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Abstract
Developments in neuroradiological MRI analysis offer promise in enhancing objectivity and consistency in dementia diag-
nosis through the use of quantitative volumetric reporting tools (QReports). Translation into clinical settings should follow 
a structured framework of development, including technical and clinical validation steps. However, published technical 
and clinical validation of the available commercial/proprietary tools is not always easy to find and pathways for successful 
integration into the clinical workflow are varied. The quantitative neuroradiology initiative (QNI) framework highlights six 
necessary steps for the development, validation and integration of quantitative tools in the clinic. In this paper, we reviewed 
the published evidence regarding regulatory-approved QReports for use in the memory clinic and to what extent this evidence 
fulfils the steps of the QNI framework. We summarize unbiased technical details of available products in order to increase 
the transparency of evidence and present the range of reporting tools on the market. Our intention is to assist neuroradiolo-
gists in making informed decisions regarding the adoption of these methods in the clinic. For the 17 products identified, 11 
companies have published some form of technical validation on their methods, but only 4 have published clinical validation 
of their QReports in a dementia population. Upon systematically reviewing the published evidence for regulatory-approved 
QReports in dementia, we concluded that there is a significant evidence gap in the literature regarding clinical validation, 
workflow integration and in-use evaluation of these tools in dementia MRI diagnosis.
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Abbreviations
AD	� Alzheimer’s disease
CE	� Conformité Européenne
FDA	� Food and Drug Administration
GCA​	� Global cortical atrophy
MRI	� Magnetic resonance imaging
MTA	� Medial temporal atrophy
PRISMA	� Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses
PROSPERO	� Prospective Register of Systematic Reviews
QC	� Quality control
QNI	� Quantitative neuroradiology initiative
QReport	� Quantitative volumetric report

Introduction

In the clinical diagnosis of dementia, structural MRI plays 
a key role in excluding other pathologies, as well as reveal-
ing patterns of brain atrophy [1, 2]. These patterns can act 
as imaging biomarkers to assist nosological diagnosis and 
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differentiation between subtypes of dementia [3]. In clini-
cal neuroradiology, visual assessment of brain atrophy pat-
terns is commonly supported through the use of visual rating 
scales, such as the global cortical atrophy (GCA) or medial 
temporal atrophy (MTA) scale [4]. These semi-quantitative 
measures have shown good diagnostic accuracy to distin-
guish dementia from normal ageing and can help mediate 
the subjectivity of visual assessment [5]. However, they are 
sensitive to the experience and perspective of the clinician 
and can be limited by their relatively coarse measurement of 
atrophy and floor and/or ceiling effects [6, 7]. These quali-
ties make it difficult to use such scales to identify subtle 
volumetric abnormalities in younger patients. Also, sensitiv-
ity to abnormalities in prodromal dementia patients is still 
limited [7]. With the focus on developing prophylactic and 
disease-modifying treatments for dementia, the need for 
robust methods of distinguishing between healthy ageing 
and dementia in its early stages is increasingly important [8].

These needs can potentially be addressed through the 
implementation of automated quantitative image analysis 
in the clinic. Volumetry is widely used in the research set-
ting and has been used to effectively index morphological 
change from a variety of clinical interventions in phased and 
randomized controlled trials [9–17]. Quantitative volumetric 
reporting tools (QReports), which automatically quantify an 
individual patient’s regional brain volumes and compare them 
to healthy, age-specific reference populations, can potentially 
help neuroradiologists interpret the severity and distribution 
of brain atrophy and contextualize their findings by referenc-
ing normative brain volumes in healthy populations [18–23]. 
The limitations of routine visual assessment reveal the area of 
clinical need in which such tools can be integrated. Quantita-
tive assessment of MRIs can provide more objective imaging 
biomarkers, contribute to the earlier identification of atro-
phy [24–26] and might improve the accuracy of radiological 
diagnosis of Alzheimer’s disease (AD) and other subtypes of 
dementia [18–23]. However, there remains a large discrepancy 
between the use of visual rating scales and the availability of 
QReports in the clinic. In a study of dementia imaging prac-
tices in Europe, 81.3% of the 193 centres surveyed reported 
routine use of the MTA scale, compared to only 5.7% regu-
larly implementing QReports [27]. Respondents identified 
limited availability and concerns about time and interpreta-
tion difficulties as the barriers for use of these tools. Impor-
tantly, the survey also recognized the additional obstacles to 
implementation, including lack of standardization or clinical 
validation of proprietary tools, and the difficulty translating 
normative group-level quantitative data to the interpretation 
of individual patient data.

With the surge of commercial QReports for applica-
tion in dementia clinics, general radiologists and neuro-
radiologists must decide whether to start implementing 
these methods in their clinical practice. However, there is 

a scarcity of evidence regarding the clinical application 
of QReports, especially relating to the impact on clinical 
management. It is important to clarify their technical and 
clinical validity as well as the best practices for responsi-
bly integrating these tools into the existing clinical work-
flow. To this end, the quantitative neuroradiology initiative 
(QNI) was developed as a framework for the technical and 
clinical validation necessary to embed automated image 
quantification software into the clinical neuroradiology 
workflow. The QNI framework comprises the following 
steps: (1) establishing an area of clinical need and identi-
fying the appropriate proven imaging biomarker(s) for the 
disease in question; (2) developing a method for automated 
analysis of these biomarkers, by designing an algorithm 
and compiling reference data; (3) communicating the 
results via an intuitive and accessible quantitative report; 
(4) technically and clinically validating the proposed tool 
pre-use; (5) integrating the developed analysis pipeline 
into the clinical reporting workflow and (6) performing 
in-use evaluation [2].

The aim of this review is to increase transparency 
by assessing the evidence surrounding the use of QRe-
ports according to these six steps. Evidence of step 1 
has been outlined above; the area of clinical need we 
are addressing is dementia and the analysis of its associ-
ated volumetric biomarkers. Using steps 2–6 of the QNI 
framework as guidance, we present a systematic search 
methodology for finding (i) vendors of dementia and 
MRI-specific QReports that are either Conformité Euro-
péenne (CE) marked or certified by the Food and Drug 
Administration (FDA) and (ii) published evidence cov-
ering their technical/clinical evaluation and workflow/
in-use evaluation. Furthermore, we present an unbiased 
narrative synthesis of the available evidence regarding 
the validation of volumetric tools applied in the mem-
ory clinic. In doing so, we aim to help neuroradiologists 
make informed decisions regarding these tools in their 
clinic.

Methods

The methods used to find relevant companies and QRe-
ports are outlined below. The vendor and product names 
identified were subsequently used as the search terms for 
an extensive search of the technical/clinical validation and 
workflow/in-use evaluation studies in the literature. We have 
followed Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines [28–30] and our 
methodology has been registered in with the Prospective 
Register of Systematic Reviews (PROSPERO): number 
CRD42021233510.
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Vendor and product search

Inclusion and exclusion criteria

The following inclusion criteria for proprietary QReports 
were used: (i) FDA or CE clearance, i.e. tool meets regula-
tory standards to be used clinically; (ii) target disorder of 
dementia/neurodegeneration, specified by companies for use 
in dementia MRI assessment; (iii) uses automated brain seg-
mentation software (step 2 of the QNI framework); (iv) uses 
normative reference data for single-subject comparison; (v) 
MRI-based input and (vi) visualizes volumetry and atrophy-
specific results presented in a structured report format (step 
3 of the QNI framework).

Our exclusion criteria for proprietary products were (i) 
research tools that are not currently certified for clinical use 
via CE or FDA approval; (ii) non-MRI-based tools, e.g. for 
PET, EEG or CT only; (iii) generates a QReport focusing 
on results other than volumetry/atrophy, e.g. white matter 
lesions, vasculature, electrophysiology, tractography, brain 
tumour analysis or PET/spectroscopy; (iv) lack of normative 
reference data for single-subject comparison.

Search methodology: FDA‑cleared product 
identification

Key word screening

We used the FDA database search function to download 
basic information for each approved application (https://​
www.​acces​sdata.​fda.​gov/​scrip​ts/​cdrh/​cfdocs/​cfPMN/​pmn.​
cfm). A total of 82,003 premarket 510(k) FDA notification 
clearances dating from 1996-present were downloaded in 
a text file from https://​www.​fda.​gov/​medic​al-​devic​es/​510k-​
clear​ances/​downl​oadab​le-​510k-​files. By searching within 
this list using the keywords mentioned below, 828 “medical 
devices” were established for further review. Please note the 
words with an * are “wild-cards”, covering relevant suffixes 
of each word stem, for example “Radiolog*” covers “Radiol-
ogy”, “Radiologist” and “Radiological”:

•	 Neuro*
•	 Brain
•	 Quant*
•	 MRI
•	 Hippocamp*
•	 Radiolog*
•	 Atroph*
•	 Cortical
•	 Cortex
•	 Dementia
•	 Volume
•	 Alzheimer*

•	 Memory
•	 Lobar
•	 Lobe
•	 Structur*
•	 Segment*
•	 Automat*

Eligibility screening

After manual checks of company name, date of approval, 
product name and description, 86 tools were deemed rel-
evant for further examination. Several tools were excluded 
at this stage if their description mentioned other body parts, 
for example “wrist array coil”, or were considered hardware. 
After investigating their intended uses on the FDA applica-
tion and company website, 28 tools required further check-
ing. After removing older versions of the same software, 16 
relevant tools were assessed against our inclusion criteria, 
after which 9 companies/QReports remained (see Fig. 1 for 
PRISMA flowchart).

Search methodology: CE‑marked product 
identification

Unfortunately, there is no freely available and searchable 
database of CE-marked medical devices yet, although plans 
are underway to deploy one this year (EUDAMED) [31]. 
Therefore, the same comprehensive method used by the 
FDA could not be applied. In lieu of this, detailed review 
of the websites of companies exhibiting at the most recent 
relevant medical imaging conferences (ISMRM, ESMRMB, 
RSNA, ECR, ESR AIX, ASNR, SIIM and ESNR) were used 
to find CE-marked quantitative tools. The website https://​
grand-​chall​enge.​org/​aifor​radio​logy/ was also used to cross-
check the results. One hundred and nine companies were 
identified for further investigation; after checking the infor-
mation on their websites against our inclusion criteria and 
following up with direct email contact where necessary, 8 
were included.

Company and product features

Given a large number of companies and wide range of 
features, one aim of this review is to provide an unbiased 
repository of technical features and characteristics to help 
clinicians and researchers select the most appropriate QRe-
ports for their individual investigations. After establishing a 
list of companies that met our inclusion criteria, all vendors 
were contacted to provide relevant information that was una-
vailable on their websites. The following features, deemed to 
be most relevant to clinicians and researchers, were decided 
in advance and then sought through website research and 
direct vendor contact:

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm
https://www.fda.gov/medical-devices/510k-clearances/downloadable-510k-files
https://www.fda.gov/medical-devices/510k-clearances/downloadable-510k-files
https://grand-challenge.org/aiforradiology/
https://grand-challenge.org/aiforradiology/
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–	 CE/FDA approval status
–	 Date of approval
–	 Target disorder
–	 Segmentation/volumetry method
–	 Lobar and sub-lobar parcellation/volumetry
–	 Cross-sectional only or also longitudinal analyses avail-

able
–	 Report processing time
–	 Details of a normative reference population
–	 Provision of segmentation overlays/atrophy heat maps
–	 Strategies to account for inter-scanner variability
–	 Image quality control method
–	 Report deployment/PACS integration procedure

When all information had been collected, we contacted 
vendors again for final confirmation of their individual 
details prior to publication.

Literature search on technical and clinical validation 
of identified products

The results of this systematic review are intended to help 
inform potential users of QReports, assumed to mainly 
be clinicians. Given the health-related implications of the 
results and in the interest of reproducibility, the methodology 
has been registered with the PROSPERO — Registration 

Number: CRD42021233510. In line with the PRISMA 
guidelines [28–30], a detailed search was conducted using 
the identified company and associated QReport names as 
search terms. Both names were searched in order to cover 
the full breadth of technical and clinical validation papers in 
the literature and to cover research conducted pre-branding 
or product naming. PubMed, Scopus and Ovid Medline “All 
fields” were accessed (latest search on 15 March 2021) using 
the search terms below; brackets are used to indicate that 
a term consisting of multiple words was used as a single 
search term:

	 1.	 (ADM diagnostics) OR (Corinsights MRI)
	 2.	 Brainminer OR diadem
	 3.	 Brainreader OR neuroreader
	 4.	 Combinostics OR cNeuro
	 5.	 CorTechs OR NeuroQuant
	 6.	 Corticometrics OR THINQ
	 7.	 Icometrix OR (Icobrain dm)
	 8.	 (JLK Inc.) OR JAD-02 K OR Atroscan
	 9.	 (Jung diagnostics) OR biometrica
	10.	 mediaire OR mdbrain
	11.	 Pixyl OR Neuro.BV
	12.	 Quantib OR (Quantib ND)
	13.	 Quibim OR (Quibim Precision)
	14.	 Qynapse OR QYscore

Fig. 1   Research flowchart 
showing a systematic and 
extensive search for CE marked 
and FDA cleared QReports. 
Websites of companies exhibit-
ing at the most recent ISMRM, 
ESMRMB, RSNA, ECR, ESR 
AIX, ASNR, SIIM and ESNR 
were searched, and the website 
https://​grand-​chall​enge.​org/​aifor​
radio​logy/ was cross-checked

https://grand-challenge.org/aiforradiology/
https://grand-challenge.org/aiforradiology/
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	15.	 (Siemens Healthineers) OR (AI-Rad Companion)
	16.	 SyntheticMR OR (syMRI neuro)
	17.	 Vuno OR (Vuno Med)

In conjunction, further relevant papers were searched 
through PubMed’s “related articles” function and cross-
checking references from the initially identified studies 
and company websites. Finally, in order to capture stud-
ies published pre-branding, all vendors were contacted to 
provide further technical and clinical validation publica-
tions covering their QReports.

Study inclusion criteria

Following steps 2–6 of the QNI six-step framework, the 
search terms described above were used to find peer-
reviewed research covering technical and clinical valida-
tion, workflow integration and in-use evaluation for each 
QReport. Papers were reviewed for relevance and inclusion 
in our analysis on the basis that (i) they involve automated 
brain segmentation and volumetry results (ii) were published 
as original research in peer-reviewed academic journals or 
conference proceedings (conference posters were excluded) 
and (iii) fit into one of these four categories:

Technical validation  Papers presenting validation of the 
technical performance of brain segmentation technique 
and subsequent volumetric results, for example test–retest 
studies, standalone receiver operating characteristics or 
those comparing results (spatially and/or volumetrically) to 
manual segmentation and/or other state-of-the-art segmenta-
tion software, such as Freesurfer [32] or FSL-FIRST [33], 
regardless of disease area.

Clinical validation (dementia)  Testing the use of a QReport 
(tool meeting our inclusion criteria in “Vendor and product 
search” section) by clinicians (including but not limited to 
radiologists, neurologists, psychiatrists, neuropsychologists) 
on a dementia/memory clinic population within one or more 
of the following settings: (i) aiming to assess the QReport’s 
effect and impact on clinical management (i.e. usability and 
prognostic value); (ii) determining diagnostic accuracy, con-
fidence, differential diagnoses vs. “ground truth” clinician-
rated diagnoses, i.e. using receiver operating characteristics; 
(iii) percentage agreement or inter-rater reliability metrics; 
(iv) determining the correlation between automated volume-
try and clinician-rated visual rating scales (e.g. MTA/Schel-
tens scale) and (v) clinical drug trials using the QReport’s 
results as an outcome measure in dementia trials.

Clinical validation (other neurological disease)  As above, 
but testing the use of a quantitative diagnostic report by 
clinicians in neurological diseases other than dementia or 

clinical drug trials using the QReport’s results as an outcome 
measure in trials of other neurological diseases.

While the focus of this review is dementia, it is also 
relevant to document the other instances where volumet-
ric analysis methods from the vendors identified have been 
tested by clinician end-users, as this is ultimately the most 
critical phase of validation. Therefore, a few such examples 
found in the literature have been included in our analyses. It 
is of also interest to see how the various QReports have been 
used for research purposes alongside technical and clinical 
validation. However, these have not been included in the 
final results of our literature search because the focus of this 
review is validation, which should be most relevant to their 
clinical use, rather than examining the current range of their 
applicability in research.

Workflow integration and in‑use evaluation  Papers analysing 
any of (i) benefit to patients; (ii) the effect on radiologist report-
ing time; (iii) clinical and population perception or (iv) the 
overall socioeconomic effect of using QReports in the clinic.

Data extraction

All full-text articles evaluated that met the inclusion crite-
ria were split into “Technical Validation”, “Clinical Valida-
tion—Dementia”, “Clinical Validation—Other” and “Work-
flow integration and in-use evaluation”, and were blindly 
assessed by two raters. The search and categorizing were 
replicated and verified by an independent researcher and no 
critical issues were detected. All relevant studies were cate-
gorized along with general information such as title, authors, 
year of publication, journal, associated tool and website. The 
technical information and features of the tools were also data 
based and are documented in Table 1.

Results

Company and product search

Following the methods described above, 17 companies were 
identified that met our inclusion criteria. Each company had one 
QReport that met our inclusion criteria, see Fig. 1 for a research 
flow diagram summarizing the search for relevant products.

Excluded tools

According to PRISMA guidelines, exclusion criteria were 
decided in advance of the systematic search and are listed in 
the “Methods” section. The various brain-related software 
tools that were excluded at the eligibility screening phase 
have been summarized below.
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Tools not currently certified for clinical use were Imagilys 
(https://​www.​imagi​lys.​com/), which is a previously CE-marked 
tool but their license recently expired. VEObrain produces a 
visual neuroradiological volumetry report but they have not yet 
been FDA/CE approved (https://​www.​veobr​ain.​com/). Vegan-
bagel (https://​github.​com/​Brain​ImAccs/​vegan​bagel) and vol-
Brain (https://​www.​volbr​ain.​upv.​es/) are open-source software 
for estimation of regional brain volume changes and have been 
tested alongside visual rating scales [18, 21, 81]; veganbagel 
also has a PACS and workflow-integrated user interface. Free-
surfer [32], FSL [33], VBM [66, 67] and SIENAX [82] are all 
well established and widely used brain research software but 
without clinical certification.

Tools requiring non-MRI input were eVox uses EEG to pro-
vide a map of brain function (https://​evoxb​rainm​ap.​com/​evox-​
brain-​map/), Syntermed (https://​www.​synte​rmed.​com/​neuroq) 
and DOSISOFT (https://​www.​dosis​oft.​com/​produ​cts/​planet-​
neuro/) use FDG-PET to provide amyloid deposition maps.

Tools producing either non-volumetric reports or those 
focused on other neurological diseases were Advantis 
(https://​advan​tis.​io/) which offers 2D/3D visualization and 

post-processing workflows of DTI/tractography, DSC perfu-
sion and fMRI.

Tools lacking normative reference data included 
QMENTA (https://​www.​qmenta.​com/), a cloud-based appli-
cation which accepts a broad range of MRI modalities and 
performs various statistical analyses. However, it provides 
no structured report or procedure for single-subject compari-
son to a normative reference population.

Included tools

The companies and QReports identified through the search 
strategy detailed in the Methods section and illustrated in 
Fig. 1 are summarized in Table 1 along with technical details 
and features.

Company and product features

Relevant information was compiled into Table 1, a struc-
tured database of the various information and features in 

Table 1   A high-level database of the vendors and various features 
in each of their QReports, presented in alphabetical order of vendor 
name. We have outlined information from publications and direct 
contact with vendors for readers to assess according to their individ-
ual needs. All information was checked and confirmed with vendors 

in advance of publication. Differing amounts of information between 
vendors is due to variation in how much the vendors were willing/
able to share. Due to the proprietary nature of reports, it was not pos-
sible to independently verify all details from vendors but they were 
confirmed against sample reports where possible

Vendor Product name CE / FDA 
status

Approval 
received Target disorder(s)

Segmenta�on / 
Volumetry 

method

Sub-lobar analysis, 
number of structures

Cross sec�onal 
+ longitudinal 

analysis

Processing 
�me Norma�ve reference database Segmenta�on/Atrophy 

Visual Overlays
Methods to account for Inter-scanner 

variability Image Quality Control (QC) Deployment

Technical (T) and 
Clinical (C) 
Valida�on:  
Demen�a

ADM Diagnos�cs
www.admdx.com CorInsights MRI

FDA - 510(k) 
cleared, Class 

II
Nov-2020 Demen�a

In house -
Freesurfer-based 
plus proprietary 

op�misa�on 

Hippocampus, lobes 
with sub-regions, and 

insula

Cross-sec�onal 
only, 

longitudinal for 
research

~4 hours

~1,100 subjects from private and public 
US/Europe datasets including 600 subjects 45-

95y curated for Amyloid status, sex, mix of 
field strength and scanner vendors

Segmenta�on and sub-
lobar percen�les

Mixture of field strength and scanner vendors in 
the norma�ve reference data. Adjustments 

made when comparing different scanner field 
strength and manufacturer 

Automated QC for header data, 
image quality, and results at each 
processing step. Report includes 

QC images for review

In progress T/C - In progress

Brainminer 
www.brainminer.co.

uk
DIADEM CE - Class I Jun-2017 Demen�a GIF [39] Yes, 30 Cross-sec�onal 

only <20 mins ~2600 subjects from 8 public datasets, 20-94y, 
mix of field strength and scanner vendors Sub-lobar segmenta�ons Mixture of field strength and scanner vendors in 

the norma�ve reference data
Automated SNR / CNR computed 
with score and pass / fail status

PACS integrated via local 
hardware/VM

T - [39, 43, 44]
C - In progress

Brainreader 
www.brainreader.ne

t

Neuro
reader

CE - Class I, 
FDA - 510(k) 

cleared, Class 
II

Feb-2015 Demen�a, MS, 
epilepsy

In-house, atlas-
based Yes, 45

Cross-sec�onal 
only, 

longitudinal in 
progress

7-10 mins
231 subjects from ADNI, 60-90y, equal male: 

female ra�o, mix of field strength and scanner 
vendors

Sub-lobar segmenta�ons User specific methods. Did not disclose further 
details

Specific protocol requirements and 
product training

PACS integrated via local 
hardware/cloud-based

T - [45]
C - [46, 47]

Combinos�cs 
www.combinos�cs.c

om
cNeuro cMRI, cDSI

CE - Class IIa, 
FDA - 510(k) 

cleared, Class 
II

Sep-2016 Demen�a, MS In-house [48] Yes, 130+
Both, direct 
longitudinal 
comparison

~15 mins
~2000 subjects from private and public 

US/Europe datasets, 18-94y, mix of field 
strength and scanner vendors

Sub-lobar segmenta�ons 
and atrophy maps

Mix of field strength and scanner vendors in the 
norma�ve reference data. Did not disclose 

further details

Automated QC for CNR, abnormal 
signal intensi�es and acquisi�on 

parameter checks

PACS integrated via web 
browser/cloud-based

T - [48, 49]
C - [50, 51]

CorTechs.ai 
www.cortechslabs.c

om
NeuroQuant

CE - Class IIa, 
FDA - 510(k) 

cleared, Class 
II

Aug-2006

Demen�a, 
neurodegenera�v

e diseases, TBI, 
epilepsy

In house -
Freesurfer-based 
with proprietary 

op�misa�ons

Yes, 75+
Both, direct 
longitudinal 
comparison

5-7 mins
~5000 subjects from private and public 

datasets, 3-100y, equal male: female ra�o, mix 
of field strength and scanner vendors

Sub-lobar segmenta�ons 
and atrophy maps

Scanner-specific 3D gradient field distor�on 
correc�on; Voxel intensity normaliza�on; 

Custom Dynamic Atlas-based contrast 
adjustment by anatomical region to correct the 

measured contrast variability in pa�ents

Automated QC checks for 
acquisi�on parameter, atlas fit, 
atlas �ssue class contrast, scan 

noise es�ma�on and image quality

PACS integrated via local 
hardware, VM or cloud-based

T , [52–64] [65]
C - [12–16, 25, 26, 

48, 66–68]

Cor�cometrics 
www.cor�cometrics.

com
THINQ

FDA - 510(k) 
cleared, Class 

II
Sep-2020

Neuro-disorders, 
including 

demen�a, 
epilepsy, MS, and 

TBI

In-house - samseg 
[68] Yes, 30 Cross-sec�onal 

only 1 hour 
1261 subjects from 3 public datasets, 18-93y, 
39% male, 60% Siemens, 33% Philips, 7% GE, 

30% 1.5T, 70% 3T
Sub-lobar segmenta�ons

“Samseg” algorithm validated against changes in 
acquisi�on pla�orm and imaging protocol [68]; 

Mixture of field strength and scanner vendors in 
the norma�ve reference data

Automated classifier checks for 
GM/WM contrast, head coverage, 
mo�on, tumours/metal artefacts

PACS integrated via online 
marketplaces

T - [68] 
C - In progress

Icometrix
www.icometrix.com icobrain dm

CE - Class I, 
FDA - 510(k) 

cleared, Class 
II

Jul-2015 Demen�a In-house Hippocampus, lobar 
cor�ces and ventricles

Both, direct 
longitudinal 
comparison

15-20 mins
1903 subjects from mainly public datasets, 6-

96y, 834 male 1069 female, mix of field 
strength and scanner vendors

Hippocampal, ventricle 
and lobar cor�ces 

segmenta�ons

Cross-sec�onal report has been tested across 
mul�ple scanners. Longitudinal comparisons 

require same scanner and acquisi�on protocol 
for accuracy

Automated flagging for manual 
QC: incomplete head coverage, 
insufficient CNR or distor�ons 

between sequences or �me points

PACS integrated via cloud-based 
service

T - [69–73]
C - In progress

JLK Inc. 
www.jlkgroup.com

JAD-02K + 
Atroscan CE - Class I Sep-2019 Demen�a In house -

Freesurfer-based Yes, 62 Both 15-20 mins
~1000 subjects from local Korean health check-

up centres, 20-95y, mix of field strength and 
scanner vendors

Sub-lobar segmenta�ons
Pre-processing image normalisa�on. Mixture of 

field strength and scanner vendors in the 
norma�ve reference data

Did not disclose PACS integrated via dedicated 
hardware/ cloud-based T/C - In progress

jung diagnos	cs 
www.jung-

diagnos	cs.de
Biometrica CE - Class I Jun-2009

Demen�a, MS, 
neurodegenera�v

e diseases

In-house, CNN 
and VBM-based 

[35, 36]

Yes, extra regions are 
available on request

Both, direct 
longitudinal 
comparison

10-15 mins ~2000 subjects from a proprietary dataset 
using a single scanner and protocol, 18-99y 

Sub-lobar segmenta�ons 
and atrophy maps

Site qualifica�on process - protocol set-up using 
30 healthy scans for each individual scanner 
using the service. Manual checks for global 
offset between each site and proprietary 

norma�ve database [74]

Site qualifica�on process and 
expert manual QC/QA checks by 

vendor

PACS integrated via cloud-based 
service

T - [75–78]
C - [19]

Mediaire 
www.mediaire.de/e

n/home
mdbrain CE - Class I Jan-2019

Demen�a, MS, 
neurodegenera�v

e diseases

In-house, deep 
learning-based Yes, 18 Both ~3 mins ~8000 scans from mainly private datasets, 18-

93, mix of field strength and scanner vendors Sub-lobar segmenta�ons Mixture of field strength and scanner vendors in 
the segmenta
on algorithm training data

Automated checks for acquisi
on 
parameters and artefact 

PACS integrated via local hardware 
or VM T/C - In progress

Pixyl
www.pixyl.ai Pixyl.Neuro.BV CE - Class IIa Nov-2019 Demen
a In-house, deep 

learning-based Yes, 12 
Both, indirect 
longitudinal 
comparison

5 mins

~3000 subjects from private and public 
datasets, 18-97y, mix of field strength and 

scanner vendors, Measures in place to account 
for ICV/head size and variability of T1 

parameters

Sub-lobar segmenta
ons 
in DICOM format

AI-based augmenta
on to an
cipate the 
variability between the images using a 3DT1 

library with clinically relevant augmenta
ons: 
noise, contrast, artefacts, style transfer

Automated QC based on voxel 
size, DICOM headers and 
acquisi
on parameters

PACS integrated via local hardware 
or VM T/C - In progress

Quan�b
www.quan�b.com Quan
b ND

CE - Class IIa, 
FDA - 510(k) 

cleared, Class 
II

Sep-2017
Demen
a, MS, 

neurodegenera
v
e diseases

In-house [79] Yes, 20
Both, indirect 
longitudinal 
comparison

10-15 mins ~5000 subjects from the Ro�erdam study, 45-
95, same vendor and field strength [80]

Sub-lobar segmenta
ons 
and atrophy maps

Mixture of field strength and scanner vendors in 
the training and valida
on data

Automated QC checks on required 
acquisi
on parameters. Users can 

check the segmenta
on results 
and are required to validate the 

WMH analysis results

On site solu
on, PACS integrated 
or a cloud-based solu
on with 

browser-based user interac
on
T/C - In progress

Quibim
www.quibim.com

Quibim Precision 
– Brain atrophy 

screening
CE - Class IIa Dec-2018

Demen
a, 
neurodegenera�v

e diseases
In-house Yes, 90

Both, indirect 
longitudinal 
comparison

20-25 mins
620 Caucasians from private and public 

datasets, 20-86y, mix of field strength and 
scanner vendors

Sub-lobar segmenta�ons
Onboarding with sample of new site data, 

amendments to data pre-processing/
acquisi�on protocols where necessary

Automated QC checks on required 
acquisi�on parameter ranges

PACS integrated via local 
hardware, VM or cloud-based T/C - In progress

Qynapse 
www.qynapse.com QyScore® 

CE - Class IIa, 
FDA - 510(k) 

cleared, Class 
II

CE 2017
FDA 2019

All central 
nervous system 

diseases

In-house [81], and 
public libraries

Yes, lobes and sub-
lobar regions, did not 

disclose further
Both 10-15 mins Did not disclose number of subjects, 20-90y, 

mix of field strength and scanner vendors
Sub-lobar segmenta�ons 

and atrophy maps

Specific MRI parameters are required which 
have been tested to provide good QyScore 

results. Early manual QC checks by vendor for 
each site

Did not disclose PACS integrated via local hardware 
or cloud-based

T - [81, 82]
C - In progress

Siemens Health 
www.siemens-

healthineers.com

AI-Rad 
Companion Brain 

MR

CE - Class IIa, 
FDA - 510(k) 

cleared, Class 
II

May-2020 Neurodegenera�v
e diseases In-house

Yes, 45 in label map (43 
in USA) and norma�ve 
ranges for 52 volume 

es�mates

Cross-sec�onal 
only <10 mins

303 subjects from private and public datasets, 
16-98y, mix of field strength and scanner 

vendors
Sub-lobar segmenta�ons

Mix of field strength and scanner vendors in the 
norma�ve reference data. Did not disclose 

further details

Proceeds during image 
reconstruc�on, read from DICOM 

header

PACS integrated via cloud-based 
service T/C - In progress

Synthe	cMR
www.synthe	cmr.co

m
SyMRI NEURO

CE - Class IIa, 
FDA - 510(k) 

cleared, Class 
II

Oct-2013

Changes in brain 
volume 

(Demen�a, MS, 
brain 

development)

In-house [83] WM/GM/CSF
/Myelin

Cross-sec�onal 
only <10 secs

Adult dataset: 106 subjects from a local private 
dataset, 21-88y, 

Development dataset: 122 subjects, 0-22y. 
Both datasets from a mix of field strength and 

scanner vendors

WM/GM/CSF/ Myelin, 
ICV

Specific MRI parameters required. Post 
processing intensity correc�on for hardware 

compensa�on and quan�ta�ve SyMaps have T1, 
T2 and PD values with scanner specific 

imperfec�ons compensa�on

Built-in mo�on correc�on 
and input data compa�bility 

checks

Support DICOM Network 
integra�on with PACS to 

load/store DICOM series or File 
based load/store of DICOM series

T - [84–86] 
C - In progress

Vuno
www.vuno.co

VUNO Med® 
DeepBrain™

CE - Class IIa, 
Korean MFDS Jun-2020 Demen�a In-house [87] Yes, 100+ Cross-sec�onal 

only <1 min
893 subjects from private Korean-only hospital 
data,20-95y, mix of field strength and scanner 

vendors
Sub-lobar segmenta�ons Mixture of field strength and scanner vendors in 

the training data

Images limited to slice thickness of 
1-1.5mm and 3d T1w. Tumour, 

infarc�on, haemorrhage, and post-
trauma�c lesion cases excluded

PACS integrated via dedicated 
hardware or cloud-based

T - [87] 
C - In progress

Abbreviations: CNN, convolutional neural network; VBM, voxel-based morphometry; SPM, statistical parametric mapping; GIF, geodesic infor-
mation flow; TBI, traumatic brain injury; VM, virtual machine; GE, general electric; WMH, white matter hyperintensity; SNR, signal to noise 
ratio; CNR, contrast to noise ratio; QC, quality control; ICV, intracranial volume; PACS, picture archiving and communication system

https://www.imagilys.com/
https://www.veobrain.com/
https://github.com/BrainImAccs/veganbagel
https://www.volbrain.upv.es/
https://evoxbrainmap.com/evox-brain-map/
https://evoxbrainmap.com/evox-brain-map/
https://www.syntermed.com/neuroq
https://www.dosisoft.com/products/planet-neuro/
https://www.dosisoft.com/products/planet-neuro/
https://advantis.io/
https://www.qmenta.com/
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each report. To complement Table 1, a general summary 
and some insight into the range of features recorded are 
outlined below.

CE/FDA approval status  All companies included in this 
review have received either CE class I/II marking or FDA 
510 (k) clearance, as “software as a medical device”.

Date of approval  The first company (CorTechs.ai) received 
FDA clearance in 2006 and the most recent was certified 
in December 2020 (ADM diagnostics). Unsurprisingly, 
the older companies have generally published more peer-
reviewed validation studies. It should be noted that all ven-
dors have carried out internal technical validation processes, 
including the necessary steps for CE and/or FDA clearance. 
All companies contacted, and especially the younger ones, 
claimed to be planning further peer-reviewed validation 
studies.

Report processing time  A wide array of QReport processing 
times were reported across the vendors ranging from a few 
seconds to a few hours, which is highly dependent on local 
vs cloud-based deployment. It should be noted that we were 
unable to verify the reported times without access to each 
of the software packages.

Segmentation/volumetry method  The vast majority of 
companies use proprietary methods developed “in house”, 
of which five claim to use deep learning. Several companies 
have used modified versions of previously reported research 
methods, such as geodesic information flows (GIF) [34, 83], 
Freesurfer [32] and VBM [66].

Sub‑regional volumetry  All vendors provide lobar and hip-
pocampal volumetry as a minimum. Beyond these regions, 
companies range from adding only ventricular information 
to providing over 100 sub-lobar regions as part of their struc-
tured reports. Some companies reported excluding various 
sub-lobar regions due to reproducibility issues and others 
claimed extensive reporting of such regions was not of inter-
est to their users.

Cross‑sectional and longitudinal analyses  Ten companies 
provide both cross-sectional and longitudinal analyses. Lon-
gitudinal comparisons were broadly indirect approaches, i.e. 
the difference in volume/percentile per structure between 
two visits, rather than a direct approach such as the boundary 
shift integral [84–86] or SIENA [82].

Details of a normative reference population  Some of the most 
notable variations across companies is seen in the number, age 
range and breadth of subjects/data used in the normative refer-
ence population. The vast majority of vendors reported a mix 

of gender, scanner type and field strength achieved through the 
use of both private and public datasets. However, the size of the 
dataset varied greatly from ~ 100 to ~ 8000. The age ranges were 
more consistent and broadly covered the 20–90 years range.

Target disorder  All companies reported dementia as a target 
disorder. Eleven tools were said to be aimed at multiple dis-
orders, including epilepsy, traumatic brain injury and MS, 
in addition to dementia.

Provision of cortical overlays/atrophy heat maps  All com-
panies provide some form of cortical overlay back to the 
user. These were either segmentation examples for accuracy 
confirmation, atrophy-based heat maps or both.

Image quality control (QC) method  Techniques for image 
QC before report processing varied greatly, ranging from 
specific acquisition protocol requirements to automated 
artefact checks and automated flagging for manual QC.

Strategies to account for inter‑scanner variability  All 
companies informed us that harmonization measures 
were in place, although some declined to provide pro-
prietary details. The type of strategy varies considerably, 
including an equal mix of field strength, scanner vendor 
and acquisition parameters in the reference dataset; ven-
dor-specific acquisition parameters and site qualification 
procedures; and adopting validated variation-agnostic 
segmentation algorithms.

PACS integration/report deployment procedure  All com-
panies claimed to provide PACS integration of their tools, 
some offer web-based, cloud-based or separate hardware 
solutions.

Peer‑reviewed technical and clinical validation  The number and 
category of studies found during this systematic literature review 
are presented in Fig. 2 and the “Literature Search” section.

Literature search

The literature search, screening, final selection and categori-
zation were conducted in line with the PRISMA guidelines 
[28–30]; the results are outlined in a PRISMA workflow dia-
gram (Fig. 2) and documented further below. A total of 62 
original studies covering technical (39) or clinical validation 
(23, dementia = 15, other neurological diseases = 8) were 
identified from 11 of the 17 companies/products assessed. 
For 6 products, no publications meeting our inclusion crite-
ria were identified. Only 4 vendors have published clinical 
validation of their reports in a dementia population.

The distribution of studies identified is shown in Fig. 3. 
As expected, there was considerable variation amongst the 
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vendors in the number and type of validation studies per-
formed. However, all companies claimed to be planning 
further peer-reviewed validation studies.

Validation studies identified

Of the 17 companies assessed, 11 have published some 
form of technical validation on their segmentation meth-
ods; only 4 have published clinical validation of their 
QReport in a dementia population and 3 when using the 
same report in other neurodegenerative disorders, totalling 
62 studies. It should be noted that all QReports identified 
have satisfied the validation requirements for FDA clear-
ance and/or CE marking. However, these markings do not 
guarantee diagnostic value; further rigorous independent 
validation studies should be conducted and published in 
peer-reviewed journals to assist potential users’ decision-
making between available tools. In order to remain unbi-
ased, a narrative synthesis of the various studies searched 
for each company is provided and referenced below (in 
alphabetical order). In general, more technical than clinical 
validation has been published by companies and research 
groups using proprietary QReports. Technical valida-
tion studies broadly reported strong correlation between 

automated segmentations and that of manual raters or 
state-of-the-art research tools, such as Freesurfer. Clini-
cal validation studies of quantitative reports on demen-
tia patients, albeit scarce, conveyed improved diagnostic 
accuracy [38, 58], prognostic value [39, 57], differential 
diagnosis [19] and confidence [42] amongst clinicians or 
vs. clinician diagnoses, as well as strong correlation with 
the diagnostic potential of visual rating scales [43, 59, 87].

Brainminer—Technical:  DIADEM uses the geodesic infor-
mation flows (GIF) methodology for brain segmentation and 
volumetry, which has been tested [34] against the MAPER 
segmentation technique [88]. GIF has also previously been 
tested against manual segmentations [35, 36].

Brainreader—Technical:  Volumetry results from the Neu-
roreader report have been compared to manual segmenta-
tions [37]. Clinical: Automated hippocampal volumes were 
compared to NeuroQuant’s in terms of predicting conversion 
from mild cognitive impairment (MCI) to AD [39]. Radi-
ologists have tested the validity of Neuroreader for detect-
ing mesial temporal sclerosis in epilepsy patients [89] and 
dementia diagnosis in a memory clinic cohort [38].

Fig. 2   PRISMA flowchart docu-
menting the studies searched 
and selected for inclusion in this 
review
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Combinostics—Technical:  Combinostics’ segmentation 
method has been compared to manual segmentations [40] 
and tested for standalone disease classification [90]. Clini-
cal: The performance of their automatically generated MTA 
and GCA rating scales has been compared to radiologists’ 
assessment [43]. The PredictND tool for prognostic assess-
ment has been tested by a clinician [42].

CorTechs.ai—Technical:  Automated segmentations have 
been both manually checked and compared to manual 
segmentations [44, 45, 47, 52, 55], FreeSurfer [46, 
50–52, 56, 57], FSL-FIRST [47, 53], SIENAX [48] and 

other FDA/CE-marked tools: MSmetrix [48]. One study 
also assessed the difference in results following a version 
update [49]. Furthermore, a new MR volumetry software 
(Inbrain—https://​www.​inbra​in.​co.​kr/) recently compared 
their results to NeuroQuant [54]. Clinical: NeuroQuant 
has been used by radiologists in the context of traumatic 
brain injury [25, 91], temporal lobe epilepsy [92–94] and 
AD [58, 59, 87]. The prognostic value of NeuroQuant has 
been assessed in MCI patients [39, 57]. NeuroQuant’s 
volumetry results have been used as an outcome measure 
in a number of dementia-related clinical trials, cover-
ing immunoglobulin [12], Ab immunotherapy CAD106 

Fig. 3   The distribution of 
papers meeting our inclusion 
criteria for each of the compa-
nies identified. The vendors are 
listed in chronological order 
according to the date of their 
first CE/FDA approval
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[13], resveratrol [14], 8-OH quinoline [15] and adipose-
derived stromal vascular fraction [16].

Corticometrics—Technical:  The THINQ report uses the seg-
mentation and volumetry method samseg, which has been 
tested in one study [60] alongside multi-atlas likelihood 
fusion (PICSL-MALF) [95], Brainfuse [96], majority vot-
ing [97] and Freesurfer.

Icometrix—Technical:  Volumetric results from icobrain dm 
were recently compared to Freesurfer [62]. The longitudinal 
comparison tool, icobrain long, has also been tested against 
SIENAX with real-world MS data [98]. Their MS-specific 
report, MSmetriX, which uses the same volumetry tech-
nique, has been tested intercontinentally [65] and validated 
against SIENA on MS [63] and AD patients [64].

jung diagnostics—Technical:  The Biometrica platform 
uses the widely validated SPM for volumetry [70] and has 
been compared to the SIENA and FSL tools [71, 72]. Hip-
pocampal segmentations have previously been verified by 
radiologists [69]. Clinical: The Biometrica report’s effect 
on dementia diagnosis has also been tested by neuroradiolo-
gists [19].

Quantib—Technical:  Quantib’s segmentation method has 
previously been compared with manual segmentations [73, 
99].

Qynapse—Technical:  The Qynapse segmentation method 
has been tested against manual segmentations [75, 76].

SyntheticMR—Technical:  SyMRI’s volumetry results have 
been assessed in a repeatability studies and manual segmen-
tation study [100]. The automated brain parenchymal frac-
tion generator has been compared with manual techniques, 
VBM8 and SPM12, in MS patients [79] and healthy controls 
[78]. Clinical: The SyMRI report results were used in a 
clinical trial of rituximab on MS patients [17].

Vuno—Technical:  Vuno’s deep learning segmentation methods 
have been tested for standalone disease classification [80].

Discussion

In this systematic review, we have identified a broad range 
of companies offering CE-marked or FDA-cleared QReports 
for use in dementia populations. The available publications 
concerning technical and clinical validation of these tools 
were categorized to increase the transparency of evidence. 
However, product ranking or recommendations have been 

avoided due to variations in the needs of each purchaser and 
user. Beyond regulatory body approval, QReports on the 
market vary widely in how they have been technically and 
clinically validated for use in clinical practice. Of the 17 
companies assessed, 11 have published some form of techni-
cal validation on their segmentation methods; only 4 have 
published clinical validation of their QReports in a dementia 
population and 3 when using the same report in other neuro-
degenerative disorders. For 6 products, no publications were 
found that met our inclusion criteria. We found no published 
evidence for any regulatory approved QReports on work-
flow integration or in-use evaluation, as recommended in 
steps 5 and 6 of the QNI framework. However, all vendors 
informed us that they are planning (further) validation stud-
ies. It is worth noting that the European Medical Devices 
Regulation has recently implemented a “post-market clinical 
follow-up” in conjunction with their “post-market surveil-
lance” and “clinical evaluation reporting” (https://​ec.​europa.​
eu/​health/​md_​sector/​overv​iew_​en). This will require ven-
dors to gather, record and analyse their clinical performance 
and safety data throughout the lifecycle of their product in 
order to achieve certification or re-certification. Hopefully, 
this will stimulate the publication of external peer-reviewed 
validation studies by vendors.

Previously published reviews covering quantitative radio-
logical tools have either focused purely on AI-driven image 
analysis software for broader radiology [101–103] or only 
covered a limited number of tools available on the market 
focused on neuropsychiatry [104, 105]. In recent years, there 
has been a considerable rise in companies providing both AI 
and non-AI-based automated quantitative analysis methods: 
12 of the 17 identified in this study are less than 3 years 
old. This growth recently prompted the FDA to produce 
an “action plan” for AI/machine learning-based software 
as a medical device—https://​www.​fda.​gov/​media/​145022/​
downl​oad. In this paper, they outline plans to update current 
regulatory frameworks, strengthen the harmonized develop-
ment of “good machine learning practice”, support a patient-
centred approach and, most relevant to this review, support 
the development of methods for evaluating and improving 
machine learning algorithms and promote real-world per-
formance studies, in other words, technical and clinical vali-
dation. The ECLAIR guidelines were also published very 
recently aiming to provide guidance and informed decision-
making when evaluating commercial AI solutions in radiol-
ogy before purchase [106].

Using structured and validated QReports could pro-
vide considerable improvements in diagnostic accuracy, 
reliability, confidence and efficiency across a neurora-
diological service but is predicated upon technical and 
clinical validation [2, 8, 21, 107, 108]. Previous research 
has shown that these diagnostic improvements could be 

https://ec.europa.eu/health/md_sector/overview_en
https://ec.europa.eu/health/md_sector/overview_en
https://www.fda.gov/media/145022/download
https://www.fda.gov/media/145022/download
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achieved by providing region-specific volumetric differ-
ences between single-subjects and an age-matched norma-
tive population [18–23, 91, 109–111]. Work to this effect 
has been underway for some time but there is currently 
no rigorously validated platform for automated quanti-
fication and display of volumetric data in widespread 
use for radiology reporting. There are several hurdles for 
clinical implementation of volumetric analysis, such as a 
discrepancy in the quality of research and clinical data, 
need for automated detection of image artefacts, inter-
scanner variability and the requirement of full automa-
tion. Indeed, only 23% of 193 centres assessed in a recent 
European survey performed volumetric analysis, and only 
5.7% reported using it regularly [27]. Of the 23% using 
volumetry, only around half used normative reference 
data for single-subject comparison. The majority of cen-
tres reported using FreeSurfer (43.5%) for volumetric pro-
cessing, followed by CorTechs.ai’s NeuroQuant (17.4%), 
AppMRI hippocampus volume analyser (15.2%) and 
Icometrix (4.3%). It is notable that the highest percent-
age of reported use of a clinical proprietary tool (17.4%) 
was exhibited by NeuroQuant, which is also the tool that 
has been most widely validated thus far. It follows that 
extensive technical and clinical validation of the tools 
described in this review will likely increase user confi-
dence and facilitate the adoption of quantitative methods 
in the clinic.

The features offered by the QReports identified vary 
widely, see Table 1. No “one-size-fits-all” approach exists 
for the complex requirements of each clinician, depart-
ment or patient population. The same applies to the degree 
and type of validation in the peer-reviewed literature: stud-
ies relevant to one population may be less so to another. 
In order to remain unbiased, a summary of QReport fea-
tures and validation studies in the literature has been pro-
vided but detailed study results and product recommen-
dations are avoided due to the variation in the needs of 
each purchaser and user. Indeed, the selection of QReports 
depends on several factors, such as resources, experience 
and expertise already available in a clinical group, prod-
uct regulation, technical and clinical validation, generalis-
ability to the patient population seen in clinic, integration 
of software into the clinical workflow, customer support, 
data security requirements and cost/return on investment/
reimbursement eligibility. It was not possible to gather 
purchase costs for this review but a recent overview of 
volumetric quantification in neurocognitive disorders 
reported costs on average to be USD82.68 per patient 
[105]. However, the actual costs of implementing these 
tools in a clinic may vary by a country where the health-
care system, reimbursement regulations and healthcare 
costs all playing a role.

What evidence would an ideal QReport exhibit 
on the way to clinical integration?

A six-step framework for the translation of clinical report-
ing tools has been previously set out by the QNI [2]. Here 
we discuss some of the most important milestones in the 
development of a dementia-specific QReport. The main 
aspect and the focus of this review is the transparency of 
technical and clinical validation as this should be of the 
utmost importance to end-users and critical to ensuring 
patient benefit.

Technical validation vs industry standards  Any QReports 
intended for use as a diagnostic aid in neurodegenerative 
diseases should communicate both patient and normative 
volumetric results via a visually intuitive and clinically rel-
evant report. Ideally, we suggest that this should include 
automated quality control metrics, cortical overlays of the 
segmentation for sanity checking by the end-user and visual 
representation of the quantitative data in a graph or chart 
and/or atrophy-based heat maps for easy reference. The auto-
mated segmentation method should undergo rigorous tech-
nical validation in repeatability studies and versus industry 
standards such as expert manual segmentation, Freesurfer, 
FSL or VBM, and the results published in peer-reviewed 
journals. All the vendors assessed in this review have pro-
duced quantitative reports to assist volumetric MRI analy-
sis. However, the younger companies are generally have not 
published technical validation of their reports, although all 
claimed to be planning.

Clinical validation by end‑users  Several papers assess the 
predictive capability of tools for automated group-level dif-
ferential diagnoses amongst dementia subtypes in a research 
setting [59, 80, 90, 112–115]. However, the purpose of this 
review is to help clinicians select the most appropriate tools 
for their individual investigations in everyday clinical prac-
tice. Automated group-level diagnosis studies without inter-
vention and testing by end-users are far less relevant to the 
clinic. QReports should be tested by the end-users, usually 
clinicians, on multi-centre clinical data from patient popula-
tions that are expected to benefit most from more accurate 
and faster diagnoses. For example, screening for subjective 
memory concerns and diagnoses for younger onset dementia 
patients. These patient populations may have more subtle 
patterns of atrophy and QReports are likely to provide the 
greatest benefit to raters by flagging patients who require 
more regular follow-ups and reducing inter-rater variability. 
The results of diagnostic accuracy studies are ideally pub-
lished in peer-reviewed journals [19–21, 116–118]. Several 
companies provide lists of publications on their website. 
While this is both positive and helpful, direct references to 
technical and clinical validation of QReports are scarce. For 
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the greatest impact and widest adoption of these tools, peer-
reviewed validation studies should be clearly highlighted 
and championed by vendors. While technical validation has 
been covered by 11 of 17 vendors, only 4 have published 
clinical validation of their tools on a dementia or memory 
clinic population. We have identified a major lack of clinical 
validation studies for volumetric neuroradiological tools in 
the literature.

Proven generalisability  Analysis methods should ideally 
be robust to variation in acquisition parameters, scanner/
vendor differences and field strength, although this is a dif-
ficult standard to achieve in reality. Single-subject results 
should be contextualized against a large and generalizable 
reference population of mixed field strengths, scanner ven-
dors and age and gender-matched controls, ideally transfer-
rable to the demographic of patients that will be seen in 
each clinic. For example, a tool using a reference popula-
tion comprised of data purely from an Asian hospital might 
not translate well for use at a clinic based in Europe or 
the Americas. Limited evidence so far suggests that mean 
subcortical volumes in normative cohorts have proven to 
be reasonably interchangeable across reference populations 
[111], though this needs further support from studies with 
multi-ethnic populations and covering more brain regions. 
In general, vendors have compiled sufficiently large and 
diverse normative reference populations and should con-
tinue to be transparent about the source and composition 
of these cohorts. However, as documented in the Results 
section, there is wide variation in generalisability proce-
dures adopted by companies. There is no single universally 
accepted or correct method but companies should be fully 
transparent regarding the measures they have in place to 
account for the variability of input data.

Full automation and workflow integration  This covers step 
5 in the QNI framework. Vendors should be able to provide 
clear methods for PACS and workflow integration and ideally 
full automation of sending scans for processing and receiving 
results. Furthermore, a system for integrating QReport results 
into the radiologist’s report would save time and reduce copy-
ing errors. Customer support operations must also be in place 
to deal with errors in sending and processing. While many tools 
reviewed here do include methods to accommodate workflow 
integration, we found no research evidence regarding the inte-
gration of QReports into the clinical reporting workflow.

In‑use evaluation  This covers step 6 in the QNI framework but, 
like step 5, the literature review did not uncover any evidence of 
in-use evaluation of the QReports included in this paper. How-
ever, work has been presented to map out the relevance of auto-
mated software for radiology in general [119–121]. While the 
benefit to patients should be the key factor in using automated 

volumetry to assist diagnosis, the socioeconomic impact, while 
heavily associated with patient benefit, should also be assessed. 
Multi-centre studies evaluating clinical and population percep-
tion and cost-effectiveness of quantitative report use should be 
conducted in clinics that have been regularly using reports for a 
sufficient period of time.

Limitations

Some limitations of the current review need to be consid-
ered. In order to find as many companies providing QRe-
ports, an extensive FDA/CE approval search was conducted. 
However, without a fully searchable database of CE-marked 
products, this approach may not be fully exhaustive and 
some vendors could have been missed. Furthermore, some 
products may have received regulatory approval during 
the publication process of this manuscript or have been 
approved for other markets. Despite that, our overall conclu-
sion remains unchanged that there is a need for more clinical 
validation for such tools to facilitate optimal clinical adop-
tion. Especially since we found that the younger vendors 
were most lacking in both technical and clinical validation 
and in-use evaluation. Finally, much of the information on 
the features of each company (see Table 1) was provided by 
the vendors themselves. As such, these details could not all 
be independently verified by the authors or the reviewers.

Future developments

While we have focused primarily on evidence of technical and 
clinical validation of QReports, we also observed wide varia-
tion in capabilities across tools and in the information presented. 
Conducting in-use evaluations, as recommended in step six of 
the QNI framework, will help optimize the functions, features 
and design of QReports based on how they foster clinical effi-
cacy. Another natural progression from this conclusion would 
be to present a side-by-side comparison of each of the reports 
and their results including interpretation by radiologists and their 
clinical impact using a test set of subjects from the same dataset, 
such as ADNI or a real-world dataset reflecting everyday clinical 
practice. Eleven of the 17 companies covered in this study told 
us that they would be willing to participate in such a project.

Conclusions

In this review, we reveal a significant evidence gap in the clinical 
validation of QReports for use in dementia diagnosis and mem-
ory clinic settings. Only 4 of the 17 companies assessed have so 
far published some kind of clinical validation and there is not 
yet any evidence of workflow integration nor in-use evaluation. 
From this, we conclude and recommend that more research can 
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be done to validate these QReports in clinical settings to develop 
a more robust understanding of how each tool contributes to 
the diagnostic workflow in memory clinics. This will not only 
support optimal clinical integration of quantitative tools but will 
also help neuroradiologists to make informed decisions regard-
ing the use of quantitative assessment in their clinics. For clini-
cians interested in incorporating quantitative reporting software 
into their diagnostic workflow, note that while 4 companies have 
published clinical validation studies, owing to large variation in 
the quantitative reporting features available and a lack of com-
parative validation on standardized imaging cohort data, there 
is little scope for recommendation between them with regard to 
their utility as diagnostic tools in the clinic. We hope this review 
encourages such validation studies from the developers of these 
quantitative tools and recommend caution from clinicians when 
examining claims of the tools’ clinical performance.
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