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One of the most interesting and everyday natural phenomenon is the formation of different patterns 
after the evaporation of liquid droplets on a solid surface. the analysis of dried patterns from blood 
droplets has recently gained a lot of attention, experimentally and theoretically, due to its potential 
application in diagnostic medicine and forensic science. this paper presents evidence that images 
of dried blood droplets have a signature revealing the exhaustion level of the person, and discloses 
an entirely novel approach to studying human dried blood droplet patterns. We took blood samples 
from 30 healthy young male volunteers before and after exhaustive exercise, which is well known to 
cause large changes to blood chemistry. We objectively and quantitatively analysed 1800 images of 
dried blood droplets, developing sophisticated image processing analysis routines and optimising a 
multivariate statistical machine learning algorithm. We looked for statistically relevant correlations 
between the patterns in the dried blood droplets and exercise-induced changes in blood chemistry. An 
analysis of the various measured physiological parameters was also investigated. We found that when 
our machine learning algorithm, which optimises a statistical model combining Principal Component 
Analysis (pcA) as an unsupervised learning method and Linear Discriminant Analysis (LDA) as a 
supervised learning method, is applied on the logarithmic power spectrum of the images, it can provide 
up to 95% prediction accuracy, in discriminating the physiological conditions, i.e., before or after 
physical exercise. This correlation is strongest when all ten images taken per volunteer per condition are 
averaged, rather than treated individually. Having demonstrated proof-of-principle, this method can be 
applied to identify diseases.

The generation of complex and varied patterns as a result of the liquid drying process is a common yet intriguing 
phenomenon in nature1. One of the first studies of drying droplets began with the publication in 1997 by Deegan 
et al.2 with an explanation of the formation of a ring-like structure commonly called a ‘coffee ring’ resulting 
from the evaporation of a droplet containing microparticles3. The reason for the formation of such a pattern is 
that the contact line, where the droplet meets the substrate, is pinned in place, due to the particles in the liquid. 
Consequently, liquid from the center of the droplet must flow outwards to replenish the liquid that evaporates at 
the rim bringing the particles with it4. The generic form of the coffee ring has been investigated and analysed by 
many researchers using different liquids including coffee2,5,6, nanofluids7, polymers8,9 and DNA10. Interestingly, in 
the past few decades, the analysis of patterns from dried droplets of biological fluids11–13 has gained a lot of atten-
tion due to applications in fields such as biomedical14–16 and forensic sciences16,17, with some reports of successful 
medical applications of the Litos test for analysing urine droplets18. Biological liquids, such as blood, are complex 
systems containing various components, including macromolecules and cells. When a droplet of blood is placed 
on a solid substrate to dry, a band of darker red forms at the periphery around the rim, much like the coffee ring. 
Inside this is a zone called the corona, which often contains clear radial cracks. The central zone is usually paler 
in colour and contains smaller, more randomly oriented cracks. There can be fractionation of the blood compo-
nents between the regions of the droplet due to their size or mobility19. Among the many dried droplet patterns 
of biological liquids, those left by dried blood droplets have been investigated in some detail20,21. The overall 
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dynamics of evaporation is often described by five separate stages21,22. Researchers have also investigated crack 
formation19,21,23, showing how the number of cracks increases with droplet diameter as well as the effect of sub-
strate24, humidity25,26, evaporation rate4, surface roughness and wettability16,27 on the final pattern. Recently Smith 
et al.28 have shown that the drying mechanism of a blood droplet which is dropped onto a surface is influenced 
by the impact energy, which increases the droplet diameter and redistributes red blood cells within the droplet. 
Interestingly, blood samples have also consistently proven to be a key source for a wide variety of diagnostic and 
research purposes. Several studies showed that the patterns observed in dried blood droplets carry important 
information about the health status of humans and can be used for disease diagnosis14,21,29. Although similar dry-
ing processes occur during the drying of blood and colloidal suspensions, the variety, complexity and interactions 
between the various components of a blood droplet mean that much richer patterns are formed including radial 
and tangential cracks, colour variations, the formation of lobed fingers, fractionation of components and in some 
cases even spiral cracks. These various features must depend on the physical properties of the blood, which are 
in turn linked to the health condition of the person, for example to whether the person is healthy or suffers from 
anaemia or hyperlipidaemia16. Linking the observed patterns to the blood chemistry is a complex, multi-faceted 
challenge, but one that could lead to improvements in diagnosis of disease and other health conditions. Even 
though these methods have enabled researchers to identify distinguishing patterns in dried blood droplets, objec-
tive assessment systems are needed to remove subjective evaluation20,30. Recently, some technologies have been 
designed to overcome human subjectivity, such as acoustical-mechanical impedance (AMI)31. However there 
remains much scope for more stable and accurate technologies to be developed15,20,32. In this paper we develop 
sophisticated image processing routines and a highly-accurate machine learning algorithm to quantitatively and 
objectively discriminate the patterns from a large number of dried blood droplets, removing much of the subjec-
tivity inherent in previous studies.

Increasingly sophisticated digital image processing algorithms have evolved to exploit the most informative 
features contained within an image. Over the years, methods have been developed to reduce variations in image 
quality33, for example, through spatial filtering34, edge detection35 and various types of interpolation; of which 
bi-linear interpolation36, cubic convolution37 and cubic spline interpolation38 are the most well-known and widely 
used. Moreover, in many applications, the primary interest is not in specific features of individual images, but 
rather in the image texture or the degree of regularity governing a pattern formed by multiple images. Such 
textures are most conveniently analysed not in the spatial domain but in the spatial frequency domain39. A very 
common method used in describing the distribution of an image’s pixel intensities as a function of space and 
frequency is the power spectrum40,41. Reducing or excluding the high-frequency components while preserving or 
choosing the low-frequency components helps in not only extracting and exhibiting the most useful information 
in an image but also reducing a large amount of noise.

The extraction of implicit, previously unknown, and potentially useful information from image data by using 
computer programs that automatically sift through a database, seeking regularities or patterns42 has recently 
become a popular and effective practice to discover real trends in raw data. One of the tools used to help with 
such extractions is machine learning43–46. In general terms, machine learning is a set of tools that allows users to 
teach computers how to perform tasks by providing examples of how they should be done. The increasing interest 
in machine learning methods, driven by the desire to discover trends or irregularities in huge databases, has led 
to many successful applications of machine learning in various domains, taking advantage of the development 
of robust and efficient algorithms to process data and the falling cost of computational power47–50. Particularly, 
machine learning algorithms have been used and developed extensively in the domain of image analysis51,52. 
Blood images are governed by a large number of physiological and environmental variables some of which might 
be correlated. These correlations bring about a redundancy in the information that can be gathered by the data-
set of the images. One approach to coping with redundancy is to reduce the dimensionality of the problem by 
combining data from correlated features. The success of reducing dimensionality is enabled by (i) significant 
performance gains in computational speed and memory and (ii) the generation of physically interpretable spa-
tial modes that are linked to the underlying physics53. Linear combinations between variables are particularly 
attractive because they are simple to compute and analytically tractable. One of the most ubiquitous methods in 
dimensionality reduction is principal component analysis (PCA)54. PCA is mathematically defined as an orthog-
onal linear transformation that reconstructs the data to a new coordinate system such that the greatest variance by 
some projection of the data comes to lie on the first coordinate (called the first principal component), the second 
greatest variance on the second coordinate, and so on55. Furthermore, classification methods are often performed 
in a tailored low dimensional basis extracted as hierarchical features of the data56. Linear discriminant analysis 
(LDA)57,58 is a supervised learning method that is commonly applied in conjunction with PCA for discrimina-
tion tasks. LDA searches for those vectors in the underlying space that best discriminate between classes. More 
formally, given a number of independent features derived from the data, LDA creates a linear combination of 
those that yield the largest mean differences between the desired classes59. Indeed, PCA-LDA is one of the classic 
approaches used to introduce machine learning methodologies54. PCA and LDA have both been used extensively 
for biological data discrimination purposes60,61 and for image processing56,62.

In this work, we quantitatively and objectively analyse the power spectrum of a dataset of over one thousand 
images of dried blood droplets. The blood is taken from thirty healthy male volunteers at five time points: before 
an exhaustive cycling exercise, at peak exertion, and at two, four and six minutes into the post-exercise recovery. 
Our overall goal is to develop an image processing method to identify and extract the most distinguishing features 
in the images and apply an advanced multivariate statistical machine learning algorithm to quantitatively and 
objectively discriminate between the images. This will allow us to identify, from images of dried blood droplets, 
the physiological states of the cyclists; whether the person is at rest or has performed physical exercise.
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This paper is organised as follows. First we present the results obtained from optimising our machine learning 
statistical model when applied to our image-processed dried blood droplet dataset. Next, we discuss these results 
and the potential use for current and future work. Finally we explain the methods followed in this work.

Results
exercise responses and blood chemistry analysis. The gas exchange threshold during the cycling exer-
cise test was 2.81 ± 0.66 L ⋅ min−1 (250 ± 62 W). Peak cycling power, maximum oxygen uptake and maximum 
heart rate were 335 ± 64 W, 3.63 ± 0.73 L ⋅ min−1 (47.7 ± 8.9 mL ⋅ kg−1 ⋅ min−1), and 184 ± 12 bpm, respectively. 
For all blood parameters, data were analysed in GraphPad Prism (V7.05) using repeated measures analysis of 
variance and Tukey’s multiple comparison post-hoc test. The blood parameters measured in this study included 
pH, partial pressures of carbon dioxide and oxygen (PCO2, PO2), and concentrations of K+, Na+, Ca2+, lactate 
(La−), Cl−, −HCO3 , glucose and haemoglobin (Hb). Subsequently, +[H ], the strong ion difference ([SID]) and 
changes in blood volume from rest (ΔBV) were calculated. In Fig. 1, we present the correlation matrices between 
all these chemical properties for all five measurement points. It can be seen that a remarkable correlation, revealed 
by instances of black or pale pink pixels, between some of these properties occurs when changing the condition 
of the blood. For instance, for blood taken at rest, pH and PCO2 show a strong negative correlation illustrated by 
the third dark square in the top row in Fig. 1a. Exercise reduces this correlation until the final blood sample taken 
after 6-min recovery Fig. 1e, as shown by the red square which indicates a much lower correlation. These features 
would be expected based on physicochemical principles of blood acid-base balance63. Specifically, changes in pH 
(or +[H ]) and −[HCO ]3  are determined by changes in [SID], the total concentration of weak acids in the blood, and 
PCO2

63. At rest, between-participant differences in blood pH are mainly determined by differences in PCO2 since 
[SID] and the total concentration of weak acids are usually kept within narrow limits both within- and 
between-participants. During exercise, however, [SID] falls due mainly to an increase in −[La ], whereas PCO2 may 
change little from rest and actually decline in recovery (as shown in Table 1). Thus, the fall in blood pH during 
and after maximal exercise is primarily explained by reductions in [SID], with increases in the total concentration 
of weak acids making an additional, albeit smaller, contribution. These principles are therefore consistent with the 
reduced correlation between pH and PCO2 as the experiment progressed.

We then use PCA to uncover linear combinations of these fourteen values which vary between conditions and 
will ultimately not only significantly reduce the dimensionality of the blood data but also show a possible cluster-
ing between the blood conditions. Fig. 1f,h,i show the relationship between pairs from the first three PCA scores 
demonstrating that, not only have we reduced the dimensionality of the system to a feature subspace, but the first 
and second PCA scores also give excellent unsupervised clustering of the five conditions as baseline and peak data 
points fall into two non-overlapping clusters (shaded), with both scores contributing equally to distinguish the 
physiological states. On the other hand, although there is an overlap between all the three sets of recovery data 
points, they are noticeably separated from baseline clusters using the first PCA score and from the peak cluster 

Figure 1. Statistical analysis of the measured blood chemistry properties. Correlation matrices are calculated 
for the 14 properties measured at (a) baseline, (b) peak exercise, (c) after 2 minutes exercise, (d) after 4 minutes 
exercise and (e) after 6 minutes exercise. The first three scores of the unsupervised dimensionality reduction and 
clustering method, principal component analysis, are shown in separate 2D plots (f,h,i) for the chemical 
properties: [H+], PCO2, [Hb], ΔBV, PO2, [K+], [Na+], [Ca2+], [Cl−], [Glucose], [Lactate−] and −[HCO ]3 , 
discarding pH and [SID] as they are related to the other quantities. The best discrimination between all five 
blood conditions is revealed along the first principal component score shown in (f). The centroid’s behaviour 
related to the conditions clusters is shown in (g) which strongly suggests that the blood condition, from the 
chemistry point of view, is returnings towards baseline after 6 minutes of exercise.
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using the second PCA score. The third PCA score does not offer any additional distinction, as shown in Fig. 1h,i. 
In addition, the behaviour of the centroids of each cluster, indicated by the crosses on Fig. 1g, shows that from a 
chemical point of view, the condition of the blood is returning towards the baseline status in a loop-like manner. 
This is manifested by the combination of the first pair of PCA scores, with the first one carrying more information 
than the second one. Numerically, had we continued to take samples longer into the recovery period, the cen-
troids would eventually return to the baseline position.

Power spectrum discrimination. We developed an optimised machine learning algorithm that success-
fully discriminates the logarithmic power spectrum of the volunteer-averaged images. The feature extraction is 
carefully described in the Methods section later on. We first perform a dimensionality reduction using principal 
component analysis (PCA) followed by a supervised discrimination method known as linear discriminant anal-
ysis (LDA) which linearly combines the PCA scores to optimise the discrimination between the images of two 
specific different conditions under scrutiny. For each condition per participant, ten to twelve multiple images 
were acquired. Fig. 2 shows the outcome of the discrimination process between baseline and the other conditions 
over the average of all the images per participant per condition. It can be seen in Fig. 2d that the error in discrim-
ination is lowest, 5%, between the baseline images and those taken after 6 minutes of recovery. Both classes are 
clearly discriminated mostly along the first linear discriminant score, LDS1, as shown in Fig. 2d,3 In addition, 
Fig. 2d,1 shows the first linear discriminant function which exhibits the behaviour of the spatial frequency as a 
function of radial information. It can be noticed, by a simple projection, that a clear pattern indicates rich dis-
criminating information situated close to the droplet’s centre and near its periphery. The bright green and red 
patches shown in the linear discriminant function provide important fingerprints that can be used to discriminate 
new images. Although the second linear discriminant score, LDS2, shows a poor projection axis for separating the 
centroids, in Fig. 2d,2, it reduces misclassification when using an appropriate decision boundary such as the circle 
exemplified in Fig. 2d,3. These two functions are able to classify the "baseline” and "after 6 mins” conditions of 
unknown blood droplet images with a high accuracy of η = 95%.

We then used the comparison between droplets taken at baseline and after 6 minutes recovery, to investigate 
the effect of changing the number of averaging images on the final error rate of the statistical model. We find that 
averaging over all the images per participant per condition gives the best discrimination. Passing the entire data-
base of individual images to our predictive model lowers its accuracy to nearly 20% as demonstrated in Fig. 3a. 
This error rate is gradually lowered by averaging more images per participant per condition until it reaches the 
best discrimination accuracy of 95% illustrated in Fig. 2d,3. This suggests that using multiple images is necessary, 
as it averages out the random variations between all droplets, highlighting the true differences due to blood 
differences.

Additionally, the behaviour of the centroid of each condition class, indicated by the crosses on Fig. 4, is also 
analysed. This shows, in clear contrast with the behaviour seen in Fig. 1g, that the centroid of each condition’s 
cluster moves monotonously and linearly only along the LDS1 axis over time. Unlike the blood chemistry centroid 
trajectory presented in Fig. 1g, here we do not see the blood droplet patterns returning towards their original 
baseline state.

Discussion
Some researchers have used drying blood droplets to diagnose disease. One paper64 reported attempts to use 
droplets of blood serum to diagnose cancer as "statistically unreliable”, yet the authors were able to qualitatively 
visualise the profound changes in the phase transition and the phase state of blood plasma proteins in patients 
with metastatic cancer. However, others have had more success. In ref. 31 images are presented from a blood 
serum with a range of diseases, including cancers and hepatitis. These droplets are distinguished statistically 
using the “shape index” of the time evolution of the acousto-mechanical impedance of the droplets, measured 
using a quartz resonator. The shape index shows good specificity and sensitivity to the various conditions. Further 

Rest End of Exercise

Recovery (min)

2 4 6

⋅− −L[La ](mmol )1 1.1 ± 0.4 10.8 ± 3.1** 15.2 ± 2.2** 15.6 ± 2.2 15.3 ± 2.2

⋅+ −L[Na ](mmol )1 141 ± 1 148 ± 2** 146 ± 1** 144 ± 1** 143 ± 1**

⋅+ −L[K ](mmol )1 4.0 ± 0.2 5.4 ± 0.6** 4.1 ± 0.2** 3.8 ± 0.2** 3.8 ± 0.2

.+ −[Ca ](mmol L )2 1 1.23 ± 0.03 1.31 ± 0.04** 1.28 ± 0.03** 1.26 ± 0.03** 1.24 ± 0.03

⋅− −L[Cl ](mmol )1 105 ± 1 108 ± 2** 107 ± 2** 106 ± 1 106 ± 1

⋅ −L[SID](mmol )1 40 ± 2 34 ± 3** 28 ± 2** 27 ± 2* 26 ± 2

PCO (mmHg)2 44.9 ± 4.1 52.8 ± 9.9** 36.3 ± 3.9** 33.8 ± 3.2 33.2 ± 2.7

⋅+ −L[H ](nmol )1 40.8 ± 2.2 61.8 ± 8.6** 63.8 ± 7.0 65.4 ± 7.2 65.1 ± 7.1

⋅− −L[HCO ](mmol )3
1 25.7 ± 1.1 18.4 ± 2.1** 14.8 ± 1.5** 14.0 ± 1. 4* 13.9 ± 1.5

⋅ −[Hb](g dL )
1 15.4 ± 1.1 16.7 ± 1.0** 16.7 ± 1.0 16.6 ± 1.0 16.4 ± 1.0

Table 1. Measured blood variables at rest, at the end of exercise, and at 2-, 4- and 6-min recovery. Values are 
mean ± standard deviation. For all variables there was a significant (P < 0.001) change over the duration of the 
experiment. Significant changes from the preceding value are indicated with * for P < 0.05 and ** for P < 0.001.
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Figure 2. The discrimination outcome of the optimised machine learning algorithm to discriminate the 
logarithmic power spectrum of two blood conditions: (a) baseline against peak, (b) baseline against after 2 
mins, (c) baseline against after 4 mins and (d) baseline against after 6 mins. The lowest error rate has been 
obtained when discriminating baseline and after 6 mins with e = 5% shown in the scatter plot (d,3) that 
illustrates the relationship between the first two LDA scores, i.e., LDs1 and LDs2. Here MCi, where i = 1, 2, 3, 
refers to the misclassified baseline points. Figures (d,1) and (d,2) represent the first and second LDA functions, 
respectively, where each element of each row (frequency) corresponds to the average pixel intensity at a given 
radius. The spatial frequency of the linear discriminant functions is measured in units of cycles per revolution.

Figure 3. The effect of averaging separate images from the same volunteer and the same physiological state, on 
the final discrimination outcome. In (a) individual images with no averaging are used for the discrimination 
process. The accuracy of this approach is 75.7%. The accuracy increases noticeably with increasing the number 
of averaging images in (b–f). As shown previously in Fig. 2d,3, all images (usually ten to twelve) taken per 
volunteer per condition are averaged and the accuracy has considerably increased to 95%. An optimised 
training exercise was undertaken for each separate case.
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studies65 have used manual identification of morphological features in dried droplets (which the authors call 
‘facias’) of blood serum, tears and synovial fluid and present statistically significant correlations between features 
and conditions. A similar approach has found quantitative discrimination for identifying hepatitis66 in blood 
serum, and shown qualitative differences due to anaemia and hyperlipidemia21.

The presence of various proteins in blood serum is shown to qualitatively affect the microstructure of the dried 
film67 with some success in a quantitative analysis by manually categorising the orientation of cracks. A more 
quantitative approach, in which crack angle and plaque sizes are measured, shows a convincing correlation with 
relative humidity68. An alternative automated approach69 calculating a “distance” between images of uninfected 
blood droplets and those with either tuberculsosis or anemia shows some promise.

A recent study70 is the first to probe the physical mechanisms linking measured blood properties to the 
observed patterns in whole blood droplets. The authors find that a normalised capillary pressure (which depends 
on blood viscosity, mean corpuscular volume and haematocrit), controls the properties of the cracks that form in 
healthy blood compared to that with neonatal jaundice and thalassamia. They also observed that droplet drying 
times vary with disease conditions.

A recent review article71 discusses spectroscopy of droplets, and makes conclusions regarding the optimal con-
ditions, suggesting using “a diluted aliquot of serum (1 μL) spotted on a smooth, flat and homogeneous surface, 
at an elevated temperature or high humidity in order to result in a more uniformly spread sample, with a faster 
drying time”.

Our approach differs from other techniques as we do not impose a discrimination based on human observa-
tions of distinguishing features. Instead, we employ a machine-learning optimisation technique which discovers 
the statistically most significant measure to classify and identify the different conditions. Our approach has the 
potential for objectively diagnosing medical conditions using fully automated image processing tools.

Our findings show for the first time how quantitative and objective image analysis of patterns left by dried 
blood droplets can succeed in detecting dominant features and optimally discriminating different physiological 
conditions, with an error of 5%. This approach has great potential in providing a new, rapid and reliable method 
for not only discriminating healthy blood conditions, but also in disease detection.

The images have been analysed and prepared before passing them on to the machine learning algorithm for 
discrimination. This analysis consists of several steps: applying interpolation to homogenise the spatial extent of 
any structure of each image; removing cracks and discontinuities found to be appearing inconsistently; extracting 
the most useful information that might be implicit in the image function; converting to polar coordinates; and 
finally calculating the power spectrum of the angular variations, removing any dependency on droplet absolute 
orientation.

Our machine learning algorithm is performed first using principal component analysis, as an unsupervised 
dimensionality reduction method, followed by linear discriminant analysis, as a supervised classification method. 
These two methods are very common for discrimination purposes. However, our novel contribution lies in devel-
oping a time-saving optimisation process to enhance the algorithm’s training capability and improve its predic-
tion outcome. This process is applicable to large datasets since it does not search within all possible combinations 
of participants for the ideal and lowest error rate possibilities. Instead, it systematically ’selects’ the training data 
that we would like the iterative process to be applied to. This significantly lowers the computation time and suc-
cessfully trains the algorithm. The optimised algorithm yielded a high discrimination accuracy of 95%, typically 
10% higher than when using a standard analysis. Note that the numerical search outputs discriminating features 
that were determined using up to 50% of the PC scores, thereby using details that cannot necessarily be identified 
by the naked eye. In fact, only averaging numerous images belonging to specific categories allows the user to dis-
criminate them by visual inspection, substantiating the need for numerical discrimination.

Figure 4. The trajectory of the centroid of the blood condition clusters, with images averaged over each person. 
The individual volunteer’s images, projected onto our DF space, are also shown, to disclose the inter-subject 
variability.
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Our work highlights the importance of averaging over a sufficient number of droplet images for each individ-
ual as this improves the final discrimination accuracy. It is also interesting to note that the centroids representing 
the blood images move in a linear direction, and have not started to show any sign of returning to baseline after 
6 minutes of recovery. In contrast, the blood chemistry centroids seem to have almost recovered, by that time. A 
summary of statistical analyses of the blood chemical properties is given in Table 1 and clearly shows that there is 
no variable that continues to move away from the resting value. For future studies, we would recommend allowing 
recovery to continue for much longer after exercise, possibly up to one hour. This observation also suggests that 
some other property of the blood is affecting the droplet patterns than any of the parameters that were measured.

Methods
In this section, we present and explain the methods adopted in this work with the aim of quantitatively and objec-
tively discriminating the conditions of the dried blood droplet images. The experimental protocols (exercise test 
and blood sampling) were approved by the Nottingham Trent University Human Ethical Review Committee. All 
methods were performed in accordance with the relevant guidelines and regulations of the standards set by the 
Declaration of Helsinki. There are no competing interests associated with this work. The main stages followed in 
this work can also be seen in Fig. 5.

participants, exercise protocol and blood sampling. Thirty healthy, recreationally active, non-smoking, 
males (age: 24 ± 6.9 years; height: 178 ± 5.5 cm; body mass: 76 ± 9 kg) provided written informed consent to take 
part in the study. Participants performed a maximal incremental cycling ramp test on an electromagnetically 
braked cycle ergometer (Excalibur Sport; Lode, Groningen, the Netherlands). Participants performed 3 minutes of 
unloaded cycling followed by an incremental ramp protocol (30 W ⋅ min−1), at their preferred cadence, until the 
limit of tolerance or task failure (cadence below 60 rpm). Thereafter, participants remained seated on the cycle 
ergometer for 6 minutes. During exercise participants wore a facemask (model 7940; Hans Rudolph, Kansas City, 
MO) connected to a flow sensor (ZAN variable orifice pneumotach; Nspire Health, Oberthulba, Germany) that 
was calibrated using a 3-L syringe. Gas concentrations were measured using fast responding laser diode absorption 
spectroscopy sensors which were calibrated using gases of known concentration (5% CO2, 15% O2, balance N2), 
and ventilatory and pulmonary gas exchange variables were determined breath-by-breath (ZAN 600USB; Nspire 
Healh). The gas exchange threshold was determined using the V-slope method72 and the maximum oxygen uptake 
was taken as the highest 10 second mean value. Heart rate was measured using short-range telemetry (Polar S160, 
Polar, Kempele, Finland). Arterialised venous blood (2 mL) was drawn from a heated (using an infra-red lamp) 
dorsal hand vein using an indwelling 21-G cannula and a syringe containing dry electrolyte-balanced heparin 
(safePICO, Radiometer, Copenhagen, Denmark). Blood samples were taken at rest, at the end of exercise, and after 

Figure 5. Work methodology. The study begins by building the database of the dried blood images taken from 
30 healthy volunteers before and after a cycling exercise. These images are then pre-processed individually using 
different image analysis techniques; cracks filling, Gaussian filter, edge detection, polar coordinate and power 
spectrum. The database of the logarithmic power spectrum of the images are later used to be passed on to our 
machine learning algorithm. This algorithm starts with reducing the dimensionality of the image database using 
principal component analysis. Using the resulting feature space, i.e., the subspace that contains the highest 
varying principal components, we can move on to the classification step where we use linear discriminant 
analysis to find the best line that best separates the conditions of the images. The performance of this algorithm 
is further enhanced by applying an optimising iterative search to select the ‘ideal’ few participants who would 
best train the algorithm and result in the lowest overall error rate possible.
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2-, 4- and 6-min recovery. Blood was analysed immediately (ABL90 FLEX; Radiometer) for pH, PCO2, −[HCO ]3 , 
+[K ], +[Na ], +[Ca ]2 , −[La ], −[Cl ], [glucose], and [Hb]. The remaining blood was transferred into a heparin-coated 

Eppendorf tube for subsequent blood droplet analysis. The hydrogen ion concentration ( +[H ]) was calculated from 
the measured pH value. The strong ion difference ([SID]) was calculated as the difference between the sum of the 
strong cations and the strong anions: = + + − ++ + + − −[SID] ([Na ] [K ] [Ca ]) ([Cl ] [La ])2 63. We calculated 
ΔBV from resting levels using changes in [Hb]73.

Droplet preparation and evaporation. Significant care was required to deposit the droplets repeatably. 
A micro-pipette was used to produce a 10 μL droplet at the tip of the pipette, small enough so that gravity did 
not cause it to fall. The pipette was slowly lowered until the droplet came into contact with the glass slide, when 
it would transfer to the substrate with minimal impact velocity. The glass slides measured 76.2 mm × 25.4 mm 
and were first cleaned with an air duster. For each blood sample, at least 12 droplets were pipetted on each of two 
slides in two rows of six. The spacing between droplets was around four times the radius, reducing any possible 
effects of crowding. Immediately after pipetting, the droplets were very mobile so the slides were left for between 
10 to 12 minutes. After this time, the very edge of the droplet had dried sufficiently to pin the liquid to the glass, 
enabling the slides to be moved without risk of disturbing their circular shape. The slides were then transferred 
to an air-tight Bel-Art transparent desiccator with dimensions 337mm wide by 254mm deep by 216mm tall, and 
left there overnight.

The chamber was fitted with a mechanical hygrometer to measure the relative humidity inside the chamber, 
but we also used a humidity probe to monitor temperature and humidity during drying. The chamber had a 
movable bottom shelf which contained regular holes allowing for air exchange. Beneath the shelf we placed a 
Petri dish containing a supersaturated solution of NaCl salt, which fixed the relative humidity in the chamber in 
the range 70% to 75%74. At this humidity, the evaporation rate was slow, taking around 24 hours to fully dry, and 
reducing the influence of neighbours. The chamber had a capacity to accommodate 16 to 18 glass slides.

image acquisition. Droplet images were recorded using a CASIO EX-Z1000 digital camera in HDR 
super-macro mode with fixed magnification, with resolution 150 px/mm mounted 9cm above a white flat back-
light (The Imaging Source DCL/BK.WI 5070/EU). Reflections from other lights in the room were eliminated 
using screens. As the dried deposits had a tendency to flake or peel, the slides were carefully transferred from 
the drying chamber and placed directly on top of the backlight. Images were cropped manually to contain one 
complete droplet per image. The dataset of the dried blood images can be accessed via https://doi.org/10.6084/
m9.figshare.11373948.v1.

Image pre-processing. After recording, documenting and cropping the raw blood images, image pro-
cessing routines must be implemented before quantitatively analysing the data. Here, we present all the image 
pre-processing techniques that we have applied on our blood raw images for the aim of (i) reducing their noise, 
(ii) enhancing their quality and (iii) extracting the most important information to fully prepare them for the clas-
sification process. This improves the accuracy of the subsequent statistical analysis and makes the discrimination 
process well-trained. Fig. 6 illustrates the image analysis techniques applied on each image of our database before 
proceeding to the discrimination algorithm.

•	 Crack filling: Cracks often appear in dried droplet patterns and can be wavy, straight, arched, spiral, circular, 
and three-armed cracks75– 81. Significant work has been done on explaining the reasons behind crack-forma-
tion and the parameters affecting their formation in dried droplets, and specifically in blood droplets4,20,21. 
Cracks appear as white pixels in the image with maximum pixel intensity, and as others have reported 
“cracked surfaces across a drop can generate spectral distortions often in the form of baseline discrepancies”71. 
In our situation, the cracks deteriorate the study quality as they appear inconsistently in our data set. There-
fore, we decided to automatically ‘airbrush’ the cracks by performing a 2D interpolation reducing this discon-
tinuity. Since cracks usually have low luminance and due to the fact that most useful information in the blood 
droplets images are concentrated in the red channel, our crack detection criterion focuses on the red-channel 
of the images with a condition that the other two colour channels; blue and green, are above a certain value, 

Figure 6. Image pre-processing methods where (a) shows the raw blood image, (b) represents the red channel 
of the image, (c) illustrates the 2D interpolated cracks, (d) shows a 2D Gaussian filtered image, (e) shows the 
Laplacian of the image function, (f) is the polar coordinate version of the image, (g) is the 1D power spectrum 
of the image previously shown and (h) is the logarithmic power spectrum.
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https://doi.org/10.6084/m9.figshare.11373948.v1
https://doi.org/10.6084/m9.figshare.11373948.v1


9Scientific RepoRtS |         (2020) 10:3313  | https://doi.org/10.1038/s41598-020-59847-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

i.e., α>I Ix y x y( , )[if: ( , ) ]R B G, , where IR(x, y) and IB,G(x, y) are the image matrix functions in the Cartesian 
coordinate system for the red and blue-green colour channels, respectively, and α is the value that best reveals 
the cracks, as shown in Fig. 6b. This enhances the clarity of the cracks where presented in an image. Once we 
identify the position of the cracks, a 2D linear scattered interpolant method is applied to interpolate their 
values, as shown in Fig. 6c.

•	 Gaussian filter: To consistently detect the boundaries of the blood droplet, ignoring marks on the substrate, 
edge detection must be preceded by the use of a 2D Gaussian filtering, also smoothing out boundaries origi-
nating from within the droplet itself82, 

σ
=





−

+ 




G x y x y( , ) exp ,
(1)

2 2

2

where σ denotes the width (standard deviation) of the bell-shaped function. For a very large value of σ, hardly 
any filtering is recorded. However, with decreasing the value of σ, the Gaussian filter starts to attenuate the 
high frequency components, removing those responsible for noise and other small scale (quickly varying) 
information. In our case, we have set the value of σ = 0.01 cycles per pixel (or one-hundredth of a wavelength 
per pixel) throughout this project. The pixel at the centre of the Fourier space receives the maximum weight, 
and the remaining coefficients drop off smoothly with increasing distance from the centre. Each image is fil-

tered by multiplying its Fast Fourier Transform, i.e., ∫ ∫ω ν = ω ν
−∞

+∞

−∞

+∞ − +I I x y e x y( , ) ( , ) d dF
R R i x y( ) , with the 

Gaussian function defined in Eq. 1. Next, to access the spatial information of the filtered image, we perform 

the inverse Fourier Transform, i.e., ∫ ∫ ω ν ω ν=
π

ω ν
−∞

+∞

−∞

+∞ +I x y eI( , ) ( , ) d dF
R

F
R i x y1

2
( ) . Figure 6d shows the 

cropped image of the red-channel blood droplet as a result of the filtering.
•	 Edge detection: Edges are common features in an image and are identified by rapid local variations in the 

image function. Edge detection is a process of identifying and locating sharp discontinuities in an image83. 
During the history of image processing, a variety of edge detection approaches have been devised which differ 
in their purpose and in their mathematical and algorithmical properties84. The location of edges in a 2D 
image are normally determined either by (i) finding the image gradient extrema (maximum or minimum) or 
by (ii) finding the zero-crossings of the Laplacian of the image. The Laplacian filter is a second derivative 
commonly used for edge detection and image enhancement in digital images. Second-order derivatives have 
a stronger response than first derivatives to fine detail, such as thin lines, weak edges and isolated points and 
that is due to the fact that first derivatives may not be large enough to distinguish the edge points, and, there-
fore, a weak edge can go undetected by such methods. Taking the second derivative of the points or Laplacian 
amplifies the changes in the first derivative and, therefore, increases the chances of detecting a weak edge85. 
Mathematically, the Laplacian of our 2D image I x y( , )F

R , is given by,
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and its magnitude, as shown in Fig. 6e, can be written as,
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•	 Polar Coordinate System: In this step, since the rich information in a circular dried blood droplet image is 
highly located in the radial or angular areas in reference to the centre point r = 0, we convert the magnitude 
of the image Laplacian, i.e., ∇ I x y( , )F

R2 , from Cartesian to Polar Coordinate System, i.e., θΠ∇ r( , )F
R2  as 

shown in Fig. 6f. Using this technique is very important since it helps exhibit the symmetry of the pattern 
distribution in the blood droplet.

•	 Power spectrum: In the final pre-processing step prior to applying our machine learning algorithm, we apply 
the absolute value of the Fast Fourier Transform on the angular component of the logarithmic polar form of 
the image Laplacian of the red channel of each droplet image to calculate their power spectra, as illustrated in 
Fig. 6g. By applying the power spectrum on the angular component of the polar image the absolute measure 
of angle is removed, i.e., the remaining information becomes immune to rotations about the centre of the 
droplet. This extracts the spectral information and exhibits the pixel intensity within the spatial frequency 
domain for each image. This can be written as: 
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∫ω θ θ θΠ Π= ∇ = ∇ .ωθ
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Furthermore, Fig.  6h shows that we take the logarithm of the power spectrum of the image, i.e., 
ω ωΓ = F( ) log ( ( ))R R . This (i) enhances small pixel intensity and (ii) it works better than linear power spectra 

(see supplementary material).

Machine learning algorithm. At this stage, our images are ready to be passed on to our machine learning 
algorithm for discrimination purposes. The input matrix ΓR of each image is made of 48 rows and 103 columns, 
where each column represents the frequency of the spectral image, and each row represents radial component 
of the image. We have seen that the first row, i.e., r = 1, carries negligible radial information that could be useful 
in our subsequent steps. Similarly, the second half of the full frequency bandwidth, i.e, c ≥ 103/2 ≥ 52, exhibits 
minimal important features. Therefore, it is plausible to discard the first row and truncate the full frequency band-
width to preserve only the first half, i.e., the first 52 columns. Hence, the input matrix ΓR in this case consists of 47 
rows and 52 columns (see supplementary material).

The input matrix ΓR is originally a 4D matrix with the first dimension referring to the radial information 
within all the frequencies that make up the spectral image stacked up in a single column vector. The second, third 
and fourth dimensions represent the number of blood conditions, people and images taken from each person per 
condition, respectively, i.e., Γ = × × ×[ ] 2444 5 30 12R . This matrix has been rearranged to be a 2D matrix after 
performing: (i) averaging over all, or some of, the images per volunteer (ii) normalisation of the image pixel inten-
sities where minimum values are set to zero and maximum values are one, i.e., Γ = ×[ ] 2444 30i

R , where i refers 
to the five blood conditions: baseline, peak, and after 2, 4, and 6 minutes.

This algorithm has three main steps to fully complete the discrimination process. It starts with an unsuper-
vised learning that uses a dimensionality reduction method to extract the most varying components. For this 
step we use principal component analysis (PCA). Afterwards, a supervised learning method, linear discriminant 
analysis (LDA), is introduced which uses a linear combination of half of the largest PCA scores to find the vector 
that best separates the conditions of the blood images (see supplementary material). All the previous stages pro-
duce a machine learning algorithm that yields a fairly acceptable discrimination prediction outcome. However, 
the accuracy of this model can be significantly enhanced and the possibility of overfitting can be greatly lowered 
and hence the discrimination outcome will be noticeably improved by performing an optimising process which 
we shall describe next.

optimisation process. The novel idea of our optimisation process is a new strategy to find and use ’ideal’ 
training datasets that would best train the algorithm and result in the best overall discrimination, allowing the 
most predominant, generic discriminating features to be identified between the five experimental conditions. 
One approach to find these ’ideal’ data/participants is to systematically explore all possible combinations of 20, 
for example, out of 30 participants and compute the error rate for each individual iteration and the one yield-
ing the combination of participants with the lowest error rate reveals the strongest generic discriminating fea-
tures86. However, applying this method on our large image database would result in a total number of iterations 
of 30, 045, 015 which would take months to fully explore. Therefore, we have redesigned the structure of this 
optimisation process to be applicable to large datasets with less computational running times. Suppose the two 
blood condition matrices that we would like to optimise their discrimination are denoted by A and B, then the 
optimisation method is constructed in two sets of iterations:

•	 First set of iterations: The main idea here is to find the ideal few participants in the first condition matrix A 
that best train our algorithm. Each iteration in this step builds a training dataset which is a concatenation of 
a ’selected’ slice of matrix A with matrix B. This slice initially contains two participants from A: 1 and i, where 
i = 2, 29. At the end of each iteration tested on the validation dataset of ALL images in A and B, the error rate 
is calculated as follows: each measurement (comprising of half of the largest PCA scores) is projected onto a 
two-dimensional LDA space, yielding a set of two LDA scores. In this space, the coordinates of the two cen-
troids are calculated, and for each iteration, the Euclidean distances to both centroids are further calculated. 
The ratio of these two distances is used to assess whether the trial ends up in one of the blood conditions. The 
iterations ending up with the incorrect membership are expressed as a percentage error rate. The iteration 
that corresponds to the lowest error rate, j, is added to the following searching iterative process to the training 
slice of A. Here we take 1,j and i which is the remaining 28 participants and the same process is repeated. After 
scanning all the possibilities with the lowest error rate, we now take participant 2 and i where i = 1, 3, …, 29 
and the same iterative process is done again. By the end of these two main explorations, we choose the com-
binations that correspond to the lowest error rate and they will ultimately form the ideal choices to build the 
optimal training dataset of matrix A that corresponds to the first blood condition.

•	 Second set of iterations: The main idea here is to find the ideal participants in the second condition matrix B 
that best train our algorithm by using the ideal choices of A from the previous step. Taking the ideal training 
choices of the first blood condition, we perform the same iterative explorations on matrix B calculating the 
error rate values by the end of each iterations. Similarly to the first set of iterations, the lowest error rates 
obtained will build the optimal training dataset of matrix B.

By the end of these two sets of iterations, we end up with two ideal training datasets corresponding to both 
blood conditions, i.e., A and B. Passing these two training datasets on to our classifier highly enhances the 
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discrimination outcome. It can be noticed that since we take only participants 1 and 2 from each matrix to search 
for the lowest error rate possibilities, this significantly decreases the optimisation time and accordingly enhances 
the overall discrimination process.

Approval. The experimental protocols (exercise test and blood sampling) were approved by the Nottingham 
Trent University Human Ethical Review Committee.

Accordance. The study conformed to the standard set by the Declaration of Helsinki.

informed consent. Informed consent was obtained from all participants/volunteers.

Data availability
All relevant data are within the paper and its Supporting Information files. The dried blood images dataset 
generated and analysed during this study is available in the Figshare repository, https://doi.org/10.6084/
m9.figshare.11373948.v1.
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