
1

Robust Stabilization of a Class of Nonlinear
Systems Controlled Over Communication Networks

Gilberto Pin, Gianfranco Fenu, Vittorio Casagrande, Davide Zorzenon, and Thomas Parisini

Abstract—The paper deals with the stabilization of nonlin-
ear systems in which the loop is closed over a lossy non-
acknowledged communication network. Given a Regional Input-
to-State (ISS) stabilizing state-feedback control law, designed
without accounting for the network-induced delays, we propose
a non-acknowledged communication policy that allows to deploy
the above controller over the network without any modification,
while preserving the Regional ISS property. The time-varying
delays and packet dropouts occurring on both the up-link and
the down-link are compensated through a model-based prediction
scheme and a packet-management policy based on time-stamping.
The consistency of the prediction, which is a major issue in
the context of nonlinear systems with an embedded networked
controller, is guaranteed through the exploitation of a novel move-
blocking strategy for computing the command sequence to be
forwarded to the actuators.

I. INTRODUCTION

In this paper, we deal with nonlinear dynamic systems in
which sensor data and actuator commands are sent through
a lossy communication network. Control over communication
networks has attracted increasing attention in practical applica-
tions, since network technologies provide a convenient way to
remotely control distributed plants, with high reconfigurability
and simple installation and maintenance. On the other hand,
compared to transparent connections, it is well known that the
presence of a communication network may affect negatively
the performance of the control loop, eventually leading to in-
stability if the design of the control scheme does not explicitly
account for the presence of the network itself (see [1], [2], [3],
the recent contribution [4] and the monography [5]).

The issue of guaranteeing stability and performance in
networked control systems is raised, in particular, by packet
dropouts and by the time-varying nature of the transmission

This work has been partially supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement No 739551
(KIOS CoE) and by the Italian Ministry for Research in the framework of the
2017 Program for Research Projects of National Interest (PRIN), Grant no.
2017YKXYXJ.

G. Pin is with Dept. of Information Engineering, University of Padova,
Italy. (pingilbert@dei.unipd.it).

G. Fenu is with the Dept. of Engineering and Architecture at the University
of Trieste, Italy (fenu@units.it)

V. Casagrande is with the Dept. of Electronic and Electri-
cal Engineering at University College London, London, UK
(vittorio.casagrande.19@ucl.ac.uk).

D. Zorzenon is with the Control Systems Group at Technische Universität
Berlin, Germany. (davide.zorzenon@tu-berlin.de).

T. Parisini is with the Dept. of Electrical and Electronic Engineer-
ing at Imperial College London, UK, with the KIOS Research and In-
novation Centre of Excellence, University of Cyprus, and also with the
Dept. of Engineering and Architecture at the University of Trieste, Italy
(t.parisini@gmail.com)

delays, mainly due to the variability of network traffic, to
the concurrent access to limited shared resources and to
the changing routing paths of the packets sent through the
network [6], [7] (see also [8], [9] on the significant issue of
concurrency in networked control systems).

Various control strategies have been presented in the litera-
ture to design effective networked controllers for linear time-
invariant systems in presence of lossy or delayed communi-
cations (see [10], [11], [12], [13], [14]). In particular, many
results are focused on characterizing the stability properties
of the closed-loop networked system in a probabilistic setting
when classical optimal or robust control methodologies are
adopted in presence of random transmission delays and packet
dropouts [15], [16], [17]. The interested reader is referred to
the important paper [18] and to the references cited therein for
a deeper insight on the stability analysis of networked control
systems. Other interesting papers are [19], [20] and [21] for
a deeper insight on the stability analysis of networked control
systems in both the stochastic and deterministic frameworks.

Besides guaranteeing the stability of the controller in pres-
ence of time-varying delays, another critical issue is the choice
of the underlying communication protocol. In this regard, the
packet structure of most transmission protocols has important
implications from the control point of view, [22]. As far as the
reliability of the networked communication is concerned, it is
worth pointing out that packet dropouts may occur if a non-
deterministic protocol is adopted. Some recent investigation
concerning the control over networks with packet losses can
be found in [23], [24] and [25]. Assuming that the number
of successive dropouts is bounded by a finite upper bound,
an effective way to mitigate the effect of packet dropouts
consists in using protocols which allow to transmit fewer but
more informative packets, containing multiple sensors’ data
or sequences of control inputs [26], [10], [27], [28], [29].
The control commands can be buffered by the so-called smart
actuators, that embed some intelligence to manage packet
reordering and synchronization, and to retrieve the control
commands from local buffers in case of temporary failure of
the communication link. In this context, for example, model
predictive controllers represent a natural choice because they
are inherently based on the computation of a control input
sequence over a future input horizon, that can be easily pack-
eted and forwarded to the actuators (see the seminal paper [30]
and the recent contributions [15], [29], [11], [12], [31], [32],
[33], [24], [25]). By compensating the network-induced delays
through a time-stamping or handshaking policy, it is possible
to ensure the recursive feasibility of the optimization problem
associated to the model predictive control, which implies, in
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turn, the regional stability of the closed-loop system, [34],
[35], [25].

Several sequence-forwarding model-based policies have
also been proposed to extend over the network an exist-
ing robust stabilizing control law, designed without taking
into consideration the presence of the network in the feed-
back path (see the seminal works [36], [37] and the recent
delay-compensation schemes [28], [38], [29], [39]). In these
schemes, the major difficulty consists in estimating the current
state from delayed partial information with an uncertain model
of the process. In the case of varying delays and losses, a
further major obstacle is posed by the difficulty to reconstruct
the true input sequence applied to the controlled system, since
some control commands may be lost in the transmission or
be delivered at different times than expected to the actuator
nodes. This problem is commonly referred to as prediction
consistency issue (see [29], [32], [39]). To guarantee the
consistency of the estimates (in other words, that the input
sequence used for state reconstruction and prediction matches
the one applied to the plant), some sequence-forwarding
schemes rely on the assumption that the controller receives
back a deterministic notification after each successful packet
delivery (acknowledgment), and that perfect synchronization
is maintained in the network, permitting to use time-stamps
intelligible by all the nodes (see [37], [30], [28], [38] and
[34]). These assumptions are hard to verify in general-purpose
networks. Moreover, the network synchronization issue is still
an open problem, [40], [41]. Therefore, we focus on the case
of networks with non-acknowledged communication protocols
and with weak synchronization between the plant and the
controller.

In this context, we propose a methodology called Move-
Blocking Sequence-Forwarding with Plant-Counter Stamp-
ing (MBSF-PCS), to extend over a network a conventional
robustly-stabilizing controller while preserving its stability
properties. In order to guarantee the consistency of the predic-
tion, a sequence-forwarding approach is adopted, together with
a move-blocking strategy and a packet-stamping mechanism
that relies on the plant’s time reference alone. The networked
controller driven by the proposed control policy is shown
to inherit the Regional Input-to-State Stability (ISS) property
of the non-networked pre-designed controller with respect to
additive model uncertainties.

The paper is organized as follows: in Section II useful
notations, definitions and stability notions are introduced.
Then, in Section III we introduce the control objective in
formulating some assumptions on the communication network
and on the system to be controlled. The devised control
policy is presented in Section IV. The stability properties of
the resulting networked control systems are then analyzed in
Section V. Section VI describes an application of the proposed
control strategy. Finally, Section VII reports some concluding
remarks and directions of future research efforts.

II. NOTATIONS AND PRELIMINARIES

This section is aimed at introducing the basic notations used
in the paper and the concepts, definitions, and assumptions
underlying the characterization of the network nodes.

A. Basic Notations

Let R, R≥0, R>0, N denote the real, the non-negative
real, the strict-positive real,the non-negative integer sets of
numbers, respectively. The Euclidean norm is denoted as
| · |. For any sequence of finite-dimensional vectors υ =
{υk}k∈N indexed by a non-negative integer, with υk ∈ Rnυ ,
let us define ‖υ‖ , supk∈N{|υk|}. The set of discrete-time
sequences taking values in some subset Υ ⊂ Rnυ is de-
noted by MΥ. Given a sequence u ∈ MΥ and two non-
negative integers k, r ∈ N, with r ≥ k, we denote as
uk,r the sub-sequence of elements indexed from k to r (i.e.,
uk,r , [uk, . . . , ur] r, k ∈ N, r ≥ k).

Definition 2.1 (K-, K∞-, KL- functions): A function
α(·) : R≥0→R≥0 belongs to class K if it is continuous, zero
at zero, and strictly increasing. It belongs to class K∞ if it
belongs to class K and is unbounded.

A function β(·, ·) :R≥0×N→R≥0 belongs to class KL if
it is non-decreasing in its first argument, non-increasing in its
second argument, and lim s→0 β(s, k)=lim k→∞ β(s, k)=0.

/

Given a K∞-function η(·), the following recursion defines
a family of K∞-functions Gηi(·) , i > 0 induced by η(·) that
will be used throughout the paper:{
Gη0(s) , 0,∀s∈R≥0;

Gηi(s) , η
(
Gη(i−1)

(s)
)
+s,∀s∈R≥0, ∀i∈N\ {0} .

(1)

B. Nodes and Clock Mappings

In the class of networked control systems dealt with in
the paper, a node is understood as a digital computing unit
executing repeated operations at discrete-time instants, that is
equipped with a local counter (updated at each execution) and
that is capable of sending/receiving data to/from other nodes.

With the aim of providing a self consistent characterization
of the timing behavior of possibly not synchronized networked
elements, let us consider a reference global time (network
time) denoted by the continuous variable t ∈ R≥0. The update
event of the local counter kz of each z−th node of the network
is related to the global time by a mapping defined as:

Definition 2.2 (Clock mapping): An injective function

tz(·) : N→ R≥0

is called a clock mapping if, for some finite T z, T z ∈
R>0, T z < T z , the following inequality is verified:

T z ≤ tz(kz + 1)− tz(kz) ≤ T z,∀kz ∈ N. (2)

/

Definition 2.3 (Real-time Clock mapping): An injective
function

tz(·) : N→ R≥0

is called a real-time clock mapping if, for some finite T z ∈
R>0, the following identity is verified:

tz(kz + 1)− tz(kz) = T z,∀kz ∈ N. (3)

/
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Let kp denote the counter shared by the plant nodes (sen-
sors, actuators) and let tp(·) be the real-time clock mapping
associated to the update of said counter. We denote by
ukp ∈ Rnu xkp ∈ Rnx respectively the input and the state
of the system measured at global time tp(kp). Since tp(·)
is assumed real-time, the plant sampling takes place with
constant sampling period Tp. Let the plant’s dynamics be
described by a discrete-time dynamical system with transition
map F (·, ·) : Rnx × Rnu → Rnx , such that:{

xkp+1 = F (xkp , ukp),∀kp ∈ N,
x0 = x ,

(4)

with F (0, 0) = 0. The following assumptions will be needed.
Assumption 1 (Nominal model, uncertainty bound):

Assume that two compact sets X ⊂ Rnx and U ∈ Rnu , with
{0} ⊂ X and {0} ⊂ U , called respectively the modeling
domain and the input constraint set, and an approximate
state-transition function F̂ (·, ·) : X × U → X are known,
such that F̂ (0, 0) = 0 and the following bound on the
modeling error can be established

|F̂ (x, u)− F (x, u)| ≤ d, ∀(x, u) ∈ X × U, (5)

where d ∈ R≥0. �

Assumption 2 (Uniform continuity w.r.t. x): The approxi-
mate discrete state-transition function F̂ (x, u) is uniformly
continuous with respect to x:∣∣∣F̂ (x

′
, u)− F̂ (x

′′
, u)
∣∣∣ ≤ ηx(|x′ − x′′ |),∀(x′ , x′′) ∈ X ×X,

∀u ∈ U , where ηx is a class K∞-function. �

Due to (5), there exists a discrete time sequence of additive
transition uncertainties d0,kp = [d0, . . . , dkp ] such that{

xkp+1 = F̂ (xkp , ukp) + dkp ,∀kp ∈ N,
x0 = x ,

(6)

with |dkp | ≤ d,∀kp ∈ N.

C. Regional Input-to-State Stability of Discrete-Time Systems

For the sake of completeness, the notion of Regional Input-
to-State Stability for a closed-loop discrete-time system with
an exogenous perturbation is recalled. Given a state-feedback
map κ(·) : Rnx → Rnu , let us consider the discrete-time
closed-loop dynamic system{

xkp+1 = F̂ (xkp , κ(xp)) + dkp ,∀kp ∈ N,
x0 = x .

(7)

The following definition of ISS is provided for discrete-time
nonlinear systems of the form (7) .

Definition 2.4 (Regional ISS(X0)): Let X0 be a subset of
Rnx , with {0} ⊂ X0 and D ⊂ Rnx compact. If there exist a
KL-function β(·, ·) and a K-function γ(·) such that, for any
initial condition x ∈ X0, the corresponding state trajectory
satisfies

|xkp |≤max
{
β(|x|, kp),γ(‖d0,kp−1)‖)

}
, (8)

∀kp ∈ N, then the system (7), with d ∈MD, is said to be
Regional Input-to-State Stable in X0 (ISS(X0) ) with respect

to bounded additive disturbances.
/

The Regional-ISS property admits also a characterization in
terms of Lyapunov functions (see [42]).

Definition 2.5 (Regional-ISS-Lyapunov Function): Let
X0 ⊂ Rnx , X ⊂ Rnx , with {0} ⊂ X0 and X0 ⊆ X be such
that, for any initial condition x ∈ X0 and any admissible
realization of the disturbance ∀d ∈ D the corresponding
trajectory under (7) is contained in X . Then, the function
V (·): X → R≥0 is called a Regional-ISS(X0, X)-Lyapunov
function for system (7) , if there exist three K∞-functions
α1(·), α2(·), α3(·), and a K-function σ(·) such that the
following inequalities hold ∀d ∈ D:

V (x) ≥ α1(|x|), ∀x ∈ X , (9)
V (x) ≤ α2(|x|), ∀x ∈ X , (10)

V (Ĝ (x) + d)−V (x)≤−α3(|x|)+σ(|d|), ∀x ∈ X . (11)

�

Theorem 2.1 (Lyapunov characterization of Regional-ISS):
If the system (7) admits a Regional-ISS(X0, X)-Lyapunov
function in X , then it is Regional-ISS(X0, X) with respect
to d ∈ D. �

We assume we know a state-feedback map κ∗(·), designed
for the approximate system’s model (6), that verifies the
following assumption in the non-networked scenario:

Assumption 3 (κ∗ ): There exists a state-feedback map
κ∗(·) : X→U such that the system (6), in closed loop with
uk = κ∗(xk), is ISS(X0) with respect to d ∈ D. �

Assumption 3 implies the existence of a Regional-ISS-
Lyapunov function V (·) : X → R≥0 for the closed-loop
system driven by the control law κ∗(·). Moreover (11) holds
with:

V
(
F̂ (x, κ∗(x)) + d

)
− V (x) ≤ −α3(|x|) + σ(|d|). (12)

A supplementary assumption is formulated on the Lyapunov
function V (·) of the non-networked closed-loop system.

Assumption 4 (Uniform continuity of V (·)): There exists a
uniformly continuous ISS-Lyapunov function V (·) for the
system (6) in closed-loop with κ∗(·), i.e., there exists a K∞-
function γ(·) such that∣∣∣V (x

′
)− V (x

′′
)
∣∣∣ ≤ γ(∣∣x′ − x′′ ∣∣), ∀(x′ , x′′) ∈ X ×X.

�

Note that the Regional-ISS assumption on the nominal
closed-loop system allows to address control laws arising from
MPC and NMPC that are characterized by local properties
related to the feasibility of the constrained optimization they
rely on. While addressing the problem of (robust) recursive
constraint satisfaction, the present methodology is however
clearly not restricted to this kind of controller. Any controller
which guarantees the robust invariance of a compact subset of
Rn can be dealt with by the proposed networked stabilization
scheme.
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III. FORMULATION OF THE CONTROL PROBLEM

The control objective consists in designing a delay-
compensation strategy, relying on the knowledge of a
nominally-Regional-ISS-stabilizing controller k∗(·) and of the
system model, able to preserve the Regional-ISS property in
a networked scenario.

The communication between sensors, controller and ac-
tuators takes place over a non-acknowledged network with
communication delays and bounded data losses. We anticipate
that the Lyapunov analysis presented in Section V on the ISS
gain-functions will also allow to evaluate the performance loss
in the networked scenario and the margin on the tolerable dis-
turbances guaranteeing the satisfaction of the state constraints.

A. General Assumptions on the Network
With reference to Fig. 1, the network splits the overall

system in two different parts: i) the plant layer and the
ii) controller layer. The two layers are connected by two
virtual links: the sensor-to-controller link (downlink) and
by the controller-to-actuator link (uplink), modeled as non-
acknowledged packet-based unidirectional transmission chan-
nels affected by random bounded delays and bounded packet-
loss. The sensor node and the actuator node, belonging to the
same physical domain (plant), are assumed to maintain perfect
synchronization; this implies that they share the same counter
kp, with a common mapping tp(·), which is assumed to be
real-time with sampling period T p, according to Definition
2.3. In other words, we assume that the peripherals used to
sense the plant and drive the actuators are locally connected
to the same computing unit, sharing the same real-time clock.

Controller layer tc(·)

Actuator node

kp

NetworkUplink

Plant layer tp(·)

kp

Downlink

Sensor node

Controller node

kc

Fig. 1: The networked system dealt with in the paper is parti-
tioned by the network in two physical domains (plant layer and
controller layer), with possibly non-synchronized clocks. Each
node executes a periodic operation (•: sensing, ◦: control,
�: actuation). The virtual links (uplink and downlink) connect-
ing the two layers are uni-directed and no acknowledgments
are used to confirm the arrival of a packet.

On the other hand, the controller is assumed possibly not
real-time, meaning that its clock mapping is of the kind
specified in Definition 2.2. In particular, we will consider the
cycle-time bounded from above by known finite constant T c.

While the local counters kp and kc are known to the
computing nodes, the functions tp(·) and tc(·) mapping the
counter-updates to the global time are not known to the NCS’s
components. The clock mappings, indeed, are not used by the
proposed policy, but are instrumental to analyze the networked
asynchronous behavior of the NCS components.

B. Plant-Counter Stamping

The time-stamping-based management of incoming data
(hierarchical organization, update and discard of incoming
information based on time-stamps applied by the sender)
represents a key ingredient of many architectures proposed
in the literature for ensuring the stability of a networked
control system in absence of acknowledgments. The benefits
of using time-stamping in NCS’s are well documented (see [1],
[43], [34], [35] and the references therein); however the time-
stamping requires, in general, that all the nodes of the network
have access to a common system’s clock, or that a proper
clock synchronization service is provided by the underlying
network protocol. This task can be achieved in different ways
(see, e.g., [44], [45]), however, unless a dedicated physical
link for synchronization is established between two nodes, the
exact synchronization is difficult to obtain.

In order to overcome the clock-synchronization issue, an
incoming data management strategy named Plant-Counter
Stamping (PCS) is proposed in this work, which is based
on the fact that the sensor node applies to the data sent to
controller a stamp corresponding to the local counter kp. Then,
the controller stamps the control data for the actuators with the
same plant-counter stamp kp. In this way, the actuator receives
information about the sampling instant of the source sensory
data used to compute the control command.

Remark 3.1: It is worth remarking that the above policy is
not properly a time-stamping one, since the mapping to the
global time tp(·) is not needed for the stamping; moreover,
the controller does not stamp the data for the actuators
with the local information. In practice, the stamp applied to
sensory data carries information on the plant counter value
corresponding to the plant sampling instant. The controller
simply forwards this information, which relates to the sensor
data, not the time of control computation. In this setting, each
node stores the received data in a local memory, until a packet
with a more recent plant-counter-stamp is received, replacing
the old data.

C. Bounds on Network Delays, Packet Losses, and Implica-
tions

We assume that the number of consecutive dropouts is
bounded by a finite integer L ∈ N in both the uplink and
the downlink. Not being acknowledged upon the successful
reception of the packet by the recipient, each node at any cycle
sends a data packet to the recipient even if said data remained
unchanged from the previous round. Due to packet dropouts
and delays it may happen that the actuator node does not
receive updated commands from the controller for a number
of cycles. In the following, we will determine an upper bound
on this blanking time, in terms of actuator cycles.
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Let us first analyze the case of the downlink. We denote by
Kp ⊆ N the set of all cycles of the sensor node whose packets
reach the controller. It means that a message sent at a cycle
kp ∈ ( Kp) is dropped by the network and does not reach
the recipient. Moreover, let τp(kp), kp ∈ Kp denote the time
taken by the packet sent at cycle kp to reach the controller.
We assume that τp(kp) satisfies the bound:

τp(kp) ≤ τp,∀kp ∈ Kp, (13)

for some finite τp ∈ R≥0. Consider now the case that the
sensor node at the k

′

p-th cycle , with k
′

p ∈ Kp, sends a packet
to the controller and let k

′

c be the controller cycle at which
the control computation has been completed by exploiting said
sensory packet. Then, letting the controller computation-time
be upper bounded by T c, the time at which the computation
of the control action is completed, tc(k

′

c), can be bounded by

tp(k
′

p) ≤ tc(k
′

c) ≤ tp(k
′

p) + τp(k
′

p) + T c ≤ tp(k
′

p) + τp + T c .
(14)

The lower bound corresponds to the ideal situation of zero
communication delay in the downlink. We assume that at cycle
k
′

c, as soon as the control computation has ended, the controller
sends the control action to the actuator node. In the ideal case
of zero-delays in the uplink and downlink, no dropouts and
zero execution time of the controller cycle, the actuator may
receive the control command at earliest time

tp(k
∗
p) ≥ tp(k

′

p) , (15)

where k∗p represents the cycle of reception at the actuator node.

After the successful delivery of a sensory packet sam-
pled at cycle k

′

p ∈ Kp, at most L consecutive dropouts
may occur before a new packet, collected by the sen-
sor node at time k

′′

p ∈ Kp is successfully delivered,
that is ∀k′p ∈ Kp,∃ k

′′

p ∈ Kp : k
′′

p > k
′

p , |k
′

p − k
′′

p | ≤ L+ 1.
Therefore, the next sensor cycle after k

′

p with successful
delivery to the controller satisfies the bound:

k
′′

p ≤ k
′

p + (L+ 1) .

In view of the bound (3) on the clock mapping tp(·), it follows
that

tp(k
′′

p ) ≤ tp(k
′

p) + (L+ 1)T p , (16)

for some finite T p. Let k
′′

c be the controller cycle at which a
new control computation is completed, using the plant sensed
at the sensor cycle k

′′

p . Then:

tc(k
′′

c ) ≤ tp(k
′′

p ) + τp + T c.

≤ tp(k
′

p) + τp + T c + (L+ 1)T p .
(17)

At cycle k
′′

c , as soon as the control computation has ended,
the controller tries to send the control action to the actuator
node, stamping it with k

′′

p , i.e., the plant-counter of the
source sensory data. The data transmission delay in the uplink
satisfies the bound:

τc(kc) ≤ τ c,∀kc ∈ Kc,

for some finite τ c ∈ R≥0, where Kc ⊆ N denotes the set of
controller cycles whose packets are successfully delivered to

the actuator. In the worst-case scenario, however, the controller
may not receive new sensory data for the next ceil(LT p/T c)
cycles (due to losses in the downlink) and it may take up to
L+ 1 cycles to successfully deliver the packet, due to losses
in the uplink. Therefore, letting

Lc , max
(
L , ceil(LT p/T c)

)
and denoting by k∗∗p the actuator’s cycle at which the control
packet is received, we get the bound:

tp(k
∗∗
p ) ≤ tc(k

′′

c ) + (Lc + 1)T c
≤ tp(k

′

p)+τp+T c+(L+1)T p+τ c+(Lc+1)T c .
(18)

Note that, by introducing the constant τ rt defined as:

τ rt , τp+τ c+T c+(L+1)Tp+(Lc+1)T c ,

the time-lapse between tp(k
∗
p) and tp(k

∗∗
p ), that is the time-

frame between two successive updates of the actuator, in view
of (14) and (18) can be upper bounded by τ rt as follows:

tp(k
∗∗
p )− tp(k∗p) ≤ τ rt . (19)

The bound τ rt is also known as maximum round-trip-time,
since it represents the maximum time taken by a packet
sent from the plant layer (sensor-node) to return to same
layer (actuator-node). Note that between cycles k∗p and k∗∗p
the actuator node does not receive any update. The harmful
presence of such a blanking time can be mitigated by a
sequence-forwarding policy (see [36], [37], [28], [38], [29] and
[39]). That is, the controller sends more informative packets
containing a sequence of Np ∈ N control moves instead of a
single control command, with

Np ≥ ceil

(
τ rt

T p

)
,

to avoid the buffer overrun issue.

IV. THE MOVE-BLOCKING SEQUENCE-FORWARDING
POLICY

According to the previous analysis on network delays,
the proposed control strategy requires the controller node to
compute, at any k

′′

c -th cycle, a sequence of Np + 1 control
inputs:

uF̂ (k
′′

c )k′′p , k
′′
p +Np

= [uF̂ (k
′′

c )k′′p , . . . , u
F̂ (k

′′

c )k′′p +Np
] , (20)

by exploiting the sensor data collected at time k
′′

p . The
superscript F̂ denotes the fact that this sequence is computed
by the controller thanks to a model-based prediction of the
system’s trajectory. The index enclosed by round brackets
(e.g. k

′′

c in this case) denotes the controller cycle at which
the sequence is computed, while the subscripted indices on
the elements on the right denote the plant’s cycles at which
the relative control move should be applied. The elements of
the sequence with subscript larger than k

′′

p refer to control
moves that should be applied forward-in-time by the actuator
node, if needed, to recover the blanking time. While model-
based packet forwarding is a well established technique for
delay compensation, the originality of the present contribution
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resides in the way the computation of forward control moves is
carried out, that enables the present strategy to be applied also
to controllers involving constrained optimization, for which
recursive feasibility must be guaranteed.

In the conventional discrete-time state-feedback control
setting (with transparent communication), the control move
to be applied at the k∗∗p -th cycle of the actuating node relies
on the current state value: u(k∗∗p ) = κ∗(xk∗∗p ). Conversely, in
the networked setting, the input applied at time k∗∗p may have
relied at a time k

′′

c , then uk∗∗p should be computed based on the
available state measurement xk′′p thanks to a model-based state
prediction x̂k∗∗p . Nonetheless, to estimate a future state x̂k∗∗p
from the available measurement xk′′p , it is important to exactly
know the input sequence uk′′p , k∗∗p −1 that will be driving the

system (6) from k
′′

p to k∗∗p − 1.
As far as the state reconstruction/estimation is concerned,

the uncertainty on the future input sequence may represent
a severe issue, especially when the plant response is very
sensitive to the control input, or when significant variations
occur between consecutive control actions, such in the case
of discontinuous control laws. To force determinism on the
control moves that will be applied (a.k.a. “prediction con-
sistency"), we resort to a move-blocking policy, formally
described in the following.

Given the sequence computed at the k
′

c-th cycle by the
controller (exploiting sensory data stamped with k

′

p):

uF̂ (k
′

c)k′p,k
′
p+Np

= [uF̂ (k
′

c)k′p , · · · , u
F̂ (k

′

c)k′p+Np
] , (21)

let the new sequence to be computed at cycle k
′′

c with sensory
data collected at plant’s cycle k

′′

p , be written for convenience
as the collation of two subsequences:

uF̂ (k
′′

c )k′′p , k
′′
p +Np

= [uF̂ (k
′′

c )k′′p , k
′
p+Np

,

uF̂ (k
′′

c )k′p+Np+1, k′′p +Np
] .

The first subsequence is obtained by reusing the last elements
of the previous control sequence (21):

uF̂ (k
′′

c )k′′p ,k
′
p+Np

= [uF̂ (k
′

c)k′′p , . . . , u
F̂ (k

′

c)k′p+Np
] . (22)

By using uF̂ (k
′′

c )k′′p ,k
′
p+Np

, the state estimate x̂k′p+Np+1 can
be obtained by the recursion:

x̂k′′p = xk′′p ,{
x̂k′′p +i = F̂

(
x̂k′′p +i−1, u

F̂ (k
′′

c )k′′p +i−1

)
,

∀i ∈ {1, . . . , k′p +Np + 1− k′′p } .
(23)

Then, starting with x̂k′p+Np+1, the second subsequence is
computed by the following model-based iteration that exploits
the control law κ∗(·):

uF̂ (k
′′

c )k′p+Np+j = κ∗
(
x̂k′p+Np+j

)
,

x̂k′p+Np+1+j = F̂
(
x̂k′p+Np+j , u

F̂ (k
′′

c )k′p+Np+j

)
,

∀j ∈ {1, . . . , k′′p − k
′

p} .
(24)

The move-blocking policy adopted for the input sequence
computation (22), implies that the control sequence that will
be applied to the plant is fully determined and known by the

controller. Thus, the prediction consistency of the proposed
scheme is guaranteed by construction.

In the next section, the stability properties of the devised
MBSF methodology with PCS delay compensation are ad-
dressed.

V. INPUT-TO-STATE STABILITY PRESERVATION UNDER
THE MBSF-PCS POLICY

To carry out the stability analysis, let us adopt an actuator-
centric point of view. Let xk∗∗p be the true system’s state in
correspondence of the k∗∗p -th cycle of the actuator task and let
x̂k∗∗p be a the state prediction done by the controller. In view
of this bound on the round-trip time, a worst-case analysis on
the state estimation error can be carried out.

Lemma 5.1 (Estimation error bound): Under Assumptions
1 and 2, for any actuator cycle k∗∗p ∈ N, the state estimate
x̂k∗∗p initialized by x(k

′′

p ), with k∗∗p − τ rt ≤ k
′′

p ≤ k∗∗p , and
computed through model-based recursions (23) and (24), is
affected by an error that satisfies the norm bound

|x̂k∗∗p − xk∗∗p | ≤ Γη τrt (d), (25)

where

Γη j (s) , max
i∈{0,...,j}

{Gηi(s)} , ∀s ∈ R≥0, (26)

is a K∞-function, with Gηi(·), i∈{0, . . . , j} defined in (1). �
Proof: Given the state measurement xk′′p , the control

sequence uk′′p ,k∗∗p , and the uncertainty realization dk′′p ,k∗∗p ,
in view of Assumption 2 and (5), the state estimation error
x̂k′′p +1 − xk′′p +1 can be bounded in norm by

|x̂k′′p +1 − xk′′p +1| =
=
∣∣∣F̂ (xk′′p , uF̂k′′p )−Fp(xk′′p , uF̂k′′p )∣∣∣

≤ |dk′′p | ≤ d = Gη1(d).

(27)

At the next step, by the triangle inequality, the following
equality holds:

|x̂k′′p +2 − xk′′p +2| =
=
∣∣∣F̂ (̂xk′′p +1,u

F̂ (k
′′

c )k′′p +1

)
−Fp

(
xk′′p +1,uk′′p +1

)∣∣∣ .
Since the move-blocking policy yields uk′′p +1 = uF̂ (k

′′

c )k′′p +1

(the truly applied control sequence coincides with the one
known to the controller), then

|x̂k′′p +2 − xk′′p +2| ≤
≤
∣∣∣F̂(̂xk′′p +1, uk′′p +1

)
−F̂
(
xk′′p +1, uk′′p +1

)∣∣∣
+
∣∣∣F̂(xk′′p +1, uk′′p +1

)
−Fp

(
xk′′p +1,uk′′p +1

)∣∣∣
≤ η

(
|x̂k′′p +1 − xk′′p +1|

)
+ |dk′′p +1|

≤ η(d) + d = Gη2(d) .

By applying recursively the triangle inequality, it follows that

|x̂k′′p +i − xk′′p +i| =
≤ η

(
|x̂k′′p +i−1 − xk′′p +i−1|

)
+|dk′′p +i−1|

≤ η
(
Gη(i−1)

(d)
)
+d = Gηi(d), ∀i∈{1, . . . , Np + 1}.

(28)
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Being k∗∗p − k
′′

p ≤ τ rt, the worst-case bound can be evaluated
as:

|x̂k∗∗p − xk∗∗p | ≤ max
i∈{0,...,τrt}

{
Gηi(d)

}
, ∀k∗∗p ∈ N, (29)

which can be written in compact form as in the statement of
the lemma.

Theorem 5.1 (Regional ISS (Ξ0)): Suppose that Assump-
tions 1÷4 hold. Then, there exists a non-empty set of initial
conditions Ξ0 ⊆ X0 such that the system controlled by the
proposed MBSF policy is ISS(Ξ0) with respect to bounded
additive uncertainties affecting the state transition function. �

Proof: The proof consists in showing that the Re-
gional ISS(X0, X)-Lyapunov function V (·) of the system
(6) in closed-loop with the control law κ∗(·) is a Regional-
ISS(Ξ0, X)-Lyapunov function also for the system in closed-
loop with the MBSF policy in the networked scenario, with
Ξ0 ⊆ X0. That is, the ISS property is inherited by the
networked system with a contraction of the allowable set
of initial conditions. Being (9) and (10) trivial to prove,
it is sufficient to show that the closed-loop trajectories are
indefinitely contained in X and that the 3rd ISS-Lyapunov
inequality, (11), also holds for the networked closed-loop
system, that is

V
(
F
(
xk∗∗p , uk∗∗p

))
−V

(
xk∗∗p

)
= V

(
F
(
xk∗∗p , κ

∗(x̂k∗∗p )
))
−V

(
xk∗∗p

)
≤ −α̂3

(
|xk∗∗p |

)
+ σ̂(d)

(30)
for some K∞-function α̂3(·) and some K-function σ̂(·). To this
end, let us introduce two properties of comparison functions
that will be used in the proof. Given a K∞-function γ(·), for
any pair (s

′
, s
′′
) ∈ R≥0 × R≥0 it holds that

γ(s
′
) = γ(s

′
+ s

′′ − s′′)
≤ γ(s

′′
+ |s′ − s′′ |)

≤ γ
(

max
{

2 s
′′
, 2
∣∣∣s′ − s′′ ∣∣∣})

≤ γ(2 s
′′
) + γ(2 |s′ − s′′ |),

(31)

and also

−γ(2 s
′′
) ≤ −γ(s

′
) + γ(2 |s′ − s′′ |). (32)

Now, let us derive a series of intermediate bounding inequal-
ities. In view of Assumption 4, the following bound holds:

V
(
x̂k∗∗p

)
≤ V

(
xk∗∗p

)
+ γ

(
|xk∗∗p − x̂k∗∗p |

)
≤ V

(
xk∗∗p

)
+ γ

(
Gγτrt (d)

)
,

which yields

−V
(
xk∗∗p

)
≤ −V

(
x̂k∗∗p

)
+ γ

(
Gγτrt (d)

)
. (33)

Moreover, in view of the following two inequalities

V
(
F (xk∗∗p , uk∗∗p )

)
≤V

(
F̂ (x̂k∗∗p , uk∗∗p ) + dk∗∗p

)
+ γ
(∣∣∣F̂ (x̂k∗∗p , uk∗∗p )−F (xk∗∗p , uk∗∗p )

∣∣∣+d)

and ∣∣∣F̂(x̂k∗∗p ,uka)−F (xk∗∗p ,uk∗∗p )
∣∣∣ ≤

≤
∣∣∣F̂(x̂k∗∗p ,uka)−F̂(xk∗∗p ,uk′′p )

∣∣∣
+
∣∣∣F̂(xk∗∗p ,uk∗∗p )−F (xk∗∗p , uk∗∗p )

∣∣∣
≤ η

(
Gη τrt (d)

)
+ d

= Gη τrt+1
(d),

we have that

V
(
F (xk∗∗p , uk∗∗p )

)
≤V

(
F̂ (x̂k∗∗p , uk∗∗p ) + dk∗∗p

)
+γ
(
2Gη τrt+1

(d)
)

+ γ(2 d),
(34)

where we have used the property (31) of comparison functions.
In view of (33), (34), (12) and (25), and by using the property
(32), we obtain

V
(
F (xk∗∗p , uk∗∗p )

)
− V

(
xk∗∗p

)
≤

≤ V
(
F̂
(
x̂k∗∗p , κ

∗
(
x̂k∗∗p

))
+ dk∗∗p

)
− V

(
x̂k∗∗p

)
+ γ

(
2Gη τrt+1(d)

)
+ γ

(
Gη τrt (d)

)
+ γ(2 d)

≤ −α3(|x̂k∗∗p |) + σ(d) + γ
(
2Gη τrt+1

(d)
)

+γ
(
Gη τrt (d)

)
+ γ(2 d)

(35)

Now, applying (32) with α3(·) in place of γ(·), s
′

=
1
2

∣∣∣xk∗∗p ∣∣∣ and s
′′

= 1
2

∣∣∣x̂k∗∗p ∣∣∣ it holds that

−α3

(∣∣∣x̂k∗∗p ∣∣∣) ≤ −α3

(
1

2

∣∣∣xk∗∗p ∣∣∣)+ α3

(∣∣∣xk∗∗p − x̂k∗∗p ∣∣∣)
which becomes, using (25)

−α3

(∣∣∣x̂k∗∗p ∣∣∣) ≤ −α3

(
1

2

∣∣∣xk∗∗p ∣∣∣)+ α3

(
Γη τrt (d)

)
(36)

Finally, taking into account (36), (35) can be further upper
bounded by

V
(
F (xk∗∗p , uk∗∗p )

)
− V

(
xk∗∗p

)
≤

≤ −α3

(
1
2

∣∣∣xk∗∗p ∣∣∣)+ α3

(
Γη τrt (d)

)
+ σ(d)

+ γ
(
2Gη τrt+1

(d)
)

+ γ
(
Gη τrt (d)

)
+ γ(2 d)

(37)

which implies that (30) holds with

α̂3(s) = α3(
1

2
s), ∀s ∈ R≥0,

and

σ̂(s) = α3

(
Γη τrt (s)

)
+ σ(s) + γ

(
2Gη τrt+1(s)

)
+ γ

(
Gη τrt (s)

)
+ γ(2 s), ∀s ∈ R≥0.

Finally, the confinement in X can be proven by evaluating the
ISS-asymptotic gains induced by the K-functions of the ISS-
Lyapunov inequalities. Let us define α4(s) = α̂3(α−1

2 (s)) and
pick α̂4 as in Lemma 2.4 of [46]. Letting c be any number
in (0, 1) and η̂(s) = α̂−1

4 (σ̂/c), then the asymptotic gain is
given by

η(s) = α−1
1 (η̂(s)) . (38)

Moreover
β(s, r) = α−1

1

(
β̂(α2(s)), r

)
,
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where β̂(s, r) = z(r) is the solution of the scalar difference
equation

z(r + 1) = z(r)− (1− c)α̂4(z(r)) ,

with z(0) = s. It holds that

β(s, 0) = α−1
1

(
β̂(α2(s))

)
.

Let β0(s) , β(s, 0). Since |x(k, x,d)| ≤ β(|x|, k) +
η(||d||) ≤ β0(|x|) + η(||d||), then

β0(|x|) + η(d) ≤ X =⇒ x(k, x,d) ∈ X ,

with X , dh ({0},Rn\X) and where dh denotes the Hauss-
dorf distance between sets1.

Therefore, for any d < η−1(X), requiring that |x| ≤
β−1

0 (X − η(d)), the confinement of the trajectories in the
modeling domain X is guaranteed. Then for any d̄ : 0 <
d̄ < η−1(X) the set of admissible initial conditions

Ξ0 ,
{
ξ ∈ Rnx : |ξ| ≤ β−1

0 (X − η(d))
}
.

for which regional-ISS is preserved is non-empty.

To sum up, Theorem 5.1 paves the way to design con-
trolled networked control systems that are robustly stable
when nominally-stabilising control laws are embedded into a
networked context thanks to the proposed policy.

VI. SIMULATION RESULTS

In this section, two simulation use cases are presented. The
first one deals with networked control of a continuous stirred
tank reactor and aims at comparing the proposed methodology
with a different technique reported in the literature. The second
use case addresses a challenging networked control problem
for a VTOL quadcopter.

A. Networked Control of a Stirred Tank Reactor: Comparative
Results

In the literature, several application examples can be found
in which the effectiveness of specific design approaches of
control systems over a communication network is shown. For
fair comparison purposes, we consider the networked control
technique presented in [47], where a Lyapunov-based model
predictive control (LMPC) technique for nonlinear systems
subject to time-varying communication delays between the
plant (measurement sensors) and the controller is presented
and evaluated. In this section, we compare this technique
with the proposed NMPC & MBSF-PCS strategy using the
same testbed, namely a well mixed, non-isothermal continuous
stirred tank reactor described in detail in [48]:

dT

dt
=
F

Vr
(TA0 − T )−

3∑
i=1

∆Hi

σcp
ki0e

−Ei
RT CA +

Q

σcpVr

dCA
dt

=
F

Vr
(CA0 + ∆CA0 − CA)−

3∑
i=1

ki0e
−Ei
RT CA. (39)

1In the present case, X is the radius of the largest hyper-sphere centered
in the origin and contained in X .
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Fig. 2: Trajectory of the system and corresponding input using
the MBSF in the same configuration of [47].

The states of the system are the temperature of the reactor T
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Fig. 3: Trajectory of the system using the MBSF (same con-
figuration of [47]). Note that the system reaches the terminal
set constraint despite the delays in the down-link.

and the molar concentration CA, Q is the input to the system
(heat supplied or removed to the reactor, |Q| ≤ 105 kJ/h)
and ∆CA0 is an unknown, bounded time-varying uncertainty
(|∆CA0| ≤ 0.2 mol/l). The aim of the control is to stabilize
the open-loop unstable steady state Ts = 388 K and CA,s =
3.59 mol/l. In order to adequately compare the two different
NCSs, the parameters of the controller and of the system are
the same of [47], that is:
• sampling time: ∆ = 0.025 h;
• maximum transmission delay in the down-link: τ̄sc = 6;
• maximum transmission delay in the up-link: τ̄ca = 0

(same as [47], that is, ideal up-link connection);
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• prediction horizon of the MPC controller: Np = 7;
• MPC cost function:

Nc∑
i=0

xTtiQcxti + uTtiRcuti ,

with Qc = diag(1 , 104) , Rc = 10−6 .
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Fig. 4: Delays and packet losses in the down-link (same con-
figuration of [47]). The upper diagram represents the network
induced delays: squares correspond to sending instants and
triangles to receiving instants. In the bottom diagram the
age of the information used by the controller (corresponding
to triangles) is represented. Since each packet can be used
multiple times (in case of transmission delay) there can be
more than one triangle on the same slanted segment.
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Fig. 5: Trajectory of the system and corresponding input using
the MBSF with delays and packet losses in both down-link and
up-link

In Fig. 2 the state evolution over time and the input to the
system are represented, whereas in Fig. 3 the state trajectory
and the terminal set of the MPC are shown. During its
evolution, the system is subjected to time delays represented
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Fig. 6: Trajectory of the system using the MBSF (delays and
packet losses in both down-link and up-link).

pictorially in Fig. 4, where the timing diagrams of the simu-
lated networked packet-based communication links are given.
As it can be noticed, the state variables converge to their set
points (represented in red) while the input decays to zero;
hence in this case performances of the proposed control policy
are similar to the ones presented in Fig. 5 of [47].

Since the control scheme proposed in the present paper is
able to handled delays and data losses in both the up-link
and the down-link (unlike the one of [47]), the effectiveness
of the controller is evaluated also in this more challenging
configuration. Simulations have been carried out using the
following parameters:
• maximum transmission delay in the down-link: τ̄sc = 2;
• maximum transmission delay in the up-link: τ̄ca = 1;
• bounds on the maximum number of consecutive dropouts

in the up-link and in the down-link, respectively: L̄sc = 1,
L̄ca = 2.

In Figs. 5 and 6 the state trajectories are shown as well
as the input actions applied to the system obtained when the
disturbance variable is set to |∆CA0| ≤ 0.2 mol/l (same as in
the previous simulation case), that, in turn, corresponds to:

d̄ =
F

Vr
|∆CA0| = 1.00 mol/(h · l) .

Delays and packet drops are represented in Fig. 7. Simulation
results show that taking into account the non-ideal communi-
cation even in the up-link does not cause a large deterioration
of the performances.

Remark 6.1: The simulation scenario considered above
shows that the proposed method allows for bounds on the
uncertainties that are not too conservative thus confirming the
practical robustness of the control scheme. In this respect,
it is worth remarking that the theoretical estimate of the
norm of the maximum tolerable additive disturbance may
result to be very conservative. Specifically, in the present
example, the method explained in [35] provides the estimate
d̄ ≤ 4.85× 10−21mol/(h · l). This very conservative estimate
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has only a theoretical interest but has no impact on the
practical design of the controller.
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Fig. 7: Delays and packet losses in the down-link and up-
link. τ̄ca and τ̄a diagrams are referred to the up-link (in this
simulation packet losses and transmission delays are present
in both up-link and down-link).

Finally, in order to quantitatively compare the MBSF policy
with the LMPC, the same performance index of [47] has been
defined:

M∑
i=0

xTtiQcxti + uTtiRcuti ,

where the final simulation time tM has been set to 2 h. Then
a total number of 100 simulations under the same conditions
of [47] (that is, Np = 10 and initial state randomly chosen
inside their stability region) have been carried out. The mean
of the cost obtained for each simulation is 1.0039×104, while
the average cost obtained by Liu et al.2 is 1.7364 × 104.
Hence, although the controller designed by Liu et al. takes
into account only delays in the down-link, this result shows
that the MBSF policy, besides being more generic (since it
allows to cope with delays and packet dropouts in both the
up-link and down-link), achieves performances comparable to
the LMPC designed in [47].

B. Networked Control of a VTOL Quadcopter

Let us consider a VTOL (Vertical Take-Off and Landing)
quadcopter, modelled as a six degrees of freedom rigid body.
In particular, we refer to the mathematical model of the OS4

2This is the mean value of the first column of table II of [47]

quadcopter, described in detail in [49] (see also [50], [51], [52]
for different attitude and altitude control strategies applied to
the OS4 prototype). The dynamics of such device is usually
described by means of a nonlinear system, using the following
12 state variables:

X =
[
φ, φ̇, θ, θ̇, ψ, ψ̇, z, ż, x, ẋ, y, ẏ

]T
(40)

where, as usual, φ, θ, ψ are respectively the roll, pitch and
yaw angles, whereas the x, y, z are the coordinates of the
drone’s center of the mass. For the sake of brevity, we are
reporting only the state vector and the dynamics of the OS4
device, referring to [49] (in particular to Chapters 2 and 4) for
a detailed description of the OS4 model equations:

dX

dt
=



φ̇

θ̇ψ̇ + θ̇a2Ωr + b1U2

θ̇

φ̇ψ̇a3 − φ̇a4Ωr + b2U3

ψ̇

θ̇φ̇a5 + b3U4

ż
g − (cos(φ) cos(θ))U1

m
ẋ

ux
U1

m
ẏ

uy
U1

m



(41)

with

ux = (cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ))
uy = (cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ))

The variables U1 , . . . , U4 denote the inputs to the system
(U1, U2, U3 are forces, whereas U4 is a torque). It is worth
noting that the variable U1 is related to the overall thrust
available using the four available drives, whereas the variables
U2 , U3 , U4 are related to the roll, pitch and yaw torques,
respectively.3

In the present simulation study, we assume that the quad-
copter attitude perturbations from the hovering condition are
sufficiently small to allow considering the rates of change of
the orientation angles to be equal to the body angular velocity
components (in the general case, a non-linear transformation
matrix is needed to obtain the body angular velocities from
the rates of change of the orientation angles). This assumption
has been made also in [49], [50], [51], [52]. The performance
index to be minimized is defined as follows:

J =

N−1∑
i=0

[
XT
tiQcXti + UTtiRcUti

]
+ aXT

tNPXtN ,

where Xti is the full state vector as of Eq. (40) at time instant
ti and Uti = [U1(ti) , U2(ti) , U3(ti) , U4(ti)]

T . The penalty
coefficient a and the matrix P of the final cost term have
been properly tuned according to the constructive procedure

3The reader is referred to [49] (Chapters 2 and 4) for the detailed
description and explanation of the dynamic state equations. Moreover, the
OS4 parameters’ values are reported in [49] (Appendix E).
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(d) speed components of the center of mass

Fig. 8: VTOL example – Perfect situation: no transmission delays, no packet dropouts, no disturbances. The dashed lines
correspond to the reference values.

presented in [53]. Finally,

Qc = diag(105 , 105 , 105 , 105 , 105 , 105 ,

10−1 , 10−1 , 10−1 , 10−1 , 10−1 , 10−1)

Rc = diag(2.55 · 108 , 5.10 · 108 , 5.10 · 108 , 4.44 · 1011) .

Applying the Qc matrix in the performance index to be
minimized by the NMPC strategy, we would design a control
law able to keep as constant as possible the attitude of the
VTOL; moreover the weight matrix for the input signals Ui
is taking into account the different inertia values on the main
axes of inertia (please, refer to Appendix E in [49] for the
values): the inertia on the x and y axes (in the body frame)
are similar, but the inertia on the z axis is quite different. This
is the motivation why the weight for U4 is different from the
weights for U2 and U3.

Figs. 8 and 9 illustrate the application of the NMPC in two
different conditions: without transmission delays and packet
drops (a perfectly efficient transmission network) and without
any uncertainty on the model in the first case, and with some
transmission delays, data losses and uncertainties on the model
equations (in particular, only the angular and translational
acceleration components have been considered as affected by
uncertainty) in the second situation. Each figure depicts the

temporal evolution of the roll, pitch and yaw angles, the
coordinates of the drone center of mass, the body angular
speeds and the center of mass speed components. In the latter
case, the MBSF policy has been applied and Fig. 10 describes
the transmission of data packets from sensors to the controller
and then from the controller to the actuators, and how the
information of each packet has been used according to the
MBSF strategy.

In both the simulations, for the take-off and during the
first 7 seconds of the fly the OS4 model has been controlled
using a standard control strategy (namely the integral back-
stepping described in [52], [49]): in this way the drone reaches
an altitude higher than 1.0 meter above the ground (this
part of the simulation is not depicted in the figures). Then
in both the scenarios the NMPC control strategy (with the
MBSF policy in the latter scenario) has been activated, with
as target the altitude of 1.3 meters above the ground while
keeping the hovering attitude. When the MBSF-PCS policy
has been applied, also additive uncertainties (with proper
bound d̄) have been injected to the components of the state
transition function, describing the time evolution of angular
and translational acceleration components.

For the simulations the following data have been used:
• sampling time: ∆ = 20.0 · 10−3 s
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Fig. 9: VTOL example – The case with transmission delays, packet dropouts and uncertanty on angular and translational
acceleration components (bound on uncertainty d̄ = 3.8 · 10−4 ). The dashed lines correspond to the reference values.

(a) Arrival times and use of each packet according to the MBSF-PCS policy
in the down-link.

(b) Arrival times and use of each packet according to the MBSF-PCS policy
in the up-link.

Fig. 10: VTOL example – Delays and packet losses in the down-link (a) and up- link (b).
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(a) VTOL input signals in case of perfect scenario
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(b) VTOL input signals in case of transmission network with delays, drop-
outs and disturbances acting on the system

Fig. 11: VTOL input signals: on the left side the case of no disturbances and perfect transmission networks, on the right part
the case when transmission delays and dropouts are considered and also disturbances are acting on the system (bound on
uncertainty d̄ = 3.8 · 10−4 ).
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Fig. 12: VTOL example – The case with transmission delays, packet dropouts and uncertanty on angular and translational
acceleration components (bound on uncertainty d̃ = 1.0 · 10−1 ). The dashed lines correspond to the reference values.
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(a) VTOL inputs: bound on uncertainty d̄ = 3.8 · 10−4
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(b) VTOL inputs: bound on uncertainty d̃ = 1.0 · 10−1

Fig. 13: VTOL input signals in 2 different scenarios: on the left side the case when transmission delays and dropouts are
considered and also disturbances are acting on the system, with bound on disturbances d̄ = 3.8 · 10−4 . On the right side the
case when the bound on the disturbances is d̃ = 1.0 · 10−1 (the communication network has the same configuration as in the
previous case).

• bounds on the maximum number of consecutive dropouts
in the up-link and in the down-link, respectively: L̄sc = 3,
L̄ca = 4

• bound on the data transmission delay between the two
interfaces of the down-link: τ̄sc = 5

• bound on the data transmission delay between the two
interfaces of the up-link: τ̄ca = 4

• control horizon N = 12 and MTBS buffer length 21
• maximum additive uncertainty bound (according to The-

orem 5.1 and taking into account only angular and
translational acceleration components): d̄ = 3.8 · 10−4 .

The NMPC & MBSF-PCS strategy is able to cope with
(a priori) bounded network delays and packet dropouts. As
expected, greater the maximum network delay or the maxi-
mum number of packet dropouts, poorer the control system
performance, but the practical stability is still guaranteed.

Remark on the uncertainty bound: As noted in Remark 6.1,
the bound d̄ is conservative; we obtained a practical stable
behavior for the VTOL applying the NMPC & MBSF-PCS
control strategy considering disturbances/model uncertainties
greater, in absolute value, than the d̄ value obtained applying
the Theorem 5.1. For example, Fig. 12 describes the behavior
of the VTOL system, controlled by mean of the proposed
NMPC & MBSF-PCS scheme with the same control and
network configuration as in the experiment described above
in Fig. 9, but considering d̃ = 0.1 as bound to the (ran-
dom) disturbance acting on each angular and translational
acceleration component of the VTOL model in Eq. (41).
Note that, even if the controller is not able to impose to the
VTOL to reach the desired equilibrium state, the VTOL state
keeps moving quite close to the desired equilibrium condition,
despite the disturbances acting on the system. Note also that
(by comparing Fig. 11(a), 13(a) and 13(b)), due to the larger
disturbance acting on the system in the second scenario, the

control inputs U2 , U3 and U4 have an higher amplitude and
are varying faster in the latter case (as expected).

VII. CONCLUDING REMARKS

In this paper, the stabilization of a class of networked
control systems consisting of a nonlinear dynamic system
in which the loop is closed over a lossy communication
network has been considered. One of the major issues when
dealing with the stability of networked systems stems from
the presence of asynchronous communications networks to
implement the control law. In this respect, it is well known
that a system like this is prone to instability when controlled
by a feedback law designed without accounting for the time-
varying delays and packet dropouts caused by the network,
if no proper provisions are adopted. In this work, we have
shown that by exploiting the packet transmission capabilities
of the network it is possible to preserve the Regional-ISS
property of the nominal controller by forwarding sequences of
control moves. The possible loss of synchronization between
the controller and the sensor/actuator nodes is addressed by
a time-stamping policy, while the prediction consistency of
the scheme is guaranteed by a move-blocking strategy which
permits the controller to exactly know the true input sequence
applied to the plant, even in absence of acknowledgments.
Simulation results also comparing the proposed methodology
with an existing one in the literature, show the effectiveness
of the proposed networked nonlinear control scheme.
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