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We introduce a technique that uses gauge fixing to significantly improve the quantum-error-correcting
performance of subsystem codes. By changing the order in which check operators are measured, valuable
additional information can be gained, and we introduce a new method for decoding which uses this
information to improve performance. Applied to the subsystem toric code with three-qubit check operators,
we increase the threshold under circuit-level depolarizing noise from 0.67% to 0.81%. The threshold
increases further under a circuit-level noise model with small finite bias, up to 2.22% for infinite bias.
Furthermore, we construct families of finite-rate subsystem low-density parity-check codes with three-
qubit check operators and optimal-depth parity-check measurement schedules. To the best of our
knowledge, these finite-rate subsystem codes outperform all known codes at circuit-level depolarizing
error rates as high as 0.2%, where they have a qubit overhead that is 4.3× lower than the most efficient
version of the surface code and 5.1× lower than the subsystem toric code. Their threshold and pseudo-
threshold exceeds 0.42% for circuit-level depolarizing noise, increasing to 2.4% under infinite bias using
gauge fixing.
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I. INTRODUCTION

The realization of scalable quantum computing depends
on our ability to correct errors which arise due to inevitable
interactions between the device and the environment. These
errors can be corrected by introducing redundancy in the
form of quantum-error-correcting codes. The most widely
studied quantum-error-correcting code, both theoretically
and experimentally, is the surface code [1], which has a high
tolerance for realistic circuit-level noise and uses four-
qubit measurements that are geometrically local in two
dimensions.
Despite these advantages, the surface code has several

shortcomings. First, it is estimated that thousands of
physical qubits will be required to encode each logical
qubit for fault-tolerant quantum computing in a noise
regime of practical interest [2]. While there has been
significant progress in the construction of families of codes
called quantum low-density parity-check (LDPC) codes
that have improved theoretical parameters relative to the
surface code [3–8], none of these codes have been shown to
have a lower qubit overhead than the surface code once

circuit-level noise is taken into account. Second, even
weight-4 check operator measurements can be too large
for some architectures. In some superconducting qubit
architectures, for example, the degree of the surface-code
interaction graph can lead to frequency collisions [9]. Finally,
physical error rates observed experimentally in devices are
still above the threshold [10], and the standard implementa-
tion of the surface code is not well suited to handle biased
noisemodels that can arise in some physical systems [11]. As
a result, improving the tolerance of the surface code to biased
noise models is an active area of research [12–15].
In this work, we tackle all three of these problems by

introducing new decoding techniques and constructions for
subsystem codes. Most quantum codes considered in the
literature are stabilizer codes, which are defined in terms of
a set of Pauli operators [16]. Subsystem codes are a slight
generalization of stabilizer codes where only a subset of the
available encoded degrees of freedom are used [17]. They
can simplify the measurements which are part of the error-
correction procedure by reducing the number of physical
qubits involved [18], or by enabling bare-ancilla fault
tolerance even when the check weights are large [19].
Furthermore, subsystem codes allow for a procedure called
gauge fixing which is useful to manipulate the encoded
quantum information. Gauge fixing effectively allows us to
change the code midcomputation, and in Ref. [20] the
authors exploit this to switch between codes which have
complementary sets of logical operations.
These advantages have motivated experimentalists to

pursue subsystem codes for implementing fault-tolerant
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quantum computation. This includes IBM, who plan to
implement the heavy-hexagon subsystem code [9] to
reduce frequency collisions in their superconducting quan-
tum processors [21]. Notably, the Bacon-Shor subsystem
code [22] has recently been implemented experimentally in
a trapped-ion architecture [23], where the fidelity of the
encoded logical operations exceeded that of the entangling
physical operations used to implement them.
However, subsystem codes have usually had lower

thresholds, an issue which can be attributed to their
higher-weight stabilizers. They have also typically had a
larger qubit overhead, since some logical qubits are not
used to encode information. We introduce constructions
and decoding techniques that instead demonstrate that
subsystem codes can be used to increase the threshold
and reduce the qubit overhead. The decoding technique we
introduce, called schedule-induced gauge fixing, improves
the error-correcting performance of a wide class of sub-
system codes, especially under biased noise models. By
changing the order in which check operators are measured,
valuable additional information can be gained, and we
introduce a new method for decoding which uses this
information to improve performance. In previous work, the
Bacon-Shor code has been used as a template to construct
elongated compass codes, which can be tailored to biased
noise models [24]. However, this method requires changing
interactions at the hardware level, as well as measuring
high-weight stabilizers directly, since elongated compass
codes are not subsystem codes themselves. In contrast, our
technique can be implemented entirely in software, and
requires only measuring the low-weight gauge operators of
the code. In essence, schedule-induced gauge fixing allows
us to switch repeatedly between different codes such that
more information can be inferred about potential errors.
We also reduce the qubit overhead for quantum-error

correction by introducing a construction for subsystem
codes that encode a number of logical qubits k proportional
to the number of physical qubits n, while using only three-
qubit check operators. These codes are derived from
hyperbolic tessellations, and we use the symmetry group
of the tessellation to derive quantum circuits for measuring
the check operators that use only four time steps, which is
optimal. From simulating their performance in circuit-level
depolarizing noise, we find that these finite-rate subsystem
codes have a qubit overhead that is 4.3× lower than the
most efficient version of the surface code for error rates as
high as 0.2%, which is a noise regime often considered for
practical surface-code quantum computing [25]. The poten-
tial advantages of quantum LDPC codes have previously
been shown only under a simplistic phenomenological
noise model [26], in some cases at very low error rates [27].
Once circuit-level noise is taken into account, the potential
reduction in qubit overhead can be lost [28]. Therefore, to
the best of our knowledge, the results for our finite-rate
subsystem codes are the first demonstration of a quantum

code outperforming the surface code in a practical regime
of circuit-level depolarizing noise.
In Sec. II, we review the stabilizer formalism, subsystem

codes, and gauge fixing before reviewing the subsystem
surface code in Sec. III in the context of our more general
subsystem code construction. We introduce our construction
for finite-rate subsystem LDPC codes in Sec. IV, where we
analyze their properties and show how to construct efficient
stabilizer measurement circuits for them. In Sec. V, we
introduce schedule-induced gauge fixing, our technique for
improving the quantum-error-correcting performance of
subsystem codes. We present our numerical results in
Sec. VI, which includes the application of schedule-induced
gauge fixing to the subsystem toric code, as well as a
performance analysis of our finite-rate subsystem LDPC
codes. We discuss broader applications of schedule-induced
gauge fixing and our constructions in Sec. VII, before
concluding in Sec. VIII.

II. PRELIMINARIES

A quantum stabilizer code is defined by an Abelian
subgroup S of the Pauli group operating on n physical
qubits. The code space is the common þ1 eigenspace of all
elements of the stabilizer group. If there exists a generating
set of S such that each generator acts nontrivially on the
physical qubits as either PauliX orPauliZ, only then the code
is called a Calderbank-Shor-Steane (CSS) code [29,30].
A subsystem code is a stabilizer code in which a subset

of logical operators is chosen not to store information [17].
In a subsystem code, the overall Hilbert space H can be
decomposed as

H ¼ ðHL ⊗ HGÞ ⊕ C⊥; ð1Þ

where only HL stores information and any operations
applied only on HG are ignored. The Pauli operators that
act trivially onHL form the gauge group G of the code. The
stabilizer group S is the center of G up to phase factors,
hiI;Si ¼ ZðGÞ ≔ CðGÞ ∩ G. Hence, up to phase factors,
operators from G are either stabilizers (acting trivially on
HL ⊗ HG), or act nontrivially onHG only. Logical operators
that act nontrivially only on HL are called bare logical
operatorsLbare and are given byCðGÞnG. The dressed logical
operatorsLdressed ¼ CðSÞnG act nontrivially on bothHL and
HG. A dressed logical operator is a bare logical operator
multiplied by a gauge operator in GnS. The distance d of a
subsystemcode is theweight of theminimum-weight dressed
logical operator, d ¼ minP∈CðSÞnG jPj. The number of physi-
cal qubits n, logical qubits k, independent stabilizer checks r,
and gauge qubits g are related as

n − k ¼ rþ g: ð2Þ

One advantage of introducing gauge qubits is that
they can enable simpler stabilizer measurements if the
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generators of the gauge group G (the gauge generators)
have a lower weight than the generators of the stabilizer
group S. Since S ⊆ G, the outcomes of the gauge generator
measurements can be used to infer the eigenvalues of the
stabilizers, provided the gauge generators are measured in
the appropriate order (since G is generally not Abelian)
[29,30]. We refer to standard stabilizer codes, where all
logical qubits are used to store quantum information, as
subspace codes, to distinguish them from subsystem codes.
The technique called gauge fixing applied to a subsystem

code consists of adding an element g ∈ G into the stabilizer
group S, as well as removing every element h ∈ G that
anticommutes with g. Gauge fixing was introduced by
Paetznick and Reichardt and can be useful for performing
logical operations [20,31,32], including for code deforma-
tion and lattice surgery [33]. Gauge fixing can also be used
for constructing codes: Both the surface code and the
heavy-hexagon code [9] are gauge fixings of the Bacon-
Shor subsystem code [22], all belonging to the larger family
of 2D compass codes [24]. These constructions are static,
as the fixed gauge stays the same over time. In this work,
we show how gauge fixing can be used to improve the
quantum-error-correcting performance of subsystem codes.
Here, we consider a dynamical approach to gauge fixing;
i.e., in contrast to the code constructions mentioned earlier,
we change which gauge degrees of freedom are being fixed
over time. This allows us to improve the error-correction
capabilities of subsystem codes.

III. THE SUBSYSTEM SURFACE CODE

We now describe a method for constructing subsystem
codes from hexagonal lattices, which we see is equivalent
to the subsystem toric code of [34]. In Sec. IV, we
generalize this construction to other tessellations to obtain
subsystem hyperbolic codes.
Take a torus which is subdivided into hexagons. The

quantum stabilizer code associated with this lattice is the
hexagonal toric code constructed by placing a data qubit on
each edge of the lattice and associating each face and vertex
with a Z and X stabilizer, respectively. Now consider a face
f of the lattice and two of its vertices v and u that are not
direct neighbors and do not have any neighbors in common
either. We identify the vertices u and v and call the new
vertex w. This deforms the face f into a shape like a bow tie
with w in the center (see Fig. 1). Any edge which was
incident to either v or u before is incident to w after this
identification.
There is a canonical subdivision of a bow-tie-shaped

face: We can simply consider either half. Similarly, the
neighborhood of a merged vertex in the middle of the bow
tie can be subdivided into two disjoint sets. In terms of the
associated quantum code, there is a canonical way to break
the X and Z checks associated with the vertices and faces
(see Fig. 1, right). The four operators obtained by the
breaking procedure are gauge operators and do not

commute. Importantly, the gauge operators of a bow tie,
while not commuting among themselves, commute with all
other check operators. By merging the upper left and lower
right vertices of each hexagon, as shown in Fig. 1, we
obtain the subsystem toric code of Ref. [34] shown as a
tiling by bow ties in Fig. 2 (left).
An alternative representation of the subsystem toric code

can be found by placing a qubit on the middle of each edge
and on each vertex of a square tiling.
Each gauge operator is now represented by a triangle,

with a qubit associated with each of its vertices. This lattice
can be obtained from the bow-tie lattice by substituting
edges for vertices. Borrowing terminology from Ref. [34],
each gauge generator is referred to as a triangle operator,
and consists of a Pauli operator acting nontrivially on its
three qubits. There are four types of triangle operators in
each face of the square lattice: two Z-type triangle operators
defined in the northwest and southeast corners, and two
X-type operators defined in the northeast and southwest
corners. These four types of triangle operators are high-
lighted in Fig. 3 for the L ¼ 2 subsystem toric code. Within
each face, the product of each pair of Z-type triangle
operators forms a six-qubit Z stabilizer, and the product of
each pair of X-type triangle operators forms a six-qubit
X-type stabilizer. The subsystem toric code has 3L2 data

FIG. 1. Left and middle: merging inside a hexagonal lattice.
After merging, the resulting vertex has degree 6. Note that the
surrounding faces are unaffected (besides being deformed).
Right: after merging we can break the X check (blue) and Z
check (red) into two pairs of operators. These operators all have
weight 3. Operators of different types pairwise anticommute, but
they commute with all remaining stabilizers in the lattice.

FIG. 2. Left: merging top left and bottom right vertices of all
faces of a hexagonal tessellation leads to a tiling of bow ties. The
X and Z stabilizers belonging to the merged vertex in the center
are highlighted in blue and red. Both are weight-6 operators.
Right: we can redraw the lattice by exchanging edges with
vertices representing the broken stabilizers as triangles.
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qubits (there are L2 vertices and 2L2 edges of the square
lattice) and 2ðL2 − 1Þ independent stabilizer generators
forming a stabilizer code with L2 þ 2 logical qubits, L2 of
which are gauge qubits, with the remaining two logical
qubits encoding quantum information. It can be verified
that all triangle operators commute with the stabilizers and
are therefore logical operators for the stabilizer code (since
they are not stabilizers). The logical Z̄ and X̄ operators for
each gauge qubit are chosen to be the northwest and
northeast triangle operators of each face, respectively. The
remaining two pairs of logical operators are the same as for
the toric code, each acting nontrivially only on data qubits
lying on a (horizontal or vertical) homologically nontrivial
loop of the torus. In Ref. [34], it was shown that the
minimum distance of the subsystem toric code is L, and
therefore, the code has parameters ½½3L2; 2; L��.
In Ref. [34], a planar subsystem surface code was also

introduced (with two-qubit stabilizers on the boundary),
which has code parameters ½½3L2 − 2L; 1; L��, and in
Ref. [35], a planar rotated subsystem code was introduced
(with three-qubit stabilizers on the boundary) which has
parameters ½½3

2
L2 − Lþ 1

2
; 1; L��. These parameters com-

pare to the parameters ½½2L2; 2; L��, ½½L2 þ ðL − 1Þ2; 1; L��,
and ½½L2; 1; L�� for the toric, planar, and rotated surface
codes, respectively [1,36].
By mapping the threshold to the phase transition in the

random-bond Ising model on the honeycomb lattice, the
subsystem toric code has been found to have a threshold of
around 7% for maximum likelihood decoding, the inde-
pendent Z=X noise model, and perfect syndrome measure-
ments [34]. Under the same noise model, the threshold
using a minimum-weight perfect-matching decoder is 6.5%
[37]. Syndrome extraction can be done by measuring only

the three-qubit triangle operators, and it has a threshold
under a circuit-level depolarizing noise model of around
0.6% [34], which is below that of the standard surface code,
which has a threshold approaching 1% for a similar circuit-
level depolarizing noise [38–40].

IV. FINITE-RATE LDPC SUBSYSTEM CODES

While the subsystem toric code can be derived from the
hexagonal tessellation of a Euclidean surface, we now show
how we can also obtain subsystem codes derived from
more general tessellations, including of hyperbolic surfa-
ces. A regular tessellation of a surface can be denoted by its
Schläfli symbol fr; sg, which indicates that each face in the
tessellation is an r-gon and s faces meet at each vertex.
Regular tessellations of hyperbolic surfaces satisfy
1=rþ 1=s < 1=2. Hyperbolic codes, which are subspace
codes derived from hyperbolic tessellations, have a finite
encoding rate k=n and distance scaling as OðlognÞ [5,6],
and it has been shown that they can require a smaller qubit
overhead compared to the toric code and surface code for a
target logical error rate under a phenomenological error
model [26]. However, the stabilizer weight of hyperbolic
codes is larger than for the toric code, making syndrome
extraction more challenging, and a key benefit of the
subsystem hyperbolic code construction we now give is
that syndrome extraction can be done with only weight-3
check operators. Hyperbolic codes are a promising candi-
date for experimental realization in systems that allow
variable length connectivity between qubits [41], such as
modular architectures [42,43], and reduced check weight
simplifies stabilizer readout, as well as reduces cross
talk [9].
A subsystem hyperbolic code can be obtained by

merging multiple vertices of each face of a hyperbolic
tessellation. For example, a subsystem hyperbolic code can
be constructed from a f12; 3g hyperbolic tessellation by
merging four vertices of each 12-gon face, as shown for a
single 12-gon in Fig. 4. In general, breaking an m-clover-
shaped face introduces m local loop operators that do not
mutually commute. They will be interpreted as logical
operators of the gauge qubits. Note that for a clover with m
leaves, we introduce m − 1 linearly independent local loop
operators as the product of all m local loops is the original
face, which is a stabilizer.
As for the subsystem toric and subsystem surface codes,

there exists an alternative representation with qubits placed
on vertices and where a triangle operator will be placed in
each corner of each face of the hyperbolic tessellation. For
example, we can construct an f8; 4g subsystem hyperbolic
code by placing triangle operators in the corner of each face
of an f8; 4g tessellation, as shown in Fig. 5. Each Z
stabilizer is the product of all Z triangle operators within a
face of the f8; 4g tessellation, and similar for X stabilizers
and X triangle operators. Note that this code obtained
from placing triangle operators in an f8; 4g lattice can

FIG. 3. The subsystem toric code of Ref. [34]. Data qubits
(yellow-filled circles) are placed in the middle of each edge and
on each vertex of a square lattice of the toric code. Opposite sides
are identified. The gauge group is generated by three-qubit
triangle operators. The two Z triangle operators in the top left
face are outlined with a blue border, and their product forms a six-
qubit Z stabilizer. Similarly, in the bottom right face, two X
triangle operators are outlined with a red border, and their product
is a six-qubit X stabilizer.
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equivalently be constructed by merging faces in a f12; 3g
tessellation.
We adopt the former approach (qubits on vertices) and

construct the subsystem hyperbolic codes directly by
requiring that, as for the subsystem toric code, any pair
of triangle operators that belong to the same face of the
tessellation and overlap on a single qubit must be of
opposite Pauli types. Similarly, any two triangle operators
belonging to the same vertex of the original tessellation and
overlapping on two qubits must be of the opposite Pauli
type. In other words, adjacent triangle operators related by
a single rotation about a face or a vertex must be of opposite
Pauli types, and we say that a tessellation that allows such
an assignment of triangle operators is colorable. For a
tessellation to be colorable, each face must have an even
number of sides, and an even number of faces must meet at
each vertex (so for regular fr; sg tessellations, both r and s
must be even). Furthermore, to ensure that our stabilizers
commute, we further require that four faces meet at each
vertex of the tessellation. In the Appendix C, we show that
a regular tessellation of a closed surface is colorable if a
particular function f (which we define) extends to a
homomorphism from the symmetry group of the tessella-
tion to the cyclic group Z2.

A. Properties of subsystem hyperbolic codes

We now consider some more properties of subsystem
hyperbolic codes, each derived from a f2c; 4g tessellation
with edges E, vertices V, and faces F. Since we place a
qubit on each vertex and in the center of each edge of this
tessellation, our subsystem hyperbolic code will have jEj þ
jVj data qubits. Each vertex in the tessellation has degree 4,
and so 2jVj ¼ jEj. Furthermore, we also place na ancilla
qubits within each triangle operator. While we can always
use na ¼ 1 ancillas per triangle operator by using schedules
with some idle qubit locations (if necessary), we parallelize
many of our schedules, which in some cases requires
na ¼ 2. Each vertex is adjacent to four triangle operators
and each triangle operator is adjacent to a single vertex.
Therefore, in total there are n ¼ 3

2
jEj data qubits and

2najEj ancilla qubits in our subsystem hyperbolic codes.
For the subsystem toric code, where jEj ¼ 2L2, there are
3L2 data qubits and 4naL2 ancilla qubits.
The number of faces in the fr; sg tessellation satisfies

rjFj ¼ 2jEj. Since the product of all X-type (or Z-type)
stabilizers is the identity, and since there are no other relations
that the stabilizers satisfy, the number of independent
stabilizers is4jEj=r−2. Therefore, the total number of logical
qubits (including gauge qubits) is ð3=2 − 4=rÞjEj þ 2.
Aside from the triangle operators introduced within each

face, the number of remaining bare logical operators (those
in CðGÞnG) is determined from the topology of the
tessellation from which it is derived. Therefore, excluding
gauge qubits, the number of logical qubits k that a
subsystem hyperbolic code derived from an fr; 4g tessel-
lation encodes is given by [6]

k ¼ jEj
2

−
2jEj
r

þ 2: ð3Þ

This leaves ð1 − 2=rÞjEj gauge qubits, or r=2 − 1 gauge
qubits per face. The triangle operators act nontrivially on
these gauge qubits. The encoding rate of the subsystem
hyperbolic code is therefore

k
n
¼ 1

3
−

4

3r
þ 2

n
: ð4Þ

There are 4na=3 ancilla qubits per data qubit, leading to
ð4na=3þ 1Þn qubits in total. Note that this expression does
not depend on r: The number of ancilla qubits is propor-
tional to the number of data qubits, and the constant of
proportionality is the same regardless of which f2c; 4g
tessellation we use.
In Appendix F, we show that the distance d of a

subsystem hyperbolic or semihyperbolic code is bounded
by dX=2 ≤ d ≤ dX, where dX is the X distance of the
subspace hyperbolic or semihyperbolic code derived from
the same tessellation. The X distance of the subspace code
is always less than or equal to its Z distance for the codes

FIG. 4. Merging vertices of a 12-gon. As this procedure
effectively removes three independent X checks, we introduce
three gauge qubits.

FIG. 5. The f8; 4g subsystem hyperbolic code. A qubit (each
represented by a black-filled circle) is placed in the center of each
edge and on each vertex of an f8; 4g tessellation of a closed
hyperbolic surface. A three-qubit triangle operator is placed in
each corner of each face. Each X stabilizer is the product of the
four X triangle operators within a face (top right). Similarly, each
Z stabilizer is the product of the four Z triangle operators within a
face (bottom right).
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we consider, and so the distance of the subsystem code is at
least half, and at most the same as the distance of the
subspace code. We analyze the distances of the codes we
construct in Appendix F and find codes with distances that
span this full range.

B. Condition for consistent scheduling

In order to determine the syndrome used for decoding,
we require a stabilizer measurement schedule, which is the
sequence of gates applied to data and ancilla qubits in order
to measure the eigenvalues of the stabilizers. We now show
that any valid stabilizer measurement schedule defined
within a single face of the subsystem toric code and chosen
to be periodic in space (i.e., identical for every vertex or
face) can be generalized for a subset of f4c; 4g subsystem
hyperbolic codes, for c ∈ Zþ. The measurement schedule
used by Bravyi et al. [34] is an example of such a periodic
schedule.
We first assign an element of the cyclic group Z=4Z to

each of the four types of triangle operators within a face and
call such an assignment a labeling. We choose to label the
northwest, northeast, southeast, and southwest triangle
operators with the elements 0, 1, 2, and 3 of Z=4Z,
respectively [see Fig. 6(a)]. Note that, for a translationally
invariant schedule, each triangle operator with a given label
in the subsystem toric code is assigned an identical
schedule. Triangle operators with different labels have
different measurement schedules. In order to apply this
measurement schedule to the subsystem hyperbolic code,
we label every triangle operator as one of these four types in
such a way that the schedule always looks locally the same
as for the subsystem toric code to ensure that it remains
correct. More precisely, for each triangle operator with a
given label in the subsystem hyperbolic code, its neighbor-
hood of triangle operators it shares qubits with (and their
labels) must be the same as for a triangle operator with the
same label in the subsystem toric code. We call a labelling

that has this property a valid labeling, and a schedulable
code is one that admits a valid labeling. In Appendix D, we
show that a regular tessellation of a closed hyperbolic
surface admits a valid labeling if a particular function h
(which we define) extends to a homomorphism from the
proper symmetry group of the tessellation to the cyclic
group Z=4Z. We show that a subset of f4c; 4g regular
tessellations of closed hyperbolic surfaces satisfies this
property. An example of a valid scheduling of the f8; 4g
tessellation of the hyperbolic plane is shown in Fig. 6(b).

C. Subsystem semihyperbolic codes

The f8; 4g subsystem hyperbolic code has stabilizers of
weight 12, which is double that of the subsystem toric code.
Despite the check operators still being weight 3, we find
that the large stabilizer weight results in a lower threshold of
0.31(1)% compared to 0.666(1)% for the subsystem toric
code. The intuition behind this is the following: If a stabilizer
has higher weight, it provides less information about the
location of an error and requires more gates to be used when
measured, making it harder to measure precisely.
To address this issue, we can construct subsystem codes

derived from semihyperbolic tilings introduced in Ref. [26].
The idea is to fine-grain the tessellation leading to lower-
weight stabilizers. A semihyperbolic tiling is derived from
a f4; qg regular tessellation of a closed hyperbolic manifold
for q > 4; q ∈ Zþ. Each (square) face of the f4; qg
tessellation is tiled with an l × l square lattice. By doing
so, the curvature of the surface is weakened. The subspace
quantum code derived from the semihyperbolic tessellation
(a semihyperbolic code) has larger distance and reduced
check weight compared to a code derived from the original
f4; qg tessellation. This comes at the cost of requiring l2

times more qubits and, since the number of logical
operators is unchanged, the encoding rate is reduced by
a factor of l2. An important advantage of semihyperbolic
codes is that, by increasing l, we obtain a family of codes
with distance scaling like

ffiffiffi
n

p
(as for the toric code), while

expecting to retain a reduced qubit overhead relative to the
toric code [26]. The same advantages apply for the
subsystem semihyperbolic codes we construct in this work.
Recall that the tessellations that we derive subsystem

hyperbolic codes from must have vertices of degree 4, and
each face must have 4c sides (where c ∈ Zþ). On the other
hand, a f4; qg semihyperbolic tiling instead has faces with
four sides, while vertices have degree 4 or q. We can
therefore derive a subsystem code from the dual lattice of
f4; 4cg semihyperbolic tessellation. In Appendix D, we
show that if an f8; 4g tessellation is schedulable, then so is
the semihyperbolic tessellation derived from it. Therefore,
each schedulable closed f8; 4g tessellation defines a family
of subsystem semihyperbolic codes (each code in the
family having a different lattice parameter l), and where
each code in the family is schedulable.
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FIG. 6. (a) An L ¼ 2 subsystem surface code. The four types of
triangle operators are labeled as 0, 1, 2, and 3. (b) Labeling of the
four types of triangle operators on an f8; 4g tessellation of the
hyperbolic plane. The neighborhood of each triangle operator
(the types and relative locations of triangle operators it overlaps
with) is the same as in the toric code.
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We say that an l, f4c; 4g subsystem semihyperbolic code
is the code derived by placing a triangle operator in each
corner of each face of the dual lattice of a semihyperbolic
lattice, where that semihyperbolic lattice was constructed by
tessellating each face of the f4; 4cg tessellation with an l × l
square lattice. The subsystem semihyperbolic codes we
construct and analyze in this work are l ¼ 2, f8; 4g sub-
system semihyperbolic codes. The irregular tessellations
these codes are derived from therefore contain both square
and octagonal faces, with four faces meeting at each vertex.

V. IMPROVED ERROR CORRECTION
BY GAUGE FIXING

We now introduce some general techniques that improve
the quantum-error-correcting performance of a wide class
of subsystem codes. We alter the stabilizer measurement
procedure in software, in such a way that the individual
gauge operator measurements themselves yield useful
information. This use of individual gauge operator mea-
surements is in contrast to existing methods for decoding
subsystem codes in the literature, where individual gauge
operator measurements themselves are never treated as
syndrome bits, and only their products (the stabilizers) are
used for decoding.
While we analyze these techniques numerically using the

subsystem code constructions given in Secs. III and IV, the
key ideas can be applied to the vast majority of subsystem
codes considered in the literature, for which stabilizer
eigenvalues can be inferred by measuring gauge operators.
In fact, these techniques address one of the main drawbacks
of subsystem codes, which is that they typically have lower
thresholds. Low thresholds arise partly because stabilizer
eigenvalues are determined by combining the outcomes of
many gauge operator measurements, each of which may be
faulty, making their measurement less reliable. Additionally,
these high-weight stabilizers provide less information about
which qubit has suffered an error, further reducing the
threshold. The most dramatic example of this effect is the
Bacon-Shor code which, although it has weight-2 check
operators, has no threshold, as the stabilizer operators grow
with system size. The techniques we introduce can also be
used when applying logical operations with subspace codes,
as we explain in Sec. VII B, since lattice surgery and code
deformation for surface codes can be interpreted as gauge
fixing of a larger subsystem code [33].
We call the general method schedule-induced gauge

fixing, since we alter the schedule of the stabilizer meas-
urement circuits in such a way that gauge fixing can be used
to significantly improve the error-correcting performance
when decoding. We refer to it simply as gauge fixing when
the meaning is clear from context.
Schedule-induced gauge fixing can be applied to

a large class of subsystem codes, for which there are
stabilizers s that are the product of gauge operators

s ¼ g0; g1;…; gm−1; gi ∈ GnS. We call these gauge opera-
tors gauge factors Gs of s,

Gs ≔ fg0;…; gm−1jgi ∈ GnS; s ¼ g0; g1;…; gm−1g; ð5Þ

and stabilizers which admit such a decomposition are
referred to as composite stabilizers. In general, there can
be more than one such decomposition for a given stabilizer,
though we are typically most interested in the minimum-
weight decomposition, where the average weight of gauge
factors gi ∈ GnS is minimized. For the codes we construct in
this work, there is a unique minimum-weight decomposition
for each stabilizer, though in general there can be more than
one [44]. For CSS subsystem stabilizer codes, the gauge
factors of each stabilizer mutually commute and can be
measured in any relative order. For more general subsystem
codes, the order of measurements of gauge factors
g0; g1;…; gm−1 of each stabilizer s ∈ S must be chosen such
that each gauge factor measurement gi commutes with the
product g0g1…gi−1 of gauge factor measurements before it.
In Ref. [29], this condition was shown to be both necessary
and sufficient to guarantee that the stabilizer can indeed be
recovered from the product of individual measurements.
Schedule-induced gauge fixing will typically be most useful
for subsystem codes which have at least one composite
stabilizer, and for which the weight of each composite
stabilizer is greater than the weight of each of its gauge
factors. In the case of the subsystem codes studied in this
work, the gauge factors of eachZ stabilizer associated with a
face are the Z triangle operators belonging to that face (and
similar for X stabilizers and X triangle operators).
When decoding subsystem codes with existing methods,

the syndrome used consists of eigenvalues of stabilizers. In
other words, where a stabilizer is composite, measured by
taking the product of the measurements of its m gauge
factors gi ∈ Gs, it is the product that is used, not the result
of each gauge factor measurement individually. Therefore,
for each stabilizer, we measure m bits of information and
using only a single bit (their parity) for decoding. For the
most simple stabilizer measurement schedules typically
used, the parity is indeed all the useful information that can
be used for decoding. This is because G is not Abelian and,
by definition, each gauge factor gi ∈ Gs must anticommute
with at least one other gauge operator h ∈ G. Once h is
measured, either h or −h becomes a stabilizer, and a
subsequent measurement of gi will result in either 1 or −1
at random with Pð1Þ ¼ Pð−1Þ ¼ 0.5. Consider a schedule
W of measurements of check operators K0; K1;…; KN−1,
chronological order from left to right, where each check
operator Ki is either a gauge factor or a stabilizer that is not
composite, and where each Ki is measured once. If this
measurement schedule W is simply repeated periodically,
then every consecutive pair of measurements of any check
operator Ki will be separated by one measurement of every
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other check operator. As a result, if the check operators in
W generate S as required, every measurement of a gauge
factor will give a random outcome and will not be useful for
decoding, since its eigenvalue will not have been preserved
between consecutive measurements. In fact, the eigenvalue
of any product of check operators that is not in S will also
not be preserved between consecutive measurements,
following similar reasoning.
However, we can instead choose a measurement sched-

ule W, again repeated periodically, where some gauge
factors gi are measured multiple times within W, with no
anticommuting check operators measured between con-
secutive measurements of gi withinW. In this case, only the
first measurement of gi in W will have a uniform random
outcome, whereas the remaining measurements of gi within
W will have fixed outcomes (if no error occurs), as the
quantum state will (temporarily) be an eigenstate of gi—we
can think of gi (or −gi) as a temporary stabilizer.

A. Gauge fixing for CSS codes

We now restrict our attention to CSS subsystem codes,
for which the gauge group G can be decomposed into a set
of operators each in fI; Xgn, which we denote GX, and a set
of operators each in fI; Zgn, which we denote GZ, with
G ¼ GX ∪ GZ. The stabilizer group can similarly be decom-
posed into either X-type or Z-type Pauli operators. For CSS
subsystem codes, the most common measurement schedule
consists of alternating between measuring all X-type- and
all Z-type-check operator measurements in a repeating
sequence. In other words, the sequence of measurements
for measuring the X or Z stabilizers is of the form ðZXÞr,
where 2r is the number of rounds of stabilizer measure-
ments, and the chronological order is from left to right. We
call such a sequence of measurements a homogeneous
schedule, since all stabilizers of the same Pauli type are
given identical measurement schedules. Equivalently, for
the subsystem codes we construct, a homogeneous sched-
ule assigns the same schedule to each face of the lattice
from which it is derived. We sometimes denote a schedule
just by its longest repeating subsequence if the number of
repetitions is not relevant [i.e., denoting the above schedule
by ZX rather than ðZXÞr].
For the ZX schedule, each X gauge operator measure-

ment comes directly after the measurement of a Z gauge
operator that it anticommutes with (and vice versa), and so
the outcome of each individual gauge operator measure-
ment is random. However, by repeating X- or Z-check
operator measurements, we can temporarily fix some gauge
operators as stabilizers. As an example, consider a homo-
geneous schedule of the form ðZ2X2Þr. The first in each
pair of X gauge operator measurements will give a random
outcome, whereas the second is simply a repetition of the
first and, provided no error has occurred, will give the same
outcome as the first measurement. The same is true for the
first and second Z gauge operator measurement outcomes.

B. Gauge-fixing matching graph:
Vertex splitting and merging

We now show how this additional gauge operator
information can be used when decoding a CSS subsystem
code using a method based on minimum-weight perfect
matching, which introduces the additional requirement that
the code must have no more than two stabilizers of a given
Pauli type actingnontrivially on eachqubit. Subsystemcodes
which satisfy these properties include the subsystem surface
code [34], the Bacon-Shor code [18,22], and some 2D
compass codes [24], including heavy-hexagon codes [9].
As an example, let us first consider the 2D matching

graphs of the subsystem toric code, assuming perfect
stabilizer measurements. Each vertex in the X-type (or
Z-type) matching graph corresponds to an X (or Z)
stabilizer, and each edge corresponds to a qubit (and
therefore, a possible error). For the stabilizer group of
the subsystem toric code with no gauge operators fixed,
both the X-type and Z-type matching graphs are triangular
lattices, as shown in Fig. 7 (left) for the X-type matching
graph. This triangular lattice-matching graph has a mini-
mum-weight perfect-matching (MWPM) threshold of 6.5%
with perfect measurements [37]. However, once we mea-
sure all the X-type gauge operators, they become gauge
fixed as stabilizers (up to signs that can be corrected in
software), and the stabilizer group we obtain is that of the
hexagonal toric code [37]. The new associated X-type
matching graph instead has an improved MWPM threshold
with perfect measurements of 15.6% [37], exceeding that of
the toric code on a square lattice of 10.3% [1]. If we
measure all the Z-type gauge operators, we instead obtain
the dual of the hexagonal toric code, and now the Z-type
matching graph is a hexagonal lattice.
When using the standard ZX schedule for the subsystem

toric code, the stabilizer group is indeed constantly switch-
ing (up to signs) between the hexagonal toric code and its
dual, both Abelian subgroups of the gauge group G.
However, each gauge operator is only ever fixed immedi-
ately after it is measured, and is randomized by the time the
same gauge operator is next measured, since an anticom-
muting gauge operator of the opposite Pauli type is
measured in between these consecutive measurements of
the same gauge operator. However, by making more than

FIG. 7. Matching graphs (X type) for the subsystem toric code
with no triangle operators fixed as stabilizers (left) and all triangle
operators fixed as stabilizers (right).
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one consecutive measurement of gauge operators of a given
Pauli type, we now show that we can gauge fix into the
hexagonal toric code (and its dual) for longer durations,
thereby making more valuable use of the individual gauge
operator outcomes themselves.
Since measurements themselves can be faulty, we must

instead use a 3D matching graph when decoding the
subsystem toric code. Each vertex in the matching graph
corresponds to a stabilizer measurement, and each edge
ðu; vÞ corresponds to a single fault that can occur, creating a
defect (−1 syndrome) at vertices u and v. In order to handle
measurement errors, each stabilizer measurement is
repeated T ≥ L times [1], and a syndrome for a stabilizer
at time step t takes the value −1 if its value differs from its
measurement in time step t − 1. Measurement errors
correspond to timelike edges, and memory (data qubit)
errors correspond to spacelike edges. There are also single
circuit faults that can induce diagonal edges, which have
vertices that differ in both space and time. We can label
each vertex in the matching graph with a coordinate ðs; tÞ,
where t is the time step and s ¼ g0;…; gm−1 denotes the
stabilizer using its gauge factors gi ∈ Gs. We depict the 3D
matching graph for the subsystem toric code in Fig. 8.
For the ZX schedule used in the previous literature,

gauge operators are never fixed and stabilizers are always
the product of gauge operators, whereas for many of the
schedules we use, we can fix a subset of the gauge operator
measurements and obtain (temporarily) stabilizers consist-
ing of single gauge operators. In our matching graph, we
can fix a measurement of a gauge operator g as a stabilizer
if no gauge operator h which anticommutes with g is
measured since the last measurement of g. The matching
graphs for the schedules ðZXÞ6 and ðZ3X3Þ2 are shown in
Fig. 9. For the ðZXÞ6 schedule, gauge operators can never
be fixed as stabilizers in the matching graph, whereas for
the ðZ3X3Þ2 schedule, two-thirds of the gauge operator
measurements can be fixed as stabilizer measurements.

Since each gauge operator has weight 3, by fixing some
gauge operators as stabilizers, we can reduce the weight of
some stabilizer measurements from 6 down to 3.
Since the stabilizers can change between consecutive

time steps when using gauge fixing, we must generalize our
definitions of the difference syndrome and vertical edges in
the matching graph. For our generalized difference syn-
drome, we set the syndrome of stabilizer s to be −1 in time
step t if its eigenvalue differs from that of the same product
of gauge operators in time step t − 1. We draw a vertical
edge in the matching graph between a stabilizer measure-
ment st in time step t and measurement st−1 in time step
t − 1 if st and st−1 have at least one gauge factor in
common.
As an example, we now consider the case where a

stabilizer has two gauge factors, as is the case for the
subsystem toric code. Suppose a stabilizer is the product
g0g1 of gauge factors g0 and g1 in time step t − 1, but both
g0 and g1 are fixed as stabilizers in time step t. We say that
the stabilizer vertex is split into two vertices in time step t,
with the matching graph locally looking like (with time
propagating upward)

and a measurement error in time step t − 1 on gauge factor
measurement g0, e.g., at the vertex ðg0g1; t − 1Þ, will cause
a −1 difference syndrome at vertex ðg0g1; t − 1Þ as well as
vertex ðg0; tÞ. Therefore, this measurement error corre-
sponds to flipping the vertical edge ½ðg0g1; t − 1Þ; ðg0; tÞ�.

FIG. 8. The 3D X-type matching graph for the subsystem toric
code. Left: we show three time steps of the 3D matching graph for
a single X stabilizer (highlighted in red), with black lines
denoting edges. Right: we also use this more simple, abstract
notation to depict the same 3D matching graph in our work,
restricted to a single face of the lattice. Here, each pale red
rounded rectangle corresponds to an X stabilizer in one of three
consecutive time steps in the matching graph. Red dots denote X
triangle operator measurements (two of which within a face form
a stabilizer), and red lines denote edges in the 3D matching graph.

FIG. 9. Matching graph for a single face of the subsystem toric
code using a homogeneous ðZXÞ6 schedule (left) and a homo-
geneous ðZ3X3Þ2 schedule (right). The vertical axis corresponds
to time, with the direction of time being from bottom to top.
Small blue- and red-filled circles correspond to Z and X gauge
operator measurements, respectively, with each vertical column
of small filled circles corresponding to a single gauge operator.
Large light-blue- and light-red-filled rounded rectangles (or
rounded squares) correspond to stabilizers being the product
of the gauge operators they enclose. Diagonal edges (between
stabilizers that differ in space and time) are omitted for clarity.
Blue and red lines correspond to edges in the Z and X matching
graphs, respectively.
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The same argument holds for a measurement error on g1 in
time step t − 1 corresponding to flipping the other vertical
edge ½ðg0g1; t − 1Þ; ðg1; tÞ�. Similarly, we can fix g0 and g1
as stabilizers in time step t − 1 but instead have the
stabilizer g0g1 in time step t (the vertices are merged in
time step t). This merging occurs if gauge operators are
measured in between time steps t − 1 and t that anticom-
mute with g0 and g1. The matching graph locally looks like

and we find that a measurement error that occurs at
the vertex ðg0; t − 1Þ results in a −1 syndrome at both
ðg0; t − 1Þ and ðg0g1; tÞ, corresponding to flipping the edge
½ðg0; t − 1Þ; ðg0g1; tÞ�. Similarly, a measurement error at
vertex ðg1; t − 1Þ corresponds to flipping the edge
½ðg1; t − 1Þ; ðg0g1; tÞ�. While, in this example, we consider
stabilizers which have only two gauge factors (which is the
case for subsystem toric codes), the definition of the
difference syndrome can be applied to stabilizers with
any number m of gauge factors. For example, we have
m ¼ 4 for the f8; 4g subsystem hyperbolic codes consid-
ered in this work, since these have four triangle operators
(gauge factors) in each face.
In a stabilizer round in which all gauge operators are

fixed (matching graph vertices are split), there are two
distinct advantages which gauge fixing can offer. First,
vertical timelike edges have a lower error probability, since
the syndrome corresponding to a vertex is obtained from
only a single check operator measurement, rather than
taking the product of multiple measurements. Second, the
degree of vertices in the matching graph is reduced. The
advantage that this can offer becomes clear when we again
consider the (spacelike) matching graph of the subsystem
surface code when all gauge operators are fixed, compared
to the matching graph when they are not fixed. We find that
the hexagonal lattice matching graph when gauge operators
are fixed (Fig. 7, right) has a threshold of around 4.1%
under a phenomenological noise model. On the other hand,
for the triangular lattice-matching graph when no gauge
operators are fixed (Fig. 7, left), we find a threshold of 2.0%
with a phenomenological noise model (see Fig. 30).
Furthermore, the outcomes of the weight-3 checks are
more reliable, since their measurement circuits are shorter.
However, a potential disadvantage of gauge fixing is that by
repeating X checks, more errors accumulate for the next
measurement of Z checks, for which Z gauge operators
cannot be fixed. We show in Sec. VI A 1 how this trade-off
leads to an optimal homogeneous schedule for the thresh-
old under a circuit-level depolarizing noise model.

C. Homogeneous stabilizer measurement circuits

In order to measure the triangle operators (and therefore
stabilizers), we require a circuit to measure each triangle

operator using an ancilla qubit. We now show how these
circuits can be constructed for homogeneous schedules,
where the same schedule is applied to each face in the
lattice. As we discuss in Sec. IV B, all triangle operators
with the same label share the same schedule in the
subsystem toric, hyperbolic, and semihyperbolic codes
we use, so we need specify only four parity-check circuits,
one for each label. Each triangle operator consists of three
data qubits and at least one ancilla, and can be measured
using three controlled-NOT (CNOT) gates, along with
state preparation and measurement of an ancilla. A time
step is defined as the time taken for a CNOT gate, and
we assume that state preparation and measurement com-
bined take a single time step. This assumption is similar to
the assumption of non-demolition measurements in
Refs. [39,45], except we assume both state preparation
and measurement errors, rather than just the latter. In
Ref. [34], the authors instead assume that state preparation
and measurement each take a time step, and use an
additional ancilla to parallelize state preparation and
measurement into a single time step. The parity-check
measurement circuit therefore takes four time steps.
The measurement schedules we use are shown in Fig. 10.

The schedule shown on the left of Fig. 10 is for alternating
measurement of the Pauli-Z and Pauli-X operators (ZX
schedule), and is the same as that used in Ref. [34]. The
right-hand diagram in Fig. 10 shows the schedule for
measuring ZZ (blue labels) as well as the schedule for
measuring XX (red labels). All three of these schedules
have period 4, and so the time steps which each gate is
labeled with are given modulo 4. Note that the first half of
the ZZ schedule matches the Z component of the ZX
schedule, and the first half of the XX schedule matches the
X component of the ZX schedule. Therefore, the schedule
for any homogeneous sequence can be implemented by
concatenating these three schedules (or subsets of them).
For the standard ZX schedule, we need only a single ancilla
qubit for each triangle operator. For schedules which
contain ZZ, we use two ancillas per Z triangle operator

FIG. 10. Parity-check measurement schedule for the subsystem
surface code using a homogeneous ðZXÞr sequence (left) [34], a
homogeneous Zr sequence (right, blue text), and a homogeneous
Xr sequence (right, red text). CNOT gates are labeled with the time
step(s) they are applied in, which are given modulo 4, since all
schedules have period 4.
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to parallelize consecutive triangle operator measurements,
and similarly, we use two ancillas per X triangle operator
for parallelized schedules containing XX.
For the subsystem hyperbolic and semihyperbolic codes,

we generalize the schedule in Fig. 10 by using the same
schedule for triangles with the same label, as we explain in
Secs. IV B and Appendix D. Each individual fault in the
measurement circuit results in at most a single data qubit
error, a property that is made possible by the weight-3
gauge operators. As a result of this bare-ancilla fault
tolerance of the measurement circuits, we can correct up
to the full code distance for all the codes we construct.

D. Edge weights

In order to decode the subsystem surface codes using
minimum-weight perfect matching, we construct a match-
ing graph, where each individual fault that can occur flips
an edge in the matching graph [1,34]. We assign each edge
a weight w ¼ log½ð1 − pÞ=p�, where p is the total prob-
ability that any individual fault will result in the edge being
flipped [1,39,46].
We first consider the matching graph obtained by

measuring only X-type-check operators and fixing all
X-type gauge operators as stabilizers. We see later that
all other matching graphs for arbitrary homogeneous
schedules can be obtained by merging edges and/or vertices
in this matching graph. There are two types of X-type
gauge operators in the subsystem surface code, as shown in
Fig. 6, labeled by 1 and 3, which we refer to as T1 and T3,
respectively. Every spacelike or diagonal edge is from a T1

to a T3 (or vice versa), and the neighborhood of every
triangle operator with the same label is identical. All seven
types of edges in the matching graph for X-type checks are
shown in Fig. 11. All edges are undirected but are denoted
by directed arrows in the diagram to remove any ambiguity
in the definition of the diagonal edges. The purely spacelike
edges are labeled 0, 1, and 2, purely timelike errors are

labeled 6 and 7, and diagonal edges are labeled 3, 4, and 5.
Diagonal and timelike errors are drawn from time step t to
time step tþ 1, whereas spacelike edges connect vertices
within a single time step. Therefore, each vertex in this
matching graph has degree 8 (since each vertex is both the
source and target of a timelike edge).
If an X-type-check operator is measured directly after a

Z-type-check operator that anticommutes with it, then this
X-type-check operator cannot be fixed, and the matching
graph shown in Fig. 11 is not quite valid. However, we can
use the vertex-merging procedure detailed in Sec. V B to
give the matching graph the correct structure. When the
X-type-check operators within a face of the lattice cannot
be fixed, then the corresponding X-type matching graph
vertices from that face (each vertex vgi corresponding to a
gauge factor gi) are merged into a single vertex vs. The
edges incident to vs each correspond to an edge incident to
a gauge factor vertex vgi . This process can result in more
than one edge (a multiedge) between the same pair of
vertices [such as for timelike edges in homogeneous ðZXÞr
schedules]. When this happens, we replace the multiedge
with a single edge and assign it a flip probability equal to
the probability that an odd number of edges in the multi-
edge would flip.
In order to calculate the probability p that each edge flips

(both for edge weights and for simulations), we count the
number of single faults (of each type) that can lead to each
type of edge flipping. These counts are given in Table I for
the X matching graph (for X-type-check operators). The
operators GX

1 and GZ
1 are Pauli errors from CNOT gates in

the X or Z measurement schedule, respectively,

FIG. 11. The different types of edges in the 3D matching graph
of the subsystem surface code for X-type checks only, when all
X-type gauge operators are fixed. Each unique edge type is
labeled with a number. If an asterisk is present in the label, the
edge is from time step t to tþ 1, otherwise, the edge is purely
spacelike. The whole X matching graph for a single time step is
drawn with gray dashed lines.

TABLE I. Number of single faults that can cause each type of
edge to flip in the 3D matching graph for X-type-check operators.
Each GX

1 or GZ
1 fault is a single Pauli error arising from a CNOT

gate in the measurement circuit for an X-type or Z-type gauge
operator, respectively. Each GZ

2 fault is a pair of Pauli errors
arising from a single CNOT gate in the measurement circuit for a
Z-type gauge operator. PX and MX are state preparation and
measurement errors in the X-type-check operator measurement
schedule, respectively. rZ is the number of rounds of Z-type-
check operator measurements that have occurred since the last X-
type-check operator measurement. For example, rZ ¼ 1 always
for ðZXÞr schedules, and rZ ¼ 2 always for ðZZXÞr schedules.
The edge types are shown in Fig. 11. Faults for the Z matching
graph can be found by exchanging Z and X in the table.

Edge type GX
1 GZ

1 GZ
2

PX MX

0 2 2rZ 0 0 0
1 2 2rZ 2rZ 0 0
2 2 2rZ 2rZ 0 0
3 2 0 0 0 0
4 2 0 0 0 0
5 2 0 0 0 0
6 3 0 0 1 1
7 3 0 0 1 1
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corresponding to either an XI, IX, or XX error acting after
the gate. In the standard depolarizing model, GX

1 or GZ
1

errors occur with probability 4p=15. See Table II for the
gate error probabilities under the independent noise model
we use.GZ

2 errors correspond to a pair ofG
Z
1 errors from the

same CNOT gate in the Z measurement circuit that both
cause the same edge to flip. For example, both XI and XX
errors on a CNOT gate may cause the same edge to flip, and
since these errors are mutually exclusive on the same gate,
the chance of either of these errors occurring is exactly
twice the probability that one of them occurs. The number
ofGZ

1 orG
Z
2 errors that can cause an edge to flip depends on

rZ, the number of Z-check operator measurements that
have occurred since the most recent prior X-check operator
measurement. We can recover the matching graph for the
standard ðZXÞr schedule used in Ref. [34] by setting rZ ¼ 1
and merging all vertices within each face (up to small
differences in the error model shown in Table II).

E. Noise models

We consider two different types of noise models: a
circuit-level depolarizing noise model and a circuit-level
independent noise model. The depolarizing noise model is
widely used in the literature and is useful for comparing to
previous work. Later, we consider biased noise, for which
we use the independent noise model.
The circuit-level depolarizing noise model is the same as

that used in Refs. [9,46] and is parametrized by a single
variable p. Ancilla state preparation and measurement
errors each occur with probability 2p=3. With probability
p, each CNOT gate is followed by a two-qubit Pauli error
drawn uniformly from fI; X; Y; Zg⊗2nI ⊗ I. A single-
qubit Pauli error drawn uniformly from fX; Y; Zg occurs
with probability p after each idle single-qubit gate location.
Note that many of our syndrome extraction circuits are fully
parallelized and do not contain single-qubit gates or idle
locations.
In our circuit-level independent noise model, Z-type

errors and X-type errors are independent. For a given error
probability parametrized by p0, we choose a high-rate-error
probability for Z-type errors pZ ¼ p0η=ðηþ 1Þ and the
low-rate-error probability pX ¼ p0=ðηþ 1Þ for X-type
errors. The bias η ¼ pZ=pX parametrizes the relative

strengths of Z-type and X-type errors. The total probability
of any error is

ptot ¼ 1 − ð1 − pXÞð1 − pZÞ

¼ p0 −
p2
0η

ðηþ 1Þ2 : ð6Þ

Each with probability pZ, a CNOT gate is followed by an
error in fIZ; ZI; ZZg, chosen uniformly at random, an
X-type ancilla is prepared or measured in an orthogonal
state, and a single qubit idle for one time step undergoes a Z
error. Similarly, each with probability pX, a CNOT gate is
followed by an error randomly chosen from fIX; XI; XXg,
a Z-type ancilla is prepared or measured in an orthogonal
state, and a single qubit idle for one time step undergoes an
X error. Biased noise models are common in many physical
realizations of quantum computers, and bias-preserving
CNOT gates can be realized using stabilized cat qubits [11].
We note that our techniques significantly improve perfor-
mance even for small finite bias (η ≤ 10), which may be
achievable even with CNOT gates that do not fully preserve
bias, as is the case in many architectures [47,48].
The probability of each different type of circuit element

undergoing a fault for our two error models (as well as the
error model in Ref. [34] for comparison) is given in
Table II.

VI. NUMERICAL ANALYSIS

For all of the numerical results in this section, we used a
local variant of the minimum-weight perfect matching
(MWPM) decoder described in Appendix A and available
at Ref. [49], along with the BLOSSOM V implementation of
the Blossom algorithm [50,51].

A. Subsystem toric codes

1. Gauge fixing for depolarizing noise

Wenowshowhowgauge fixing can beused to improve the
quantum-error-correcting performance of the subsystem
toric code under a depolarizing noise model. For this
unbiased noise, we use balanced schedules, whichwe define
to be of the form ZaXa for some a ∈ Zþ. We find that
schedules that allow gauge fixing increase the threshold from
0.666(1)% for the standard ðZXÞr schedule used in Ref. [34]
to 0.811(2)% for the ðZ4X4Þr schedule, where gauge
operators are fixed for three in every four rounds of
measurements. In Fig. 12, we show the thresholds for the
ZX, Z2X2, and Z3X3 schedules. We see that both the Z2X2

and Z3X3 schedules are higher than the standard ZX
schedule, but the crossing is at a higher logical error rate.
For these balanced schedules ðZaXaÞr under depolarizing
noise, we find that a ¼ 4 is optimal (see Table V). Therefore,
schedule-induced gauge fixing makes the threshold of the
subsystem toric code under depolarizing noise much more

TABLE II. The probability of a fault occurring for each type of
circuit element under the two error models considered in this
work, as well as for the depolarizing error model used in Ref. [34]
for reference.

Error type GX
1 GX

2 GZ
1 GZ

2
PX MX PZ MZ

Depolarizing 4
15
p 8

15
p 4

15
p 8

15
p 2

3
p 2

3
p 2

3
p 2

3
p

Independent 1
3
pX

2
3
pX

1
3
pZ

2
3
pZ pX pX pZ pZ

Ref. [34] 1
4
p 1

2
p 1

4
p 1

2
p p p p p
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competitive with the rotated surface code, which we find has
a threshold of around 0.97%under the same noise model and
assumptions (state preparation and measurement each take
half the time of a CNOT gate, and the logical error rate per time
step is used).However, inSec.VI A 2we show that schedule-
induced gauge fixing with the subsystem toric code can be
used to outperform the rotated surface code for small finite
bias η > 2.3.
By using gauge fixing (setting a > 1), we reduce the

average stabilizer weight in the 3D matching graph, since
the stabilizers introduced from gauge fixing have weight 3.
The mean stabilizer weight in the 3D (X check) matching
graph for a f2c; 4g subsystem surface or hyperbolic code
using a ðZqXaÞr schedule (for anyq ≥ 1 or r ≥ 1) is given by
3ca=½cða − 1Þ þ 1�. So for the subsystem toric code (c ¼ 2Þ,
the mean stabilizer weights for the ðZXÞr, ðZ2X2Þr, and
ðZ3X3Þr schedules are 6, 4, and 3.6, respectively. We also
reduce the average degree of vertices in the matching graph.
For a ¼ 1, the mean vertex degree is 14, whereas for a > 1,
the mean vertex degree is 8ca=½cða − 1Þ þ 1�, and so the
ðZXÞr, ðZ2X2Þr, and ðZ3X3Þr schedules have mean vertex
degrees of 14, 32=3, and 9.6, respectively, for the subsystem
toric code. More properties of matching graphs for some
homogeneous schedules with the subsystem toric code are
given in Table III.

While we expect that reducing the average stabilizer
weight and vertex degree in the matching graph should
improve the threshold, increasing a in balanced ZaXa

schedules also alters the edge-fault probabilities. In time
steps where gauge operators are fixed, rZ ¼ 0 in Table I,
reducing the edge weights for some edges of type 0, 1, and
2. However, in the time steps where gauge operators are not
fixed, rZ ¼ a, and so increasing a also increases the edge-
fault probability for these edges of type 0, 1, and 2.
Therefore, increasing a increases the proportion of time
steps where a spacelike slice of the matching graph is a
degree-3 hexagonal lattice with small edge-fault probabil-
ities, but also increases the edge-fault probabilities for the
remaining time steps where the matching graph is not fixed,
and is instead a degree-6 triangular lattice. There is there-
fore a trade-off between increasing the edge weights and
decreasing the stabilizer weights and vertex degrees, and
the a ¼ 4 schedule is the optimal compromise for sched-
ules of the form ðZaXaÞr for a circuit-level depolarizing
noise model.
Since changing the schedule alters both the matching

graph via gauge fixing, as well as the edge-fault proba-
bilities, we can better understand how these two factors
contribute to performance by studying them separately. In
Fig. 13, we plot the threshold as a function of a for
balanced schedules ZaXa both with and without using
gauge fixing. The thresholds that do not use gauge fixing
are decoded by always merging gauge factors of a stabilizer
into a single vertex in the matching graph, even in time
steps where they could be split (gauge factors fixed) using
the techniques we introduce. We see that for schedules that
do not use gauge fixing, there is almost no improvement for
a > 1, with performance degrading for a > 4. This dem-
onstrates that almost all the improvement in threshold for
depolarizing noise is due to the use of gauge fixing, rather

FIG. 12. Threshold plots for subsystem toric codes using a
ðZXÞ92 schedule (left), ðZ2X2Þ46 schedule (middle), and
ðZ3X3Þ31 schedule (right) using a depolarizing noise model.

TABLE III. The mean js̄j, maximum jsjmax, and minimum jsjmin

stabilizer weight and mean d̄, maximum Δ, and minimum δ
degree of the X-check 3D matching graphs for various homo-
geneous schedules with the subsystem toric code.

Schedule js̄j jsjmax jsjmin d̄ Δ δ

ZqX 6 6 6 14 14 14
ZqX2 4 6 3 10.67 16 8
ZqX3 3.6 6 3 9.6 16 8
ZqX5 3.33 6 3 8.89 16 8
ZqX10 3.16 6 3 8.42 16 8

FIG. 13. Left: circuit-level depolarising threshold as a function
a for schedules of the form ZaXa, with and without gauge fixing.
Right: Z thresholds as a function of b for schedules of the form
ZXb, both with (orange) and without (blue) gauge fixing, using a
circuit-level independent noise model. The orange and blue
dashed lines are the threshold achievable under infinite bias
(using an X schedule) with and without gauge fixing, respec-
tively. Error bars are smaller than the marker size and are omitted
for clarity.
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than the change in the noise model induced by the different
schedule alone.

2. Tailoring the 3D matching graph
to biased noise using gauge fixing

By using unbalanced schedules, where X-check oper-
ators are measured more frequently than Z-check operators
(or vice versa), we can use gauge fixing to improve
performance under biased noise models. Since we correct
X errors and Z errors independently, we can define the Z
threshold pth

Z and X threshold pth
X as the threshold for only

Z-type or only X-type errors, respectively. In Fig. 14, we
plot the Z threshold for the unbalanced ZX, ZX2, ZX10, and
X schedules, under the independent circuit-level noise
model. Increasing the ratio of X checks to Z checks
significantly increases the Z threshold from 0.52% for
the ZX schedule up to 2.22% for the X schedule, which sets
an upper bound.
By measuring X checks more frequently, we also reduce

the noise on data qubits caused by the CNOT gates used to
measure Z checks. To determine how much of the improve-
ment in threshold comes from this reduced noise in the
measurement schedule compared to the use of gauge fixing
in the matching graph, we determine the thresholds both
with and without using gauge fixing in Fig. 13. We see that
even without using gauge fixing, increasing the ratio of X
checks to Z checks increases the Z threshold, as expected.
However, gauge fixing significantly boosts the Z threshold
further, and even a ZX5 schedule using gauge fixing
outperforms the best achievable Z threshold without gauge
fixing (using the X schedule).
However, by increasing the ratio of X to Z checks, we

also reduce the X threshold of the code, which we must take
into account when determining the total threshold under

biased noise models. We now ask what the threshold is
under the biased independent circuit-level noise model
described in Sec. V E, with bias parameter η. Specifically,
for a given η, we wish to find the total physical error rate
pth
total below which the total logical error probability plog

total of
both logical X̄ or Z̄ errors vanishes as the distance L of the
code increases to infinity. A sufficient and necessary
condition for a total error probability p0

total to be below
the accuracy threshold for a decoder that decodes Z and X
errors independently is that the probability of a Z-type error
p0
Z be below pth

Z and the probability of an X-type error p0
X

be below pth
X.

The total error probability pZth
total when pZ ¼ pth

Z is

pZth
total ¼ pth

Z þ pth
Z ð1 − pth

Z Þ
1

η
; ð7Þ

and the total error probability pXth
total when pX ¼ pth

X is

pXth
total ¼ pth

X þ pth
X ð1 − pth

X Þη: ð8Þ

The total threshold pth
total is therefore given by

pth
total ¼ minðpZth

total; p
Xth
totalÞ: ð9Þ

In Fig. 15, we plotpth
total as a function of the bias parameter

η for the subsystem toric code and for a few different choices
of homogeneous schedule. For the ZX schedule used in
Ref. [34] and the Z3X3 schedule with gauge fixing, the
optimal bias is η ¼ pZ=pX ¼ 1. This is as expected, since
the X threshold is identical to the Z threshold for these
symmetric schedules. FromEqs. (7)–(9) we see that at η ¼ 0
and η ¼ ∞ the total threshold is simply the X threshold and
Z threshold, respectively.

FIG. 14. Z thresholds for unbalanced schedules of the form
ZXb, as well as an X schedule, which gives an upper bound on the
Z threshold achievable using unbalanced schedules.

FIG. 15. Threshold pth
total [see Eq. (9)] as a function of the bias

for different homogeneous schedules and under a circuit-level
independent noise model. Dashed lines use the same schedule as
the corresponding solid line of the same color, except gauge
fixing is not used, for the purpose of comparison.
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For each of the schedules for which pth
total is plotted in

Fig. 15, there are two regimes: to the left and to the right of
the peak. To the left of the peak, the threshold is limited by
the X threshold, and is therefore given by Eq. (8), which is
linear in η. To the right of the peak, the threshold is limited
by the Z threshold, and is therefore given by Eq. (7), which
is linear in 1=η. The optimal η for a given schedule can be
found by setting pZth

total ¼ pXth
total.

Even for small finite bias, using unbalanced schedules
and gauge fixing significantly improves the total threshold
compared to the traditional ZX schedule, with a 2.8×
increase in threshold at η ¼ 9. With infinite bias, the
threshold rises to 2.22% which is 4.3× higher than the
threshold of 0.52% using the standard ZX schedule. Each
dashed line in Fig. 15 uses the same schedule as the
corresponding solid line of the same color but without
using gauge fixing to decode. For high bias, we see that
approximately half of the improvement over the ZX
schedule can be attributed to the effect the new schedule
has on the noise model, with the remainder attributed to the
extra information used by gauge fixing when decoding.
For the rotated surface code using the same schedule as

in Ref. [35], we find a threshold under circuit-level
independent noise of 0.741(2)%. Therefore, the subsystem
toric code (with a ZX3 schedule and using gauge fixing)
outperforms the rotated surface code for biases η > 2.3.
Note that, for all the thresholds we report so far, we use

fully parallelized schedules. Whereas the ZX schedule is
fully parallelized with only na ¼ 1 ancilla qubits per
triangle operator, the unbalanced ZXb schedules require
two ancilla qubits per X-check operator (na ¼ 1.5), and the
balanced ZaXa schedules require two ancilla qubits per

X-check operator and per Z-check operator (na ¼ 2). Since
there are 4na=3 ancilla qubits per data qubit, this leads to a
larger qubit overhead when using gauge fixing with
parallelized schedules. We can choose not to parallelize
the schedules, and instead simply omit gates in the ZX
schedule to construct our other schedules (e.g., an unpar-
allelized ZX2 schedule can be constructed by omitting
every other Z measurement in the ZX schedule). These
schedules incur no qubit overhead but instead introduce
idle errors. The threshold with infinite bias using an
unparallelized X schedule is 1.25%, compared to 2.22%
using a parallelized X schedule, both an improvement over
the 0.52% threshold using the ZX schedule. Near the
threshold, using additional ancillas is clearly worthwhile,
whereas far below threshold it may be beneficial to use an
unparallelized schedule, using the additional qubits to
instead construct a code with a larger distance.
To analyze the performance below threshold, we com-

pare a ZX schedule to an unparallelized ZX3 schedule
(na ¼ 1) using the L ¼ 26 subsystem toric code, both with
and without using gauge fixing to decode. When using
gauge fixing, the logical Z error rate is reduced by around 4
orders of magnitude compared to the ZX schedule (see
Fig. 16). Without using gauge fixing, the logical error rate
with the unparallelized ZX3 schedule is slightly worse than
with the ZX schedule, since idle qubit errors are worse than
qubit errors in the standard depolarizing noise model [40].

B. Performance of the finite-rate LDPC
subsystem codes

We simulate the performance of l ¼ 2 f8; 4g subsystem
semihyperbolic codes under the circuit-level depolarizing
noise model. We are interested in finding the threshold
value below which the logical error rate per logical qubit
tends to zero as the code distance tends to infinity. Since the
number of logical qubits k increases with distance for this
family of finite-rate codes, we fix the number of logical
qubits by using multiple independent copies of the smaller
codes. In Fig. 17, we plot the probability that at least one of
338 logical qubits suffers a Z failure as a function of the
depolarizing error rate p. The [[8064,338,10]] code has the
lowest logical error rate per logical qubit for physical error
rates below 0.42%, from which we conclude that the
threshold is at least 0.42%. We are not able to obtain an
upper bound on the threshold, since all codes have an error
rate (per 338 logical qubits) of 1 for physical error rates
above 0.42%, within the precision provided by our numeri-
cal experiments.
We now analyze the performance of the [[8064,338,10]]

l ¼ 2 f8; 4g subsystem semihyperbolic code, which has the
best ratio n=ðkd2Þ ¼ 0.24 of the codes we construct. In
Fig. 18, we compare its performance with that of the L ¼ 4,
6, 8, 9, and 10 subsystem toric codes. We use 169
independent copies of the subsystem toric codes in order
to keep the number of logical qubits (338) constant, and the

FIG. 16. Logical Z̄ error rate of the ½½2028; 2; 26�� subsystem
toric code using a ðZXÞ36 schedule, as well as a ðZX3Þ12 schedule
(using only a single ancilla by introducing idle time steps) with
and without using gauge fixing in the matching graph. All
schedules use 144 time steps, and the independent circuit-level
noise model is used. The dashed black line is the probability that
either of two physical qubits will suffer a Z error during 144 time
steps without using error correction.
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total number of physical qubits used (including ancillas) is
given in the legend. We find that the [[8064,338,10]]
subsystem semihyperbolic code (which uses 18 816 physi-
cal qubits) outperforms the L ¼ 4 subsystem toric code
(which uses 18 928 physical qubits to encode 338 logical
qubits) by around 3 orders of magnitude at p ¼ 0.15%. At
a physical error rate of 0.2%, the performance of the
[[8064,338,10]] subsystem semihyperbolic code is similar
to the L ¼ 9 subsystem toric code, which uses 95 823
physical qubits to achieve the same logical error rate. This
demonstrates that the [[8064,338,10]] subsystem semi-
hyperbolic code requires 5.1× fewer resources to achieve
the same level of protection that the subsystem toric code
would provide at a physical error rate of 0.2%.
We also compare the [[8064,338,10]] subsystem semi-

hyperbolic code with the rotated surface code, which is the
leading candidate for realizing fault-tolerant quantum
computation, and has the optimal ratio n=d2 ¼ 1 for
surface codes [36]. This comparison is shown in Fig. 19,
where we again keep the number of logical qubits fixed by
using 338 independent copies of the rotated surface codes.
At a circuit-level depolarizing error rate of 0.15%, the
subsystem semihyperbolic code using 18 816 physical
qubits has a similar performance to L ¼ 11 rotated surface
codes using 81 458 physical qubits, a 4.3× reduction in
qubit overhead. We also compare the performance of the
[[8064,338,10]] subsystem semihyperbolic code with a
distance-6 rotated surface code, which has a slightly lower

FIG. 17. Performance of the extremal l ¼ 2 f8; 4g subsystem
semihyperbolic codes under a circuit-level depolarizing noise
model. Here, we fix the number of logical qubits to at least 338
for all codes by using multiple copies of the smaller codes. A
homogeneous ðZXÞ20 schedule is used for all codes, and the y
axis is the probability that at least one logical Z error occurs. The
dashed black line is the probability of a Z error occurring on at
least one of 338 physical qubits without error correction under the
same error model for the same duration (80 time steps). For each
code that encodes k < 338 logical qubits, we use m ¼ bk=338c
copies and plot the failure rate as p�

log ¼ 1 − ð1 − plogÞm.

FIG. 18. Comparison of the [[8064,338,10]] l ¼ 2 f8; 4g
subsystem semihyperbolic code (red), which has 8064 data
qubits and 10 752 ancillas, with L ¼ 4, 6, 8, 9, and 10 subsystem
toric codes (shades of blue), using a ðZXÞ20 schedule (no gauge
fixing) and a circuit-level depolarizing noise model. We fix the
number of logical qubits by plotting the probability that at least
one of 169 independent copies of the subsystem toric codes
suffers a logical Z failure [i.e., we plot 1 − ð1 − plogÞ169 for the
subsystem toric codes where plog is the probability that a single
copy of the code suffers a logical Z error]. The total number of
physical qubits (including ancillas) is given in the legend. The
black dashed line is the probability that at least one of 338
physical qubits would suffer a Z failure without error correction
over the same duration.

FIG. 19. Comparison of the [[8064,338,10]] l ¼ 2 f8; 4g
subsystem semihyperbolic code (red), with L ¼ 5, 7, 9, and
11 rotated surface codes (shades of green) using a ðZXÞ20
schedule (no gauge fixing) for the subsystem semihyperbolic
code and a ðZXÞ16 schedule for the rotated surface codes (both
schedules require 80 time steps). We use a circuit-level depola-
rizing noise model. We fix the number of logical qubits by
plotting the probability that at least one of 338 independent
copies of the rotated surface code suffers a logical Z failure. The
legend gives the total number of qubits (ancilla and data qubits)
used. The black dashed line is the probability that at least one of
338 physical qubits would suffer a Z failure without error
correction over the same duration.
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encoding rate (including ancillas) and find that the sub-
system semihyperbolic code has a lower logical error rate
below 0.43%.
To the best of our knowledge, the rotated surface code is

the best-performing code in the literature in terms of qubit
overhead in the regime of around 0.15% to 0.2% circuit-
level depolarizing noise, which is roughly the same
physical error rate assumed for practical implementations
of fault-tolerant quantum computing [25,52]. Since our
subsystem semihyperbolic codes have a qubit overhead that
is 4.3× smaller than the rotated surface code at p ¼ 0.15%,
as demonstrated in Fig. 19, we therefore believe that they
outperform all known quantum-error-correcting codes in
terms of qubit overhead in this regime.
Furthermore, we can use schedule-induced gauge fixing

for the subsystem hyperbolic and semihyperbolic codes just
as we did for the subsystem toric code. In Fig. 20, we plot
the threshold of the l ¼ 2, f8; 4g subsystem semihyper-
bolic codes under the independent circuit-level noise model
using an X schedule, and find a threshold of at least 2.4%,
exceeding that of the subsystem toric code (2.22%). This
threshold sets an upper bound on the thresholds that can be
achieved using gauge fixing under biased noise models,
and we expect that large gains can still be found even for
small finite bias, as we find for the subsystem toric codes.

VII. BROADER APPLICATIONS OF OUR
TECHNIQUES

A. Inhomogeneous schedules

We so far consider only homogeneous schedules; how-
ever, sometimes it may be advantageous to use schedules
that are inhomogeneous, where check operators in different
faces of the lattice are given different schedules.

As an example, consider two different unparallelized
ZX4 schedules, which we call L0 and L1, obtained by
omitting three quarters of the Z-check operator measure-
ments in the ZX schedule, and such that L1 is identical to
L0 other than a lag of four check operator measurements. A
section of eight rounds of X-check operator measurements
for these schedules looks like

ðZXÞ8 Z X Z X Z X Z X Z X Z X Z X Z X

L0 X X X Z X X X X Z X
L1 X Z X X X X Z X X X

where each column corresponds to a measurement round of
either X-type- or Z-type-check operators. We can assign
either the L0 or L1 schedule to each face of the planar
subsystem surface code independently, since each schedule
is a subset of the ZX schedule, for which we have a
consistent measurement circuit for every face. Let GX

0 be
the set of X triangle operators in faces assigned the L0

schedule, and let GX
1 be the set of X triangle operators in

faces assigned the L1 schedule. Note that in each round of
X-check operator measurements, either GX

0 , G
X
1 , or G

X
0 ∪

GX
1 may be fixed.
Can an inhomogeneous schedule be used to increase the

Z distance of a subsystem code? For the planar subsystem
surface code, the only Z logical is a Pauli Z operator
applied to each qubit in a column of the lattice, corre-
sponding to a path in the matching graph joining the north
and south boundaries. Consider the inhomogeneous sched-
ule where we alternate between using the L0 and L1

schedule in each row of the lattice: We assign the schedule
Lði mod 2Þ to faces in the ith row of the lattice. For a planar
subsystem surface code with an odd distance, in each round
of X-check operator measurements at least half of the gauge
operators can be fixed: We can fix gauge operators in all
rows, then in even rows, then all rows again, then odd rows,
and so on in a cycle. In Fig. 21, we plot spacelike slices
(single time steps) of the 3D matching graph for when all
rows, odd rows, and even rows of gauge operators are fixed.
Within each of these slices of the 3D matching graph, the
shortest path between the north and south boundary is
larger than the Z distance of the subsystem surface code
itself. We expect that the shortest path between the north
and south boundaries of the overall 3D lattice is also larger,

FIG. 20. Performance of the extremal subsystem f8; 4g l ¼ 2
semihyperbolic codes under a circuit-level independent noise
model and using an X schedule.

FIG. 21. Matching graphs (X type) for the L ¼ 5 subsystem
surface code with triangle operators fixed in all rows (left), odd
rows (middle), and even rows (right). Filled and hollow circles
correspond to stabilizers and boundary nodes, respectively.
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leading to an increased Z distance of dZ ¼ b3ðL − 1Þ=2c þ
1 but do not prove this here. The X distance cannot increase
in this schedule, since none of the Z gauge operators can
be fixed.
Note that homogeneous schedules cannot increase the Z

or X distance of the code, since there are always time steps
where all X gauge operators are measured simultaneously,
as well as time steps where all Z gauge operators are
measured simultaneously. Measuring all X gauge operators
removes all Z gauge operators from the stabilizer group,
leaving time steps where none of the Z gauge operators can
be fixed (and therefore, not increasing the X distance), and
similarly, there are also time steps where no X gauge
operators can be fixed.

B. Lattice surgery and code deformation

It was shown in Ref. [33] that the techniques of lattice
surgery [53] and code deformation [54] can be interpreted
as switching between different gauge fixes of a subsystem
code. We can use this perspective to apply some of the
techniques in this work to lattice surgery and code
deformation. As an example, consider performing lattice
surgery on two rotated surface-code patches. During the
merging step of lattice surgery, the weight-2X stabilizers on
the opposing boundaries of the two patches are merged into
weight-4 square stabilizers. These weight-4 stabilizers can
be interpreted as stabilizers of a subsystem code, with the
weight-2 checks that they are merged from being gauge
operators of the subsystem code. This procedure is shown
for distance-3 codes in the left side of Fig. 22, for which a

single pair of weight-2X checks (with red borders) is
merged into a single square stabilizer. Since each pair of
these weight-2 boundary X checks is a pair of gauge factors
of the corresponding weight-4 stabilizer, we can use the
merging and splitting technique given in Sec. V B to
construct the matching graph and decode them. This is
shown on the right side of Fig. 22, where three repetitions
are used for each of the three stages of lattice surgery. With
this technique, each of the consecutive stages of lattice
surgery can be connected using the generalized difference
syndrome, leading to a single matching graph that can be
used for error correction with the overlapping recovery
method of Ref. [1], and with information from the weight-2
boundary X checks used directly where possible. The same
ideas can also be readily applied to code deformation,
which can also be viewed as gauge fixing of a subsystem
code [33] and involves merging surface-code patches in a
similar manner [54].

C. Subspace codes from gauge fixing

Another use of gauge fixing is to derive families of
subspace codes from subsystem surface, toric, and hyper-
bolic codes by choosing different Abelian subgroups of the
gauge group G to be the stabilizer group S, permanently
fixing some gauge operators as stabilizers. For example, by
fixing all the X-type triangle operators in the subsystem
toric code as stabilizers, we obtain the hexagonal toric
code, and by fixing X-type triangle operators in the f8; 4g
subsystem hyperbolic code as stabilizers, we obtain the
f12; 3g hyperbolic code.
By fixing different subsets of the triangle operators in the

subsystem toric code, we can interpolate between the
hexagonal toric code and its dual. To achieve this, we
define hexagonal surface-density codes inspired by the
surface-density and Shor-density codes of Ref. [24]. To
construct a (subspace) hexagonal surface-density code with
parameter qf from a subsystem toric code, we fix the
X-type gauge operators in each face with probability qf,
else we fix the Z-type gauge operators. When qf ¼ 1, we
obtain the hexagonal surface code, and at qf ¼ 0 we
construct its dual, but setting 0 < qf < 1 allows us to
interpolate between these two extremes. With qf ¼ 0.5,
there are both weight-6 and weight-3X-type and Z-type
stabilizers, and both X-type and Z-type stabilizers have
average weight 4. The same idea can be directly applied to
subsystem hyperbolic codes: Applied to the f8; 4g sub-
system hyperbolic code, we can interpolate between the
f12; 3g hyperbolic code and its dual, for example.
For the subsystem hyperbolic codes, we can choose to

fix only a subset of the triangle operators within each face.
Consider the code obtained by fixing a single Z triangle
operator (chosen at random) within each face of the f6; 4g
subsystem hyperbolic code, as well as the single X triangle
operator that commutes with it (an example of this for a

FIG. 22. A slice of the matching graph for lattice surgery, which
can be interpreted as switching between different gauge fixes of a
subsystem code. Left: the three stages of lattice surgery are shown
for a distance-3 rotated surface code. Red (blue) squares and
semicircles denote X (Z) stabilizers, with data qubits at their
corners. Right: a slice of the matching graph for the X stabilizers
at the boundaries of the two codes where the merge takes place
(denoted with red borders in the left diagram). Stabilizer
measurements are repeated three times for each stage of lattice
surgery, with the generalized difference syndrome used to
connect the stabilizer with its gauge factors.
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single face is shown in Fig. 23). For both the X and Z
stabilizers, half have weight 6, and the other half have
weight 3. This hyperbolic code derived from an irregular
lattice has average stabilizer weight 4.5 for both X and Z
stabilizers, an improvement on the weight-5 stabilizers in
the f5; 5g hyperbolic code, which has the smallest stabi-
lizer weight of hyperbolic codes derived from self-dual
regular lattices.
We can also use our choice of Abelian subgroup of the

gauge group to tailor codes to spatially inhomogeneous
noise models, where the noise is biased toward Z-type
errors in some regions of the lattice and biased toward
X-type errors in other regions. We can fix X-type gauge
operators in regions where there is a Z bias, locally
reducing the vertex degree and stabilizer weight in the
X-type matching graph, and likewise, we can fix Z-type
gauge operators where there is X bias. This method of
tailoring a code to spatially inhomogeneous noise models
has been demonstrated in Ref. [24] using gauge fixes of the
Bacon-Shor code, and the same ideas can be readily applied
here to gauge fixes of subsystem surface, toric, and
hyperbolic codes.

VIII. CONCLUSION

In this work, we introduce new techniques and con-
structions for quantum-error correction that improve upon
the widely studied surface code in several ways. While the
surface code requires four-qubit measurements and enc-
odes a single logical qubit, we introduce families of
quantum-error-correcting codes that use only three-qubit
measurements and encode a number of logical qubits k
proportional to the number of physical qubits n.
Furthermore, we introduce a technique, which we call
schedule-induced gauge fixing, that improves the perfor-
mance of a wide class of codes, especially under biased
noise models.
Schedule-induced gauge fixing changes the order in

which check operators are measured in subsystem codes.
While the check operators of subsystem codes do not all
mutually commute, we find that grouping blocks of
mutually commuting check operators together allows us
to obtain more useful information without increasing the
total number of measurements. By making consecutive

measurements of the same gauge operators they can be
treated temporarily as stabilizers, and we introduce a
method for decoding based on MWPM that takes advan-
tage of this additional information. When applied to the
subsystem surface code with three-qubit check operators,
we can switch repeatedly between the hexagonal surface
code and its dual, both of which are Abelian subgroups of
the gauge group of the code. We find that the threshold
under circuit-level depolarizing noise can be increased from
0.67% to 0.81% by making four consecutive measurements
of each gauge operator in the measurement schedule. The
improvement is even more significant under biased noise
models. With an independent Z-biased circuit-level noise
model, X-check operators can be repeated (and fixed) more
frequently, leading to an even higher threshold under small
finite bias, up to 2.22% under infinite bias. Below thresh-
old, gauge fixing reduces the logical error rate by several
orders of magnitude for biased noise models.
Schedule-induced gauge fixing can be applied in software,

with no changes to the underlying hardware interactions
necessary. This allows both the code and the decoder to be
tailored to the noise model even if it cannot be fully
characterized prior to device fabrication. Furthermore, the
decoding method changes only the structure of the matching
graph, with no additional overhead in runtime, and other
decoders such as UNION-FIND [46,55], which has almost-
linear runtime, can be directly substituted for MWPM in our
procedure.
The same techniques can also be directly applied to a

broad class of subsystem codes beyond the subsystem
surface code, including the Bacon-Shor code [22], the
heavy-hexagon code [9], and some compass codes [24],
and future work could investigate the performance
improvements achievable using schedule-induced gauge
fixing with these codes. It would also be interesting to
generalize the decoding method to other subsystem codes
where syndrome defects do not come in pairs, such as the
gauge color code [31], among others [29,56].
A drawback of subsystem codes is that they typically

have a smaller encoding rate k=n compared to their
subspace counterparts. To address this issue, we generalize
the subsystem surface code to surfaces with negative
curvature, constructing families of quantum LDPC sub-
system codes with a finite encoding rate and only three-
qubit check operators. We call these codes subsystem
hyperbolic and subsystem semihyperbolic codes and show
how the symmetry group of the tessellation can be used to
construct check operator measurement circuits which
require only four time steps to implement. Thanks to the
weight-3 check operators, these measurement circuits allow
us to correct up to the full code distance fault tolerantly.
By simulating the performance of subsystem semihy-

perbolic codes under circuit-level depolarizing noise, we
find that they can require 4.3× fewer physical qubits than
the rotated surface code and 5.1× fewer physical qubits

FIG. 23. Gauge fixings of a square (left) and hexagonal (right)
face of a subsystem toric and f6; 4g subsystem hyperbolic code,
respectively. Yellow-filled circles are data qubits, and X and Z
stabilizers are denoted by red- and blue-filled polygons, respec-
tively.
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than the subsystem toric code to achieve the same physical
error rate at around 0.15% to 0.2%. To the best of our
knowledge, they therefore outperform all known quantum-
error-correcting codes in terms of qubit overhead in this
practical regime of circuit-level depolarizing noise.
Furthermore, these subsystem semihyperbolic codes
belong to a family of codes that achieve distance scaling
as

ffiffiffi
n

p
, and that we expect to maintain a reduced qubit

overhead relative to the surface code even at higher
distances. These codes are locally Euclidean, which is
encouraging for the prospect of physical implementations
in modular architectures [41–43].
We also find a threshold of 0.42% for the subsystem

semihyperbolic codes under a circuit-level depolarizing
noise. All of the techniques for schedule-induced gauge
fixing that applied to the subsystem toric code can also be
applied to subsystem semihyperbolic codes, and we find a
threshold of 2.4% under infinite bias, exceeding that of the
subsystem toric code.
Our work focuses on reducing the qubit overhead of

quantum-error correction; however, reducing the time
overhead of implementing logical gates is also an important
problem. In Ref. [26], it was shown how lattice surgery and
Dehn twists can be used to implement logical gates in
hyperbolic codes. While these techniques should generalize
straightforwardly to the subsystem hyperbolic codes we
introduce, in the future it would be interesting to compare
the time overhead of these methods with those used for
surface codes, as well as to investigate alternative methods
for implementing fault-tolerant logical operations.
A key advantage of all the subsystem codes we construct

and use in this work is that they all use check operators of
weight 3, compared to the weight-4 stabilizers of the surface
code. Besides enabling bare-ancilla fault tolerance and
efficient measurement schedules, weight-3 gauge operators
can be helpful for handling leakage errors [35], and direct
three-qubit parity-check measurements have been proposed
inRef. [57]. Since the average degree of the interaction graph
is lower than the surface code, we also expect these codes to
suffer from fewer frequency collisions and less cross talk than
the surface code in superconducting qubit architectures [9].
On the other hand, if high-weight stabilizer measurements
are available in hardware, then it may be possible to reduce
the qubit overhead of our subsystem codes even further
(likely at the cost of a lower threshold) by using a single
ancilla qubit per stabilizer rather than per gauge operator and
measuring along the gauge operators to retain bare-ancilla
fault tolerance [19].
While there has been significant progress in the develop-

ment of quantum LDPC codes with improved parameters
½½n; k; d�� relative to the surface code, our work provides the
first evidence that these improvements can be retained even
under circuit-level depolarizing noise. We demonstrate the
advantages that can be had from codesigning an error-
correcting code along with its parity-check measurement

schedule. In particular, we show that subsystem codes offer
great promise in reducing the weight of check operators in
quantum LDPC codes, as well as enabling improved
performance under biased noise models through the use
of schedule-induced gauge fixing. Furthermore, our results
show that symmetries present in the construction of
quantum LDPC codes can also be crucial for optimizing
parity-check measurement schedules. We hope that our
work will inspire the construction of new families of
quantum LDPC codes designed using similar principles,
further reducing the overhead of fault-tolerant quantum
computation.
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APPENDIX A: LOCAL MATCHING DECODER

In order to reduce the complexity of the MWPM
decoder, we use an approximate version which we call
local matching. In our local matching decoder, we check
only if each defect can be matched to one of the k closest
defects in the matching graph (rather than considering all
other defects in the matching graph).
Given a matching graph G (containing a vertex for each

stabilizer measurement or boundary and a weighted edge
for each single error) and a syndrome vector z (where
z½i� ¼ 1 if stabilizer i is measured to be −1, otherwise
z½i� ¼ 0), the first step of a standard implementation of
MWPM is to construct the defect graph V, which contains a
vertex for each defect v (where by definition z½v� ¼ 1) in G
and an edge for each possible pair of defects weighted with
the distance between them in G. Edmond’s Blossom
algorithm is then used to find a minimum-weight perfect
matching in V [50], and the product of Pauli operators, each
corresponding to the shortest path between matched pairs
of defects, is returned as a correction.
In our local matching algorithm, we include fewer edges

in the defect graph V than used in standard MWPM. For
each defect v in G, rather than finding the distance to every
other defect using Dijkstra’s algorithm, we instead find the
distance to the m nearest defects using our local Dijkstra
algorithm and include m edges to these defects in V, each
weighted by their distance from v inG. The pseudocode for
the local Dijkstra algorithm for finding the m nearest
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neighbors of a defect s ∈ G is given in Algorithm 1,
which outputs a list l of the m nearest defects, their
distances d to s, and a predecessor list p. We use
Kolmogorov’s BLOSSOM V implementation of MWPM in
C++ to find the MWPM in V [51].
Note that our local matching algorithm is similar to the

strategy used in Ref. [45], where defects are initially
matched only with other defects that are within a given
radius r (determined by their coordinates in the 3D surface-
code matching graph). While this strategy is effective for
codes derived from tessellations of Euclidean surfaces, it
does not generalize well to the codes we derive from

tessellations of hyperbolic surfaces, where using coordi-
nates as a proxy for finding the closest defects is less
straightforward. Our approach uses only the structure of the
matching graph itself, not the coordinates of defects, and
therefore readily generalizes to the codes we derive from
hyperbolic tessellations. Our adaptation of MWPM is also
similar to the decoder used in Ref. [14], where rather than
restricting the number of neighbors of each vertex in V as
we do here, they instead impose a threshold on the
maximum distance between vertices in V.
We analyze the accuracy of our local matching decoder at

approximating exact MWPM. In Fig. 24 we show that,
empirically, the approximation error decreases exponentially
withm. Form > 14, we do not observe any differences in the
weight of the matchings found by local matching and exact
MWPM in any of the 105 trials run on theL ¼ 30 toric code.
Note that where our local matching differs from exact
MWPM the solution given is still very good (low weight),
so differences in the logical error rate between localmatching
and exactMWPMare likely farmore rare than the differences
in the exact minimum-weight matching solution measured
here. We use m ¼ 20 for all simulations in this work. Our
implementation of the local matching decoder is available as
a PYTHON package at Ref. [49].

APPENDIX B: TESSELLATIONS
OF CLOSED SURFACES

We now give some additional background on tessella-
tions of closed Euclidean and hyperbolic surfaces, since
these tessellations are used to construct the subsystem
hyperbolic and semihyperbolic codes in this work. An
fr; sg tessellation subdivides a surface into disjoint faces,
where each face is an r-gon, and s faces meet at each
vertex. Using Wythoff’s kaleidoscopic construction, an
fr; sg tessellation can be related to a symmetry group
Gr;s of distance-preserving maps (isometries). Gr;s is
generated by reflections on the edges of one of the 2r
right triangles induced by the symmetry axes of a face (r-
gon) of the tessellation. Each triangle has internal angles
π=2, π=r, and π=s, and are from now on referred to as a
fundamental triangle. In Figs. 25(a) and 26(a), we draw a
fundamental triangle of the f4; 4g and f8; 4g tessellations,
respectfully, with sides labeled by the reflections a, b, and c
which act on them, and which generate Gr;s. Note that the
isometries a2, b2, c2, ðacÞ2, ðabÞr, and ðcaÞs are equivalent
to doing nothing and, since these are the only relations
satisfied by Gr;s, the group has presentation

Gr;s ¼ ha; b; cja2 ¼ b2 ¼ c2 ¼ ðacÞ2
¼ ðabÞr ¼ ðbcÞs ¼ ei; ðB1Þ

where e is the identity element. By fixing one fundamental
triangle as a fundamental domain of Gr;s, every other

FIG. 24. The approximation error of the local matching decoder
defined as the fraction of trials for which the weight of the
minimum-weight perfect matching found by our local matching
decoder differs from an exact minimum-weight perfect matching.
We use 105 trials for each m, using an independent noise model
with p ¼ 6% (and noiseless syndromes) for an L ¼ 30 toric
code. Error bars are 95% Clopper-Pearson binomial proportion
confidence intervals. For m ¼ 16, 18, and 20, we also run 105

trials and find that the local matching is equivalent to exact
matching for all trials.

Algorithm 1. Local Dijkstra algorithm.

Function LocalDijkstra (G, z, m, s)
j For each u ∈ G, d½u� ¼ ∞, p½u� ¼ u;
j d½s� ¼ 0;
j Initialize priority queue Q
j Q:insertðsÞ
j Initialize empty list of found defects l
j while Q is not empty and lengthðlÞ < m do
j j u ¼ Q:ExtractMinðÞ;
j j if z½u� ¼ 1 then
j j j l:InsertðuÞ;
j j for each vertex v adjacent to u in G do
j j j if weightðu; vÞ þ d½u� < d½v� then
j j j j d½v� ¼ weightðu; vÞ þ d½u�;
j j j j p½v� ¼ u
j j j j if d½v� previously equal to ∞ then
j j j j j Q:InsertðvÞ
j j j j else
j j j j j Q:DecreaseKeyðvÞ
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fundamental triangle can be labeled uniquely by an element
of Gr;s.
We construct codes derived from fr; sg tessellations of

closed Euclidean and hyperbolic surfaces. The process of
defining a closed surface is called compactification. A
regular tessellation of a closed surface can be defined by a
quotient group GH

r;s ≔ Gr;s=H, where H is a finite-index
normal subgroup of Gr;s with no fixed points (see Ref. [6]
for more details). Note that the generators of H become
relations in the presentation of Gr;s=H, so compactification
can be interpreted as adding additional relations into the
presentation of the symmetry group of the tessellation of
the hyperbolic plane. An important subgroup of Gr;s is the

proper symmetry group Gþ
r;s generated by double reflec-

tions, or rotations, ρ ¼ ab and σ ¼ bc. This group has
presentation

Gþ
r;s ¼ hρ; σjðρσÞ2 ¼ ρr ¼ σs ¼ ei; ðB2Þ

where e is again the identity element. Regular tessellations
of orientable closed surfaces can be constructed from a
quotient group GHþ

r;s ≔ Gþ
r;s=H, where H is a normal

subgroup of Gþ
r;s.

APPENDIX C: SYMMETRY GROUPS THAT
ADMIT SUBSYSTEM HYPERBOLIC CODES

In Sec. IV of the main text, we introduce subsystem
hyperbolic codes, which are derived from f2c; 4g tessella-
tions of hyperbolic surfaces, where c ∈ Zþ and c > 2. In
this section, we show how a subsystem hyperbolic code can
be described in terms of the symmetry group of the
tessellation from which it is derived. By doing so, we
show what conditions must be satisfied by the compacti-
fication procedure for a f2c; 4g tessellation of a closed
hyperbolic surface to be used for constructing a subsystem
hyperbolic code.
Let us first consider some properties of the subsystem

toric code in group theoretic terms. These properties are
later used as requirements for the subsystem hyperbolic
codes we define. First, note that each triangle operator
(gauge generator) of the subsystem toric code can be
identified by a pair of fundamental triangles related by a
b reflection inG4;4. In other words, each triangle operator is
identified by a left coset of the subgroup hbi given by
ghbi ≔ fg; gbg for some g ∈ GH

4;4, and thus, each element
g ∈ GH

4;4 identifies a unique triangle operator (but not vice
versa). For now, we consider only the Pauli type of each
triangle operator, which can be either Z type (blue) or X
type (red). We call an assignment of a Pauli type to each
triangle operator a coloring. For the subsystem toric code,
note that blue triangle operators are always mapped to red
triangle operators by either an a or c reflection, and vice
versa. We make this property a requirement of our sub-
system hyperbolic codes and call a coloring that satisfies
this property a valid coloring.
Since each triangle operator can be identified by the

coset ghbi of an element g ∈ GH
r;s, and after identifying

each color of triangle operator with a different element of
the cyclic group Z2 ¼ Z=2Z, a coloring of the triangle
operators can be achieved by defining an appropriate
function f∶GH

r;s → Z2. The constraint that either a or c
reflections map a triangle operator to another of a different
type, with b reflections leaving it invariant, defines the
image of the generators and identity element e of GH

r;s by f
to be

(a) (b)

FIG. 25. An L ¼ 2 subsystem surface code. (a) After associat-
ing a triangle operator with the identity element e, every triangle
operator is in one-to-one correspondence with an element of the
proper symmetry groupGHþ

4;4 of the tessellation. In blue we label a
fundamental triangle with sides a, b, and c, as well as the
rotations ρ ¼ ab and σ ¼ bc. (b) Each triangle operator can be
labeled with an element of the cyclic group Z4 using the
homomorphism hðρÞ ¼ hðσÞ ¼ 1 from GHþ

4;4 to Z4.

(a) (b)

FIG. 26. The f8; 4g subsystem hyperbolic code. (a) Each
triangle operator can be uniquely identified with an element of
the proper symmetry group GHþ

8;4 of the lattice (after identifying a
triangle operator with the identity element e). We label a
fundamental triangle in blue. (b) Each triangle operator can be
labeled with an element of Z4 using the homomorphism hðρÞ ¼
hðσÞ ¼ 1 from GHþ

8;4 to Z4. The neighborhood of each triangle
operator (the labels and relative locations of triangle operators it
overlaps with) is the same as in the toric code.
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fðaÞ ¼ fðcÞ ¼ 1;

fðbÞ ¼ fðeÞ ¼ 0: ðC1Þ

Since we require that, by definition of the code, the
action of a reflection a, b, or c should have the same
effect on the color of a triangle operator no matter which
triangle operator we apply it to, this implies that
fðgigjÞ ¼ fðgiÞ þ fðgjÞ ∀ gi; gj ∈ GH

r;s. This condition
implies (from the definition of a homomorphism) that f
must extend to a group homomorphism fromGH

r;s toZ2. For
each triangle operator to be assigned a unique color, wemust
also have that fðriÞ ¼ 0 for each relation ri in the presen-
tation ofGH

r;s. This latter condition is in fact also a necessary
and sufficient condition for the function f to extend to a
homomorphism fromGH

r;s toZ2 [58]. This constraintfðriÞ ¼
0 holds not just for the f4; 4g tiling but also fr; sg tilings for
which r and s are even, since ðabÞr ¼ e and ðbcÞs ¼ e are
relations. The constraints do not hold if either r or s are odd.
However, we also have the constraint fðgiÞ ¼ 0 on the
generators gi of the normal subgroup H defining the
compactification (since these generators are relations in
GH

r;s) and, therefore, only a subset of the possible compacti-
fications of these regular tessellations admit valid colorings.
We must also ensure that each triangle operator in a

colored tessellation commutes with every stabilizer, and
that all stabilizers mutually commute (since by definition S
is Abelian and the center of G). We will now show that this
condition further restricts us to tessellations where s ¼ 4
faces meet at each vertex. For regular tessellations of closed
Euclidean or hyperbolic surfaces, we are already restricted
to s ≥ 3, and we already require that s be even to ensure a
valid coloring. For all s ∈ f6; 8; 10;…g we see that each
triangle operator anticommutes with the stabilizer (of the
opposite Pauli type) belonging to the face related to it by a
ðbcÞ3 rotation, since it overlaps with this stabilizer on only
a single qubit. On the other hand, for s ¼ 4, it can be
directly verified that each triangle operator commutes with
all stabilizers, since each triangle operator overlaps on
either zero or two qubits with stabilizers of the opposite
Pauli type. Since stabilizers are products of nonoverlapping
triangle operators, all stabilizers must also mutually com-
mute. We are therefore restricted to tessellations with s ¼ 4
faces meeting at each face and with r ¼ 2c sides to each
face, and for which fðgiÞ ¼ 0 for each generator gi of the
normal subgroup H defining the compactification.

APPENDIX D: GROUP THEORETIC CONDITION
FOR CONSISTENT SCHEDULING

In Sec. IV B of the main text, we show that any
translationally invariant schedule for the subsystem toric
code assigns the same schedule to each triangle operator
with the same label, where a label is an assignment of an
element of the cyclic group Z4 to each triangle operator as
shown in Fig. 25(b). We now describe this labeling of the

triangle operators of the subsystem toric code in terms of
the proper symmetry group GHþ

r;s of orientation-preserving
symmetries of the lattice generated by the rotations ρ and σ
[shown in Fig. 25(a)]. First note that, after choosing any
triangle operator to be the fundamental domain, each
triangle operator is now identified by a unique element
in GHþ

r;s , and we denote by Tg the triangle operator
identified by g ∈ GHþ

r;s . A labeling of the triangle operators
is then defined by a function h∶GHþ

r;s → Z4. Note that, for
the labeling of the subsystem toric code in Fig. 25(b),
applying either a ρ or σ rotation to any triangle operator
adds one (modulo 4) to the label. Using similar arguments
to those given in Appendix C for valid colorings, we see
that the function h must extend to a homomorphism
h∶GHþ

r;s → Z4 with

hðρÞ ¼ hðσÞ ¼ 1: ðD1Þ

We can generalize a translationally symmetric schedule
of the subsystem toric code to subsystem hyperbolic codes
by first labeling the triangle operators of a subsystem
hyperbolic code in such a way that the neighborhood of
each triangle operator is the same as it would be in the
subsystem toric code, and then apply the same schedule to
all triangle operators with the same label in the subsystem
hyperbolic code. The neighborhood of a triangle operator T
is the relative position and label of the triangle operators
that overlap with T on at least one qubit (each of which we
call a neighbor). We see from Fig. 25(b) that each triangle
operator Tg in the subsystem toric code has seven neigh-
bors: Tgσ , Tgσ2 , Tgσ3 , Tgρ, Tgρσ, Tgρ−1 , and Tgρ−1σ−1 . In the
toric code, exactly three of these neighbors overlap on a
vertex of the f4; 4g tessellation. To ensure this remains the
case for the hyperbolic tessellations, it is necessary to
require that s ¼ 4, which is by definition a property of our
subsystem hyperbolic codes. Setting s ¼ 4 alone is not
sufficient, since we must now also ensure that the entire
neighborhood (all seven neighbors) of each triangle oper-
ator with a given label in the lattice remains identical to that
of a triangle operator with the same label in the toric code.
The relative labels of these seven neighbors is determined
by the homomorphism h∶GHþ

r;s → Z4 defined in Eq. (D1).
Therefore, a hyperbolic tessellation is schedulable if its

proper symmetry group admits the homomorphism h as
defined in Eq. (D1), which is the case if and only if hðriÞ ¼ 0

for each relation ri in the presentation ofGHþ
r;s . This condition

is met for subsystem hyperbolic codes derived from the
subset of closed f4c; 4g tessellations (where c ∈ Zþ), for
which the generators gi of the normal subgroup H defining
the compactification satisfies hðgiÞ ¼ 0. As an example,
consider the quotient group for a distanceL toric codewhich
has presentation
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GHþ
4;4 ¼ hρ; σjρ4 ¼ σ4 ¼ ðρσÞ2 ¼ ðρσ−1ÞL ¼ ðσ−1ρÞL ¼ ei;

ðD2Þ

fromwhich it is clear that each relation ri satisfies hðriÞ ¼ 0.
For schedulable subsystem hyperbolic codes, we can use

the very efficient measurement schedule of Ref. [34]
(which is translationally invariant for the subsystem toric
code) for each triangle operator, which requires only four
time steps (one time step is the duration of a CNOT gate) to
measure all X- and Z-check operators. Note that subsystem
hyperbolic codes which do not satisfy these constraints will
still admit a measurement schedule, but such a schedule
may be considerably less efficient and also more difficult to
construct.
Given the map m∶Z4 → Z2 defined bymðxÞ ¼ x mod 2

assigning a color to a label, we see that fðgÞ ¼
m(hðgÞ) ∀ g ∈ GHþ

r;s , where f is defined in Eq. (C1), and
hence, every schedulable code is colorable [but not vice
versa, as exemplified by the f6; 4g tessellation forwhichρ6 is
a relation yet hðρ6Þ ≠ 0].
There is another way of interpreting the scheduling:

Consider the graph which is generated by the rotation
subgroup hρ; σi. This group acts regularly between the
triangles of the subsystem code, so there is a one-to-one
map between them. The labeling is a coloring of the Cayley
graph of this group (each vertex of this Cayley graph
corresponds to a triangle). This coloring is achieved by a
“covering” of the cycle graph with four vertices (Cayley
graph of Z4) since this is clearly four-colorable. More
generally, we can consider normal subgroups N of the
group as long as this normal subgroup does not contain ρ or
σ. The number of colors in this case is the index of N in G.
The dual semihyperbolic tessellations used for construct-

ing the subsystem semihyperbolic codes in Sec. IV C do
not have a group structure, so they cannot be labeled using
the homomorphism of Eq. (D1) alone. However, we now
show that, given a schedulable f4c; 4g tessellation, the
corresponding dual semihyperbolic tessellation derived
from it is also schedulable. Take a schedulable f4c; 4g
tessellation V, where we already label each corner in the
tessellation with an element of Z=4Z. Now consider its
dual tessellation V� constructed by exchanging vertices and
faces in the Hasse diagram of the tessellation [59]. Each
corner in V is identified by a face and vertex, and so each
corner in V is in one-to-one correspondence with a corner
in V� (where the face and vertex are exchanged). We give
each corner in V� the same label as the corner in V that it is
in one-to-one correspondence with. This constitutes a valid
labeling of V�, since each pair of corners related by ρ (σ) in
V are related by σ (ρ) in V�, and hðρÞ ¼ hðσÞ in Eq. (D1).
We now construct a semihyperbolic tessellation V�

l by
tiling each face of V� with an l × l square lattice. Note that
the corners of each face in V� are already labeled, so we can
label V�

l just by labeling the new corners introduced by the

l × l square tiling of each face. Corners related by a σ
rotation in V� are still related by a σ rotation in V�

l . Corners
related by a ρ rotation in V� are now related by a ðρσ−1Þl−1ρ
translation in V�

l . However, now treating h as a function not
a homomorphism, note that hðρÞ ¼ h(ðρσ−1Þl−1ρ), so the
original labels retained from V� remain valid. We can
therefore label the new corners in the square l × l tilings in
V�
l in a way that is consistent with the corners already

labeled. We now take the dual of V�
l to obtain Vl,

preserving the labels of each corner when taking the dual
as before. The tessellation Vl is now used to derive a
subsystem semihyperbolic code, and we demonstrate that
Vl is schedulable if V is schedulable.

APPENDIX E: SUBSYSTEM SEMIHYPERBOLIC
AND SUBSYSTEM TORIC CODE COMPARISON

A quantum code derived from an fr; sg tessellation
satisfies [6]

k
n
¼ 1 −

2

s
−
2

r
þ 2

n
; ðE1Þ

where n is the number of physical qubits and k is the
number of logical qubits. A semihyperbolic code derived
from such a code has l2n qubits, where l is the dimension of
the lattice tiling each face in the semihyperbolic code.
Therefore, the number of data qubits (excluding ancillas) in
a subsystem f8; 4g-semihyperbolic code with k logical
qubits is 6ðk − 2Þl2. To compare the performance of
subsystem semihyperbolic codes with subsystem toric
codes, we compare each semihyperbolic code to multiple
independent copies of a toric code with the same rate k=n,
such that we can compare the performance keeping k and n
fixed. Since the rate of a subsystem toric code with distance
L is 2=ð3L2Þ, we compare our subsystem semihyperbolic
f8; 4g codes with copies of a toric code with distance
close to

L ¼ 2l

ffiffiffiffiffiffiffiffiffiffiffi
1 −

2

k

r
; ðE2Þ

where k is the number of qubits in the f8; 4g-semihyper-
bolic code, and l is the dimension of the lattice tiling each
face in the semihyperbolic code. Note that the total number
of qubits including ancillas ð1þ 4na=3Þn is proportional to
the number of data qubits n with the same constant of
proportionality for the subsystem toric, hyperbolic, and
semihyperbolic codes. Here, na is the number of ancilla
qubits used per triangle operator (we can always set na ¼ 1,
but for some schedules setting na ¼ 2 can improve per-
formance by parallelizing the measurement schedule).
Therefore, Eq. (E2) still holds once ancillas are taken into
account.
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APPENDIX F: DISTANCE OF SUBSYSTEM
HYPERBOLIC CODES

We can determine the distance of the subsystem hyper-
bolic and semihyperbolic codes by considering their
matching graphs. Each vertex in the X-type matching
graph corresponds to an X stabilizer, and there is an edge
between each pair of stabilizers u and v for which a single Z
error on a data qubit anticommutes with both u and v. Each
face in the X-type matching graph corresponds to a Z-type
triangle operator. Each noncontractible closed loop in the
X-type matching graph corresponds to a logical Z operator.
Therefore, the Z distance of the code is determined by the
shortest noncontractible closed loop in the X-type matching
graph. A Z-type matching graph can be defined analo-
gously for Z-type stabilizers, and so the X distance of the
code is determined by the shortest noncontractible closed
loop in the Z-type matching graph.
For the subsystem toric, hyperbolic, and semihyperbolic

codes we construct, the X-type matching graph is iso-
morphic to the Z-type matching graph, since the Z-type
matching graph can be obtained from the X-type matching
graph (and vice versa) by a single rotation that is also a
symmetry of the tessellation from which the code is
derived. Therefore, the Z and X distances are the same
for these codes.
We now consider how the distance of a subsystem

hyperbolic or semihyperbolic code compares to the dis-
tance of the subspace CSS (surface) code derived from the
same tessellation. To do so, we consider the structure of the
matching graph for both codes. The solid red lines in
Fig. 27 form the edges of the Z-type matching graph for the
toric code, and so the length of the shortest noncontractible
loop in that graph is the X distance of the toric code. We can

obtain the X-type matching graph for the subsystem toric
code derived from the same tessellation by adding in the
green edges, also shown in Fig. 27, and keeping the same
set of vertices. Each green edge in the subsystem toric code
X-type matching graph is equivalent (up to a triangle
operator) to a pair of red edges. Therefore, the distance
between two vertices in the matching graph consisting only
of red edges can at most be reduced by half by the inclusion
of the green edges (and inclusion of the green edges cannot
increase the distance between vertices).
For the subsystem hyperbolic and semihyperbolic codes,

we again find that both the Z-type and X-type matching
graphs can be constructed by adding additional edges to the
Z-type matching graph VZ of the subspace codes derived
from the tessellation, where each of these additional edges
is equivalent to a pair of edges in VZ. Therefore, the
shortest noncontractible loop in either the Z-type or X-type
matching graph for a subsystem hyperbolic or semihyper-
bolic code is between 1 and 2 times smaller than the
shortest noncontractible loop in the Z-type matching graph
of the subspace code derived from the same tessellation.
Consequently, given a hyperbolic or semihyperbolic code
with X distance dX, the distance d of the subsystem
hyperbolic or semihyperbolic code derived from the same
tessellation is bounded by dX=2 ≤ d ≤ dX. Furthermore,
the X distance of hyperbolic codes we consider is always
less than or equal to their Z distance. Both the subsystem
toric code and standard toric code have distance d ¼ L, but
for the subsystem hyperbolic and semihyperbolic codes we
construct, the subsystem codes do have a reduced distance
compared to surface codes derived from the same tessella-
tion. This is shown in Fig. 28, which compares the distance

FIG. 27. The subsystem toric code. The black dashed lines are
edges of the f4; 4g tessellation from which the subsystem toric
code is derived. The edges in the X-type matching graph are the
union of the solid red and green lines, and vertices in the
matching graph are denoted by circles. Each edge in the X-type
matching graph corresponds to a data qubit, and each face
corresponds to a Z-type triangle operator. The solid red lines
are the edges of the matching graph for the standard surface code
derived from the same f4; 4g tessellation. Opposite sides are
identified.

FIG. 28. For all l ¼ 2 f8; 4g subsystem semihyperbolic codes
we construct, here we plot the distance of each code (y axis)
against the distance of the (subspace) semihyperbolic surface
code derived from the same tessellation (x axis) computed using
the method in Ref. [60]. The size of each blue circle corresponds
to the number of codes we find with the same (x,y) coordinate on
the figure, and the number of codes for each size of circle is given
in the legend.
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of l ¼ 2, f8; 4g subsystem semihyperbolic codes to the
distance of the subspace semihyperbolic codes derived
from the same tessellations. We see that the distance of each
subsystem code can be reduced by up to 2× relative to the
subspace code derived from the same tessellation as
expected, with some subsystem codes not suffering any
reduction in distance.

APPENDIX G: THE CONSTRUCTION FOR
GENERAL LDPC QUANTUM CODES

The ideas from Secs. III and IV of the main text readily
apply to the more general class of CSS stabilizer codes. In a
CSS stabilizer code, the stabilizer checks operate exclu-
sively as either Pauli X or Pauli Z on all of the qubits in its
support. The Tanner graph associated with a CSS code is
the graph with vertices corresponding to qubits, X checks,
and Z checks. There is an edge between two vertices if and
only if one vertex corresponds to a check and the other to a
qubit in its support. In order to define the merging and
splitting for a CSS LDPC code, let us pick a Z check sZ and
consider the subgraph T 0 of the Tanner graph consisting of
all qubits in the support of sZ, their connected X checks, as
well as all edges connecting them. We call a set of X checks
in T 0 a local cut set if removing them and their incident
edges from T 0 renders it disconnected (see Fig. 29). We call
a local cut set independent if the checks contained are
linearly independent. Let I be the labels of a local cut set.
The checks belonging to I are merged by defining a new
Tanner graph in which all of the vertices of I are identified.
This procedure is also known as vertex contraction in the
graph theory literature.
Merging an independent local cut set reduces the number

of X checks by jI j − 1. Since the number of physical qubits
is not changed and the checks are independent, there must
be jI j − 1 new logical degrees of freedom. However, the
operator algebra of these degrees of freedom will be
supported on at most jsuppðsZÞj ∈ Oð1Þ physical qubits.
Therefore, they do not offer protection and we consider
them to act on gauge qubits.

We now describe a basis for the operator algebra acting
on the gauge qubits. Let C1;…; Cl be the qubits belonging
to the connected components of T 0 induced by the cut set.
We define Z-type operators Zg

i which act on all qubits in Ci.
Note that each Zg

i commutes with all X checks in the code,
because all X checks not belonging to the local cut set must
overlap with sZ on either the empty set or any of the Ci.
Since all X checks commute with sZ they must have even
support on Ci and hence commute with Zg

i . A set of
operators which anticommute with the Zg

i are the X checks
in the local cut set.
The merging and splitting procedure reduces the number

of linearly independent stabilizers r and increases the
number of gauge operators g. The number of physical
qubits n and logical qubits k are unaffected, so that Eq. (2)
is satisfied.
We note that this procedure will generally affect the

distance, as it does for the surface, toric, and hyperbolic
codes. An extreme example is the surface code defined on a
square lattice, where merging the top left and bottom right
X checks of each face (Z check) leads to the code distance
turning constant. Demonstrating that the procedure gives a
subsystem code with growing distance therefore has to be
informed by the structure of the code.

APPENDIX H: SCHEDULING FROM
GROUP HOMOMORPHISMS

In Appendix D, we show that an efficient syndrome
measurement schedule for subsystem hyperbolic codes
could be constructed if the orientation-preserving sym-
metry groupGHþ

r;s of the tessellation (generated by rotations
ρ and σ) admits a homomorphism f∶GHþ

r;s → Z4 to the
cyclic group Z4, with f defined by fðρÞ ¼ fðσÞ ¼ 1. This
homomorphism is a useful tool for scheduling subsystem
hyperbolic codes for the same reason that translation
invariance is useful for scheduling Euclidean surface codes:
The problem of scheduling the entire code reduces to the
problem of scheduling only a small number of stabilizers in
a region of the tessellation.
While the homomorphism f∶GHþ

r;s → Z4 is a useful tool
for scheduling the subsystem hyperbolic codes, such a
homomorphism exists only for a subset of fr; sg tessella-
tions (for which four divides both r and s). In this section,
we look for homomorphisms from GHþ

r;s to any cyclic
group, in the hope that these homomorphisms will be a
useful tool for scheduling subspace hyperbolic codes based
on a wider range of tessellations, where each Z stabilizer
(plaquette) and X stabilizer (site) is measured using a circuit
with a single ancilla qubit. Each corner Cg of a face of the
tessellation is identified with an element g ∈ GHþ

r;s . By
finding a homomorphism f∶GHþ

r;s → Zn to a cyclic group
Zn, we can label each corner uniquely with an element in
Zn. The function f is a homomorphism if and only if
fðriÞ ¼ 0 for each relation ri in the presentation of GHþ

r;s .
The tessellation group GHþ

r;s has presentation

FIG. 29. Neighborhood of a Z stabilizer check in the Tanner
graph of a CSS quantum code. Circles represent qubits, blue
boxes in the top row represent X checks which are in the
neighborhood of a Z check (red box at the bottom). Bold lines
represent a cut set which induces a partition of the qubits into two
sets (yellow and green) and cut on the Z check. X checks in dark
blue belong to the set I and are merged.
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GHþ
r;s ≔ hρ; σjðρσÞ2 ¼ ρr ¼ σs ¼ ei; ðH1Þ

from which we see that ðρσÞ2 is always a relation, and
hence, f must always satisfy f(ðρσÞ2) ¼ 0.
For the homomorphism f∶GHþ

r;s → Zn to be useful for
scheduling, we require that it must satisfy additional
properties. First, the homomorphism should not be defined
by fðρÞ ¼ fðσÞ ¼ 0, since this homomorphism does not
give us any additional information. Second, the label of
each corner Cg should be different from the corner Cgρσ.
This is because Cg and Cgρσ overlap on an edge e in such a
way that, if both corners had the same schedule, two CNOT

gates applied to the qubit at e would occupy the same
time step.
We assume that can have more than one ancilla for each

stabilizer to parallelize the measurement circuits. If we
instead insist that only a single ancilla be used, then we
must require that all corners belonging to the same vertex
must have different labels. This is because these corners
share an ancilla qubit on the vertex, and two CNOT gates
cannot be applied to the ancilla qubit within the same time
step. Furthermore, we would also require that all corners
belonging to a face must have a different label, since only a
single CNOT gate can be applied to the ancilla qubit in the
center of each face in each time step.
Therefore, for each tessellation fr; sg, we seek to find a

cyclic group order n and elements x; y ∈ Zn such that the
function defined by fðρÞ ¼ x; fðσÞ ¼ y extends to a homo-
morphism f∶GHþ

r;s → Zn. The restrictions on the relations in
the presentation of GHþ

r;s , along with the additional three
properties we impose, correspond to the following con-
straints on x, y, n:

rx ¼ 0 mod n;

sy ¼ 0 mod n;

2ðxþ yÞ ¼ 0 mod n;

xþ y ≠ 0 mod n; ðH2Þ

and if we could use only a single ancilla per stabilizer, then
we would additionally have the constraints

lcmðx; nÞ ¼ rx;

lcmðy; nÞ ¼ sy: ðH3Þ

For all r, s ≤ 10 we search for all n, x, y satisfying
Eq. (H2) [for n < 5maxðr; sÞ] and list all the tessellations
we find which admit at least one such homomorphism in
Table IV.
While we find homomorphisms to cyclic groups for

many tessellations, we do not find any for the f5; 5g code,
which has the desirable properties of being self-dual and
having low stabilizer weights. Therefore, an interesting
question is whether there exist homomorphisms to groups

that are not cyclic, and which contain a small number of
elements, but otherwise satisfy the constraints of Eq. (H2).
If such a homomorphism exists for tessellations such as
f4; 5g and f5; 5g, the trade-off of circuit-level threshold
and encoding rate for these codes may be very favorable.

APPENDIX I: ADDITIONAL
NUMERICAL RESULTS

In this section, we give some additional numerical results
from simulations of the subsystem toric and semihyper-
bolic codes. In Table V, we give thresholds for the
subsystem toric code under a circuit-level depolarizing
noise model using gauge fixing with balanced schedules. In
Table VI, we give thresholds for the subsystem toric code
under an independent circuit-level noise model using both
balanced and unbalanced schedules. In Fig. 30, we plot
the threshold for the subsystem surface code with a

TABLE IV. Solutions to Eq. (H2) for all r; s ≤ 10; r ≤ s. By
symmetry, solutions for r ≥ s can be found by exchanging
column r with s and column x with y. For each tessellation
fr; sg, we give the parameters n, x, y defining only one
homomorphism f∶GHþ

r;s → Zn (the homomorphism which min-
imizes both n and x). There are at least two solutions for each
tessellation.

r s n x y

3 6 6 2 1
4 4 4 1 1
4 8 4 1 1
5 10 10 2 3
6 6 6 1 2
6 9 6 1 2
8 8 8 1 3
10 10 10 1 4

TABLE V. Thresholds (in %) for the subsystem toric code for
some balanced homogeneous schedules under the circuit-level
depolarizing noise model, each computed using the critical
exponent method of Ref. [61] to analyze results fromMonte Carlo
simulations using subsystem toric codes with distances L ¼ 26,
30, 34, 38, 42, 46. Numbers in brackets are the 1σ uncertainties in
the last digit. For each threshold, we keep the number of
syndrome extraction rounds constant for all codes, always using
at least 92 rounds to ensure boundary effects (in time) are small
even for the largest codes. For the column with an asterisk, gauge
fixing is not used when decoding.

Schedule pth
depol pth;�

depol

ZX 0.666(1) 0.666(1)
Z2X2 0.757(1) 0.6587(9)
Z3X3 0.810(2) 0.676(1)
Z4X4 0.811(2) 0.669(2)
Z5X5 0.792(2) 0.652(2)
Z10X10 0.522(2) 0.493(1)
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phenomenological noise model, which we find to be
0.02004(2) using the critical exponent method of
Ref. [61]. In Fig. 31, we plot the threshold of the l ¼ 2
f8; 4g subsystem semihyperbolic codes without adjusting
for the number of logical qubits, unlike in the text. This is
helpful to better understand the logical error rates of the
codes themselves, but less so for understanding the thresh-
old for the logical error rate per logical qubit, for which
multiple independent copies of the smaller codes should be
taken, as done in the main text. In Fig. 32, we compare the
performance of a [[384,66,4]] f8; 4g subsystem hyperbolic
code with 33 copies of L ¼ 3 and L ¼ 4 subsystem toric
codes, all encoding 66 logical qubits. Since this hyperbolic

code is quite small, its overhead n=ðkd2Þ ≈ 0.36 is less
favorable than that of the much larger [[8064,338,10]]
subsystem semihyperbolic code analyzed in Sec. VI B of
the main text, for which n=ðkd2Þ ≈ 0.24. However, as can
be seen from Fig. 32, the [[384,66,4]] subsystem hyper-
bolic code still uses 2.3× fewer physical qubits than the
subsystem toric code to achieve the same logical error rate
per logical qubit below a circuit-level depolarizing physical
error rate of 0.1%. Furthermore, it requires only 896
physical qubits to implement this subsystem hyperbolic
code including ancillas, compared to the 18816 needed for
the [[8064,338,10]] subsystem semihyperbolic code.

FIG. 30. Subsystem toric code threshold with a phenomeno-
logical noise model, and without using gauge fixing (triangular
lattice-matching graph). Using the critical exponent method, we
find a threshold of 0.02004(2).

FIG. 31. Performance of the extremal subsystem f8; 4g l ¼ 2
semihyperbolic codes under a circuit-level depolarizing noise
model. A homogeneous ðZXÞ20 schedule is used for all codes,
and the y axis is the probability that at least one logical Z error
occurs. Dashed lines are the probability of a Z error occurring on
at least one of k physical qubits without error correction under the
same error model and for the same duration (80 time steps), with
k ¼ 4 (orange), k ¼ 8 (purple), and k ¼ 10 (pink).

TABLE VI. Thresholds (in %) for the subsystem toric code for
various homogeneous schedules under the independent circuit-
level noise model, each computed using the critical exponent
method of Ref. [61] to analyze results from Monte Carlo
simulations using subsystem toric codes with distances
L ¼ 26, 30, 34, 38, 42, 46. Numbers in brackets are the 1σ
uncertainties in the last digit. For each threshold, we keep the
number of syndrome extraction rounds constant for all codes,
always using at least 92 rounds to ensure boundary effects (in
time) are small even for the largest codes. For the final two
columns (with asterisks in the title), gauge fixing is not used even
when possible.

Schedule pth
X pth;�

X pth
Z pth;�

Z

ZX 0.515(1) 0.515(1)
Z2X2 0.5863(9) 0.5863(9)
Z3X3 0.628(1) 0.628(1)
Z4X4 0.631(2) 0.631(2)
Z5X5 0.619(2) 0.619(2)
ZX2 0.3928(8) 0.3928(8) 0.749(1) 0.625(3)
ZX3 0.3236(9) 0.3236(9) 0.931(1) 0.7234(9)
ZX5 0.2449(5) 0.2449(5) 1.160(2) 0.816(2)
ZX10 0.1595(4) 0.1595(4) 1.430(3) 0.902(2)
Z2X10 0.2394(5) 0.2259(5) 1.197(3) 0.821(2)
X 0 0 2.2231(1) 1.029(2)

FIG. 32. Performance of a [[384,66,4]] f8; 4g subsystem
hyperbolic code (red) compared to the L ¼ 3 and L ¼ 4 sub-
system toric codes (shades of blue) using a ðZXÞ10 schedule with
the circuit-level depolarizing error model. We use 33 independent
copies of the subsystem toric codes to fix the number of logical
qubits at k ¼ 66. In the legend, we give the number of physical
qubits used, including ancillas.
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