ‖u‖C1(M)

∥∥fn
j

∥∥
W 1,2(M,μn)

n→∞−−−→ 0.

(4.5)

On the other hand we have that∣∣〈fj , u〉L2(M,μ) − 〈fn
j , u〉L2(M,μn)

∣∣ � ∣∣〈fj − Jnfn
j , u〉L2(M,μ)

∣∣+
+
∣∣〈Jnfn

j , u〉L2(M,μ) − 〈fn
j , u〉L2(M,μn)

∣∣ .(4.6)

By Condition (M2), Jnfn
j converges strongly in L2(M, μ) so that the first term on

the right-hand side converges to 0 while Condition (EF1) implies that the second
term converges to 0. Putting together (4.4), (4.5) and (4.6) does yield that

∀u ∈ W 1,2(M, μ)
∫

M
∇fj∇u dvg = λj

∫
M

fju dμ.
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We can now prove that the limit sequence fj is orthonormal. Indeed,

〈fj , fk〉L2(M,μ) = 〈Jnfn
j , Jnfn

k 〉L2(M,μ) + 〈fj , fk − Jnfn
k 〉L2(M,μ) + 〈fj − Jnfn

j , fn
k 〉L2(M,μ).

Strong convergence in L2(M, μ), Conditions (M3) and (EF2) and the Cauchy-
Schwarz inequality imply that the the first term on right-handside converges to
δjk whereas the last two terms on the right-hand side converge to 0.

To prove that λj(M, g, μ) � λj , we use the space Fj+1 = span{f0, . . . , fj} as a
test space in (4.1). For any f =

∑
aifi ∈ Fj one has∫

M
|∇f |2g dvg∫
M

f2 dμ

=
∑j

i=0 λia
2
i∑j

i=0 a2
i

� λj

∑j
i=0 a2

i∑j
i=0 a2

i

= λj ,

where orthonormality of {fj} is used in the first equality. Finally, note that weak
convergence and convergence of the norms implies strong convergence, and it follows
from (4.3) that (4.2) implies convergence of the norms. ��

Our goal is now to provide conditions that can be verified directly on the measures
μn, μ to ensure convergence.

Lemma 4.9. Let u, v ∈ W1,2(M). Then, if d � 3, then uv ∈ W1, d

d−1 and

‖uv‖
W

1, d
d−1 (M)

� Cd ‖u‖W1,2(M) ‖v‖W1,2(M)

For d = 2, uv ∈ W1,p for every p < 2, with the same norm estimate.

Proof. It is sufficient to verify the claim for ∇(uv). Let p = d
d−1 (d � 3) or p < 2

(d = 2). By the inequality (a + b)p � 2p−1(ap + bp) and Hölder’s inequality with
exponents 2/p and 2/(2 − p), we have that

21−p

∫
M

|∇(uv)|p dvg �
∫

M
|∇u|p |v|p + |∇v|p |u|p dvg

�
(∫

M
|∇u|2 dvg

) p

2
(∫

M
|v| 2p

2−p dvg

)1− p

2

+

+
(∫

M
|∇v|2 dvg

) p

2
(∫

M
|u| 2p

2−p dvg

)1− p

2

.

By our conditions on p, the Sobolev embedding W1,2(M) → L
2p

2−p (M) is bounded,
so that(∫

M
|∇u|2 dvg

) p

2
(∫

M
|v| 2p

2−p dvg

)1− p

2

� C

(∫
M

|∇u|2 dvg

) p

2

‖v‖p
W1,2(M) ,

and similarly swapping the roles of u and v. This is precisely our claim. ��
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In dimension 2, the target space for the product will be an Orlicz–Sobolev space,
recall (1.7).

Lemma 4.10. Let u, v ∈ W1,2(M) and d = 2. Then, uv ∈ W1,2,−1/2(M) and there
is C such that

‖uv‖expL1(M) � C2 ‖u‖W1,2(M) ‖v‖W1,2(M) .

Proof. Just as in the previous case, it is sufficient to verify the claim for ∇(uv) =
u∇v + v∇u, and as such to verify that u∇v ∈ L2(log L)−1/2. Trudinger’s theorem
[Tru67] states that for d = 2, W1,2(M) embeds continuously in exp L2(M), so that
u ∈ exp L2(M), and by assumption ∇v ∈ L2(M). Taking

R(t) =
t2

log(2 + t)
, M(t) = t2, N(t) = exp(t2) − 1

in [And60, Theorem 1], we have the equivalence between the following statements:

• for all u ∈ exp L2(M) and v ∈ L2(M), uv ∈ L2(log L)−1/2;
• there is a, b > 0 such that

(ast)2

log(2 + (ast))
� s2 + exp(t2) − 1 ∀s, t � b. (4.7)

We verify that this second statement holds for b = 1. On the one hand,

s2 � exp(2a2t2)
a2t2

=⇒ (ast)2

log(2 + (ast))
� s2,

while on the other hand

s2 � exp(t2)
a2t2

and t � 1 =⇒ (ast)2

log(2 + (ast))
� exp(t2) − 1.

Choosing a � 2−1/2 ensures that the inequality (4.7) holds for all s, t � 1. Therefore,

‖u∇v‖L2(log L)−1/2 � C ‖u‖exp L2 ‖∇v‖L2 � C ′ ‖u‖W1,2 ‖v‖W1,2 .

the same holds swapping u and v and our claim follows. ��

Let X be a completion of C∞(M) under some norm ‖·‖X . We can interpret
measures as bounded linear functionals on X as 〈μ, f〉X =

∫
M f dμ as long as

‖μ‖X∗ = sup
f∈C∞(M)\{0}

∣∣∫
M f dμ

∣∣
‖f‖X

is finite.
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Proposition 4.11. Suppose that Ωn ⊂ M is a sequence of domains in M and μn, μ
are Radon measures on M satisfying conditions (M1)–(M3). If d � 3, suppose that
μn → μ in W1, d

d−1 (M)∗. If d = 2, suppose that μn → μ in W1,2,−1/2(M)∗. Then,
Conditions (EF1)–(EF2) are satisfied by the eigenfunctions. In particular,

lim
n→∞ λj(Ωn, g, μn) = λj(M, g, μ).

Remark 4.12. Since M is compact, convergence in W1,p(M)∗ implies convergence
in W1,q(M)∗ for every q > p, so that in practice one can verify this criterion for any
p < d

d−1 . Often the case p = 1 provides easier computations. We also remark that if
μn → μ in W1,p(M)∗, then μn

∗−⇀ μ weakly-∗ in the sense of measures.

Proof. Let us first assume that d � 3 and put p = d
d−1 , or d = 2, p < 2. We

first observe that the trace operators Tμn

2 are bounded, uniformly in n. Indeed, by
Lemma 4.9 for every u ∈ W1,2(M),∫

M
u2(dμn − dμ) �

∥∥u2
∥∥

W1,p(M)
‖μn − μ‖W1,p(M)∗

� Cp ‖u‖2
W1,2(M) ‖μn − μ‖W1,p(M)∗ ,

so that ∫
M

u2 dμn =
∫

M
u2(dμn − dμ) +

∫
M

u2 dμ

�
(
Cp ‖μn − μ‖W1,p(M)∗ + ‖Tμ

2 ‖2
)

‖u‖2
W1,2(M) .

To verify (EF1) we note that by Lemma 4.9 one has∫
M

(Jnfn
j )2 dμ �

∥∥(Jnfn
j )2
∥∥

W1,p(M)
‖μ‖W1,p(M)∗

� Cp ‖μ‖W1,p(M)∗
∥∥Jnfn

j

∥∥2

W1,2(M)

� Cp ‖μ‖W1,p(M)∗ (1 + ‖Tμn

2 ‖)
∥∥Jnfn

j

∥∥2

W 1,2(M,μn)
.

We have that∣∣∣∣
∫

M
Jnfn

j u(dμn − dμ)
∣∣∣∣ � ∥∥Jnfn

j u
∥∥

W1,p(M)
‖μn − μ‖W1,p(M)∗ .

This goes to 0 by Lemma 4.9 and convergence μn → μ in W 1,p(M)∗, so that Con-
dition (EF1) is satisfied.

Finally, using Lemma 4.9 one last time, we have that∣∣∣∣
∫

M
Jnfn

j Jnfn
k (dμn − dμ)

∣∣∣∣ � ∥∥fn
k fn

j

∥∥
W1,p(M)

‖μn − μ‖W1,p(M)∗
n→∞−−−→ 0,

so that Condition (EF2) is indeed satisfied.
The case d = 2 and μn → μ in W1,2,−1/2(M)∗ follows from replacing Lemma 4.9

by Lemma 4.10. ��
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Verifying that μn → μ ∈ W1,p(M)∗ is in principle a global question (or at the
very least the local character of it should be verified independent of n). Following
the ideas set out in [GHL21, GL21] we provide the following blueprint for verifying
convergence in an effective way that is based on Lemma 3.16. This lemma implies,
amongst other things, that if μ is p-admissible then there exists ϕn ∈ W1,p′

(M) such
that

〈μn − μ, f〉W1,p(M) =
(

μn(M)
μ(M)

− 1
)

〈μ, f〉W1,p(M) +
∫

M
∇ϕn · ∇f dvg.

The first term is easily seen to converge to 0 uniformly for ‖f‖W1,p(M) � 1. However,
the estimates we obtained on ϕn in Lemma 3.16 are not on their face strong enough
to guarantee convergence. In Sect. 6 we get over this hurdle by partitioning M into
an almost disjoint union M =

⋃
z∈In

Qn
z . Recalling that we use 〈·, ·〉X to denote the

duality pairing in a vector space X, this allows us to write

〈μn − μ, f〉W1,p(M)∗ =
∑
z∈I

〈μn − μ, f〉W1,p(Qn
z )∗ .

Using Lemma 3.16 in every Qn
z provides us with an effective mean of proving that

this converges to 0. In view of estimate (3.5), if μn(Qn
z ) is comparable for every z

then by Hölder’s inequality∑
z∈I

μn(Qn
z )1/p′ ‖f‖W1,p(Qε

z) � ‖f‖W1,p(M)

so that in principle one will need to prove only that the p-Poincaré constants of
Qε

z are uniformly bounded and that the traces Tμn
p restricted to Qε

z converge to
0. Exploiting the potential lack of scale invariance in the defining equation for ϕn

is often key for this. For a concrete application of this scheme, see the proof of
Proposition 6.5.

5 First Examples of Spectrum Convergence

In this section we collect several applications of the setup presented in the previous
section. Most of the results in this section are generalisations of known results either
to a manifold context or to higher dimensions.

5.1 Convergence for Lp densities. The case d = 2, βn ∈ Lp, p > 1 has
previously appeared in [KNPP20, Lemma 6.2].

Proposition 5.1. Let βn be a sequence of non-negative densities converging in
L

d

2 (log L)a(M) to a non-negative density β, where a = 0 for d � 3 and a = 1 for
d = 2. Then λk(M, g, βn dvg) → λk(M, g, β dvg) as n → ∞.
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Proof. Conditions (M1)–(M3) are respected, admissibility following from Example
3.19. Let u ∈ W1, d

d−1 (M) for d � 3. Then by the Sobolev embedding W1, d

d−1 (M) →
L

d

d−2 (M) and Hölder’s inequality with exponents d
d−2 and d

2 ,∣∣∣∣
∫

u(βn − β) dvg

∣∣∣∣�d,M ‖u‖
W

1, d
d−1 (M)

‖βn − β‖Ld/2 .

We deduce that βndvg → βdvg in W1, d

d−1 (M)∗, so that by Proposition 4.11 the
eigenvalues converge. For d = 2, proceed the same way but with the pairing of the
spaces exp L1(M) and L1(log L)1(M), along with the optimal Sobolev embedding
W1,2,−1/2(M) → exp L1(M), see [Cia96, Example 1]. ��
5.2 Approximation of eigenvalues of measures supported on a hypersur-
face. Let (M, g) be a compact Riemannian manifold. Let Σ ⊂ M be a compact,
not necessarily connected, codimension 1 smooth submanifold without boundary and
ρ ∈ C(Σ) be a non-negative density on Σ. Assume Σ = Σi �Σb, where Σi ∩∂M = ∅

and Σb is either empty or coincides with ∂M . Let Nε,i be an ε-tubular neighbourhood
of Σi. For sufficiently small ε the exponential map expΣi

can be used to identify Nε,i

with N εΣi, the ε-ball in the normal bundle of Σi. Similarly, if Σb = ∂M is not empty,
its ε-tubular neighbourhood Nε,b can be identified with Σb × [0, ε] using expΣb

. If n
is an outward unit normal then we define

ρε(y) =

⎧⎪⎨
⎪⎩

1
2ερ(x) if y = expx(w) ∈ Nε,i, (x, w) ∈ N εΣi,
1
ερ(x) if y = expx(−tn) ∈ Nε,b, (x, t) ∈ Σb × [0, ε],
0 otherwise.

The next theorem says that we can approximate the eigenvalues of weighted
Steklov or transmission problems as in Example 4.4 using weighted Laplace eigen-
values. When Σ = Σb = ∂M , our construction is similar to the one found for domains
in R

d in [LP15].

Theorem 5.2. Let dAΣ
g be the volume measure on Σ. Then one has

λk(M, g, ρεdvg) → λk

(
M, g, ρdAΣ

g

)
as ε → 0.

Proof. We give the proof in the case Σ = Σi, the other case is analogous. The
conditions (M1)–(M3) are obviously satisfied. We claim that for any u ∈ W1,1(M)
one has ∣∣∣∣

∫
M

uρε dvg −
∫

Σ
uρ dAΣ

g

∣∣∣∣ � C ‖u‖W1,1(Nε)
(5.1)

for ε small enough. In particular, for any p > 1 and u ∈ W1,p(M) one has by Hölder’s
inequality ∣∣〈ρεdvg − ρdAΣ

g , u〉∣∣� Vol(Nε)1/p′ ‖u‖W1,p(M) ,
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which goes to 0 since Vol(Nε) → 0. Thus, proving (5.1) implies that ρεdvg → ρdAΣ
g

in W1,p(M)∗, and Proposition 4.11 implies that the eigenvalues converge.
We use coordinates (x, w) on Nε induced by the identification with N εΣ via

the exponential map. Let ξ(x, w) dw dAΣ
g be the volume measure on Nε, where

we denoted the pullback π∗ dAΣ
g simply by dAΣ

g , π : N εΣ → Σ. Let also ζ(x) =∫
Nε

xΣ ξ(x, w) dw be the fiber integral of ξ(x, w). Since the differential of the expo-
nential map at the origin is equal to identity, one has that

|1 − ξ(x, w)| = O(ε) |1 − ζ(x)| = O(ε) (5.2)

as ε → 0. Then one has∣∣∣∣
∫

M
uρε dvg −

∫
Σ

uρ dAΣ
g

∣∣∣∣ � ‖ρ‖L∞

2ε

∫
Σ

∫
Nε

xΣ
|u(x, w)ξ(x, w) − u(x, 0)ζ(x)| dw dAΣ

g

� C

ε

∫
Σ

∫
Nε

xΣ
|u(x, w) − u(x, 0)|ζ(x) dw dAΣ

g

+
C

ε

∫
Σ

∫
Nε

xΣ
|u(x, w)||ζ(x) − ξ(x, w)| dw dAΣ

g

� C ′

ε

∫
Σ

∫
Nε

xΣ
|u(x, w) − u(x, 0)| dw dAΣ

g

+ C ′′
∫

Σ

∫
Nε

xΣ
|u(x, w)| dw dAΣ

g ,

(5.3)

where we used (5.2) in the last step. For a fixed x the inside integral in the first term
is a 1-dimensional integral that can be estimated as follows,∫ ε

−ε
|u(x, t) − u(x, 0)| dt =

∫ ε

−ε

∣∣∣∣
∫ t

0
ut(x, s) ds

∣∣∣∣ dt

�
∫ ε

−ε

∫ ε

−ε
|ut(x, s)| dsdt

= 2ε

∫ ε

−ε
|ut(x, s)| ds.

Putting this back into (5.3) and using (5.2) completes the proof of estimate (5.1).
��

5.3 Application to shape optimisation in dimension 2. We can now prove
Theorem 1.2, with the following proposition.

Proposition 5.3. Let (M, g) be a compact Riemannian surface and let Ω ⊂ M be
a smooth domain such that ∂Ω ∩ ∂M is either empty or equal to ∂M . Then

σk(Ω, g) � Λk(M, [g]).
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Proof. We first note that in dimension 2 for any smooth ρ > 0 one has that
λk(M, g, ρ dvg) coincides with the classical Laplacian eigenvalues λk(M, ρg, dvρg) of
the conformal metric ρg. Since smooth functions are dense in Lp for every p ∈ [1, ∞),
Theorem 5.2 and Proposition 5.1 imply that

λk(M, g, dAΣ
g ) � Λk(M, [g]),

where dAΣ
g is the surface measure of Σ = ∂Ω. At the same time, a comparison of the

Rayleigh quotients for λk(M, g, dAΣ
g ) and σk(Ω, g) we see that they are the same

except for the fact that former integrates the Dirichlet energy over all of M whereas
the latter integrates it over Ω ⊂ M . This directly yields the inequality

σk(Ω, g) � λk(M, g, dAΣ
g ). ��

Remark 5.4. It is clear from our constructions that as soon as a measure μ on M is
limit in W1, d

d−1 (M)∗ of measures of the form β dx respecting conditions (M1)–(M3),
we obtain similarly to the last proposition

λk(Ω, g, μ)μ(M) � Λk(M, [g]).

6 Homogenisation

In this section, we fix a bounded domain Ω ⊂ R
d with C1 boundary and we put

M = Ω. Let β ∈ C(M) be nonnegative and nontrivial, g0 be the flat metric and dA
be the boundary measure on ∂M .

6.1 Construction of perforated sets. We construct domains Ωε ⊂ M in the
spirit of deterministic homogenisation theory. For z ∈ Z

d, consider the cubes

Zε
z := εz +

[
−ε

2
,
ε

2

]d ⊂ R
d

and define

Iε :=
{

z ∈ Z
d : Zε

z ⊂ M
}

.

For α > d − 1, we set

rε
z :=

(
εα

ad
β(εz)

) 1
d−1

, Bε
z = B(εz, rε

z), and Qε
z := Zε

z \ Bε
z ,

where ad is the area of the unit sphere in R
d and where, by convention, we put

B(x, 0) = ∅ for any x ∈ R
d. We set as well

Rε := M \
⋃
z∈Iε

Zε
z , Ĩε := {z ∈ Iε : β(εz) �= 0} and Bε :=

⋃
z∈Ĩε

Bε
z ;
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and finally

Ωε := M \ Bε and με
α := ι∗dAε,

where ι∗dAε is the pushforward by inclusion of the natural boundary measure on
Ωε. For any measure ξ, we define the normalised measure ξ := ξ(M)−1ξ.

• For all ε, z,

(rε
z)

d−1 � εα max
x∈M

β(x).

• The number of holes satisfies #Ĩε �M ε−d as ε → 0.
• The total boundary area of the holes satisfies the asymptotic relationship

H d−1(∂Bε) =
∑
z∈Ĩε

ad(rε
z)

d−1 ∼ εα−d

∫
M

β dx.

while the total volume of the holes satisfies

Vol(Bε) =
∑
z∈Ĩε

dad(rε
z)

d = OM,β

(
ε

dα

d−1
−d
)

, (6.1)

In particular, Condition (M1) is satisfied with

με
α

∗−⇀ μα :=

⎧⎪⎨
⎪⎩

βdvg if d − 1 < α < d,

βdvg + ι∗dA if α = d,

ι∗dA if α > d;

(6.2)

and

dx
∣∣
Ωε

∗−⇀ dx
∣∣
M

.

• It is a standard fact that on C1 domains the trace maps Tμε

2 and the Sobolev
embeddings Tμ

2 are compact, and that the first Steklov and Neumann eigen-
values are always positive so that Condition (M2) is met in both cases.

• The set Rε is a subset of a
√

dε-collar neighbourhood of ∂M , as such Vol(Rε) =
Od,M (ε).

• Denoting by Jε : W 1,2(Ωε, με
α) → W 1,2(Ω, με

α) the map extending harmonically
in Bε, we have that Jε is bounded independently of ε, see [RT75, Example 1,
page 40]. Condition (M3) is therefore satisfied.

Remark 6.1. To obtain Theorem 1.12 we note that it is possible to achieve a similar
setting by removing geodesic balls of radius rε around a maximal ε-separated subset
of a Riemannian manifold M . See [AP21] and [GL21] for similar constructions in the
context of the Neumann and Steklov problems, respectively. This makes it possible
to directly extend the statements to the situation where Ω is a bounded domain with
C1 boundary in a complete manifold M̃ , the implicit constants then depending on the
metric of M̃ restricted to Ω. We keep the periodic description here to emphasise the
fact that we do not need the Riemannian setting in order to obtain large normalised
Steklov eigenvalues.
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With the notation introduced above, we may now state the main theorem of this
section.

Theorem 6.2. For all j ∈ N, and

α > d − 1

the Steklov eigenvalues of the perforated domains Ωε satisfy

σj(Ωε)
H d−1(∂Ωε)

Vol(Ωε)
d−2

d

= λj(Ωε, g0, μ
ε
α) ε→0−−−→ λj(M, g0, μα),

where μ is defined in (6.2) and the associated eigenfunctions extended to M converge
strongly in W1,2(M). The Neumann eigenvalues satisfy

λj(Ωε, g0) Vol(Ωε)2/d = λj(Ωε, g0, dx) ε→0−−−→ λj(M, g0, dx), (6.3)

and the associated eigenfunctions extended to M converge weakly in W1,2(M).

The proof of Theorem 6.2 is split into two parts: Proposition 6.3 where the con-
vergence of the Neumann eigenvalues is shown and Proposition 6.5 where we prove
convergence of the Steklov eigenvalues. In both cases, we prove that the associated
measures converge in W1,p(M)∗, for all p > 1. In the construction of perforated
sets, we already have that conditions (M1)–(M3) are satisfied, so that by Propo-
sition 4.11, this is enough to obtain eigenvalue and eigenfunction convergence. For
the Steklov problem, we observe that Condition (4.2) follows directly from [GHL21,
Lemma 12] so that strong convergence of the eigenfunctions also follows if we prove
the appropriate convergence of the measures.

We note that (6.3) could be deduced by an appropriate modification of the proofs
in [RT75] or [AP21], however this would require introducing new concepts whereas
the results from Sects. 3 and 4 can prove both convergence of the Neumann and
Steklov eigenpairs at the same time. This also puts an emphasis on the fact that it
is achieved for the same domains.

Proposition 6.3. As ε → 0, the measures dx
∣∣
Ωε converge to dx

∣∣
M

in W1,p(M)∗ for
every p ∈ (1, ∞). In particular, the Neumann eigenpairs for Ωε converges to those
of Ω.

Proof. For f ∈ W1,p(M), we have that

∣∣〈dx
∣∣
Ωε − dx

∣∣
M

, f〉∣∣ = ∣∣∣∣
∫
Bε

f dx

∣∣∣∣
� Volg0(B

ε)
p−1

p ‖f‖Lp(Bε)

� Volg0(B
ε)

p−1
p ‖f‖W1,p(M) .

By (6.1), this last line goes to 0 as ε → 0. ��
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6.2 Convergence of the Steklov eigenpairs. Before proving convergence of
the Steklov eigenpairs, we require the following useful lemma.

Lemma 6.4. Let 0 < r � R � 1, and p ∈ (1, d). Then, there exists Cp,d > 0 such
that for all f ∈ W1,p(B(0, R)),

‖f‖p
Lp(rSd−1) � Cp,d max

{
rd−1R−d, rp−1

}
‖f‖p

W1,p(B(0,R)) .

Proof. By density of smooth functions in W1,p(B(0, R)) it is sufficient to prove the
inequality for smooth f . Let f̃ ∈ W1,p(B(0, R)) be the radially constant function
given by f̃(ρ, θ) = f(r, θ), since p < d we can assign any value of f̃ at 0. Set
F := f − f̃ ∈ W1,p(B(0, R)) and observe that F vanishes on ∂B(0, r), and that
∂ρF = ∂ρf . We directly compute that

‖f‖p
Lp(rSd−1) = drd−1R−d

∥∥∥f̃∥∥∥p

Lp(B(0,R))

� 2p−1drd−1R−d
(
‖f‖p

Lp(B(0,R)) + ‖F‖p
Lp(B(0,R))

)
.

(6.4)

To conclude, we will bound the norm of F with a radial Friedrichs’ inequality. By
simple integration and Hölder’s inequality we have that for every ρ ∈ (0, R) and
θ ∈ S

d−1

|F (ρ, θ)|p =
∣∣∣∣
∫ ρ

r
∂sf(s, θ) ds

∣∣∣∣
p

�
∣∣∣∣
∫ ρ

r
s

1−d

p−1 ds

∣∣∣∣
p−1 ∫ ρ

r
|∂sf(s, θ)|p sd−1 ds.

Integrating both sides of this inequality on B(0, R) tells us that since p < d

‖F‖p
Lp(B(0,R)) �

∫ R

0
ρd−1

∣∣∣∣
∫ ρ

r
s

1−d

p−1 ds

∣∣∣∣
p−1

‖∂ρf‖p
Lp(B(0,ρ)) dρ

� p − 1
d − p

‖∂ρf‖p
Lp(B(0,R))

∫ R

0
ρp−1

∣∣∣∣∣1 −
(

r

ρ

) p−d

p−1

∣∣∣∣∣
p−1

dρ

(6.5)

This integral can be split into regions where ρ � a := 2
d−p

p−1 r and a � ρ � R. In the
first region, the integral is bounded by 2p−1. In the second region, we have that

∫ R

a
ρp−1

∣∣∣∣∣1 −
(

r

ρ

) p−d

p−1

∣∣∣∣∣
p−1

dρ � 1
2

∫ R

a
ρd−1rp−d dρ

� 1
2d

R−drp−d.

Inserting this estimate into (6.5) and then (6.4) yields our claim. ��
The main purpose of this section is to prove the following proposition

Proposition 6.5. As ε → 0, the measures με
α → μα in W1,p(M)∗ for all p > 1.
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Proof. Without loss of generality, by monotonicity of the dual spaces W1,p(M)∗ we
assume that p < 2.

For f ∈ W1,p(M) we have the decomposition

〈με
α − μα, f〉W1,p(M) =

1{α�d}
μα(M)

∫
Rε

βf dx +
(

1
με

α(M)
− 1{α�d}

μα(M)

)∫
∂M

f dA

+
∑
z∈Iε

〈με
α − μα, f〉W1,p(Zε

z) (6.6)

We first observe that∫
Rε

βf dx � ‖β‖C0(M) ‖f‖Lp(M) Vol(Rε)
p−1

p �M,β ε
p−1

p .

We also have that

lim
ε→0

(
1

με(M)
− 1{α�d}

μ(M)

)∫
∂M

f dA = 0;

for α � d this follows from the fact that με
α(M) ε→0−−−→ μα(M) whereas for d − 1 <

α < d this follows from με
α(M) ε→0−−−→ ∞. We are now left only with the sum term in

(6.6).
In the case where α > d, we have that μα is supported on ∂M so that by Hölder’s

inequality on sums that∑
z∈Iε

∣∣〈με
α − μα, f〉W1,p(Zε

z)

∣∣ � 1
με

α(M)

∑
z∈Iε

∫
∂Bε

z

|f | dA

�
∑
z∈Iε

H d−1(∂Bε
z)

p−1
p ‖f‖Lp(∂Bε

z)

�β,M ε(α−d) p−1
p

(∑
z∈Iε

‖f‖p
Lp(∂Bε

z)

)1/p

;

this goes to 0 as ε → 0. Indeed, since α > d we have that (rε
z)

d−1ε−d remains
uniformly bounded as ε → 0, so that by Lemma 6.4∑

z∈Iε

‖f‖p
Lp(∂Bε

z) �
∑
z∈Iε

‖f‖p
W1,p(Zε

z) � ‖f‖p
W1,p(M) .

When d − 1 < α � d, we split the sum into z ∈ Iε \ Ĩε and z ∈ Ĩε. In the first
case, we have that∣∣∣∣∣∣

∑
z∈Iε\Ĩε

〈με
α − μα, f〉W1,p(Zε

z)

∣∣∣∣∣∣ =
1

μα(M)

∣∣∣∣∣∣
∑

z∈Iε\Ĩε

∫
Zε

z

βf dx

∣∣∣∣∣∣
� sup

z∈Iε

sup
x∈Zε

z

|β(x)| ‖f‖L1(M) .
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By uniform continuity of β, and since β(εz) = 0 for all z ∈ Iε \ Ĩε, that last quantity
vanishes as ε → 0.

Finally, when z ∈ Ĩε, both μα and με
α are p-admissible on Zε

z . Therefore we can
apply Lemma 3.16 to obtain the existence of ϕε

z ∈ W1,p′
(Zε

z) such that

〈με
α − μα, f〉W1,p(Zε

z) =
(

με
α(Zε

z)
μα(Zε

z)
− 1
)

〈μ, f〉W1,p(Zε
z) +

∫
Zε

z

∇ϕε
z · ∇f dx

=

(
β(εz)

ε−d
∫
Zε

z
β dx

− 1

)
〈μα, f〉W1,p(Qε

z) +
∫

Zε
z

∇ϕε
z · ∇f dx.

(6.7)

By uniform continuity of β and the integral mean value theorem, since μα ∈ W1,p(M)∗,
the first term on the right-hand side vanishes in the limit. For the last term in (6.7),
by Hölder’s inequality we have that∫

Zε
z

∇ϕε
z · ∇f dx � ‖∇ϕε

z‖Lp′ (Zε
z) ‖∇f‖Lp(Zε

z)

The second part of Lemma 3.16 is barely too weak to show that the Lp′
(Zε

z) norm
of ∇ϕε

z converges to zero fast enough. In order to prove so, we exploit the lack of
scale invariance in the defining equation for ϕε

z.
Define ϕε,s

z : sZε
z → R as ϕε,s

z := ϕε
z(x/s). We have that ϕε,s

z satisfies the weak
differential equation

∀f ∈ W1,p(sZε
z),

∫
sZε

z

∇ϕε,s
z · ∇f dx =

1
s

∫
s∂Bε

z

f
dA

με(M)
− 1

s2

με(Zε
z)

μ(Zε
z)

∫
sZε

z

f dμ.

Furthermore,
∫
sZε

z
ϕε,s

z dμ = 0. Therefore, ϕε,s
z is the solution of the equation (3.4) for

measures (sμε(M))−1 dAs∂Bε
z and dμ|sZε

z
. Thus, the estimate (3.5) in Lemma 3.16

implies that

‖∇ϕε,s
z ‖Lp′ (sQε

z) �β (1 + Ks,ε)s
d−1
p′ −1 ε

α

p′

1 + ε
α−d

p′

∥∥∥T dA∂B(0,srε
z)

p,B(0,sR)

∥∥∥ .

Here, Ks,ε is the Poincaré constant for sQε
z, by scaling it is easy to see that it

remains bounded as long as s = O
(
ε−1
)
. We therefore choose s = ε−1, and see that

by Lemma 6.4 we then have that∥∥∥T dAs∂B(0,srε
z)

p,B(0,sR)

∥∥∥�d,p ε
α−d+1

p .

Finally, we see by scaling that

‖∇ϕε
z‖Lp′ (Zε

z) = ε
d

p′ −1
∥∥∥∇ϕε,ε−1

z

∥∥∥
Lp′ (Zε

z)

�d,p,β
εα/p′

1 + ε
α−d

p′
ε

p+α−d

p .
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so that ∑
z∈Ĩε

∣∣∣∣
∫

M
∇ϕε

z · ∇f dx

∣∣∣∣ � ∑
z∈Ĩε

‖∇ϕε
z‖Lp′ (Zε

z) ‖∇f‖Lp(Zε
z)

�d,p,β
ε

α−d

p′

1 + ε
α−d

p′
ε

α−d+p

p ‖∇f‖Lp(M)

=
εα−(d−1)

1 + ε
α−d

p′
‖∇f‖Lp(M) ,

where in the second step we used the inequality
∑n

i=1 |ai| � n
1
p′ (
∑n

i=1 |ai|p)
1
p . ��

Proof of Theorem 6.2. We have already shown that conditions (M1)–(M3) are sat-
isfied. By Proposition 6.3 for the Neumann problem or 6.5 for the Steklov problem,
the conditions of Proposition 4.11 are satisfied so that we indeed have convergence
of the eigenvalues and eigenfunctions. ��

We finally have everything we need to prove Theorem 1.11.

Proof of Theorem 1.11. By density of continuous functions in either Ld/2(M) (d � 3)
or L1(log L)1(M) (d = 2) there is a sequence of nonnegative βn converging to β in the
relevant space. By Proposition 5.1, λk(M, g, βndvg) → λk(M, g, βdvg). Theorem 6.2
along with the volume estimate (6.1) entails that Theorem 1.11 holds for each βn.
Extracting a sequence from a diagonal argument yields the sequence Ωε so that
Theorem 1.11 holds for β. ��
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