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Abstract—In this paper, we discuss an “open radar initiative”
aimed at promoting the sharing of radar datasets and a common
framework for acquiring data. The framework is based on widely
available and affordable short-range radar hardware (automotive
FMCW radar transceivers). This framework and initiative are
intended to create and promote access to a common shared
dataset for the development and benchmarking of algorithms.
While this is the norm for image processing and speech processing
research, there has been reluctance in the radar community so
far to create common datasets of shared data, often due to
justified intellectual property or security classification reasons.
Notable exceptions do exist, such as the MSTAR dataset of SAR
images, which enabled great progress across the radar research
community for a number of years. With this initiative, we hope
to stimulate discussion and, with time, changes of practice in
the radar research community. The main contribution of this
work relative to previously shared datasets of radar data is that
the proposed framework consists of a complete, integrated and
replicable hardware and software pipeline, allowing users to not
only download existing data, but also to acquire their own data
with a compatible format that allows expansion and enrichment
of the common dataset.

I. INTRODUCTION

Radar sensors are capable devices for many applications, span-
ning from gesture recognition with the Google Soli radar [1] or
similar other short-range platforms, to long-range surveillance
radars [2] and even space observation radars [3]. Because of
the large span in applications, radar system configurations vary
greatly, but they still have a lot in common such as the basis
of their signal processing. Many radar signal processing tasks
can benefit from machine learning and emerging, data-driven
processing approaches. In recent years, many papers have
been presented on machine learning and artificial intelligence
for both classification [4], [5] and detection [6]. This is far
from an exhaustive list, for a good overview, the reader is
advised to read the review paper by Patel et. al. [7]. Because

much of radar research is focused on military or proprietary
automotive applications, most of the datasets are collected
using bespoke radar sensors and the datasets are not published
due to intellectual property and classification issues. Because
of this, it is hard to compare the performance of different
algorithms and approaches. Consequently, it is difficult to
point out major findings in the research contributions and
development of algorithms is therefore slowed down.

This problem has been addressed in the community of machine
learning for optical images or speech processing by having
shared datasets for algorithm development and benchmark-
ing. This has allowed the community to compare results
on common datasets and also share some approaches in
achieving these results - resulting in major leaps in algorithm
performance. The ubiquity of camera sensors has eased the
collection of data for these domains, but large annotated
datasets are still a valuable asset that is shared with the
community.

However, in the radar community, there are a few commonly
available datasets, some of them publicly shared by the authors
of this paper with the idea of supporting classification chal-
lenges [8]–[10]. A great example of a publicly available dataset
is the MSTAR dataset [11] that researchers have used for
algorithm development for years. In some cases, researchers
have even published both radar configuration, results, and
datasets such as Ritchie [10] and Roldan [12]. The initatives
are commendable, but a shortcoming of these approaches is
that it is difficult to reproduce or expand the dataset, as the
hardware is closed source and/or the data is already processed.
Other initatives are providing frameworks for processing of
radar data, such as PreSenseRadar [13] and PyRapid [14],
but no public datasets have been published along with these
efforts.



The “open radar initiative“ discussed in this paper attempts
to bridge the gap between some of these publications, by
proposing:

• An open hardware radar platform that is commercially
available and affordable for a large variety of users.

• An open source framework for interfacing with the hard-
ware

• A publicly available dataset to be used as a common
benchmark for algorithm development

And thereby aiming to offer a framework for generating a
large-scale database of radar data in support of a wide range
of applications, including defense, security, and commercial
applications, as well as research areas, such as:

• Classification
• Detection
• Signal processing
• Tracking
• Radar resource management

By providing commonly available radar hardware with open-
source software and datasets, the platform can be shared
across institutions and research communities with a unified
file format.

The remainder of this paper is organized as follows. Section
II describes the components of the proposed common radar
platform. Section III describes the vision of the datasets.
Sections IV and V discuss the initial datasets shared as part
of the launch of this initiative, and possibilities for its further
expansion.

II. COMMON RADAR PLATFORM

Choosing a common radar platform is challenging. To achieve
widespread use this platform would need to be affordable,
capable, flexible, and widely available. The radar has to be
affordable so that many institutions can acquire the hardware.
It also has to be flexible and capable, so that it can be
used for many different applications. Many different hardware
platforms were considered for the common radar platform with
varying affordability, capability, flexibility and availability.
Automotive radar sensors provide highly capable and versatile
radar solutions in a small and affordable package. Therefore,
they provide a great starting point for a common radar plat-
form. The “open radar initiative“ is primarily focused on the
datasets, but the platform provides a good opportunity for the
radar community to contribute. Code and usage examples are
therefore made available open-source to encourage contribu-
tion and sharing.

A. Description of the components

The proposed radar platform utilizes radar evaluation modules
from Texas instruments (TI)1. TI supplies a rich variety of

1The “Open radar initiative“ is not affiliated or funded by Texas instruments.

radar modules accompanied by both documentation and exam-
ples. These modules are also widely available. The common
radar platform proposed in this paper consist of:

• TI AWR2243Boost radar evaluation board
• TI DCA1000 Data Acquisition board

The radar module is highly flexible and capable, as explained
later on in the section. Coupled with a real-time acquisition
board, it is possible to capture raw analog-to-digital converter
(ADC) samples from the radar. With an extensive set of pa-
rameters and the ability to capture raw ADC data, the platform
can be used in multiple modes for different research purposes.
For more details, check the GitHub repository associated with
this initiative [15].

B. Radar Platform

The radar module itself is an integrated circuit containing a
full radar transceiver including signal generator, RF transmit
and receive, down-conversion and sampling. A block diagram
of the TI AWR2243 chip is shown in Figure 1. For detailed
information on the radar chip itself, the reader is advised to
read the datasheet [16]. Some of the key parameters of the
platform are:

• 4 Receive channels, 3 Transmit channels
• 76-81 GHz carrier frequency, up to 5 GHz bandwidth
• Flexible chirp generation
• Up to 40 Msps sampling per channel
• Raw data stream via TI DCA1000

Figure 1: Block diagram of the TI AWR2243 transceiver chip
from the datasheet [16]

C. Platform setup and configuration

TI provides extensive software to set up and evaluate their
mmWave devices called ”mmWaveStudio”. This software is at
the moment only available on Windows operating systems. For
details on the setup parameters and configuration, interested
readers are referred to the user manual for mmWaveStudio. To
be able to setup the device from a Linux operating system, one



of TI’s mmWaveLink examples was ported to work with Linux
operating systems. This ported setup code is made available
as part of the proposed ”Open Radar Initiative”. Detailed
installation instructions and a user manual are available at the
GitHub repository [15]. A simplified functional flowchart of
the radar setup is shown in Figure 2.

Figure 2: Flowchart of the setup.

The radar parameters are set using a text file in the same folder
as the code to set up and configure the radar.

D. Data reception and logging

The software shared within this initiative contains little pro-
cessing software, but provides the convenience of being able
to read and parse UDP packets, raw data logging and reading
back raw data. The data transmitted from the TI radar platform
is in the form of user datagram protocol (UDP) packets, where
each packet contains raw ADC data sampled in the radar.
The first part of the processing is UDP packet reception and
data combination to form a structure of raw data that fulfills
the requirements. The data reception and logging process are
described in the block diagram in Figure 3. These utilities
are available at the GitHub Repository [15]. For more signal
processing examples, the reader is encouraged to be inspired
by PreSenseRadars examples [13] or refer to conventional
radar textbooks like “Principles of modern radar“ by Richards
[17]

Figure 3: Data logger block diagram

III. OPEN DATASET

Large open datasets like ”Openimages” [18] have revolution-
ized the field of machine learning on optical images. It is
therefore likely that a well-designed, large and open dataset
will help advance the field of machine learning on radar
data as well. As mentioned in the introduction, radars can
be used for multiple purposes and in multiple modes. As a
consequence, not all data is relevant for every situation. Put
quite simply, data from hand gestures might not be beneficial
for ground surveillance purposes and vice versa, but the
machine learning algorithms and approaches might be with
some proper adjustments.

Some data will likely be suitable for classification, others for
detection, and some other data for interference mitigation.
An open dataset would therefore need to allow for multiple

usages and data types to be really impactful and valuable to
the radar research community. It is worth underlining the fact
that a well-designed dataset is needed and not just a large
dataset. A good dataset needs to have high-quality labelling,
well documented data acquisitions and a variety of targets.
Additionally, the dataset has to allow for users of the dataset
to access and in case alter the raw data processing, to develop
and investigate optimal pre-processing and representation.

The dataset for this initiative contains raw data and annotated
extracted signatures of multiple targets and classes. The fol-
lowing two sections will introduce the two first contributions
to the dataset:

• Outdoor moving object dataset
• Activity classification dataset

These two datasets are a first contribution and there will likely
be more datasets available in the future. They will also likely
be expanded with time to address imbalance or to increase the
dataset quality. The datasets, their statistics and examples of
usage are available at a GitHub Repository [15].

IV. OUTDOOR MOVING OBJECT DATASET

This dataset has been collected with a stationary radar ob-
serving different types of moving targets such as people
walking and cycling. The primary goal of the dataset is to
use classification techniques to be able to distinguish the
classes. The dataset has been collected outdoor with both
collaborative and non-collaborative targets and currently has
four classes, namely person, bicycle, unmanned aerial vehicle
(UAV) and vehicle. The samples include labels corresponding
to “classification“ in the NATO AAP-6 [19] and meta-labels
corresponding to “recognition“.

(i) Spectrogram of a person (ii) Spectrogram of a bicycle

(iii) Spectrogram of a UAV (iv) Spectrogram of a vehicle

Figure 4: Example of signatures from the dataset. The y-axis
denotes Doppler-frequency in Hz and the x-axis is time in
seconds.



These are relevant targets for a ground-based radar system,
but also to some degree relevant for other applications such
as pedestrian detection for a smart vehicle. Samples of spec-
trograms from each of the classes are shown in Figure 4.
The target signature is distinguishable in sections where the
signal to noise ratio (SNR) is high. This section describes the
generation of the dataset and its class distribution.

A. Data collection

Because the data is collected with both collaborative and
non-collaborative targets some of the data will therefore be
fairly clean spectrograms, whereas some will be collected in
a more cluttered environment. The data has been collected
by FFI, TU-Delft and the University of Alabama using the
common radar platform.

The radar has been configured to use one transmit antenna
and all four receive antennas. The pulse repetition frequency
(PRF) constant with a high PRF of 33 kHz, resulting in
an unambiguous velocity of 30 m/s, sufficient to capture
most moving ground vehicles. The dataset was configured to
collect 1008 pulses per Coherent Processing Interval (CPI),
resulting in approximatly 30.5 ms CPI. The range resolution
was varied, to allow for the collection of vehicles at longer
ranges and still stay within the data streaming limitations of
the capture card. Full descriptions of the waveforms and the
configuration files used are available on the Github page [15].
Two different radar sensors were used for the collections, the
AWR2243Boost and the AWR1843Boost.

B. Dataset generation

After recording, the signatures have to be extracted. The
process of signature extraction is explained in Figure 5. The
signal processing pipeline takes the real ADC data from the
radar and generates detections with their associated Doppler
spectra attached. These detections are passed to the tracker
that produces an association log for each target, essentially
associating all the detections on the tracked target. Combining
these associations with their detections and Doppler spectra
produces a long spectrogram comprised of Doppler spectra
of consecutive CPI’s originating from the target. These long
spectrograms can then be split into smaller spectrograms of
the desired duration for classification.

Figure 5: Flowchart of the target signature generation.

C. Signal processing pipeline

The signal processing pipeline consists of several steps in the
process of converting raw samples to a beamformed range-

Doppler data cube.

1) Range profile generation: The first step in the signal pro-
cessing chain is to generate a range profile, which is a Fourier
transform in the fast time domain for a frequency modulated
continuous wave (FMCW) radar [17]. In the frequency domain
of a FMCW radar, the beat frequency is proportional to the
range of the target. A Hamming window is applied prior to
range profile generation.

2) Beam forming: The beam forming of a radar signal is
performed in the array element domain, and may be imple-
mented with a Fourier transform. However; a Fourier trans-
form based beamformer will not utilize even space sampling
in the azimuth domain, which is a non-desirable property.
Using steering vectors, an arbitrary sample space may be used;
although, the processing may not use efficient algorithms such
as the fast Fourier transform (FFT).

The steering vector for a uniform linear array (ULA) [20], is
defined as

aULA(θ) = g(θ)
[
1 e−jkd cos(θ) . . . e−j(L−1)kd cos(θ)

]
(1)

Where θ is the pointing direction of the steering vector, k
is the wave number and defined as 2π/λ, L is the number
of antenna elements and d is the distance between antenna
elements.
3) Doppler spectrum processing: The second step in the
signal processing chain is the Doppler processing, in order
to separate moving targets from stationary clutter. Doppler
processing is performed with a Fourier transform in the slow
time domain, and is implemented with a FFT. A Blackman
window is applied prior to Doppler processing.

D. Dataset statistics

As previously mentioned, a well designed dataset is just as
important as a large dataset. This section will discuss some
of the statistical aspects of the dataset at the time of writing.
These number might have changed by the time the dataset is
available to the public due to the inclusion of newer data.

Firstly, the dataset contains a total of 187.393 spectra
from a total of four classes as shown in the Table I. This
is large enough for many experiments, but more data will
be added in the future. More importantly, the dataset is well
distributed with regards to RCS and relative velocity, to make
the classification a challenge. The vehicle category contains
mostly medium-sized passenger cars, with some larger trucks
and and lorries. The UAV category currently only contains
small quadcopters like the DJI Phantom 4.

Class Vehicle Person Bicycle UAV
Samples 48321 69741 32433 36897

Table I: Number of samples in each class in the dataset.

There is a significant difference in RCS estimates distinguish-
ing most of the targets, with different overlap within the classes



as shown in Figure 6. This means that a pure RCS-based
classification will not give a 100% correct on this dataset.

Figure 6: Histogram of the estimated RCS in the dataset,
separated by class

The same is true for radial velocity, where there is a significant
overlap between the classes as shown in Figure 7, again
causing confusion for a simple classifier.

Figure 7: Histogram of the radial velocity of the classes in the
dataset.

V. INDOOR HUMAN ACTIVITY CLASSIFICATION DATASET

In contrast with outdoor target recognition scenarios, indoor
human activity classification scenarios typically involve finer-
scale motion recognition, such as in assisted living application
of fall detection [21], fall risk assessment, and gait analysis
[22]. In these situations, the challenge requires discrimination
of many types of similar, ambulatory signatures [23], [24] to
differentiate normal walking from aided walking or abnormal
walking, which could be indicative of fall risk.

The assisted living/activity classification dataset is comprised
of 11 different ambulatory gaits or activities as acquired from
6 different participants, who repeated each activity 10 times;
namely, 1) walking, 2) picking up an object, 3) sitting on a
chair, 4) crawling towards the radar, 5) walking on both toes,
6) scissors gait, 7) walking away from the radar, 8) bending,
9) kneeling, 10) limping with right leg stiff (i.e. no bending
at the knee), and 11) walking with short steps (almost like a
shuffle gait).

The activities were simultaneously recorded using three differ-
ent RF sensors: 1) a TI IWR1443BOOST 77 GHz transceiver,
set for 750 MHz bandwidth FMCW, 2) an Ancortek 25 GHz
FMCW transceiver with 750 MHz bandwidth, and 3) a Xethru
X4 ultra-wide band (UWB) impulse radar with roughly 3 GHz
bandwidth between 7-10 GHz. A total of 60 samples per class
were acquired for each sensor.

The micro-Doppler signatures for each activity were computed
as the square modulus of the short-time Fourier Transform
(STFT). Note that high-pass filtering for ground clutter re-
moval was only applied on the 25 GHz FMCW and 7-10
GHz UWB sensors, and not the 77 GHz FMCW sensor. Due
to the finer detail offered the higher millimeter wave transmit
frequency, we have found that many deep neural networks
(DNNs) actually perform better when the ground clutter not fil-
tered out [25]. This is because the filtering operation removes
not just the clutter, but also low-frequency signal components,
which may be of interest in gesture recognition and other fine-
scale problems, such as incurred in assisted living applications.
Examples of the the micro-Doppler signatures from the dataset
are given in Fig. 8.

Figure 8: Sample micro-Doppler signatures for walking and
limping as acquired using a) 77 GHz FMCW, b) 24 GHz
FMCW, and c) 7-10 GHz UWB transceivers.



This data has been used to support research relating to cross-
frequency training [26] and cross-modal fusion [27] in RF
sensor networks, as well as distributed RF sensor fusion for
sequential gait recognition [28].

VI. CONCLUSION

This paper has presented the “open radar initiative“ an open-
source end-to-end radar platform, providing radar, software
and data supplied open-source to the radar community. This
is different from previous publications and smaller shared
datasets by providing a full pipeline for radar experimentation.
All the code is made available online, along with a radar
platform available for purchase and two challenging datasets
to start the development and benchmarking of algorithms. The
two datasets provided are interesting classification challenges
in different settings and provide a starting point for the “open
radar initiative“ The hope of this initiative is to kick start a new
collective joint distributed experimental setup and procedure
to help generate more openly accessible radar data that can be
published and shared across the community.
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[12] I. Roldan, C. R. Del-Blanco, Á. D. De Quevedo, F. I. Urzaiz, J. G.
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