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ABSTRACT  

Background: Cardiac magnetic resonance (CMR) is increasingly used for risk stratification 

in aortic stenosis (AS). However, the relative prognostic power of CMR markers and their 

respective thresholds remains undefined. 

Objectives: Using machine learning, we aimed to identify prognostically important CMR 

markers in AS and their thresholds of mortality. 

Methods: Severe AS patients undergoing AVR (n=440, derivation; n=359, validation cohort) 

were prospectively enrolled across 13 international sites (median 3.8 years follow-up). CMR 

was performed shortly before surgical/transcatheter AVR. A random survival forest model 

was built using 29 variables (13 CMR) with post-AVR death as the outcome.  

Results: There were 52 deaths in the derivation cohort and 51 deaths in the validation cohort. 

The four most predictive CMR markers were extracellular volume fraction (ECV%), late 

gadolinium enhancement (LGE%), indexed left ventricular end-diastolic volume (LVEDVi), 

and right ventricular ejection fraction (RVEF). Across the whole cohort and in asymptomatic 

patients, risk-adjusted predicted mortality increased strongly once ECV% exceeded 27%, 

while LGE%>2% showed persistent high-risk. Increased mortality was also observed with 

both large (LVEDVi>80mL/m2) and small ventricles (LVEDVi≤55mL/m2), and with high 

(>80%) and low RVEF (≤50%). The predictability was improved when these four markers 

were added to clinical factors (3-year C-index; 0.778 versus 0.739). The prognostic 

thresholds and risk stratification by CMR variables were reproduced in the validation cohort. 

Conclusions: Machine learning identified myocardial fibrosis and biventricular remodeling 

markers as the top predictors of survival in AS and highlighted their non-linear association 

with mortality. These markers may have potential in optimizing the decision of AVR. 

 

CONDENSED ABSTRACT  

Using machine learning, we identified four CMR markers of myocardial damage (ECV%, 

RVEF, LGE%, and LVEDVi) as major predictors of post-AVR mortality. Each parameter 

demonstrated a distinct non-linear association with mortality in the random survival forest 

model, most notably an ECV%>27% being associated with increased risk. These markers 

significantly improved risk prediction when added to the prediction model based on clinical 

risk factors and also showed effective risk stratification when combined into the AS-CMR 

risk score. The results were externally validated in a large independent cohort. These 

myocardial damage markers may offer major potential in optimizing the timing of AVR. 

 

KEYWORDS: aortic valve stenosis, magnetic resonance imaging, random survival forest  

 

ABBREVIATIONS LIST 

AS = aortic stenosis; AVR = aortic valve replacement; CMR = cardiovascular magnetic 

resonance; ECV = extracellular volume; LGE = late gadolinium enhancement; LV = left 

ventricle/ventricular; LVEDVi = indexed left ventricular end-diastolic volume; RSF = 

random survival forest; RV = right ventricle/ventricular; RVEF = right ventricular ejection 

fraction  
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INTRODUCTION 

Aortic stenosis (AS) is a major health burden in aging societies. Although aortic valve 

replacement (AVR) provides definite treatment for the valve, prognosis remains poor once 

irreversible myocardial damage develops (1). Therefore, early detection of ventricular 

decompensation in AS is important, with efforts to find novel imaging biomarkers ongoing.  

 There is a growing interest in cardiovascular magnetic resonance (CMR) as a 

complementary prognostic tool. CMR provides detailed information on biventricular 

structure, function, and myocardial fibrosis; both diffuse fibrosis using T1-mapping (e.g. 

extracellular volume fraction [ECV%]), and replacement fibrosis using late gadolinium 

enhancement (LGE) demonstrate important prognostic information (2-9). However, these 

myocardial fibrosis assessments are co-linear and associated with other imaging and clinical 

factors already used for prognostication (2-9). It remains unclear how powerful these CMR 

markers of myocardial damage are in comparison to standard clinical and echocardiographic 

parameters, nor what thresholds best predict prognosis and might be used to help optimize the 

timing of AVR. Such analysis is challenging using traditional regression analyses, which are 

limited by multicollinearity (10). In contrast, machine learning can assess the predictive 

hierarchy of variables and provide powerful feature extraction techniques (10-14), with 

random survival forest (RSF) particularly useful for delineating non-linear associations (10-

13).  

 We hypothesized that RSF machine learning would provide novel insights into the 

predictors of death in severe AS patients undergoing AVR, and that this data-driven approach 

would stratify the relative importance of myocardial damage markers and identify clinically 

relevant non-linear threshold effects.  
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METHODS  

The analysis pipeline (data-driven feature discovery) is depicted (Central Illustration). 

Briefly, we first identified important CMR predictors for post-AVR mortality in the RSF 

model (panel A). Next, the non-linear association of these CMR markers with mortality and 

their thresholds were examined using the partial dependency plot (panel B). Finally, using the 

thresholds from the partial plots, the clinical implication and utility of these CMR markers 

were sought (panel C). More detail of Methods is available in Supplemental Methods.  

Study design  

Two separate datasets were gathered, a derivation cohort for the development of a machine 

learning prediction model (n=440) and a validation cohort for external validation (n=359) 

(Supplemental Methods and Supplemental Table 1). Both datasets included severe AS 

patients awaiting AVR, with CMR performed shortly before AVR. The derivation cohort was 

recruited from 10 international sites (6), and the validation cohort from 5 international sites. 

Patients were recruited regardless of aortic valve morphology (bicuspid or tricuspid) or the 

type of intervention received (surgical AVR [SAVR] with or without coronary artery bypass 

grafting or transcatheter AVR [TAVR]). 

Severe AS was ascertained by echocardiography at each center. CMR assessments of 

biventricular volume, function, left atrial size, and left ventricle (LV) mass index were used, 

given its greater accuracy. The study complied with the Declaration of Helsinki, and local 

institutional review boards approved the study protocol. All participants provided written 

informed consent. 

Cardiovascular magnetic resonance  

All participants underwent CMR shortly before AVR (6). T1-mapping was performed 

according to a standardized pre-specified protocol in the mid-inferoseptum (6). Infarct-related 
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LGE was excluded from T1-mapping regions of interest, whereas non-infarct LGE was 

included (15). ECV% was calculated conventionally using hematocrit and pre-/post-

gadolinium blood and myocardial T1 values (16). The details of scanners, T1-mapping 

sequences, and field strengths by each center are summarized (Supplemental Methods, 

Supplemental Table 2, and Supplemental Figure 1). Briefly, native T1 values varied 

substantially across the centers mainly due to difference in the magnetic field strength. In 

contrast, ECV% values were similar across the study centers regardless of the field strength, 

supporting its generalizability. 

Outcome assessment 

The primary endpoint was all-cause mortality. Mortality was ascertained by national or 

medical death records, or reports from family members. Patients were followed from the date 

of AVR to the last clinical follow-up or death.  

Variables used for the analysis 

We included 29 variables (12 demographic/clinical, 4 echocardiographic, and 13 CMR) 

(Supplemental Table 3) for the RSF analysis. As the main objective was to investigate the 

prognostic hierarchy of myocardial damage markers assessed by CMR, we included 

biventricular structural and functional parameters of CMR and two myocardial fibrosis 

markers (ECV% and LGE%) (2-9). Additionally, we included clinical and echocardiographic 

parameters used in routine practice and known to be associated with adverse outcomes in 

severe AS, including baseline characteristics (e.g. age, sex, systolic/diastolic blood pressure), 

comorbidities (e.g. atrial fibrillation, myocardial infarction), surgical factors (e.g. intervention 

type), and echocardiographic indices of AS severity (peak aortic valve velocity, mean 

pressure gradient, aortic valve area index, and valvuloarterial impedance) (17,18). 
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 The proportion of missing values was minimal (Supplemental Figure 2), and these 

were imputed using the missForest algorithm before the analysis. 

Random survival forest analysis 

The RSF model for all-cause mortality was built with 29 variables using the derivation 

cohort. In RSF analyses, each decision tree is trained with a bootstrapping sample from the 

entire cohort (19). The tree is started from the trunk, and a random set of variables is selected 

to split it into two branches, maximizing the log-rank statistics (19). In this study, five 

random variables were considered at each split. The ensemble of 2,000 decision trees 

generated the final RSF model. 

After developing the RSF model, we ranked the 29 variables by their prognostic 

capability using minimal depth (11-13,20). Minimal depth is defined as the shortest distance 

from the tree trunk to the node of a specific variable, with smaller minimal depths indicating 

greater significance (20). Thus, we focused on the CMR variables that presented the smallest 

minimal depths.  

Predictive behavior/relationship of the myocardial CMR variables 

Next, we examined the predictive behaviors/associations of the most predictive CMR 

variables on outcome. To delineate non-linear effects, we took advantage of partial 

dependency plots derived from the RSF model (10-12). While dependency plots show the 

unadjusted overall trend of the predicted mortality in relation to a variable (e.g. ECV%) (13), 

partial dependency plots show the association adjusted for all other variables included in the 

respective RSF model, thus displaying the non-linear effect of the variable on the outcome 

(10-12). Partial dependency plots were drawn with each observation as a point, traced by 

LOESS curves.  
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Validation of the non-linear associations and thresholds from the RSF analysis  

We conducted the following analyses to validate the non-linear associations and thresholds 

observed on the partial plots, using both derivation and validation cohorts (Supplemental 

Methods): 1) Kaplan-Meier survival analysis using the thresholds identified on the partial 

plots (derivation/validation cohorts); 2) verifying the incremental predictive information 

provided by the CMR variables when added to risk prediction models based on clinical risk 

factors (model development in the derivation cohort, tested in the validation cohort); 3) 

analysis of whether combining the CMR predictors into an AS-CMR risk score, defined as 

the total number of abnormal CMR features, provides effective risk stratification 

(derivation/validation cohorts). 

Statistical analysis 

Continuous variables are presented as median (interquartile interval) and categorical variables 

as frequencies (percentages). Differences between groups were compared with Student’s t-

test or Wilcoxon’s rank-sum tests for continuous variables and Chi-square or Fisher’s exact 

test for categorical variables. Kaplan-Meier survival analysis was performed with the 

duration from the AVR to the last follow-up or death and compared with the log-rank test. 

Multivariable Cox models included the variables that were significant in the univariable Cox 

analysis and known clinical risk factors: age, sex, atrial fibrillation, and intervention type. 

These same variables were also considered as important ones by minimal depths in the RSF 

analysis, except for sex (Figure 1). Cox proportional hazard assumption was tested using 

global Schoenfeld residuals, and the time-varying effect of a variable on the outcome was 

analyzed. The predictability of Cox and RSF models was calculated as Harrell’s C-index 

from the validation set.  
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 A two-sided P-value<0.05 was considered statistically significant. All analysis was 

done with R (version 3.6.0, Vienna, Austria) (Supplemental Table 4).  
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RESULTS 

Study population 

The derivation cohort comprised 440 patients (70±10 years, 58.9% male), in whom AVR was 

performed shortly following CMR (median 15 days; interquartile interval, 4−58 days). 144 

(32.7%) patients had a bicuspid aortic valve, and 29 (6.6%) patients had low-flow low-

gradient AS with either reduced (n=20) or preserved ejection fraction (n=9). Regarding 

intervention type, 311 patients (71%) underwent SAVR, 62 (14%) combined SAVR with 

coronary artery bypass grafting, and 67 (15%) TAVR. Patients undergoing TAVR were older 

and had higher STS scores (Supplemental Table 5).  

During a median follow-up of 3.8 (2.9−4.6) years, there were 52 deaths. Patients who 

died were older, predominantly male, and more symptomatic at the time of AVR (Table 1). 

Mortality was lower in patients who underwent isolated SAVR compared to other forms of 

intervention (Supplemental Figure 3). Regarding CMR parameters, those who died had 

higher ECV%, more LGE%, larger left atrial volumes, and lower left and right ventricular 

ejection fractions (RVEF) than those who did not (Table 1).  

 Compared to the derivation cohort, an independent validation cohort (n=359) 

comprised more elderly patients (mean 73 years versus 70 years, P<0.001) and had a higher 

proportion of patients who underwent TAVR (30.6% versus 15.2%, P<0.001). There were 51 

deaths in the validation cohort during a median follow-up of 3.3 years (interquartile interval, 

1.4−4.9 years), with non-significantly lower survival than the derivation cohort (P=0.183) 

(Supplemental Methods and Supplemental Table 1).  

Relative variable importance in the RSF model 

In the RSF model built with all 29 variables using the derivation cohort, the most important 

factor was age (minimal depth 3.32) (Figure 1). Atrial fibrillation (5.21) emerged as an 
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important clinical risk factor, but other comorbidities such as myocardial infarction (6.92) or 

diabetes mellitus (7.79) had relatively high minimal depths, as did echocardiographic AS 

severity indices (peak velocity 6.20, aortic valve area index 6.44), indicating little predictive 

value.  

 Regarding CMR parameters, ECV% was the second most powerful predictor among 

all variables (4.96). The RVEF (5.18), LGE% (5.22), indexed LV end-diastolic volume 

(LVEDVi), and indexed RV end-systolic volume (both 5.23) were also predictors with lower 

minimal depth (Figure 1). However, more commonly recognized LV remodeling and 

functional measures in AS, such as LV ejection fraction (6.00) and mass index (6.58), offered 

comparatively little predictive information.  

Variable dependency and partial dependency in the RSF model 

We generated non-adjusted variable dependency plots for the four most predictive CMR 

variables of myocardial health in the RSF model using 3-year mortality risk (Supplemental 

Figure 4). The indexed RV end-systolic volume was omitted because of its high correlation 

with RVEF (Pearson’s r=-0.82). In these non-adjusted models, the predicted 3-year survival 

became lower as ECV% increased, LVEDVi increased, and RVEF decreased. There was a 

negative correlation between LGE% and survival.  

 Next, we examined partial dependency plots, which demonstrate the adjusted 

variable dependencies after integrating out the effects of all other variables (Figure 2). On 

these plots, each variable demonstrated distinct non-linear behaviors not previously apparent 

with the conventional regression analyses. While ECV% demonstrated a minimal effect on 

predicted mortality below 27%, mortality increased steeply once ECV% exceeded 27%. 

Predicted mortality also increased with LGE: rising as LGE% increased up to 2%, with a 

plateau of elevated risk thereafter. There was a non-linear relationship between mortality and 
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LVEDVi, with small (≤55mL/m2) and large (>80mL/m2) ventricles both associated with 

increased mortality. The RVEF showed a similar pattern, with RVEF >80% and ≤50% 

associated with higher mortality. Partial plots of the four most predictive clinical factors in 

the RSF model (age, intervention type, atrial fibrillation, and hematocrit) are shown in 

Supplemental Figure 5. 

 In internal validation analyses, the relative variable importance of these four CMR 

variables and their non-linear associations with mortality (partial plots), were consistent in 

both the 100 randomly generated replicates and 10-fold cross-validation by participating 

centers (Supplemental Figure 6 and 7). Sensitivity analysis using the derivation and 

validation cohort combined as a single training dataset also yielded similar results, supporting 

the robustness of these findings (Supplemental Figure 8). The shape of the partial plots of 

the four CMR parameters was similar across the intervention type, with consistent non-linear 

effects and cutoffs (e.g. ECV%>27%) (Supplemental Figure 9).  

Verification of the non-linear associations and thresholds effects  

To verify the clinical relevance of the RSF findings, survival was analyzed according to the 

thresholds observed in the partial plots (Figure 2). In the derivation cohort and using the 27% 

cutoff for ECV%, a markedly worse prognosis was observed with high (>27%) versus low 

ECV% (<27%) (P<0.001). Similarly, cumulative survival was decreased in patients with high 

(>2%) versus low LGE% (≤2%) (P=0.002). Survival was best for patients with mid-range 

LVEDVi (55−80mL/m2) compared to those with either large (>80mL/m2) or small 

(≤55mL/m2) LVEDVi (P=0.003). Patients with depressed (≤50%) or supra-normal RVEF 

(>80%) had lower survival compared to the normal RVEF group (50−80%) (pairwise 

comparison, P=0.049 and P=0.033). Similar findings were observed when these thresholds 

were tested in Cox analyses (e.g. ECV%>27%, adjusted hazard ratio 2.29, 95% confidence 
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interval [1.20−4.37], P=0.012) (Table 2). In the time-varying Cox model, ECV%>27% 

showed an increased risk of mortality within the first 2-year post-AVR (adjusted hazard ratio 

6.95, 95% confidence interval [2.09-23.16], P=0.002), with no significant difference 

thereafter (Supplemental Table 6). 

Incremental predictive value of the myocardial CMR variables 

We examined whether the myocardial CMR variables provide additive predictive value to the 

clinical risk factors. Figure 3 shows the C-index of prediction models at different time points 

from the validation set. The baseline RSF and Cox models included only standard clinical 

factors (model 1), and the other model included additional four CMR variables (ECV%, 

RVEF, LGE%, LVEDVi; model 2). The predictability of mortality was consistently higher 

when the CMR variables were included in the prediction models (3-year C-index, 0.778 

versus 0.739 in RSF; 0.766 versus 0.731 in Cox models) (Figure 3). 

Adverse CMR features for mortality risk stratification 

We further assessed whether the combination of the myocardial CMR predictors would 

provide effective risk stratification. The AS-CMR risk score was built as the number of 

abnormal CMR features from the four parameters (ECV%, RVEF, LGE%, LVEDVi), where 

the abnormal CMR features were defined as the higher risk strata (e.g. RVEF ≤50% or 

>80%) compared to the lowest risk strata (e.g. RVEF 50−80%) (Supplemental Table 7). 

Therefore, the AS-CMR score ranged from 0−4.  

In the derivation cohort, the cumulative 3-year mortality was highest in those with all 

4 adverse CMR features (AS-CMR score 4; cumulative incidence 43.8%, 95% confidence 

interval [0.0%−68.4%]), while it was the lowest in those with 0 or 1 (cumulative incidence 

3.8%, 95% confidence interval [1.3%−6.3%]). In between, there was a stepwise increase in 3-
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year mortality with an increase in the AS-CMR score (Figure 4). The calibration plot of AS-

CMR score is shown in Supplemental Figure 10. 

 When the AS-CMR score was added to clinical risk scores (STS/Euroscore II), the 

predictability for 1-year and 3-year mortality was significantly improved based on the 

integrated discrimination and net reclassification improvement among the derivation cohort 

(Supplemental Table 8). 

External validation in an independent cohort 

We externally validated the threshold effects and AS-CMR score in the validation cohort 

(n=359). Similar survival patterns were observed within the validation cohort when patients 

were stratified using the same thresholds (Figure 2). Particularly, the cumulative survival 

was again lower in patients with ECV%>27% compared to ECV%≤27% (P=0.004), with a 

significantly increased mortality risk with ECV%>27% in the Cox analysis (adjusted hazard 

ratio 2.80, 95% confidence interval [1.47−5.33], P=0.002) (Table 2). AS-CMR score also 

showed adequate risk stratification in the validation cohort, with a similar stepwise 

association of mortality (Figure 4). 

Subgroup analysis according to the symptom status and valve morphology 

For subgroup analyses, we used the combined populations of the derivation and validation 

cohorts (Supplemental Figure 11 and 12). In general, the 4 CMR parameters and their 

respective thresholds remained prognostic both in patients with no or mild symptoms (NYHA 

I~II) and in those with advanced symptoms (NYHA III~IV) (Supplemental Figure 11). 

Notably, survival appeared worse with both ECV%>27% (P=0.051) or LGE%>2% 

(P<0.001) in NYHA I~II patients. Regarding valve morphology, adverse CMR features were 

significantly associated with higher mortality in patients with tricuspid valve. The number of 

bicuspid patients was limited (n=220) and the event rate was lower in this younger 
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population, however, ECV% remained a significant predictor of death (P=0.047) 

(Supplemental Figure 12).  
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DISCUSSION 

Using machine learning, we demonstrate the powerful prognostic information of myocardial 

fibrosis and biventricular remodeling markers by CMR in severe AS patients undergoing 

AVR. The four most predictive CMR markers for mortality, ECV%, LGE%, LVEDVi, and 

RVEF, were related to myocardial damage and displayed distinct non-linear associations with 

post-AVR death. These four markers demonstrated clear prognostic thresholds that were 

robust on both internal and external validations, and can be combined into the AS-CMR score 

to identify patients at high-risk post-AVR. Patient outcomes are therefore closely associated 

with myocardial health at the time of AVR, with these novel markers offering major potential 

in optimizing the timing of intervention and improving risk stratification.  

 Machine learning provides valuable methods for feature extraction and discovery of 

novel relationships from deeply phenotyped data (10-14). We took advantage of RSF, one of 

the most widely used and validated machine learning tool for time-to-event data, to discover 

the prognostically important CMR assessments (20). Importantly, RSF can uncover the non-

linear effects of variables on the outcome after adjustment for other influences (10-13), an 

advantage that is not readily available with conventional Cox analyses. These non-linear 

relationships can be displayed intuitively with partial plots, providing clinically relevant 

thresholds (10-12).  

 Multiple studies have established the prognostic importance of LGE (replacement 

fibrosis) in AS (2), while we recently reported that ECV% (diffuse fibrosis) is an independent 

predictor for post-AVR death (6). The predictive hierarchy from our RSF model confirmed 

these myocardial fibrosis markers as significant predictors of mortality, providing more 

powerful prognostic information than traditional AS risk factors such as peak velocity and 

LV ejection fraction. A limitation of previous studies with ECV% or LGE% has been the 
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absence of clear thresholds that one might use to define LV decompensation (6). Importantly, 

we demonstrated a clear threshold effect for ECV%>27% that appears robust across different 

patient groups. Our analysis also confirmed increased mortality associated with LGE%, 

characterized by an increasing risk up to 2% and a plateau thereafter. This pattern may reflect 

the fact that ECV% quantification includes regions of late enhancement.  

Among the functional and structural left ventricular markers CMR provides, the RSF 

model chose LVEDVi over other conventional variables, such as LV ejection fraction or 

mass index. Unsurprisingly, patients with small LVEDVi (≤55mL/m2) had the highest 

proportion of paradoxical low-flow low-gradient AS with normal ejection fraction, while 

patients with large LVEDVi (>80mL/m2) had a high proportion of classical low-flow low-

gradient AS with reduced ejection fraction (Supplemental Table 9). Both remodeling 

patterns are associated with an adverse prognosis (21).  

Additionally, RVEF emerged as an important prognostic marker, consistent with 

recent literature highlighting RV function in AS (22). Notably, studies have reported that 

SAVR is associated with significant RV dysfunction after surgery, whereas the RV function 

is generally maintained after TAVR (23). Given this, TAVR may be preferred over SAVR 

among those with RV dysfunction. Another interesting finding in our study was that 

supranormal RVEF was also associated with higher post-AVR mortality. Although the 

typical response to increased pulmonary artery pressure secondary to AS is RV dysfunction, 

the adaptation process may alternatively result in increased RV contractility (24,25). A 

hyperdynamic RV in AS may be associated with obstructive symptoms, elevated brain 

natriuretic peptide levels, and AS severity (25), suggesting its role as a marker of 

decompensated AS. This theory will require further validation in hypothesis-driven studies. 
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 Echocardiography remains the gold standard modality for the assessment of valve 

hemodynamics, however valve severity indices, such as Vmax and aortic valve area, 

demonstrate limited association with long-term post-AVR outcomes (1). Instead, these 

outcomes are more closely associated with markers of myocardial health at the time of AVR 

(6). CMR has gained much attention in AS for the detailed assessments of myocardial health 

it provides. The most notable strength of CMR is that it is the only noninvasive imaging 

modality capable of detecting myocardial fibrosis, the major pathologic driver of LV 

decompensation. Markers of myocardial fibrosis and their prognostic thresholds hold promise 

in optimizing the timing of aortic valve intervention, especially for asymptomatic severe AS 

patients. Growing data suggests that myocardial damage, including myocardial fibrosis, often 

begins before symptoms develop (3,4,8) and is not closely associated with hemodynamic 

valve assessments on echocardiography (5-8). Importantly, we demonstrate for the first time 

that CMR markers of fibrosis, the ECV% and LGE, provide significant prognostic 

information not only across the entire population but specifically amongst asymptomatic 

patients (patients with NYHA I~II, n=474, all-cause deaths n=40) (Supplemental Figure 

11). This supports our hypothesis that these markers of myocardial fibrosis should be taken as 

objective evidence of early LV failure and that prompt valve replacement may be beneficial 

in patients with myocardial fibrosis even when asymptomatic. This strategy is being tested in 

the EVOLVED randomized trial (26), and the novel insight here might prove crucial when 

interpreting the results of this trial. 

Strengths of the study  

We present the largest multicenter cardiac T1-mapping study performed (n=799), bringing 

together the key institutions worldwide investigating T1-mapping and other CMR approaches 

in AS. Moreover, rigorous testing of our findings with multiple internal validation analyses, 
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as well as the external validation in an independent cohort, greatly enhances the 

generalizability of the discoveries across different international populations. Importantly, we 

demonstrate for the first time the clear prognostic thresholds of myocardial fibrosis − 

ECV%>27% and LGE%>2% − that may be readily used as a guide for clinical decisions, 

especially for the asymptomatic severe AS patients (n=474) (Supplemental Figure 11), 

where the benefits of early intervention are still debatable (27). 

Limitations  

First, the number of events in our cohort was relatively small (derivation cohort: 52 deaths 

[11.8%], validation cohort: 51 deaths [14.2%]). The imbalance of the training dataset may 

result in suboptimal performance of the model (28), although several studies using cohorts 

with low event rates of 3-5% have reported adequate performance of RSF models (11,13) and 

our main results, the variable importance and partial plots, were robust across multiple 

internal validation analyses. Second, separate RSF analyses by each subgroup of the 

intervention types or sex were unavailable due to the small number of events. Third, the 

number of patients and events were limited in the bicuspid subgroup (13 deaths in 220 

patients). We were therefore underpowered to examine the prognostic significance of CMR 

markers in this subgroup, which should be explored in future studies. Lastly, as we 

exclusively enrolled AS patients undergoing AVR, the prognostic markers in patients not 

undergoing imminent AVR may be different. 

CONCLUSION 

We used machine learning to demonstrate that four CMR markers of myocardial damage 

(ECV%, RVEF, LGE%, LVEDVi) are important predictors of mortality in severe AS patients 

undergoing AVR, with distinct thresholds and non-linear relationships of these markers with 

mortality. Patient outcomes are closely associated with myocardial health at the time of AVR, 
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with these myocardial damage markers holding major promise in optimizing the timing of 

AVR.
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CLINICAL PERSPECTIVES 

COMPETENCY IN PATIENT CARE AND PROCEDURAL SKILLS: Markers of 

myocardial fibrosis and ventricular remodeling detected by cardiac magnetic resonance 

(CMR) imaging provide prognostic information in patients undergoing valve replacement 

(AVR) for severe aortic stenosis.  

TRANSLATIONAL OUTLOOK: Future investigations should aim to determine whether 

earlier AVR improves outcomes in asymptomatic patients with severe AS when CMR detects 

myocardial damage.    
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FIGURE LEGENDS 

Figure 1. Relative variable importance in the RSF model. 

Variable importance assessed by minimal depth, with lower depth indicating greater 

predictive importance. Four CMR markers of myocardial damage emerged as important 

prognosticators (red text): ECV%, LGE%, RVEF, LVEDVi.  

CMR, cardiovascular magnetic resonance; ECV%, extracellular volume fraction; LAVi, left 

atrial volume index; LGE%, percentage late gadolinium enhancement; LVEDVi, left 

ventricle end-diastolic volume index; LVEF, left ventricle ejection fraction; LVESVi, left 

ventricle end-systolic volume index; LVMi, left ventricle mass index; LVSVi, left ventricle 

stroke volume index; RSF, random survival forest; RVEDVi, right ventricle end-diastolic 

volume index; RVEF, right ventricular ejection fraction; RVESVi, right ventricle end-systolic 

volume index; RVSVi, right ventricle stroke volume index; Zva, valvuloarterial impedance. 

Figure 2. Partial dependency plots of the CMR variables and survival curves. 

Partial dependency plots (left) and their corresponding Kaplan-Meier curves (middle, 

derivation cohort; right, validation cohort) for (A) ECV%, (B) RVEF, (C) LGE%, and (D) 

LVEDVi. The RSF prediction estimates were plotted with 50 points and traced by LOESS 

curves with 95% confidence interval. Histograms are shown at the bottom. Cutoff values, 

determined by the deflection points and normal reference range, are depicted as vertical lines.  

Abbreviations as in previous figures. 

Figure 3. Predictive performance of models with and without myocardial CMR 

variables. 

Predictability of RSF and Cox models with or without the four CMR variables (ECV%, 

RVEF, LGE%, LVEDVi). Harrell’s C-index at different time points was calculated from the 

validation cohort. The RSF/Cox model 1 (black line) was built with clinical factors (age, sex, 
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atrial fibrillation, intervention type), and model 2 (red/blue line) used additional four CMR 

variables.  

Abbreviations as in previous figures. 

Figure 4. Cumulative 3-year mortality according to AS-CMR score.  

Risk stratification by the AS-CMR score, calculated as the number of adverse CMR features. 

Cumulative 3-year mortality and 95% confidence intervals are shown. *P-value<0.001 in 

both derivation and validation cohorts. 

Abbreviations as in previous figures. 

Central Illustration. Unbiased feature discovery using random survival forest. 

(A) The RSF model for post-AVR death was constructed using 29 variables. Minimal depth 

was used to rank the variable importance. Four myocardial CMR markers emerged as 

important markers (ECV%, LGE%, RVEF, LVEDVi). (B) Association between variables and 

mortality was examined using partial dependency plots, which are generated by averaging out 

the effects of all other variables. A partial co-plot between ECV% and LGE% is depicted 

(left). A non-linear effect of ECV% was identified, with a clear risk threshold (>27%) (right). 

(C) Threshold verified in Kaplan-Meier curves, confirming the generalizability and potential 

utility of ECV%.  

Abbreviations as in previous figures. 
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Table 1. Baseline characteristics of the participants in the derivation cohort. 

 
Alive 

 
(n=388) 

Dead 
 

(n=52) 
P-value 

Age, years 70.0 (63.2−75.9) 76.5 (71.2−82.7) <0.001 

Male, n (%) 219 (56.4) 40 (76.9) 0.008 

Body mass index, kg/m²                    27.1 (24.3−30.5) 25.3 (23.3−29.2) 0.069 

Systolic blood pressure, mmHg  130 (118−141) 131 (120−145) 0.428 

Diastolic blood pressure, mmHg  72.0 (64.0−80.0) 73.0 (63.0−78.5) 0.890 

NYHA functional class ≥Ⅲ                  126 (32.5) 31 (59.6) <0.001 

Hematocrit, % 39.8 (37.0−42.4) 38.6 (35.0−41.8) 0.160 

STS score                    1.5 (0.9−2.4) 2.2 (1.2−2.9) 0.002 

Euroscore Ⅱ 1.4 (0.9−2.4) 2.2 (1.4−5.4) <0.001 

Past medical history, n (%)    

  Atrial fibrillation  41 (10.6) 15 (28.8) <0.001 

  Diabetes mellitus 82 (21.1) 11 (21.2) >0.999 

  Hypertension  250 (64.4) 30 (57.7) 0.630 

  Myocardial infarction                29 (7.5) 9 (17.3) 0.032 

Aortic valve indices    

  Mean pressure gradient, mmHg 48.5 (39.2−61.8) 41.7 (33.0−50.0) 0.005 

  Peak aortic jet velocity, m/s 4.5 (4.0−5.0) 4.2 (3.8−4.7) 0.020 

  Aortic valve area index, cm2/m2                  0.4 (0.3−0.5) 0.4 (0.3−0.5) 0.768 
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  Valvuloarterial impedance  3.8 (3.2−4.5) 3.9 (3.4−4.9) 0.095 

Bicuspid aortic valve, n (%)                   132 (34.0) 12 (23.1) 0.080 

Aortic stenosis subtype*   0.118 

  High gradient 305 (81.6) 36 (72.0)  

  LF-LG with reduced EF  16 (4.3) 4 (8.0)  

  LF-LG with preserved EF 6 (1.6) 3 (6.0)  

  NF-LG 47 (12.6) 7 (14.0)  

Intervention received, n (%)           0.004 

  Isolated surgical AVR 284 (73.2) 27 (51.9)  

  Surgical AVR + coronary artery  

  bypass grafting 
52 (13.4) 10 (19.2)  

  Transcatheter AVR 52 (13.4) 15 (28.8)  

Left heart structure and function    

  Left atrial volume†, mL/m²                                     48.0 (38.2−59.9) 56.8 (42.8−68.3) 0.024 

  LV end-diastolic volume†, mL/m²  71.0 (59.7−89.2) 81.0 (56.7−97.6) 0.475 

  LV end-systolic volume†, mL/m²  20.9 (12.6−36.2) 29.9 (14.1−49.2) 0.049 

  LV stroke volume†, mL/m² 47.3 (41.0−55.7) 44.6 (36.6−52.9) 0.064 

  LV ejection fraction, % 69.0 (58.1−79.0) 62.5 (48.5−72.5) 0.002 

  Maximal wall thickness, mm         15.0 (13.0−17.0) 15.0 (13.8−17.0) 0.570 

  LV mass†, g/m²                   87.3 (71.6−109.3) 84.0 (71.2−108.9) 0.834 

Right heart structure and function    

  RV end-diastolic volume†, mL/m²  63.0 (53.0−73.5) 67.2 (53.2−81.4) 0.110 
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  RV end-systolic volume†, mL/m²  21.1 (15.5−27.5) 24.8 (19.4−32.3) 0.023 

  RV stroke volume†, mL/m² 40.9 (33.5−48.7) 42.5 (31.2−48.8) 0.572 

  RV ejection fraction, % 65.3 (59.0−72.0) 61.5 (57.5−68.0) 0.025 

Myocardial characteristics    

  LGE, n (%) 187 (48.2) 33 (63.5) 0.057 

  Percentage of LGE, %         0.0 (0.0−0.8) 0.4 (0.0−2.4) 0.004 

  Extracellular volume fraction, % 27.0 (25.0−29.7) 29.1 (27.0−31.5) 0.001 

*Available in 95.9%. †Indexed to body surface area.  

AVR, aortic valve replacement; EF, ejection fraction; LF-LG, low-flow, low-gradient; LGE, 

late gadolinium enhancement; LV, left ventricle; NF-LG, normal-flow, low gradient; NYHA, 

New York Heart Association; RV, right ventricle; STS, Society of Thoracic Surgery
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Table 2. Cox proportional hazard analysis for the variables identified in the RSF model. 

 Derivation cohort (n=440) Validation cohort (n=359) 

 
Hazard ratio 

(95% confidence interval) 
P-value 

Hazard ratio 

(95% confidence interval) 
P-value 

Univariable Cox analysis     

ECV% >27% 2.82 (1.50−5.29) 0.001 2.50 (1.32−4.72) 0.005 

RV ejection fraction     

  ≤50 vs. 50−80% 2.11 (0.98−4.52) 0.056 5.16 (2.05−13.01) <0.001 

  >80 vs. 50−80% 2.90 (1.04−8.14) 0.043 13.74 (2.66−70.89) 0.002 

Indexed LV end-diastolic volume     

  ≤55 vs. 55−80 mL/m2 2.94 (1.34−6.49) 0.007 1.91 (0.87−4.18) 0.106 

  >80 vs. 55−80 mL/m2 2.72 (1.43−5.20) 0.002 3.07 (1.29−7.32) 0.011 

LGE% >2% 2.53 (1.39−4.63) 0.003 1.94 (1.11−3.39) 0.020 
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Adjusted Cox analysis*     

ECV% >27% 2.29 (1.20−4.37) 0.012 2.80 (1.47−5.33) 0.002 

RV ejection fraction     

  ≤50 vs. 50−80% 1.32 (0.57−3.04) 0.516 3.34 (1.28−8.68) 0.014 

  >80 vs. 50−80% 3.12 (1.09−8.95) 0.034 32.5 (5.8−182.6) <0.001 

Indexed LV end-diastolic volume     

  ≤55 vs. 55−80 mL/m2 2.80 (1.26−6.24) 0.012 1.45 (0.66−3.21) 0.355 

  >80 vs. 55−80 mL/m2 2.62 (1.34−5.14) 0.005 3.47 (1.41−8.53) 0.007 

 LGE% >2% 2.01 (1.09−3.70) 0.026 1.34 (0.75−2.37) 0.323 

*Adjusted for age, sex, atrial fibrillation, and intervention type (surgical AVR, surgical AVR + coronary artery bypass grafting or transcatheter 

AVR). 

AVR, aortic valve replacement; ECV, extracellular volume fraction; LGE, late gadolinium enhancement; LV, left ventricle; RV, right ventricle.  

 


