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different quantum engines
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Martin Uhrin 1, Daniel Wortmann 3, Aliaksandr V. Yakutovich 1,12, Austin Zadoks1, Pezhman Zarabadi-Poor 13,14,
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The prediction of material properties based on density-functional theory has become routinely common, thanks, in part, to the
steady increase in the number and robustness of available simulation packages. This plurality of codes and methods is both a boon
and a burden. While providing great opportunities for cross-verification, these packages adopt different methods, algorithms, and
paradigms, making it challenging to choose, master, and efficiently use them. We demonstrate how developing common interfaces
for workflows that automatically compute material properties greatly simplifies interoperability and cross-verification. We introduce
design rules for reusable, code-agnostic, workflow interfaces to compute well-defined material properties, which we implement for
eleven quantum engines and use to compute various material properties. Each implementation encodes carefully selected
simulation parameters and workflow logic, making the implementer’s expertise of the quantum engine directly available to non-
experts. All workflows are made available as open-source and full reproducibility of the workflows is guaranteed through the use of
the AiiDA infrastructure.
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INTRODUCTION
The use of density-functional theory (DFT) to compute the
properties of systems at the atomic level has become wide-
spread1,2, as both the number of quantum engines that
implement it and the available computational power continue
to increase. However, despite its large-scale deployment both in
academia and in industry, the application of DFT is still not a trivial
operation. Accurate predictions require expert knowledge of not
just DFT itself but also of the specific code used to perform the
calculations (throughout this work we will use the terms quantum
engine and code interchangeably). Although the diversity of
available simulation packages improves the accuracy and
reliability of results by virtue of cross-verification3, different codes
use diverse computational methods and interfaces, making it
difficult even for experts to master more than just a few of them.
This may result in software being used not for its applicability to a
particular problem, but merely due to circumstantial reasons.
Furthermore, the fact that the correct usage of DFT-based codes
requires expert knowledge directly limits its application and
potential for scientific discovery.
Although DFT is used to compute many material properties of

varying complexity, a large percentage of all performed
calculations are defined by relatively simple recipes. Therefore,
in addition to implementing new functionalities and improving

the accuracy of existing ones, the effort of domain and code
experts should be focused on providing robust workflows with
common interfaces that can be used by experts and non-
experts alike. If these are designed properly such that they are
reusable, they can be employed as modular blocks in building
more complex workflows, e.g., in a multi-scale approach. On top
of reusability, in order to guarantee that results can be
validated, it is crucial that these common workflows are
reproducible.
A number of workflow implementations that automatically

compute a variety of material properties already exist, but they
are typically implemented for a single specific quantum
engine4–7. The Atomistic Simulation Environment (ASE)8

initiated an effort to provide a single interface for various
quantum engines, however, this remains on the level of single
calculations. The recent Atomistic Simulation Recipes (ASR)9

proposes a mechanism to extend this concept to workflows, but
currently only provides implementations for GPAW10. In this
article, we address the additional challenges that one faces
when trying to develop a common-workflow interface, focusing
particularly on the requirements of reusability and reproduci-
bility, and we provide a solution based on AiiDA, an informatics
infrastructure and workflow management system11. As a proof-
of-concept, we define a common-workflow interface specifically
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for the optimization of solid-state structures and molecular
geometries, together with its implementation in eleven
quantum codes: ABINIT12–14, BigDFT15, CASTEP16, CP2K17,18,
FLEUR19, Gaussian20, NWChem21, ORCA22,23, Quantum
ESPRESSO24,25, SIESTA26,27, and VASP28,29. This particular
common-workflow interface, referred to as the “common relax
workflow” throughout this work, allows a user to optimize a
structure using any of these codes without having to define
code-specific parameters. The computed results are returned in
a single unified format with identical units making the results
directly comparable and reusable regardless of the underlying
quantum engine used.
Each implementation of the common relax workflow interface

provides at least three protocols (“fast”, “moderate”, and “precise”)
that allow a user to specify the desired computational accuracy in
an intuitive and general way. The mapping between these levels
of protocols and code-specific parameters are up to the respective
code experts to define. Through these protocols, expert knowl-
edge of appropriate numerical parameters is thus encoded
directly into the workflows, reducing the risk of incorrect or
unreliable results and opening up the use of the quantum engines
also to non-experts. Despite the ease-of-use of the workflows, the
workflow interface design (which will be discussed later) maintains
full flexibility and allows users to override any of the sensible
defaults provided by the protocols. Furthermore, since AiiDA
tracks the full provenance graph of executed workflows, storing all
parameters used in workflow steps, the appropriateness of the
inputs and the correctness of the results can also be checked a
posteriori.
To demonstrate the concept of modularity and potential for

cross-verification, we use the common relax workflow to
compute the equation of state (EOS) and the dissociation curve
(DC), which are commonly computed properties for bulk
compounds and diatomic molecules, respectively. Each of
these properties is computed by a single workflow that
exclusively leverages the common relax workflow as a modular
building block, allowing any of the quantum engines to be used
without specifying any code-specific parameters. The EOS and
the DC are computed for a few compounds with different
geometric, electronic, and magnetic properties. As we will show
later, the results computed by the various quantum engines
show good agreement. We stress here that the focus of this
paper is not on the validation of the results, but rather on the
demonstration of the feasibility of a common-workflow inter-
face, directly enabling the reusability of complex workflows and
the cross-verification of their results. We hope this will motivate
readers to generalize these concepts and apply them to a
broader and more complex range of problems.
The implementations of the common relax workflow inter-

face of all quantum engines described in this paper are made
available as free open-source software at https://github.com/
aiidateam/aiida-common-workflows under the MIT license. In
addition, all workflows, as well as the seven quantum engines
with a free open-source software license, come pre-installed in
the Quantum Mobile30 virtual machine (and quantum engines
with a more restrictive license can be manually installed on any
computational resource and configured to be used with AiiDA).
This makes it straightforward to fully reproduce all the results
presented in this paper (see the Supplementary Notes for
complete instructions).

RESULTS AND DISCUSSION
Reusability and reproducibility
Workflows, by definition, consist of multiple steps or multiple
subprocesses that are executed in series, in parallel, or in a
combination thereof, to obtain the final result. Ideally, workflows

can themselves be used as modular blocks, becoming steps of
higher-level workflows. To keep this process practical and
tractable, workflows should be designed to be as modular and
reusable as possible. Additionally, as workflows become ever more
complex, so does their reproducibility. In this paper, we focus on
two particular concepts that address these requirements: optional
transparency and scoped provenance.
In software design, the term transparency is often used to mean

that a consumer of an interface should not be bothered with the
inner details of the implementation (the details are invisible, or
transparent). In terms of computational workflows, this can be
taken to mean that a useful generic turn-key solution should have
a simple interface, requiring as few inputs as possible from the
user. Apart from physical inputs (e.g., the initial crystal structure in
a relaxation workflow) and flags to determine which type of
simulation to run (e.g., relax only atomic positions or also the
periodic cell), any other input that is only needed as a numerical
parameter by the underlying implementation should be auto-
matically determined by the workflow.
However, this transparency of the interface comes at a cost.

Complex workflows often consist of multiple subprocesses,
each requiring its own inputs. Oftentimes at least some of these
inputs cannot be automatically determined by the main
workflow, as they are circumstantial and will be dependent
on how and where the workflow is run. An example is when one
of the subprocesses is executed on a high-performance
computing (HPC) cluster and therefore requires specific
environmental settings, such as the required resources and
parallelization flags. A transparent interface is closed to these
inputs being set (as shown schematically in Fig. 1a) and, as
such, the workflow will be tied to a very specific environment
for execution. Therefore, it will not be portable and conse-
quently not reusable. But even if the inputs of the workflow
could be automatically determined, an expert user may still
want to override them. Transparent interfaces precluding this
level of control diminish the reusability of workflows.
The solution to the aforementioned problem is to make the

interface for all workflows fully opaque and expose all inputs of
their subprocesses. That is to say, the workflow should make it
possible to define each and every input that any of its
subprocesses takes, as shown in Fig. 1b. By doing so, a user
has access to all the inputs of the subprocesses, whether they
could have been automatically determined by the workflow or
not. Certainly, there are situations where the workflow can
consciously decide not to expose certain inputs, as it is part of
its task to determine them based on other inputs or
intermediate results.
We are now confronted with two conflicting requirements,

where a workflow interface must be both transparent for
simplicity, yet at the same time fully opaque for reusability. The
solution is to create an interface that is optionally transparent,
i.e., it is opaque when needed but can still be used in a
transparent manner whenever possible. Exposing the inputs of
subprocesses is the first crucial step towards obtaining this
goal, but it is not the only one. In addition, the workflow needs
to specify sensible defaults such that the interface remains
simple to operate with just a minimal set of inputs. An even
better solution is offered by what we refer to as input
generators. An input generator for a workflow is a function
that, based on a minimal set of essential inputs, generates the
full set of inputs required by the workflow and all of its
subprocesses. The advantage of this approach is that an expert
user has the ability to inspect the full set of inputs that have
been generated and even modify them before actually
executing the workflow. This is the approach that we will take
in the rest of this work.
It is commonly accepted that science is facing a reproduci-

bility crisis in that many studies can often not be reproduced31.
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In recent years, guidelines have been developed to address this
problem, such as the FAIR principles32 that aim to make data,
among other things, more reusable. For workflows to become
FAIR as well, it is critical that they store the provenance of the
data that they produce at each execution33. Concretely, this
means that a workflow should store not only its own inputs and
outputs but also those of all the subprocesses that it invokes.
Recording the provenance of data that is produced at each step
of a workflow is crucial to enable the reproducibility and
intelligibility of the final result. However, full provenance is not
always required. Therefore, for complex workflows that produce
large provenance graphs, it becomes important to be able to
investigate the provenance within different granularity levels,
i.e., different scopes. We refer to the possibility of inspecting the
provenance at different levels as scoped provenance, which we
illustrate in Fig. 2.
The next section explains in detail how we put the concepts

of optional transparency and scoped provenance into practice.
To ensure that the common workflows satisfy the requirements

of optional transparency and scoped provenance, we have chosen
to implement them using AiiDA11, scalable computational
infrastructure for automated reproducible workflows and data
provenance. The workflows are implemented as AiiDA work

chains34, whose data provenance and that of all their subpro-
cesses are automatically stored by AiiDA in a relational database.
AiiDA provides an application programming interface (API) to
query the provenance graph at various levels of granularity,
satisfying the scoped provenance requirement. The optional
transparency criterion is made possible by the design of AiiDA’s
workflow language specification34. All processes in AiiDA are
implemented in Python and, most importantly, the process
specification (Listing 1) is defined programmatically, allowing
inspection of inputs and outputs before executing the workflow.
In addition, it allows workflows to easily reuse subworkflows as
modular blocks, without making their interface inaccessible, by
exposing the inputs and outputs34,35.

Listing 1. The definition of a process ProcessA implemented as a
subclass of an AiiDA WorkChain. The process runs two subprocesses
(SubProcessA and SubProcessB). The process declares an input
I_1 in its specification; in addition, the inputs of subprocesses are not
redefined, but ProcessA simply exposes them in its own
specification. The inputs of the subprocesses are exposed in separate
namespaces so that inputs with same name do not shadow each
other and remain all accessible (see Listing 3 for an example of how
these are passed).

Fig. 2 Scope provenance. a Schematic provenance of a workflow (PA) that takes two inputs (I1 and I2) and produces three outputs (O1, O2, O3).
b A more detailed view of the complete provenance of PA, which actually runs two subprocesses (SA and SB). Input I1 is passed by PA to SA,
which results in O1. This intermediate output O1 is passed by PA to SB as an input, in addition to I2, which results in the outputs O2 and O3. The
latter are returned by PA as the final outputs together with the O1 intermediate result.

Fig. 1 Difference between a transparent and opaque workflow interface. a A schematic depiction of a process (PA) that consists of three
subprocesses (SA, SB, and SC), that each requires two inputs (I1 and I2). In this abstract example, the top-level process takes no inputs which is
just for clarity; normally the top-level process takes at least one input based on which the inputs for the subprocesses are determined. Note
that, although for simplicity the same symbol is used for these inputs, they do not necessarily represent identical inputs across the
subprocesses, even though in practice the names could actually overlap. Only two inputs per process are arbitrarily chosen here for illustrative
purposes. The interface of PA does not expose the inputs of its subprocesses but instead will decide them internally. This means that a user of
PA cannot customize the inputs of any of the subprocesses. b A schematic depiction of the same process PA as in (a), but in this case exposing
the inputs of its subprocesses. Since the names of the inputs can potentially overlap, inputs are exposed in namespaces to prevent name
clashes. A user of PA can now directly set the inputs through the top-level interface. If any of the inputs of the subprocesses should not be
defined by the user (due to being part of the workflow’s task to define it) the workflow can decide to not expose that particular input.
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Launching a process in AiiDA is performed by passing the process
class as an argument to the submit function and passing the inputs
as keyword arguments as shown in Listing 2.

Listing 2. Example of how SubProcessA is launched. The **
marker is Python syntactic sugar to unwrap the inputs
dictionary into keyword arguments to the submit function. Note
that the values of the inputs are simple integers just for the clarity
of the example.

Listing 3 shows an example of how the top-level ProcessA
can be launched, defining its own inputs as well as those of its
subprocesses.

Listing 3. Example of how ProcessA is launched. The inputs of
the subprocesses can be passed in dictionaries that are nested in
the main inputs dictionary, where the keys correspond to the
namespace in which the inputs are exposed in the process
specification (Listing 1).

The concept of exposing inputs of subprocesses ensures that
the inputs of any subprocess can be controlled from the top-level
workflow, regardless of the level of nesting. This directly satisfies
the requirement of providing an opaque interface for expert users
that need maximal control. However, the interface quickly risks
becoming complex, as multiply layered workflows will require
deeply nested input dictionaries. The workflow needs to optionally
provide a transparent version of the interface to enable also non-
expert users to easily use the workflow.
To solve this issue for the common workflows, we implement an

input generator for each workflow. Input generators are not a

native AiiDA concept but are a design pattern that emerged from
the needs of defining and developing common workflows. Each
common workflow defines a class method get_input_gen-
erator that returns an instance of an object that acts as the
input generator. The input generator in turn defines the class
method get_builder, which implements the common input
interface and returns an instance of a ‘builder’. A builder is simply
a container that wraps the generated inputs with additional
information (such as the workflow class it pertains to), together
with additional convenience functionality such as automatic input
validation.
Since processes in AiiDA are implemented and executed

directly in Python, their functionality can be easily extended. In
addition, by being implemented in the same Python class as the
workflow for which the inputs are generated, it is straightforward
to keep the two aligned during workflow development. The
get_builder method of the input generator takes a minimal
amount of required arguments and returns a complete set of
inputs for the corresponding workflow. Listing 4 shows how the
input generator simplifies the usage of ProcessA for users, as
now they only need to define a single input.

Listing 4. Example of how the launching of ProcessA is
simplified by generating the inputs through the input generator.
The get_input_generator class method returns an instance
whose get_builder method can be called, to obtain a fully
defined builder based on just a single input I_1. The builder,
containing all the required inputs, can then be passed directly to
the submit function. Since the builder also contains the process
class for which it is defined, the process class itself no longer has
to be explicitly passed to the submit function. Here, we are
assuming that the inputs of the subprocess can be automatically
determined by some algorithm implemented in the input
generator; the number of minimally required inputs in this
example is just one for simplicity.

An alternative approach to the problem could have been to
make all subprocess inputs optional and let the workflow generate
them at runtime (Fig. 1a). Although this is a valid approach, in our
experience it turns out to be much less flexible in particular for
experienced users, as internal parameters cannot be set from the
outside. Indeed, the input generator not only makes complex
workflows accessible to non-experts, but it also gives maximal
flexibility to advanced users. By generating inputs before
execution, they can still be modified according to the user’s
needs before they are passed to the workflow for execution,
giving direct access to all parameters and achieving the goals of
optional transparency.

The common relax workflow
As a proof of concept of the principles explained in the section, we
present a common interface to a workflow that performs a
geometry optimization of both molecular and extended systems,
which is implemented for eleven quantum engines. Structural
relaxation towards the most energetically favorable configuration
is a common task in materials science, and all selected quantum
engines can perform it. Nevertheless, quantum engines use a wide
variety of algorithms to optimize forces on the atoms and stress
on the cell. This, therefore, presents an ideal yet challenging test
scenario to develop a workflow with a common interface.
The design of the interface is guided by the idea to employ

optional transparency to create a workflow interface that is
suitable both for expert and non-expert users. This interface must
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be simple and general (code-agnostic) but at the same time retain
full flexibility in changing code-specific parameters. Our adopted
solution consists in the creation of code-specific workflows
(implemented as AiiDA work chains named <Code>CommonRe-
laxWorkChain, where <Code> indicates the name of the
underlying quantum engine), whose interface design is not
restricted. A common interface is achieved by ensuring that each
work chain provides also an input generator whose interface is
identical for every <Code>, as shown in Fig. 3.
Listing 5 shows an actual code example of how the input

generator can be obtained from a work chain implementation.
The get_builder method of the input generator will transform
the inputs, that respect the common interface, into the inputs that
are expected by the corresponding code-specific work chain
implementation. The inputs are returned in the form of a “builder”
which can be directly submitted to AiiDA to start running the
workflow.

Listing 5. Submission of the relaxed common workflow employ-
ing the quantum engine <Code>. The arguments accepted by
get_builder are identical for every <Code>, establishing a
common interface.

We note that not only the names but also the (Python) types of
the inputs and outputs are standardized to ensure that the interface
is truly generic. These are described in the next paragraphs.
The second step of the design is the identification of the minimal

set of arguments for the input generator, reflecting the inputs of the

most generic relaxation process. We identified three fundamental
inputs that we, therefore, implemented as mandatory arguments of
the get_builder method.

● structure. The structure to relax. (type: an AiiDA Struc-
tureData instance, the common data format to specify
crystal structures and molecules in AiiDA36).

● protocol. In the context of this work, this means a single
string summarizing the computational accuracy of the under-
lying DFT calculation and relaxation algorithm. Three protocol
names are defined and implemented for each code: ‘fast’,
‘moderate’, and ‘precise’. The details of how each
implementation translates a protocol string into a choice of
parameters are code-dependent, or more specifically they
depend on the implementation choices of the corresponding
AiiDA plugin. For this work we have tried to follow these
definitions: a possibly unconverged (but still meaningful) run
that executes rapidly for testing (‘fast’); a safe choice for
prototyping and preliminary studies (‘moderate’); and a set
of converged parameters that might result in an expensive
simulation but provides converged results (‘precise’). The
reason for not mandating the details of the protocols in the
common-workflow specifications is due to the variety of basis
sets, input potentials, and algorithms, requiring the specifica-
tion of diverse and heterogeneous parameters in different
codes. For the eleven implementations presented in this work,
detailed parameter choices and the translation done for
each respective code are reported in the Supplementary
Methods. We note here that the choice of the exchange-
correlation functional could, in the future, become an
additional optional input. In this work, we decided to use
the Perdew–Burke–Ernzerhof (PBE)37 functional as the default
choice. (type: a Python string).

Fig. 3 Schematic diagram of the common relax workflow interface. Any implementation consists of two parts: the <Code>CommonRe-
laxWorkChain and a <Code>CommonRelaxInputGenerator. The <Code>CommonRelaxWorkChain is an AiiDA WorkChain that
implements the logic necessary to perform the structure optimization and has an input interface that is code-specific. However, the outputs
that it returns respect the schema of the common interface, where Sr is the relaxed structure, F are the forces on each atom, T is the stress on
the cell, Et is the total energy and Mt is the total magnetization of the system. Each <Code>CommonRelaxWorkChain provides its own
<Code>CommonRelaxInputGenerator which, unlike the workflow, implements the common interface for the inputs (note that not all
common inputs are shown for clarity). Here structure is the structure that is to be optimized, the protocol is a string that defines how the
inputs are determined, and the engine is a dictionary that specifies what code(s) to use. The <Code>CommonRelaxInputGenerator
translates the common inputs into the code-specific inputs that the corresponding <Code>CommonRelaxWorkChain expects (indicated
with ?). Since the creation of the code-specific inputs and the launching of the workflow are two separate actions, the generated inputs can
be adapted at will.
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● relax_type. The type of relaxation to perform, ranging
from the relaxation of only atomic coordinates to the full cell
relaxation for extended systems. The complete list of
supported options is: ‘none’, ‘positions’, ‘volume’,
‘shape’, ‘cell’, ‘positions_cell’, ‘positions_-
volume’, ‘positions_shape’. Each name indicates the
physical quantities allowed to relax. For instance, ‘posi-
tions_shape’ corresponds to a relaxation where both the
shape of the cell and the atomic coordinates are relaxed, but
not the volume; in other words, this option indicates a
geometric optimization at constant volume. On the other
hand, the ‘shape’ option designates a situation when the
shape of the cell is relaxed and the atomic coordinates are re-
scaled following the variation of the cell, not following a force
minimization process. The term “cell” is short-hand for
the combination of ‘shape’ and ‘volume’. The option
‘none’ indicates the possibility to calculate the total energy
of the system without optimizing the structure. Not all the
described options are supported by each code involved in this
work; only the options ‘none’ and ‘positions’ are
shared by all the eleven codes. The supported options
might be extended in the future. (type: a Python string).

In addition to these mandatory arguments, the computational
resources must be passed to the work chain in order to make the
interface transferable between different computational environ-
ments. For this task, a specific argument of get_builder has
been designed called engines.

● engines. It specifies the codes and the corresponding
computational resources for each step of the relaxation
process. Typically one single executable is sufficient to
perform the relaxation. However, there are cases in which
two or more codes in the same simulation package are
required to achieve the final goal, as, for example, in the case
of FLEUR. (type: a Python dictionary).

Other inputs have been recognized as common optional features
that also a non-expert user might want to have control over:

● threshold_forces. A real positive number indicating the
target threshold for the forces in eVÅ−1. If not specified, the
protocol specification will select an appropriate value. (type:
Python float).

● threshold_stress. A real positive number indicating the
target threshold for the stress in eVÅ−3. If not specified, the
protocol specification will select an appropriate value. (type:
Python float).

● electronic_type. An optional string to signal whether to
perform the simulation for a metallic or an insulating system. It
accepts only the ‘insulator’ and ‘metal’ values. This
input is relevant only for calculations on extended systems. In
case no such option is specified, the calculation is assumed to
be metallic which is the safest assumption. Note that the
specification currently provides no option that instructs the
workflow to automatically determine the electronic character
of the system, but this might be added in the future. This also
means that when the value ‘insulator’ or ‘metal’ is
defined, the workflow will never change the electronic type,
even if the calculations seem to contradict the selected value.
(type: Python string).

● spin_type. An optional string to specify the spin degree of
freedom for the calculation. It accepts the values ‘none’ or
‘collinear’. These will be extended in the future to
include, for instance, non-collinear magnetism and spin-orbit
coupling. The default is to run the calculation without spin
polarization. (type: Python string).

● magnetization_per_site. An input devoted to the initial
magnetization specifications. It accepts a list where each entry
refers to an atomic site in the structure. The quantity is passed

as the spin polarization in units of electrons, meaning the
difference between spin up and spin down electrons for the
site. This also corresponds to the magnetization of the site in
Bohr magnetons (μB). The default for this input is the Python
value None and, in case of calculations with spin, the None
value signals that the implementation should automatically
decide an appropriate default initial magnetization. The
implementation of such choice is code-dependent and
described in the Supplementary Methods. (type: None or a
Python list of floats).

● reference_workchain. A previously performed <Code>-
CommonRelaxWorkChain. When this input is present, the
interface returns a set of inputs that ensure that results of the
new <Code>CommonRelaxWorkChain can be directly
compared to the reference_workchain. This is necessary
to create, for instance, meaningful equations of state as
will be shown later. (type: a previously completed
<Code>CommonRelaxWorkChain).

The arguments of the input generator described above fully
satisfy the needs for the creation of a “ready-to-submit”
<Code>CommonRelaxWorkChain, constructing all its neces-
sary inputs (see Listing 5). These inputs are code-specific and, as
discussed earlier, can be modified before submission by an expert
user who is familiar with the internals of the <Code>Common-
RelaxWorkChain.
The arguments of the get_builder method represent high-

level parameters that describe how the geometry optimization
should be performed or how the system is to be treated. Each
argument has a fixed number of accepted values, but not every
code implementation may necessarily support all of them, as
some values might correspond to features not supported by the
code. In order to be able to inspect which options are supported
by a workflow implementation, the input generator offers a
number of methods. An example is shown in Listing 6.

Listing 6. Call to the inspection method that returns information
on the available relaxation types for the <Code> implementation
of the common relax workflow.

The get_relax_types method returns the supported values
for relax_type for the corresponding workflow implementa-
tion. Inspection methods are implemented for all codes and all the
arguments of get_builder except the threshold values, the
structure, the reference_workchain, and the magneti-
zation_per_site. Associated to the engines argument,
there are the methods get_engine_types and get_engi-
ne_type_schema, which return the steps required by the
relaxation and information on the code type necessary for each
step of the relaxation, respectively.
The described inspection methods allow introspecting, in a fully

machine-readable and automatic way, what the valid options for a
particular common-workflow implementation are. This is particu-
larly relevant to facilitate future development of a graphical user
interface (GUI) for the submission of the common relax workflow.
The GUI will be able to create the necessary input fields, with a list
of accepted values, by programmatically introspecting the input
generator interface.
To allow direct comparison and cross-verification of the results,

the outputs of <Code>CommonRelaxWorkChain are standar-
dized for all implementations and are defined as follows:

● forces. The final forces on all atoms in eVÅ−1. (type: an
AiiDA ArrayData of shape N × 3, where N is the number of
atoms in the structure).
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● relaxed_structure. The structure obtained after the
relaxation. It is not returned if the relax_type is ‘none’.
(type: AiiDA’s StructureData).

● total_energy. The total energy in eV is associated with the
relaxed structure (or initial structure in case no relaxation is
performed). The total energy is not necessarily defined in a
code-independent way (e.g., it does not have a common zero).
We require, however, that the partial derivative of the
returned energy with respect to the change of the coordinate
i of atom j is always the i− th coordinate of the force on the
atom j. We also stress that in general, even for calculations
performed with the same code, there is no guarantee to have
comparable energies in different runs if the inputs are
generated with the input generator (because, for instance,
the selected k-points depend on the input structure volume).
However, in combination with the input argument refer-
ence_workchain mentioned earlier, energies from different
relaxation runs become comparable, and their energy
difference is well defined. (type: AiiDA Float).

● stress. The final stress tensor in eVÅ−3. Returned only
when a variable-cell relaxation is performed. (type: AiiDA
Float).

● total_magnetization. The total magnetization in μB
(Bohr-magneton) units. Returned only for magnetic calcula-
tions. (type: AiiDA Float).

During the execution of the workflow, which can consist of
multiple runs of the relevant quantum engine, any number of
problems can occur that prevent the calculation from finishing
successfully. Typical examples are problems with the quantum
engine itself, such as electronic convergence not being reached,
or problems related to the job scheduler, such as the allocated
walltime being exceeded. AiiDA provides various tools to facilitate
the writing of error handlers that can recover from these errors34

(optionally restarting from previously run calculations). However,
each workflow implementation is responsible for defining and
implementing these handlers, since the errors are usually
quantum-engine specific. In this way, the majority of errors that
typically occur are automatically handled by the workflow and the
user will not have to intervene. We stress that, thanks to the
extensive provenance that is automatically stored by AiiDA, the
exact errors that were encountered during a workflow and how
the workflow addressed them are recorded in full detail.
As a first test case of the various implementations of the

common relax workflow, we present the optimization of a simple
molecular structure: ammonia. The thermodynamically stable
polymorph of ammonia has a trigonal pyramidal shape, which
makes the structure polar. However, ammonia also exists in a
metastable planar form38. The optimized structure and its
associated total energy have been calculated with the common
relax workflow implementation for all eleven quantum engines
discussed in this paper for both phases of ammonia, using the
‘precise’ protocol for the input generation.
The analysis of the energy difference between the planar and

pyramidal configurations of ammonia is presented in Fig. 4. As
mentioned in the introduction, comparing results among codes is
not the focus of this paper. However, it is worth mentioning that
the small discrepancies between codes in Fig. 4 are not surprising,
considering that the treatment of polar molecules with codes
designed for extended systems is not a trivial task. In particular,
some codes always need to use periodic boundary conditions,
introducing non-physical interactions among replicas in the
calculation. Even for large enough simulation cells, the long-
range electrostatic potential due to periodic images of the polar
molecule affects the energy of the system. Strategies such as the
use of improved Poisson solvers39,40 and more sophisticated
dipole corrections41,42 can be introduced in order to circumvent
this problem. Since in this paper we are focusing only on showing

the concept and feasibility of common workflows, no dipole
correction is considered, and the simulation box is set to a (15 Å)3

cube, without performing a proper convergence study on the cell
size. However, extensions of this work can add optional flags to
the input generator of the workflow to activate appropriate dipole
corrections if needed and implemented by the underlying
quantum engine. The data presented here also illustrates the
potential of the common interface for the cross-verification of
results, especially considering the variety of basis sets and
algorithms of the eleven quantum engines. The present work
offers the possibility to compare results from quantum-chemistry-
oriented and electronic-structure codes (both pseudopotentials-
and all-electrons-based) with minimum effort.
Since all workflows are implemented using AiiDA, the full

provenance is automatically stored when the workflow is
executed, as discussed in the Reusability and reproducibility
section. Figure 5 shows two schematic provenance graphs for a
relaxation workflow powered by two different quantum engines.
Note that only a subselection of the total number of inputs and
outputs are shown for clarity, but all subprocesses are displayed
and the connections between the nodes give an idea of the
internal complexity of the workflows. Notably, the figure shows
how the different workflow implementations can follow consider-
ably different logical paths while ultimately returning the same
quantities according to the same common interface.
The action of taking the arguments of the common interface and

transforming them in code-specific inputs (operated by the input
generators) is not tracked. This is not crucial since only the code-
specific inputs fully determine the calculation results. Also, we do not
consider protocols as immutable objects, but rather as flexible input
suggestions that an expert user might want to change.

Code-agnostic workflows
Optimizing the geometry of a solid-state structure or molecule is a
common core building block of materials-science workflows.
Creating a common-workflow interface for this particular task
allows higher-level workflows that reuse it to become code
agnostic. This makes it possible to run the workflow with any
quantum engine that implements the common relax workflow

Fig. 4 Energy difference between the planar and pyramidal
phases of ammonia. Energy difference (ΔE) between the planar and
pyramidal phases of ammonia, calculated with the eleven quantum
engines reported in the horizontal axis (QE stands for Quantum
ESPRESSO). A relaxation of the structure has been performed
independently by every code before computing the energies
(except for FLEUR*, because for FLEUR the relaxation failed due to
overlapping muffin-tin spheres, a method-specific issue requiring
error handling. The energy difference for FLEUR was calculated
through the common workflow without relaxation, using the
relaxed output structures of Quantum ESPRESSO instead).
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interface, without having to explicitly specify any input that is
specific to the quantum engine. We discuss two examples of such
workflows in the following sections.
An example of a workflow that uses structure optimization as a

building block is the EOS workflow. The equation of the state of a
solid-state system is obtained by computing the total energy of
the system at various volumes. We present here the implementa-
tion of an EOS workflow that uses the common relax workflow to
perform the optimization of the system at each volume and
compute its total energy. This workflow serves as an example to
explain how the unified interface of the common relax workflow
can be used to create code-agnostic workflows. It has been named
EquationOfStateWorkflow and its schematic representation
is shown in Fig. 6.
The EquationOfStateWorkflow takes a structure as input

(S0 in Fig. 6) and scales the volume a number of times (Ni), with the

scaled structures centered around the volume of the input
structure. The workflow calls the common relax workflow for each
scaled structure to compute its total energy. The common relax
workflow interface is entirely accessible at the level of the inputs
of the EquationOfStateWorkflow. This means that one can
specify arguments accepted by the input generator (which are
code-agnostic and are labeled generator_inputs in Fig. 6),
but also, optionally, some code-specific overrides for the
inputs produced by the generator. Therefore, on the one hand, by
virtue of the common interface being code-agnostic, the
EquationOfStateWorkflow is also independent of the quan-
tum engine that is used for the underlying calculations. On the
other hand, the possibility to specify explicit overrides should
fulfill the needs of expert users and fully satisfy the optional
transparency requirement for reusable workflows.
The total energies and optimized structure, as produced by the

common relax workflow runs, are collected and returned by the
EquationOfStateWorkflow as its outputs. Like the <Code>-
CommonRelaxWorkChain itself, the code-agnostic Equatio-
nOfStateWorkflow is implemented as an AiiDA work chain. This
provides fully automated provenance tracking of all tasks
performed inside the workflow, ensuring full reproducibility of
the computed results.
It should be noted that the actual logic of the EquationOf-

StateWorkflow is slightly more complicated than depicted in Fig. 6.
The common relax workflows are not all launched in parallel, but a
single workflow is first performed for one of the scaled volumes. This
first workflow is subsequently used as an additional input for the
reference_workchain argument to the input generator for the
common relax workflows for the remaining volumes. The input
generator can use this reference to the first workflow to ensure that,
if needed, parameters are kept constant between images in order for
the energy differences to be meaningful. An example is the number
of k-points used to sample the Brillouin zone (that is typically chosen
by the input generators so as to get as close as possible to a target
density, and thus is volume-dependent if a reference_work-
chain is not specified).
The EquationOfStateWorkflow has been used to compute

the EOS for a number of solid-state systems with varying
electronic and magnetic properties: silicon (Si), aluminum (Al),
germanium telluride (GeTe), and body-centered cubic (BCC) iron
(Fe) both in a ferromagnetic and anti-ferromagnetic configuration.
The results are shown in Figs. 7 and 8.
Figure 7 reports the EOS results for the Si, Al, and GeTe crystals.

The curves for Si and Al have been obtained with all quantum
engines, except ORCA and Gaussian, which are mainly specialized for
non-periodic systems and the Gaussian AiiDA plugin does not yet
support PBC. At each volume, the atomic positions are optimized
while keeping the volume and cell shape fixed. The GeTe compound
crystallizes at normal conditions in a trigonal phase (space group
R3m)43. For this material, a correct calculation of the EOS requires the
cell shape to be optimized at a fixed volume in order to minimize the
non-hydrostatic contributions of the stress tensor. This has been
achieved in the common interface setting the relax_type to
positions_shape, which is only supported by five out of eleven
quantum engines. This is the reason why only five curves are shown
in the right panel of Fig. 7. All calculations are carried out without
spin-polarization and with the precise protocol.
The common interface also allows calculations on magnetic

systems. Figure 8 shows the EOS of BCC Fe, for both a ferromagnetic
(left panel) and anti-ferromagnetic (right panel) ordering of atomic
spin moments. At each volume, the atomic positions are optimized
while keeping the volume and cell shape fixed. The central panel in
Fig. 8 shows the total magnetization of the relaxed structure at each
volume in the ferromagnetic case. The total magnetization in the
anti-ferromagnetic case is zero at every volume and therefore not
reported in the picture. The initial structure passed to the workflow
is the same for the ferromagnetic and anti-ferromagnetic

Fig. 5 Schematic provenance graph for relaxation workflows.
Schematic provenance graphs for a relaxation workflow powered by
two different quantum engines (top: SIESTA; bottom: Quantum
ESPRESSO). The node of the <Code>CommonRelaxWorkChain is
highlighted with the label “RelaxWorkChain” and with a red edge. All
the AiiDA work chains called during the relaxation are represented by
orange rectangles. The dark red rectangles are calculations, meaning
calls to an external executable that performs a calculation, for
instance, a call to the pw.x of Quantum ESPRESSO. All the ellipses
represent data nodes, meaning nodes in the database that contain
data, like, for instance, the initial structure, the total energy, and so
on. In blue is the data node representing the code utilized for the
calculations. In pink are represented calls to Python functions that
modify some data in order to create others.
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configurations and it is close to the equilibrium volume of the
ferromagnetic case. This explains why the volume with minimum
energy for the anti-ferromagnetic case is not placed in the middle of
the analyzed volumes range. It is noteworthy that the BCC structure
is the most thermodynamically stable configuration only in the
ferromagnetic arrangement. The results show good overall agree-
ment among codes. However, the scope of this section is only to
demonstrate the variety of systems and physical quantities that can
be analyzed with the code-agnostic EOS workflow.
In a similar fashion to the EOS workflow, a code-agnostic workflow

for the calculation of the dissociation curve of a diatomic molecule
has been implemented. In this case, no relaxation is performed at all
by the common relax workflow (accomplished by setting the
relax_type equal to ‘none’) and it simply computes the energy
of the system at various atomic distances. The same approach of the
EOS workflow is used regarding the reference_workchain

argument, meaning that the calculation at the first distance is used
as a reference for the creation of inputs for the calculation at all the
other distances.
Results are presented in Fig. 9 for the H2 dissociation curve

obtained with the code-agnostic workflow. An initial anti-
ferromagnetic configuration has been chosen as a starting point
for each energy calculation. The results show good agreement
among codes. DFT is not the most appropriate method for the
calculation of dissociation curves in diatomic molecules, since
these systems expose well-known problems of DFT, like the
delocalization error (self-interaction error) and static correlation44.
The present test case wants to demonstrate the possibility to
create code-agnostic workflows that support both electronic-
structure codes and quantum-chemistry-oriented codes. In the
future, the common relax workflow could be extended to allow
calculations powered by different methods in addition to DFT,

Fig. 6 Schematic diagram of the code-agnostic EOS workflow. Schematic diagram of the implementation of the code-agnostic
EquationOfStateWorkflow. The EquationOfStateWorkflow takes a number of arguments: S0 is the structure of the system at
equilibrium volume and Ni are the number of volumes for which to compute the total energy. The generator_inputs will be passed
directly to the inputs generator of the chosen common relax workflow implementation, which is called Ni times, once for each system volume.
Note that the inset marked as “common relax workflow” corresponds directly to the schematic of the common relax workflow in Fig. 3. This
highlights that the EquationOfStateWorkflow directly reuses the common relax workflow as its main building block. Which
implementation of the common relax workflow is to be used is communicated to the EquationOfStateWorkflow by a single input,
which is not shown for clarity. The overrides port allows an expert user to override certain inputs that are automatically determined by the
generator, thus making the EquationOfStateWorkflow optionally transparent.

Fig. 7 EOS for Si, Al, and GeTe. Results obtained with the code-agnostic EquationOfStateWorkflow. For each code, the energy is shifted
to set the minimum energy to zero. The EOS has been computed with all codes discussed in this work, except ORCA and Gaussian, which are
mainly specialized for non-periodic systems. In addition, for GeTe, results are missing for BigDFT, CP2K, FLEUR, and NWChem (see
Supplementary Table 2 for more details). The label QE stands for Quantum ESPRESSO.
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elevating the present work to a useful tool for comparing different
levels of theory in the study of crystals and molecules.
We have described how it is possible for domain experts to

provide robust and reusable workflows that automatically
compute materials properties, in order to exploit the ever-
increasing computational power and popularity of DFT-based
quantum engines, with the goal of accelerating materials
discovery and characterization. For the workflows to be reusable,
it is critical that they have optionally transparent interfaces and
that the full provenance of executed workflows is automatically
stored. We have demonstrated a concrete implementation of
these two requirements using the workflow management system
of the AiiDA informatics infrastructure11. We defined a common
interface for a workflow that optimizes the geometry of a solid-
state system or molecule, that was subsequently implemented for
eleven popular quantum engines, with very diverse basis-set
choices and algorithms. Using this common relax workflow, we
have shown how higher-level workflows can reuse it to compute
relevant material properties, such as the EOS and DC, while
keeping a fully code-agnostic interface. Our results show how
optionally transparent common-workflow interfaces directly
enable the cross-verification of results produced by different
quantum engines. In addition, they empower a broader audience

to use these methods in a robust way, encoding the experts’
knowledge into reproducible code and hopefully stimulating new
collaborations and more accurate materials-science simulations.

METHODS
Quantum-mobile implementation
The common interface and all corresponding code-agnostic workflows
described in this paper allow anyone to run calculations to perform the
same task with different codes, without knowing the details of each
implementation. This is true assuming that the user can access a working
executable of each code. The executable can be installed on the same
machine as AiiDA and the common workflows, or more typically in a remote
computer (HPC cluster or supercomputer), since AiiDA allows automatic
connection to external machines. Compiling and installing eleven different
quantum engines can be a burden even for experienced users, and even
more for non-experts. As one of the goals of this work is to facilitate the access
to quantum codes to a broader audience, we also make available all codes
related to this project in Quantum Mobile30 version 21.05.1, which can be
downloaded here: https://quantum-mobile.readthedocs.io/en/latest/releases/
versions/21.05.1.html. Quantum Mobile is an open-source virtual machine
based on Ubuntu, that comes with a large number of codes, tools, and
dependencies that are commonly needed to run materials-science atomistic
simulations. In particular, it contains a pre-configured AiiDA installation
together with the plugins interfacing AiiDA to all eleven quantum engines
described here. In addition, since version 21.05.1 Quantum M obile also
includes the common-workflow interfaces and implementations discussed
here, released as the aiida-common-workflows package v0.1 on PyPI, which
can be downloaded here: https://pypi.org/project/aiida-common-workflows/
https://pypi.org/project/aiida-common-workflows/. Crucially, Quantum Mobile
also includes the executables for the following open-source quantum engines:
ABINIT, BigDFT, CP2K, FLEUR, NWChem, Quantum ESPRESSO, and SIESTA (as
well as a few more). Although CASTEP and ORCA provide free academic
licenses, they require users to have their own license which prevents pre-
installation in Quantum Mobile. The remaining three codes discussed here
(CASTEP, Gaussian, and VASP) are commercial, therefore they cannot be
redistributed freely without infringing their licenses. Nevertheless, a complete
set of instructions is provided in the Supplementary Methods, to guide users
who already have access to these codes (on any computer of their choice) to
configure them with AiiDA. In this way, the common workflows (all instead
available open-source in the Quantum Mobile) can be run seamlessly also for
commercial codes. Thanks to this setup, common workflows with these codes
can be run with almost no preliminary step required. Only a few codes require
a minimal adjustment that is described in the Supplementary Methods. A
detailed list of instructions on how to run the test cases presented in this
manuscript in the Quantum Mobile is reported in the Supplementary Notes.

DATA AVAILABILITY
The data and the scripts used to create all the images in this work are available on the
Materials Cloud Archive45. Note that the data includes the entire AiiDA provenance

Fig. 8 EOS and total magnetization for BCC Fe. Results obtained with the code-agnostic EquationOfStateWorkflow. The left panel
reports the EOS obtained with a ferromagnetic initialization of the atomic moments. The corresponding total magnetization is reported for
each volume in the central panel. The right panel reports the EOS obtained with an anti-ferromagnetic initialization of the atomic moments.
The label QE stands for Quantum ESPRESSO. Results are missing for BigDFT, CP2K, Gaussian, NWChem, and ORCA (see Supplementary Table 2
for more details).

Fig. 9 Dissociation curve of the H2 molecule. Results obtained with
a code-agnostic workflow. For all codes and all volumes, the
magnetization is initialized to −1 μB for one atom and to +1 μB for
the other atom. The label QE stands for Quantum ESPRESSO. The
VASP curve has been shifted by −24.89 eV. Results are missing for
BigDFT, FLEUR, and NWChem (see Supplementary Table 2 for more
details).
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graph of each workflow execution, as well as the curated data that is extracted from
that database in order to produce the images.

CODE AVAILABILITY
The source code of the common workflows is released under the MIT open-source
license and is made available on GitHub (github.com/aiidateam/aiida-common-
workflows). It is also distributed as an installable package through the Python
Package Index (pypi.org/project/aiida-common-workflows).
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