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Abstract: Dry eye disease is a common ocular disorder that is characterised by tear deficiency or
excessive tear evaporation. Current treatment involves the use of eye drops; however, therapeutic
efficacy is limited because of poor ocular bioavailability of topically applied formulations. In this
study, digital light processing (DLP) 3D printing was employed to develop dexamethasone-loaded
punctal plugs. Punctal plugs with different drug loadings were fabricated using polyethylene gly-
col diacrylate (PEGDA) and polyethylene glycol 400 (PEG 400) to create a semi-interpenetrating
network (semi-IPN). Drug-loaded punctal plugs were characterised in terms of physical character-
istics (XRD and DSC), potential drug-photopolymer interactions (FTIR), drug release profile, and
cytocompatibility. In vitro release kinetics of the punctal plugs were evaluated using an in-house
flow rig model that mimics the subconjunctival space. The results showed sustained release of
dexamethasone for up to 7 days from punctal plugs made with 20% w/w PEG 400 and 80% w/w
PEGDA, while punctal plugs made with 100% PEGDA exhibited prolonged releases for more than
21 days. Herein, our study demonstrates that DLP 3D printing represents a potential manufacturing
platform for fabricating personalised drug-loaded punctal plugs with extended release characteristics
for ocular administration.

Keywords: additive manufacturing; vat photopolymerization; digital light processing; printing
pharmaceuticals and devices; punctal plugs; ocular drug delivery; personalized medicines; dry eye

1. Introduction

Vision is considered one of the most important senses [1]. Dry eye is a common chronic
disorder that affects millions of people worldwide and represents a growing public health
concern [2,3]. It occurs due to deficient tear production and/or increased evaporation
of the tear film, and can lead to corneal inflammation and conjunctiva if left untreated.
Ocular drug delivery has always been a challenging task because of the static and dynamic
barriers that provide protection against external agents reaching the eye, such as pathogens
and therapeutic molecules [4,5]. Topical administration (e.g., eye drops) is the preferred
route for the delivery of therapeutic agents to the anterior segment of the eye because
it minimises systemic side effects, is non-invasive, and is easily accessible. However,
ocular bioavailability from topically applied formulations is usually poor (<5%), a result of
numerous factors, including short drug residence time, blinking, high tear turnover rate
and naso-lacrimal drainage [4].

Novel formulation approaches to improve ocular bioavailability include extending
the drug residence time or promoting corneal penetration with the use of liposomes,
nanoparticles, penetration enhancers, mucoadhesive polymers and/or in situ gelling
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components, although maintaining stability could be challenging [6–8]. Physical force-
based methods, such as iontophoresis and sonophoresis, represent promising strategies
to enhance penetration efficiency by temporarily disrupting the barrier structures in a
minimally or non-invasive fashion [9]. Concerns about temporary tissue damage from
these strategies are present [7,10]. A variety of state-of-the-art drug-eluting systems have
been developed for effective and extended delivery of ocular therapeutics release, including
microneedles [11,12], drug-eluting contact lenses [7,13], and nanowafers [14,15].

Use of punctal plugs is a common, non-invasive treatment strategy to mitigate dry
eye syndromes [16,17]. They work by blocking the canaliculi, which connects the eyes to
the nose, preventing tear drainage [6,18,19]. Punctal occlusion by means of plugs has been
reported to improve tear film stability, tear osmolarity, and functional visual acuity of dry
eye patients [20]. In general, punctal plugs can be classified based on their location: in the
puncta or in the canaliculus (Figure S1). Punctal plugs that are inserted at the opening
of the puncta are visible and easily removable after treatment. In contrast, canalicular
plugs are invisible, as they are placed in the horizontal or vertical canaliculus, which
makes removal difficult. Temporary punctal plugs are normally made from collagen and
last for up to 14 days, whereas permanent plugs are usually made of polydioxanone and
polycaprolactone (PCL) and can last from 2–6 months [18].

Three-dimensional (3D) printing is a versatile additive manufacturing technology
that enables rapid prototyping of bespoke objects created using computer-aided design
(CAD) software or imaging techniques [21] across many fields including the aerospace [22]
and food industries [23,24], robotics [25], and biomedicine [26,27]. In recent years, 3D
printing has been forecast to become a revolutionary technology within the pharmaceutical
sector [28] because of its capability of fabricating small batches of personalised medicines
with unconventional designs [29–33], drug combinations [34–38], and tailored release char-
acteristics [39–42] as well as patient-specific medical devices [43–47]. Among different 3D
printing technologies, vat photopolymerisation-based 3D printing (such as digital light
processing (DLP), stereolithography (SLA), and continuous liquid interface production
(CLIP)) is a type of 3D printing technique that creates solid objects via photopolymerisation
of a vat of liquid resin upon light irradiation in a layer-by-layer fashion [48,49]. This type
of technology offers remarkable feature resolution and a smooth surface finish that other
3D printing technologies cannot achieve. In addition, it operates at room temperature;
hence, it avoids the risk of thermal degradation of drugs [50]. Thus far, vat photopolymeri-
sation 3D printing techniques have been explored to prepare pharmaceutical products for
various drug delivery purposes, including oral dosage forms [51–53], nose patches [45],
microneedles [54–56], intravaginal rings [57], dental [58], bladder devices [59] and hearing
aids [60].

The aim of this work was to employ DLP 3D printing to fabricate drug-loaded punctal
plugs for controlled drug delivery. DLP 3D printing can be particularly advantageous,
since it is possible to prepare various sizes, shapes, and doses of the punctal plugs in a
single step. Here, dexamethasone, a corticosteroid, was incorporated because of its anti-
inflammatory properties and wide applications in corneal disease treatment, including dry
eye symptoms [61,62]. Different formulations of drug-loaded punctal plugs were prepared
in polyethylene glycol diacrylate (PEGDA) hydrogels via direct DLP 3D printing, followed
by physical characterisations and in vitro drug release studies using an in-house developed
in vitro ocular flow model of the subconjunctival space.

2. Materials and Methods
2.1. Materials

Dexamethasone (MW 392.46 g/mol, Pharmaceutical Secondary Standard), phenylbis
(2,4,6-trimethylbenzoyl) phosphine oxide (Irgacure 819, MW 418.46 g/mol), β-carotene
(MW 536.87 g/mol, ≥93% UV), polyethylene glycol P400 (PEG 400), and polyethylene
glycol diacrylate (PEGDA, Mn 575), Dulbecco’s phosphate buffered saline (PBS), trifluo-
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roacetic acid (TFA, ≥99.0%, HPLC grade), and acetonitrile (ACN, ≥99.9%, HPLC grade)
were obtained from Sigma-Aldrich (Dorset, UK). All materials were used as received.

2.2. Methods
2.2.1. Design of the Punctal Plug

The punctal plug was designed to be inserted in the punctum of the eye with a
configuration similar to those of commercially available punctal plugs, which range from
1.0–2.0 mm in length and from 0.2–1.0 mm in diameter. The dimension of the punctal plug
was 1.9 mm in length and 1.0 mm in diameter with a cylindrical core diameter of 0.5 mm
(Figure 1).
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Figure 1. 3D design of the punctal plug.

2.2.2. Preparation of Photopolymer Solutions

Photopolymer solutions were prepared with 2.0% (w/w) photoinitiator (Irgacure 819)
and 1.0% (w/w) photoabsorber (β-carotene) to a total mass of 2.0 g. Dexamethasone,
PEGDA, and PEG 400 were added to each photopolymer solution according to the compo-
sitions shown in Table 1. In formulations D10 and D20, only PEGDA was used as polymeric
component, while in the formulations D10PEG and D20PEG, PEG 400 was added to form
the semi-interpenetrating network (semi-IPN) and facilitate drug release (PEGDA:PEG 400
4:1 w/w ratio). The photopolymer solutions were kept in amber containers and continu-
ously stirred overnight at room temperature (~25 ◦C). The solution was then added into
the resin tank of the DLP 3D printing.

Table 1. Compositions (% w/w) of the drug-loaded photopolymer resins.

Formulations Dexamethasone
(%)

Irgacure 819
(%)

β-Carotene
(%)

PEGDA
(%)

PEG 400
(%)

D10 10.0 2.0 1.0 87.0 0.0
D20 20.0 2.0 1.0 77.0 0.0

D10PEG 10.0 2.0 1.0 69.6 17.4
D20PEG 20.0 2.0 1.0 61.6 15.4

2.2.3. Printing Process

All the punctal plugs were printed with a commercial DLP 3D printer (Titan2 HR,
Kudo3D Inc., Dublin, CA, USA) equipped with an HD DLP projector, which has a visible
light source (400–700 nm) (Figure 2). The printer XY resolution was set to 23 µm. The
punctal plugs were designed with 123D Design (Autodesk Inc., Mill Valley, CA, USA) and
exported as a stereolithographic file (.stl) into the Kudo3D Print Job software for slicing
into layers with a thickness of 25 µm. These files were subsequently sent for printing.
All punctal plugs were printed with generated supports from the Kudo software at a 45◦

angle on the build platform. The printing time was 2 s per layer for the D10 and D10PEG
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punctal plugs and 5 s per layer for the D20 and D20PEG punctal plugs (10 s for the first
layer). After printing, the plugs were rinsed for 1 min in isopropyl alcohol (IPA) in the
sonicator, followed by a post-cure process at 405 nm for 30 min in a Form Cure (Formlabs
Inc., Somerville, MA, USA). The total printing time was 20 min.
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Figure 2. Schematic representation of the DLP 3D printing process and in-house flow rig model for
in vitro dissolution studies.

2.2.4. UV-Visible Spectrophotometry

Photoinitiator (Irgacure 819) and photoabsorber (β-carotene) solutions were prepared
at concentrations of 0.025% (w/v) and 0.0025% (w/v) in ethanol, respectively. The UV-
visible spectra were analysed on a Cary 100 UV–vis spectrophotometer (Agilent Technolo-
gies, Cheshire, UK) between 200–800 nm at a scan rate of 600 nm/min.

2.2.5. X-ray Powder Diffraction (XRPD)

Discs (23.0 mm diameter × 1.0 mm height) were specifically prepared for XRPD
analysis for different formulations (D10, D20, D10PEG, D20PEG) using the same printing
conditions as the drug-loaded punctal plugs. Powdered samples of pure dexamethasone
were analysed by XRPD. XRPD patterns were obtained with a Rigaku MiniFlex 600 (Rigaku,
Wilmington, MA, USA) equipped with a Cu Kα X199 ray source (λ = 1.5418 Å). The intensity
and voltage applied were 15 mA and 40 kV. Samples were scanned between 2θ = 3–60◦

with a stepwise size of 0.02◦ at a speed of 5◦/min.

2.2.6. Differential Scanning Calorimetry (DSC)

DSC measurements were performed with a Q2000 DSC (TA instruments, Waters, LLC,
New Castle, DE, USA) at a heating rate of 10 ◦C/min from 0 to 300 ◦C to characterise dex-
amethasone powder and different punctal plugs (D10, D20, D10PEG, D20PEG). Nitrogen
was used as a purge gas with a flow rate of 50.0 mL/min for all the experiments. Data
were collected with TA Advantage software for Q series (version 2.8.394, TA instruments,
Waters LLC, New Castle, DE, USA) and analysed using TA Instruments Universal Analysis
2000. TA aluminium pans and pin-holed hermetic lids (Tzero) were used with an average
sample size of 3.0–5.0 mg.

2.2.7. Device Morphology

Images of the DLP 3D printed punctal plugs (D10, D20, D10PEG, D20PEG) were cap-
tured with a Leica Galen III optical microscope (Leica, Wetzlar, Germany) and photographs
were taken with an iPhone (Apple, Los Altos, CA, USA) through the eyepiece. The length
of the punctal plugs were measured using ImageJ (NIH, Bethesda, MD, USA) (n = 3).

2.2.8. Scanning Electron Microscopy (SEM)

DLP 3D printed punctal plugs (D10, D20, D10PEG, D20PEG) were attached to a self-
adhesive carbon disc mounted on a 25.0 mm aluminium stub, which was sputter coated
with 25.0 nm of gold. The images were captured with an FEI Quanta 200 FEG SEM (FEI,
Hillsboro, OR, USA) at 5.0 kV accelerating voltage using secondary electron detection to
obtain the images.
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2.2.9. Fourier-Transform Infrared Spectroscopy (FTIR)

The infrared spectra of formulations (D10, D20, D10PEG, D20PEG) before and after
DLP 3D printing were collected using a Spectrum 100 FTIR spectrometer (PerkinElmer,
Waltham, MA, USA). All samples were scanned over a range of 4000–650 cm−1 at a
resolution of 1 cm−1 for 6 scans. The spectra of pure dexamethasone drug powder and
PEGDA were collected as the references.

2.2.10. In Vitro Drug Release from the Devices

Drug release rates from the punctal plugs were measured using an in-house in vitro
dynamic flow cell model (Figure 2) [63]. A sample chamber (8.8 mm diameter × 3.27 mm
height) with a capacity of 200.0 µL was employed for the study, and the punctal plug was
placed in the chamber. In order to simulate the condition in the front of the eye, fresh PBS
(pH 7.4, with 0.05% sodium azide, 37 ◦C) was used as the medium, which was continuously
supplied by a peristaltic pump (Michael Smith Engineers Ltd., Woking, UK) at a flow-rate
of 1.6–2.0 µL/min via the inlet port into the chamber. Samples were collected from the
outlet port for a period of 21 days. Dexamethasone release was determined using high
performance liquid chromatography (HPLC) at 240 nm.

2.2.11. Determination of Drug Content

The concentration of dexamethasone in the DLP 3D printed punctal plugs was deter-
mined by cutting the plugs into small pieces. They were stirred in 5.0 mL ethanol at room
temperature overnight. The solutions were filtered through a 0.45 µm filter (Millipore Ltd.,
Cork, Ireland), and drug concentration was determined with HPLC (Hewlett Packard 1260
Series HPLC system, Agilent Technologies, Cheadle, UK). An Eclipse plus C18 column,
100 × 4.6 mm (Zorbax, Agilent technologies, Cheshire, UK) was employed with a flow-rate
of 1.0 mL/min and a mobile phase gradient consisting of ACN and 0.1% v/v TFA water.
The gradient was: 20% ACN increased to 70% in 10 min, then decreased to 20% in 1 min
and held for 4 min prior to the next injection. The sample injection volume was 100 µL
operating at 30 ◦C at a detection wavelength of 240 nm.

2.2.12. Cytocompatibility Studies

BalB/3T3 cells (CCL-163; ATCC, Manassas, VA, USA) were used to evaluate the
cytotoxicity of different 3D printed discs (6 mm diameter × 1 mm height) prepared with
the drug-loaded formulations (D10, D20, D10PEG, D20PEG) and the control formulations
(C-PEGDA and C-PEGDA:PEG). Cells were cultured at 37 ◦C in 75 cm2 flasks using
complete culture medium (DMEM supplemented with 10% v/v fetal bovine serum (FBS)
and 1% v/v penicillin/streptomycin/fungizone (PSF)) until 80% confluence was reached.
Cells were then trypsinized using TripLE solution (Sigma-Aldrich, St. Louis, MO, USA)
and seeded in wells of 24 well plates at a concentration of 3 × 104 cells per well. After 24 h,
the discs (n = 5) were placed individually in wells, and plates were returned for incubation
at 37 ◦C for 24 or 48 h. At each timepoint, medium was discarded and cells were washed
with PBS. Freshly prepared CCK8 working solution (400 µL) consisting of culture medium
(360 µL) and CCK-8 reagent (40 µL) (Dojindo; Tokyo, Japan) was added to each well and
incubated for 2 h at 37 ◦C. Absorbance was recorded at 450 nm using a microplate reader
(Model 8; BioRad, Hercules, CA, USA).

3. Results and Discussion
3.1. DLP 3D Printing

Different dexamethasone-loaded punctal plugs were successfully fabricated via DLP
3D printing with good resolution and reproducibility. The punctal plug was designed to
possess a tapered shaft, which exerts horizontal force to keep it in place for easy insertion
and removal [18]. The total printing time was only 20 min and more than 20 punctal plugs
could be fabricated in one print, highlighting the capability of 3D printing in the preparation
of small-batch personalised drug delivery devices. The punctal plugs showed an orange
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colour due to the addition of β-carotene (Figure 3). All the devices were fabricated with
uniform weights and dimensions (Table 2).
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Table 2. Weights and dimensions of different DLP 3D printed punctal plugs.

Formulations Weight (mg ± SD) Length (mm ± SD)

D10 0.86 ± 0.03 1.92 ± 0.03
D20 1.50 ± 0.03 2.02 ± 0.02

D10PEG 0.59 ± 0.05 1.81 ± 0.05
D20PEG 1.39 ± 0.03 2.04 ± 0.01

SEM images showed the surface morphologies of the different punctal plugs (Figure 4).
A minor increase in roughness was seen with an increase in drug loading from 10 to 20%.
Supports were used due to the overhanging structure of the punctal plug. Although the
removal of supports after printing was easily achieved using tweezers, minor damage was
visualised on the surface (Figure 4a,c).

The DLP 3D printer used in this study was equipped with a visible-light source
(400–700 nm), which offers numerous benefits over UV light, such as being more energy
efficient with a reduced risk of eye damage and improved biocompatibility and functional
group tolerance [64–66]. Here, PEGDA was selected because it is one of the most commonly
used photocurable materials for biomedical applications [67–69]. In the photopolymer
solutions, β-carotene was incorporated as a photo absorber due to its absorbance in the
visible light range (400–500 nm). Unlike commonly used photo absorbers, such as Sudan I,
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which have been reported to be genotoxic and carcinogenic [70], β-carotene is a natural
pigment found in plants and fruits and acts as an antioxidant, and so it represents a suitable
choice as a biocompatible photo absorber [71,72].
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3.2. Physical Characterisation of the 3D Printed Formulations

Dexamethasone and DLP 3D printed drug-loaded discs (23.0 mm diameter × 1.0 mm
height) for different formulations (D10, D20, D10PEG, D20PEG) were analysed by XRPD to
evaluate the physical state of the drug and the degree of its incorporation in the polymer
matrices. The diffraction patterns (Figure 5) show characteristic peaks of dexamethasone at
12.92◦ 2θ, 15.50◦ 2θ, and 17.08◦ 2θ in the printed formulations, suggesting part of the drug
remained in a crystalline state. Peaks were more intense in the D20 and D20PEG 3D printed
formulations when the drug content was increased from 10 to 20% (w/w), indicating a
greater proportion of drug was crystalline.
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Figure 5. X-ray powder diffraction patterns of dexamethasone and DLP 3D printed formulations.

DSC thermograms were also obtained for the dexamethasone powder and different
punctal plugs (D10, D20, D10PEG, D20PEG), showing the melting peak of dexamethasone
at 266 ◦C (Figure 6), in agreement with literature [73]. No evidence of melting was observed
in the D10 or D10PEG 3D printed formulations. Both D20 and D20PEG showed a small
endothermic peak at 258 ◦C, consistent with there being a small fraction of drug in the
crystalline state, as also noted in the XRPD data.
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FTIR was performed to investigate potential interactions between dexamethasone
and the photopolymer before and after DLP 3D printing. Previously, an unexpected drug-
photopolymer reaction has been reported in oral dosage forms prepared using SLA 3D
printing [36]. Therefore, it is important to ensure the drug-photopolymer compatibility of
the fabricated drug-loaded punctal plugs in order to maintain therapeutic efficacy. Charac-
teristic peaks of dexamethasone (Figure 7) were recorded at 3464 cm−1 (O–H stretching),
1660 cm−1 (C=O stretching), and 891 cm−1 (axial deformation of C–F group) [74]. These
absorption bands were clearly observed in the spectra of all the formulations before and
after 3D printing, indicating the presence of the drug, and no interactions were seen be-
tween dexamethasone and the photopolymers. For comparison, the spectrum of PEGDA is
also included, showing its distinct peaks at 1722 cm−1 (C=O stretching), 1633 cm−1 (C=C
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stretching), 1408 cm−1 and 810 cm−1 (CH2=CH) [75,76]. After 3D printing, these peaks at
1633 cm−1, 1408 cm−1 and 810 cm−1 disappeared because of the conversion of C=C bonds
to C–C bonds via photocrosslinking [51,77,78].
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3D printing.

3.3. Drug Release Studies

Drug loadings of the different DLP 3D printed punctal plugs were determined using
HPLC. The loading of dexamethasone in various DLP 3D printed punctal plugs was
consistent with that in the photopolymer solution (Table 3). Dissolution studies were
conducted using an in-house in vitro model that mimics the subconjunctival space of
the eye [63]. Fresh PBS (pH 7.4) was constantly pumped into the inlet port at a rate of
1.6–2.0 µL/min to mimic the aqueous turnover rate of the human eye. A burst release
of dexamethasone with a Cmax value of 12.4 ± 5.3 µg/mL (57.6 ± 8.4% of total drug
released) was observed by day 1 from the D10PEG punctal plugs (Figure 8). Complete
drug release was achieved in 4 days. On the other hand, the D20PEG punctal plugs
exhibited a polyphasic release profile, with a burst concentration at 16.1–17.6 µg/mL in
the first 2 days, followed by a constant rate of release at 8.5–10.5 µg/mL in the next 5 days
(accounting for 80.4 ± 5.0% of release in 1 week). The concentration was maintained
at approximately 3.0 µg/mL per day in the remaining period. Although the reduced
PEGDA concentration in the D20PEG punctal plugs was expected to lower the polymer
density in the crosslinked network (and increase the drug release rate), the observed slower
dissolution rate from D20PEG was mainly attributed to the poor aqueous solubility of
dexamethasone (0.1 mg/mL) [79].

Table 3. Drug concentration in photopolymer solution and DLP 3D printed punctal plugs.

Formulations
Drug Loading (%, w/w ± SD) Dose

(µg)Photopolymer Solution DLP 3D Printed Punctal Plugs

D10 11.9 ± 0.3 9.8 ± 0.5 84.4
D20 20.2 ± 1.6 20.3 ± 2.1 305.6

D10PEG 10.6 ± 0.1 10.0 ± 0.6 59.0
D20PEG 19.4 ± 2.1 21.2 ± 1.4 294.4
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Conversely, prolonged release profiles were observed for the D10 and D20 punctal
plugs. Despite the Cmax reaching 4.0 ± 1.3 µg/mL in the first day, D10 displayed a release
rate ranging from 2.6–1.7 µg/mL in the first 7 days, reaching 64.1 ± 2.4% of dexamethasone
release. D20 demonstrated a continuous and monophasic release profile over 21 days,
with a close-to-constant release rate between 2.1–5.1 µg/mL, where only 51.1 ± 6.5% of
total release was achieved within 11 days. As expected, the incorporation of PEG 400 as a
hydrophilic diluent in D10PEG and D20PEG lowered the polymer density in the matrix,
facilitating the drug release rates [77,80]. Recently, dexamethasone-loaded nanowafers [15]
were proposed for treating dry eye disease; however, drug release only continued for 24 h.

After the 21-day release study, the punctal plugs were collected, dried and imaged
with SEM (Figure 9). Compared with the SEM images before dissolution (Figure 4), porous
surfaces can be observed in all the plugs, contributing to the release of dexamethasone
from the devices. The punctal plugs with higher drug loading (D20 and D20PEG) showed
an increased number of pores than the D10 and D10PEG plugs.
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3.4. Cytocompatibility Studies

The cytocompatibility of the DLP 3D punctal plugs was evaluated by direct con-
tact using a BALB/3T3 fibroblast cell line, according to the international standard ISO
10993-5 [81] (Figure 10). Blank plugs prepared with 100% PEGDA (C-PEGDA) and 80%
PEGDA:20% PEG400 (C-PEGDA:PEG) were used as controls. Complete (100%) cell via-
bility was observed for C-PEGDA (control) after 24 h incubation, similar to previously
evaluated PEGDA constructs [82]. Conversely, the cytocompatibility of samples contain-
ing dexamethasone was significantly decreased (p < 0.05) as compared to the C-PEGDA
control, i.e., 74.3 ± 5.7% for D10 and 52.2 ± 8.4% for D20 in 24 h, and 54.1 ± 9.3% for
D10 and 40.8 ± 9.8% for D20 in 48 h. On the other hand, the viability of the fibroblasts
significantly decreased to 67.6 ± 8.9% and 61.6 ± 11.6% after incubation in 20% PEG 400
in the C-PEGDA:PEG controls in 24 and 48 h (p < 0.05). A decrease of approximately
50% in cell viability was shown in D10PEG and D20PEG plugs after 24 h, indicating the
composition-dependent cytotoxicity of the formulations. From the drug release results
(Figure 8), all the drug-loaded punctal plugs were expected to release certain amounts of
dexamethasone in the cell culture medium, which was reflected with the low cell prolif-
eration values—the cytotoxic effect of free dexamethasone (1 mM) has been previously
reported in literature [83,84]. Although the molecular weight and concentration of PEG 400
used in this study should not compromise cell viability, its incorporation in the composition
could have lowered the crosslinking efficiency and, therefore, the release of unreacted
monomers possessing potential cytotoxic effects [85]. The in vitro cellular cytotoxicity
results suggested that punctal plugs prepared with PEG 400 in the photopolymer may
require extra post-washing and post-curing steps to improve the conversion of monomers,
and hence the biocompatibility.
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Punctal plugs represent the most common non-medical treatment in moderate and
severe dry eye syndrome. Previously, a few studies reported the combination use of eye
drops and punctal plugs could provide an additive effect, indicating the evident advantages
of developing drug-loaded punctal plugs [6,86]. In this study, we describe for the first
time the possibility of using DLP 3D printing in the direct preparation of drug-loaded
punctal plugs, offering vast opportunities in delivering ocular therapeutics effectively. The
manufacturing process is one step and simple under mild conditions, which compares
favourably with previously described drug-loaded punctal plugs [16,17]. Compared with
traditional methods of preparing punctal plugs, such as moulding, DLP 3D printing offers
high flexibility in personalising the size, shape, and material of the plug to suit different
patients’ needs. Spontaneous extrusion has been previously reported by patients due to the
use of non-optimal plug size [87]; therefore, the need to customise punctal plugs presents
an opportunity. Numerous novel drug-eluting systems have been developed for delivering
drugs to the front of the eye, for example, drug-laden contact lenses [13]. Nonetheless, the
prolonged wear of hydrogel lens may reduce oxygen permeability, especially overnight,
which could lead to corneal edema. Overall, this study highlights the potential of drug-
releasing punctal plugs, which are not limited to dry eye disease, but could vastly benefit
a range of ocular diseases, including open-angle glaucoma, ocular hypertension, and
bacterial conjunctivitis [88,89].

4. Conclusions

Here, we report on a DLP 3D printing platform that enables the fabrication of drug-
loaded punctal plugs with prolonged drug delivery to the front of the eye for patients
with dry eye disease. All punctal plugs were successfully prepared with two loadings of
dexamethasone (10% w/w and 20% w/w) using different compositions of PEGDA and
PEG 400. The FTIR spectra confirmed the absence of drug-photopolymer interactions.
In vitro drug release results showed that drug release from D10PEG and D20PEG plugs
can be sustained for 1 week, while D10 and D20 plugs can prolong the release with 50% of
dexamethasone released in 5 and 11 days, respectively. Drug-loaded punctal plugs were
less cytocompatible than blank controls, possibly due to the release of dexamethasone and
the inclusion of PEG 400. In summary, the possibility presented in this study in terms
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of fabricating personalised drug-loaded punctal plugs via DLP 3D printing allows us
to extend opportunities by adapting other ocular therapeutics for drug delivery to the
front eye.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13091421/s1, Figure S1: Schematic illustration of punctal plug (a) in the
punctum and (b) in the canaliculus of the eye.
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