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Abstract 

Similarities between parents and offspring arise from nature and nurture. Beyond this simple 

dichotomy, recent genomic studies have uncovered “genetic nurture” effects, whereby 

parental genotypes influence offspring outcomes via environmental pathways rather than 

genetic transmission. Such genetic nurture effects also need to be accounted for to accurately 

estimate “direct” genetic effects (i.e. genetic effects on a trait originating in the offspring). 

Empirical studies have indicated that genetic nurture effects are particularly relevant to the 

intergenerational transmission of risk for child educational outcomes, which are, in turn, 

associated with major psychological and health milestones throughout the life course. These 

findings have yet to be systematically appraised across contexts. We conducted a systematic 

review and meta-analysis to quantify genetic nurture effects on educational outcomes. 

Twelve studies comprising 38,654 distinct parent(s)-offspring pairs or trios from eight 

cohorts reported 22 estimates of genetic nurture effects. Genetic nurture effects on offspring’s 

educational outcomes (βgenetic nurture = 0.08, 95% CI [0.07, 0.09]) were smaller than direct 

genetic effects (βdirect genetic = 0.17, 95% CI [0.13, 0.20]). Findings were largely consistent 

across studies. Genetic nurture effects originating from mothers and fathers were of similar 

magnitude, highlighting the need for a greater inclusion of fathers in educational research. 

Genetic nurture effects were largely explained by observed parental education and 

socioeconomic status, pointing to their role in environmental pathways shaping child 

educational outcomes. Findings provide consistent evidence that environmentally mediated 

parental genetic influences contribute to the intergenerational transmission of educational 

outcomes, in addition to effects due to genetic transmission. 
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Educational attainment is defined as the highest education level a person attains. A related 

construct is educational achievement, which refers to one’s school performance. These two 

constructs are prospectively associated with major psychological, social, economic and health 

milestones throughout the life course 1-3. Parents’ educational levels are important early 

predictors of their offspring's own educational attainment and achievement 4. It is crucial to 

understand the processes underlying this transmission of educational attainment and 

achievement, which can lead to cycles of disadvantage across generations. 

 

Positive associations between parents’ education and their offspring’s education are found in 

nearly every society 5. For example, correlations between parents’ and offspring’s 

educational outcomes were consistent across twelve Western countries with estimates 

ranging from r = 0.30 (Denmark) to 0.46 (U.S.) 6. Parent-offspring resemblance in 

educational outcomes can be attributed to nature (genetic variants that offspring inherit from 

their parents) and nurture (the environment that parents provide for their offspring)7. These 

nature and nurture effects are complex and intertwined. For example, the environment 

created by parents can be partly shaped by genetic influences; parents with a higher genetic 

propensity for learning may have a greater interest in activities such as reading that, in turn, 

nurture learning in their offspring.  

 

“Genetic nurture” is used to describe the phenomenon by which parental nature (i.e., parental 

genotype) influences offspring outcomes by shaping the environment that parents provide 8. 

Genetic nurture effects can therefore be considered to be indirect effects from parental 

genotype to offspring outcomes that are mediated through environmental pathways whereas 

“nature” effects correspond to the direct transmission of parental genotypes to the child. 

Importantly, such direct genetic transmission from parent to offspring can generate 
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correlations between parental and child educational outcomes in the absence of any effect of 

parental nurture in shaping child outcomes (a phenomenon akin to passive gene-environment 

correlation). Conversely, genetic nurture effects are free from genetic confounding arising 

from genetic variants shared between parents and offspring. As such, evidence of genetic 

nurture effects suggests that environmental pathways matter when it comes to shaping 

children's educational outcomes, even after accounting for genetic transmission. The 

interpretation of genetic nurture effects must be considered in light of some limitations and 

assumptions, outlined here and further developed in the discussion section. First, despite the 

term “nurture”, genetic nurture may exist without actual parent-offspring nurturing behaviour 

but operate through distal factors, inside or outside the home, that are correlated with parental 

genotypes, such as income or school quality. Thus, detecting genetic nurture effects does not, 

per se, identify which environmental pathways are implicated. In addition, genetic nurture 

effects only reflect genuine environmental pathways of transmission when population 

stratification and assortative mating are entirely accounted for. In the presence of population 

stratification and assortative mating, spurious genetic nurture effects may be detected even in 

the absence of what has been termed cultural transmission (i.e. the causal effect of the 

environment on child outcomes) 9. 

 

Recent methodological advances combined with genome-wide data have enabled the 

estimation of genetic nurture and direct genetic effects. These methods rely on genome-wide 

association studies (GWAS) for educational attainment (EA) to generate polygenic scores. 

Specifically, polygenic scores (PGSs) can be derived from GWASs of EA to provide a single 

value reflecting an individual’s genetic propensity to educational attainment (referred to as 

“EA PGS”; it is a sum of an individual’s effect alleles weighted by effect sizes obtained from 

the EA GWAS). Two studies 8, 10 adopted a novel design to assess the magnitude of genetic 
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nurture effects by constructing a parental PGS based on alleles that are not transmitted to the 

offspring. The association of such a PGS with offspring outcomes cannot arise from genetic 

transmission but can occur through environmental pathways and thereby reflects genetic 

nurture effects by design. This approach is termed the “virtual parent design” (further 

description in Supplemental Notes 1.1). Notably, because the effect of a child's genotype on 

their outcomes can reflect both direct and genetic nurture effects, the association between a 

child’s PGS and their own outcomes can be overestimated when genetic nurture is not 

accounted for 8. Direct genetic effects represent genetic influences that originate in the child 

genotype and must be corrected for genetic nurture effects. In addition to assessing non-

transmitted and transmitted alleles, genetic nurture and direct genetic effects can also be 

obtained by estimating the effect of parental PGS(s) on offspring outcomes, while statistically 

controlling for the offspring PGS (for further description see Supplemental Notes 1.2). This 

statistical control approach has been applied in several studies 11, 12. The statistical control 

approach requires genotyped trios (mother-father-child) to obtain unbiased estimates, but can 

nonetheless provide an approximation of genetic nurture effects when only genetic data of 

parent-child pairs are available 13, 14. 

 

Such approaches have now been implemented to estimate genetic nurture and direct effects 

on child educational outcomes in different contexts, such as using cohorts from different 

countries, using maternal and/or paternal PGS(s), or capitalising on increasingly larger 

genomic datasets 15, 16. However, these findings have yet to be systematically appraised and 

moderators fully investigated. Here we present a�meta-analysis of (1) genetic nurture effects 

on child educational outcomes, (2) direct genetic effects child educational outcomes , and (3) 

key moderators of these effects. 
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Methods  

Search Strategy and Study Selection 

This systematic review and meta-analysis was performed in line with the Preferred Reporting 

Items for Systematic Reviews and the Meta-Analyses (PRISMA 17) statement and Meta-

Analyses of Observational Studies in Epidemiology (MOOSE 18) guidelines (Tables S1 and 

S2). The protocol was registered on the Open Science Framework (https://osf.io/q8b25/). The 

literature search was performed in July 2020. We searched Ovid (MEDLINE, EMBASE, 

PsycINFO), Web of Science Core Collection and PubMed for peer-reviewed articles written 

in English. To estimate genetic nurture effects on educational outcomes, we considered 

articles estimating genetic nurture in parent(s)-offspring samples using EA PGSs. Therefore, 

the publication period was limited to 2013 onwards, when the first EA GWAS19 became 

available. To retrieve relevant publications, the search included terms related to: (1) 

educational outcomes, (2) polygenic scores, and (3) genetic nurture effects. A detailed 

literature search strategy and terms are presented in Supplemental Notes 2.1. Two authors 

(B.W. and T.S.) independently screened titles and abstracts of all articles retrieved during the 

search before reviewing the full text of potentially eligible studies (see criteria below). 

Disagreements were resolved through discussion with the senior researcher (J.B.P). 

 

Eligible studies met the following criteria: (1) they assessed offspring educational attainment 

(e.g., years of education, highest degree obtained) or educational achievement (e.g., national 

test scores or levels, school grades) in the general population, (2) the exposure variable(s) 

included genomic proxies for education in parents and offspring, measured in the form of 

PGSs 20 derived from the EA GWASs, and (3) studies derived estimates for genetic nurture 

effects on education based on one of the following designs that rely on genotype data from 

parents and their biological offspring: (a) virtual parent: testing whether the PGSs calculated 
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from parents’ non-transmitted alleles predict offspring educational outcomes; or (b) statistical 

control: testing whether parents' PGSs predict offspring educational outcomes over and above 

offspring's own PGS. For more information on inclusion criteria see Supplemental Notes 2.2. 

 

Quality Assessment, Data Extraction and Effect Size Calculation  

The methodological quality of each included study was independently assessed by two of the 

authors (B.W. and one additional author among J.B., W.B., and R.C.) using an adapted 

version of the Newcastle–Ottawa scale (NOS 21). The NOS was adapted for use on 

genetically informed studies and included nine questions tapping into four wider aspects 

relevant to study quality, including the quality of cohort selection, the assessment of 

exposure, the level of comparability of the cohort, and the assessment of outcomes. Overall 

study quality was indexed as a sum score ranging from 0 to 9 (see Supplemental Notes 2.3 

for detailed scoring criteria and Table S3 for scores of included studies).  

 

Data extraction for each included study was independently performed by two of the authors 

(B.W. and one additional author among J.B., W.B., and R.C.). The following data were 

extracted: publication characteristics (study name, first author, year), sample characteristics 

(cohort name, sample size, population source, ethnicity, sex distribution), study design 

(virtual parent or statistical control), calculation of PGSs (the GWAS used to derive the PGS, 

PGS threshold, source/parent of origin of genotype, whether standardised), education-related 

outcomes assessed (educational outcome, outcome type, age at assessment, whether 

standardised), effect size (estimation type, estimation, 95% CI or standard error of the 

estimation), and confounding variables adjusted for. Where information was missing, original 

study authors were contacted to request the information.  
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As a common metric, we extracted (or converted effect sizes to) standardised beta 

coefficients and corresponding standard errors from all individual studies. These data were 

then included in our meta-analytical models to derive the pooled estimate of genetic nurture 

effects. For studies using the virtual parent design, we extracted standardised regression 

coefficients for the non-transmitted PGS. For studies using the statistical control design, we 

extracted adjusted standardised regression coefficients for the parental PGS(s), while 

controlling for the offspring’s PGS. For studies reporting effect estimates in metrics other 

than standardised beta or without corresponding standard errors, we transformed the reported 

statistics using the formulae included in the R package compute.es_0.2-4 22. One estimate of 

genetic nurture derived from an average parental PGS was recalibrated to be comparable with 

other studies using PGSs of individual parents (for justification see Supplemental Notes 7.2). 

Estimates of direct genetic effects were extracted when available or imputable (i.e., the 

difference between standardised regression coefficients of transmitted PGS and non-

transmitted PGS in the virtual parent design or adjusted standardised regression coefficients 

of offspring’s PGS while statistically controlling for parental PGSs). Whenever applicable, 

we also derived unadjusted parental or child effects, namely unadjusted regression 

coefficients of the effect of parental or offspring’s PGSs on offspring educational outcomes. 

For more information on the effect size transformation and calculation see Supplemental 

Notes 3.1.  

 

With each article reviewed and coded by two authors, the two coders had inter-rater 

reliabilities of 92.6% on quality assessment and 97.8% on data extraction. Before moving 

onto analyses, discrepancies were reviewed and arbitrated by the two coders, and 

disagreements were resolved through discussion with the senior researcher (J.B.P).  
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Statistical Analysis 

Analyses were conducted in R version 3.6.1 23 using the metafor package (version 2.4-0) 24. 

Since multiple effect sizes were reported in individual studies and cohorts, we used three-

level Multilevel Random-Effects Models (MREMs) to account for dependencies among 

effect sizes within single studies/cohorts (i.e., correlation between effect sizes). These models 

incorporate three variance components; namely sampling variance at level 1 (variance that is 

unique for each estimated effect size), within-cohort variance at level 2 (variance across 

outcomes within a cohort), and between-cohort variance at level 3 (variance across cohorts). 

For more information on multilevel random-effects models see Supplemental Notes 3.2. We 

assessed the heterogeneity between studies using the I2 statistic and tested whether 

heterogeneity of effect sizes at level 2 (within-cohort heterogeneity) and level 3 (between-

cohort heterogeneity) were statistically significant by conducting two separate one-sided log-

likelihood ratio tests 25. Publication bias was visually assessed by checking the asymmetry of 

funnel plots and more formally tested by using precision (sampling variance) as a moderator 

in meta-analysis models 26.  

 

Meta-regression analyses were performed to explore potential sources of heterogeneity in 

effect sizes. We tested four main categorical moderators: (1) Whether the parental PGS was 

constructed based on maternal, paternal or the mixture of both parents’ genotypes, (2) The 

type of analytic method used to estimate the genetic nurture effects (virtual parent, partial or 

full statistical control), (3) the type of educational outcome assessed (educational attainment 

or educational achievement), or (4) the specific GWAS summary statistics used to derive 

PGSs (EA1 with N = 101,069 19, EA2 with N = 293,723 27, or EA3 with N = 1,131,881 28). In 

addition, we tested the moderating role of study characteristics (i.e., methodological quality, 

sample size and attrition in cohorts). For more information on moderator analyses, see 
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Supplemental Notes 5. To explore potential environmental pathways genetic nurture operates 

through, we tested to the extent to which genetic nurture effects attenuated in estimates that 

adjusted for observed parental educational levels and family socioeconomic status (SES) 

(details in Supplemental Notes 6).  

 

Lastly, we undertook a series of sensitivity checks to evaluate the robustness of our results 

including computing robust confidence intervals, evaluating the impact of recalibrating 

effects derived from average parental PGS in one study 29, assessing the impact of a 

potentially influential study 8, performing jackknife leave-one-out analyses and assessing the 

moderating effect of outcome type within studies (i.e., when educational attainment and 

achievement were measured in the same study). For more information on sensitivity analyses, 

see Supplemental Notes 7. In all tests, a 2-tailed p < .05 was considered statistically 

significant. 

 

Results 

Study Description 

Twelve studies met the inclusion criteria (see Figure 1 for the study selection procedure, 

Table 1 for a study summary, and Table S4 for further details). The studies comprised 38,654 

distinct offspring individuals with at least one genotyped parent (for computation of total 

sample size see Supplemental Notes 5.4) across eight study cohorts from the United 

Kingdom, Australia, the United States, the Netherlands and Iceland. We derived k = 22 

estimates of genetic nurture effects on educational outcomes and k = 16 estimates of direct 

genetic effects. The majority of genetic nurture estimates were derived from studies using the 

statistical control approach [68.2% (k = 15)] and the rest from the virtual parent design 
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[31.8% (k = 7)]. Slightly more studies focused on educational achievement [54.5% (k = 12)] 

versus educational attainment [45.5% (k = 10)].  

 

Genetic Nurture Effects on Offspring Educational Outcomes  

Genetic nurture had a small but robust effect on offspring educational outcomes (βgenetic nurture 

= 0.08, 95% CI [0.07, 0.09], robust CI [0.06, 0.10]; Table 2; Figure 2). Variances among 

different estimates of genetic nurture effects was largely attributed to sampling differences 

(I2Level 1 = 76.80%). Within-cohort heterogeneity was close to null (I2Level 2 = <0.01%) and 

between-cohort heterogeneity was minimal (I2Level 3 = 23.20%), suggesting largely 

homogeneous genetic nurture effects across studies. We found some evidence of publication 

bias in genetic nurture effects (Q = 6.12, p = .0134) although the funnel plot was visually 

symmetric (Figure S1). This bias was no longer present in the sensitivity analysis when 

excluding the potentially influential study 8(Q = 0.88, p = .3486, see Table S5). Results from 

jackknife analyses suggested no unduly large effects arising from any individual study 

(Figure S2). The supplemental material includes more findings regarding unadjusted effects 

of parental PGS on offspring educational outcomes (Supplemental Notes 4.1, Table S6, 

Figures S3, S5, S6).  

 

Direct Genetic Effects on Offspring Educational Outcomes  

Direct genetic effects on offspring educational outcomes were greater in magnitude than 

genetic nurture effects (βdirect genetic = 0.17, 95% CI [0.13, 0.20], robust CI [0.12, 0.21]; Table 

2; Figure 2). Variance among estimates of direct genetic effects was largely attributable to 

between-cohort heterogeneity (I2Level 3 = 82.33%), with 17.67% (i.e., I2Level 1) explained by 

random sampling and negligible within-cohort heterogeneity (I2Level 2 = <0.01%). The funnel 

plot (Figure S1) and formal test with precision as a moderator (Table 2) suggested no 
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publication bias in estimates of direct genetic effects. Jackknife analyses suggested that no 

single study unduly influenced meta-analysis estimates (Figure S2). For findings regarding 

unadjusted effects of child PGS on educational outcomes, see Supplemental Notes 4.2, Table 

S6, Figures S4-S6. 

 

Sources of Heterogeneity in Genetic Nurture and Direct Genetic Effects on Educational 

Outcomes 

Moderator analyses (Table 3) suggested similar effects of genetic nurture on educational 

outcomes regardless of whether effect sizes were obtained using polygenic scores derived 

from mothers only (βmother = 0.08, 95% CI [0.07, 0.10]), from fathers only (βfather = 0.07, 95% 

CI [0.06, 0.09]), or from either parent or a mean parental PGS (βparents = 0.08, 95% CI [0.06, 

0.10]). Likewise, whether PGSs were based on mothers, fathers or the mixture of both did not 

moderate direct genetic effects (βmother = 0.17, 95% CI [0.12, 0.23], βfather = 0.20, 95% CI 

[0.13, 0.27], βparents = 0.16, 95% CI [0.12, 0.20]). There was no evidence for moderating 

effects of parent of origin (pgenetic nurture = .6680 and pdirect genetic = .4885). These findings were 

robust to the removal of the potentially influential study 8(Table S8). Results for other 

potential moderators are reported in Supplemental Notes 5 and Table S7. After adjusting for 

phenotypic family-level factors (i.e., parental educational level or family SES), genetic 

nurture effects attenuated to a large extent (kunadjusted = 22, βunadjusted = 0.07, 95% CI [0.07, 

0.08] vs. kadjusted = 18, βadjusted = 0.02, 95% CI [0.01, 0.03], padjustment < .0001); for more details 

see Supplemental Notes 6.  

 

Discussion 

Across 12 studies that included 38,654 distinct parent(s)-offspring pairs or trios from eight 

cohorts, we found strong evidence to support the notion that genetic nurture plays an 
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important role in children’s educational outcomes. The magnitude of genetic nurture effects 

was largely consistent across studies, was similar in both parents and was largely explained 

by parental educational level and family socioeconomic status. After accounting for genetic 

nurture, we also observed substantial direct genetic effects on offspring education, due to 

genetic inheritance. 

 

Genomic Prediction of Education: Evidence for Genetic Nurture and Direct Genetic 

Effects 

We observed a small effect of genetic nurture (βgenetic nurture = 0.08) on educational outcomes. 

Scaled with reference to two of the included studies, this could be translated to approximately 

2 months of schooling14, 29 or 0.07 of GPA (4.0 scale) 30 gained in the United States for every 

standard deviation change in parental EA PGS(s). Our pooled estimate of direct genetic 

effects (βdirect genetic = 0.17) free from inflation due to genetic nurture, corresponds to the lower 

bound of previous genomic predictions of educational outcomes within twin pairs (e.g., β = 

0.17-27) 29, 31. While we did observe substantial heterogeneity across cohorts in estimates of 

direct genetic effects, this may reflect differences in cohort characteristics (i.e. measurement 

of achievement or attainment) rather than actual heterogeneity in direct genetic effects 

between populations. Previous findings suggested that differential effects of the same 

variants across environments may reflect heterogeneity in phenotypic measurement or gene-

environment interactions rather than true genetic heterogeneity 28, 32.   

 

It is worth noting that our pooled estimate of genetic nurture represents the effects from an 

individual parent and should therefore be recalibrated to compare its relative size to the 

pooled estimate for direct genetic effects. With genetic nurture from both parents explaining 

potentially 1.28% (2*βgenetic nurture2) of variance in offspring educational outcomes, the 
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standardised effect size of genetic nurture from both parents can be estimated to be 0.11 (i.e., 

√1.28%).  As such, the ratio of genetic nurture effects originating in both parents and direct 

genetic effects originating in the offspring is about 0.65 (further information regarding this 

ratio is provided in Supplemental Notes 7.2). This ratio corresponds well to the ratio of 0.63 

derived from the Relatedness Disequilibrium Regression (RDR) method, in which heritability 

is estimated by exploiting variation in relatedness due to random Mendelian segregation 33. In 

addition to methods relying on genomic data of children and their biological parent(s), a few 

recent studies have implemented sibling31 and adoption 34, 35 designs to investigate genetic 

nurture effects. As evidence from these alternative designs accumulate, it will be key to 

examine the consistency of estimates across designs36. 

 

It is worth noting that this meta-analysis can only detect genetic nurture and direct genetic 

effects to the extent that PGS capture heritability in educational outcomes. To date, PGSs 

based on the most accurate GWASs still only capture a fraction of the corresponding 

heritabilities 37, 38. RDR findings provided a ‘ceiling’ for potential gains from increasing the 

predictive accuracy of PGSs 33. Our estimate of genetic nurture based on PGSs explained 

1.28% (Supplementary Notes 7.2) of variance in offspring educational outcomes (versus 

6.6% for RDR), while direct genetic effects based on PGSs explained 2.89% of variance in 

educational outcomes (calculated as βdirect genetic2) (versus 17% for RDR). 

  

While missing heritability may lead to underestimates of the true extent of genetic nurture, 

assortative mating and population stratification may have inflated our genetic nurture effects 

9. Bias resulting from assortative mating has been found to be small in magnitude 8, although 

its exact magnitude remains unclear 9. Population stratification was controlled for by using 

principal component analysis in most studies included in the meta-analysis but residual 
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population stratification may still exist. Emerging methods should, in the future, better 

account for these potential sources of bias by capitalising further on family-based designs 39-

41.  

 

Genomic Prediction of Education: Sources of Heterogeneity 

There are several explanations for observing genetic nurture effects of similar magnitude in 

mothers and fathers. First, it is possible that both parents are equally important in shaping the 

environment that, in turn, influences their offspring’s educational outcomes. However, our 

findings do not preclude the possibility that parents may influence child educational 

outcomes through different mechanisms (e.g. via distal factors like increased family income 

or by proximal factors like reading to the child). Behavioural studies have shown that the 

relationship between parental involvement and children’s educational achievement was 

equally strong for fathers and mothers 42, 43.  In light of this and our findings, a renewed 

emphasis on the role of fathers is needed and, whenever possible, fathers should be included 

in research and intervention efforts. Research should also examine genetic nurture effects in 

alternative family arrangements (e.g., single-parent families) and in families with varying 

levels of parental involvement. In the presence of genuine nurturing effects, we would expect 

genetic nurture effects on educational outcomes to vary accordingly (e.g., be stronger for the 

most involved parent), which could help shedding further light on environmental factors 

mediating genetic nurture effects.  Second, genetic nurture may operate through the broad 

family-level environments shared by both parents (e.g., neighbourhood). Future 

investigations are required to identify such environmental mediators. A new genomic 

variance decomposition method 44 makes it possible to estimate the total variance explained 

by maternal versus paternal indirect genetic effects (not limited to PGS), and the covariance 

between maternal and paternal effects. This opens up opportunities to understand 
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intrafamilial mechanisms in more depth. Third, spurious genetic nurture effects can arise 

from residual population stratification, in the absence of cultural transmission. This may help 

to explain why intergenerational twin studies, which are not affected by population 

stratification, report very weak or no evidence for cultural transmission. For example, twin 

studies found very little evidence of cultural transmission for intelligence 45, 46, reading 

performance 47, 48 and educational attainment. 49. Alternatively, it is possible that the 

polygenic score for education captures genuine genetic nurture effects reflecting a 

multiplicity of small environmentally mediated effects via a large range of intermediate 

variables within or outside the home. In which case, we would expect intergenerational twin 

studies to find only weak effects for any particular phenotype. We discuss additional sources 

of heterogeneity in genetic nurture in Supplemental Notes 5. 

 

Notably, accounting for observed measures of parental education or family SES decreased 

the effect of genetic nurture by three quarters. This suggests that a substantial amount of 

genetic nurture effects may be attributed to environmental pathways directly related to 

parental education, occupation and income. It echoes the evidence that children’s educational 

outcomes are influenced by the availability of resources in their family, either indicated by 

socioeconomic background or the education of their parents 5, 50, 51. Future investigations 

should explore specific family-level pathways through which genetic nurture operates to 

inform compensatory interventions (e.g., financial support vs. schooling access). Importantly, 

the finding that broad family-level social economic characteristics largely explain genetic 

nurture effects does not preclude the importance of proximal factors such as parenting in the 

chain of factors leading to educational outcomes. 

 

Implications  
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Our study highlights that the environment created by parents relates to their offspring’s 

educational outcomes independent of genetic transmission. Although the magnitude of this 

genetic nurture effect is small based on conventional metrics 52, it is likely to be an 

underestimate given that PGSs only capture a fraction of heritability in educational outcomes 

- and thus will likely increase as the explanatory power of PGSs increases. Understanding the 

specific environmental pathways through which genetic nurture operates may help to design 

better compensatory interventions to break the intergenerational cycle of educational 

underachievement. Such interventions could target environmental pathways by either 

targeting distal risk factors for educational outcomes (e.g. parental education, income 

distribution, equal access to good quality schooling) or more proximal pathways (rearing 

environment such as parenting). Nevertheless, it is important to note that how well children 

do in school does depend to a substantial degree on the genetic lottery (i.e., inheriting more 

genetic variants associated with educational success), a finding that policy-makers often 

overlook 53 or arguably misinterpret 54. At a broader level, our findings provide strong 

evidence that differences in education are consistently influenced by both endogenous 

sources of educational inequalities (e.g. one’s own genetics) and exogenous sources of 

inequalities including genetic nurture effects originating in parents and mediated partially 

through broad-level family characteristics like SES. All these endogenous and exogenous 

sources of educational inequalities are largely beyond a child’s responsibility/control and 

each may therefore further motivate compensatory interventions.  

Limitations 

First, we cannot completely rule out bias from unmeasured assortative mating, residual 

population stratification and sibling genetic nurture  39, 40, which may inflate genetic nurture 

effects. Second, all included studies were conducted in a few developed Western countries. 

The similarities in populations and social contexts may lead to an overestimation of the 



Genetic nurture effects on education 

 

 

17 

homogeneity of genetic nurture effects. Third, all included studies were based on European 

ancestry populations and thus have a profound Eurocentric bias. The generalisability of our 

estimates to non-European population is unclear as genomic measures are not necessarily 

accurate across populations 55. For example, the PGS constructed from EA3, which was 

conducted in white Europeans, captures 10.6% of the variation of educational attainment in 

white Americans but only about 1.6% of the variation among African Americans 28. Fourth, 

differential measurement error in outcomes may affect genetic (nurture) effect sizes. 

Comparison between different outcome types (e.g. educational attainment versus 

achievement) should therefore be interpreted with caution.   

 

Conclusions  

This meta-analysis demonstrates that parents’ genetics influence their children’s educational 

outcomes through the rearing environments that parents provide. This “genetic nurture” 

effect is largely consistent across studies and is similar for mothers and fathers. Genetic 

nurture effects originating in both parents are about two thirds of the size of direct genetic 

effects originating in the offspring due to genetic transmission. The effect of genetic nurture 

on child educational outcomes is largely explained by observed parental education and 

socioeconomic status. Further research is required to explore other downstream 

environmental pathways through which genetic nurture affects the intergenerational cycle of 

educational achievement. 
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genetic effects on educational outcomes 

Note. Effect sizes were standardised beta coefficients, which represent how many standard 

deviations of change in educational outcome occur per standard deviation of change in EA 

PGS. 



Genetic nurture effects on education 

 

 

28 

Table 1. Studies investigating genetic nurture effects on educational outcomes 

Cohorta Publication Outcomeb   Effective 

Nc 

Design GWASd NOS 

scoree 

Born in Bradford birth cohort (BiB), United Kingdom Armstrong-Carter et al., 

2020 

Key stage 1 school-based 

exam score 

1267 Statistical control EA3 6.5 

The Brisbane Adolescent Twin Study (BATS), Australia Bates et al., 2018 The Queensland Core 

Skills Test 

2335 Virtual parent EA2 7.5 

The Brisbane Adolescent Twin Study (BATS), Australia Bates et al., 2019 The Queensland Core 

Skills Test 

2335 Virtual parent EA3 7.5 

The Environmental Risk Longitudinal Twin Study (E-Risk), 

United Kingdom 

Belsky et al., 2018 GCSE academic 

qualification level 

1574 Statistical control EA3 7.0 

The Framingham Heart Study (FHS), United States Conley et al., 2015 Years of schooling 968 Statistical control EA1 5.0 

The Netherlands Twin Register (NTR), Netherlands de Zeeuw et al., 2020 Highest obtained degree; 

Nationwide educational 

achievement test 

1931; 

1120 

Virtual parent EA3 7.0 

The Icelandic quantitative trait cohorts (deCODE), Iceland Kong et al., 2018 Years of education 

completed 

21637 Virtual parent EA2 7.5 

The Framingham Heart Study (FHS), United States Liu et al., 2018 Years of education 

completed 

6298 Statistical control EA2 6.5 

The Avon Longitudinal Study of Parents and Children 

(ALSPAC), United Kingdom 

Morris 2020 Key stage 4 school-based 

exam score 

1095 Statistical control EA3 7.0 

The Minnesota Twin Family Study (MTFS), United States Rustichini et al., 2018 Years of education 

completed; 

High school grades 

1690; 

1583 

Statistical control EA3 6.0 
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The Environmental Risk Longitudinal Twin Study(E-Risk), 

United Kingdom 

Wertz et al., 2019 GCSE academic 

qualification level 

860 Statistical control EA3 6.0 

The Minnesota Center for Twin and Family Research 

(MCTFR) a, United States 

Willoughy et al., 2019 Years of education 

completed 

2517 Statistical control EA3 5.5 

Note. a Participants in the MCTFR cohort were drawn from several longitudinal studies including the MTFS cohort, thus in the meta-analysis they were considered as the same 

cohort. b Educational outcomes consists of two broad categories, i.e., attainment and achievement. Years of schooling/education completed and highest obtained degree are 

categorized as educational attainment; the rest are categorized as educational achievement. More details of outcomes, including assessment time, are provided in Table S3. c 

The largest sample size used to assess genetic nurture effects. d GWAS (genome-wide association studies) used to derive the polygenic scores, including EA1 with N = 101,069 

(Rietveld et al., 2013), EA2 with N = 293,723 (Okbay et al., 2016), EA3 with N = 1,131,881 (Lee et al., 2018). e Quality score ranged from 0 (lowest) to 9 (highest) on 

methodological quality using an adjusted version of the Newcastle–Ottawa scale, criteria showed in sMethods and detailed scoring showed in Table S4. 
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Table 2. Three-level random effects models of genetic nurture and direct genetic effects on educational outcomes 

 Genetic nurture effects Direct genetic effects 

kcohort 8 8 

kestimate 22 16 

βpooled 0.08 0.17 

β95% CI 0.07-0.09 0.13-0.20 

βrobust CIa 0.06-0.10 0.12-0.21 

σ2Level 2 χ2 < 0.01, p = .5000 χ2 < 0.01, p = .5000 

σ2Level 3 χ2 = 1.94, p = .0817 χ2 = 5.09, p = .0120 

I2 Level 1 76.80% 17.67% 

I2 Level 2 <0.01% <0.01% 

I2 Level 3 23.20% 82.33% 

Publication bias Q = 6.12, p = .0134 Q = 0, p = .9976 

Note. a Robust confidence intervals were cluster-robust variance estimations, for details see Supplemental Notes 7.1. MREM = Multilevel random effects model; β = 

standardised regression coefficients (i.e., the metric of effect sizes); CI = confidence interval; χ2 Statistics from likelihood-ratio test to test within-cohort variance (σ2Level 2) and 

between-cohort variance (σ2Level 3) for significance; I2 = % of the total variance accounted for by random sampling variance (Level 1), variation within cohorts (Level 2), 

variation between cohorts (Level 3); Publication bias was assessed by using precision (sampling variance) to predict the effect size. 
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Table 3. Moderator analysis: sources of heterogeneity in MREM of genetic nurture effects and direct genetic effects 

  Genetic nurture effects  Direct genetic effects 

Moderator  Subgroup  kcohort kestimate  βpooled β95% CI pmoderator  kcohort kestimate  βpooled β95% CI pmoderator 

Parental PGSa Maternal  6 9 0.08 0.07-0.10 .6680  4 4 0.17 0.12-0.23 .4885 

 Paternal  4 6 0.07 0.06-0.09   2 2 0.20 0.13-0.27  

 Mixed parental 5 7 0.08 0.06-0.09   6 10 0.16 0.12-0.20  

             

Designb  Virtual parent 3 7 0.07 0.06-0.08 .0443  3 5 0.15 0.08-0.21 .5039 

 Partial statistical control 5 9 0.09 0.07-0.10   5 8 0.18 0.13-0.24  

 Full statistical control 2 6 0.09 0.06-0.11   2 3 0.15 0.08-0.22  

             

Outcomec  Educational attainment 4 10 0.09 0.07-0.11 .3079  4 7 0.14 0.08-0.19 .0466 

 Educational achievement 6 12 0.07 0.05-0.10   6 9 0.19 0.14-0.24  

             

GWASd EA3 6 15 0.09 0.08-0.11 .0066  6 11 0.18 0.14-0.23 .1784 

 EA2 3 7 0.07 0.06-0.08   3 5 0.14 0.08-0.20  

             

Methodological qualitye NOS score 8 22 -0.02 -0.03-0.00 .0072  8 16 0.01 -0.07-0.08 .8692 

             

Sample sizef Effective N 8 22 0.00 0.00-0.00 .0225  8 16 0.00 -0.01-0.00 .7390 

             

Attrition in cohortg Attrition rate 8 22 -0.01 -0.05-0.03 .7046  8 16 0.03 -0.07-0.13 .5466 

             

Parental education/ family SESh Unadjusted  8 22 0.07 0.07-0.08 <.0001  8 16 0.17 0.13-0.20 .0098 

 Adjusted  5 18 0.02 0.01-0.03   3 11 0.14 0.10-0.18  
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Note. a Parental genotype used to calculate polygenic score (PGS) as a categorical moderator with three categories [maternal (PGS derived from maternal genotype), paternal 

(PGS derived from paternal genotype), mixed parental (PGS derived from mixed information from mothers and fathers, such as PGS from maternal or paternal genotype, PGS 

from the average of maternal and paternal genotype)]. b Study design applied as a categorical moderator with three categories [virtual parent (using non-transmitted PGS to 

predict offspring EA), partial statistical control (using PGS of one parent to predict offspring educational outcomes while controlling for child’s PGS), full statistical control 

(using PGS of one parent to predict offspring educational outcomes while controlling for child’s and the other parent’s PGS)]. c Type of the outcome assessed as a dichotomized 

moderator [educational attainment (the highest level of education completed, e.g., year of schooling), educational achievement (performance at school, e.g., high school grades)]. 

d GWAS used to compute PGS as a dichotomized moderator [EA3 (Lee et al. 2018, N = 1,131,881), EA2 (Okbay et al. 2016, N = 293,723). One study used EA1 (Rietveld et 

al., 2013, N = 101,069) but only reported estimates adjusted for parental education level, and thus was not included in the main meta-analysis but was included in the moderator 

analysis (moderator h). e Quality score assessed by the adapted NOS (see details in eTable 3), reflecting the methodological rigor of the study, as a continuous moderator. f 

Number of participants to compute the estimate, reflecting the effective sample size, as a continuous moderator. g Attrition in the cohort due to selective genotyping or outcome 

availability, reflecting the cohort representativeness, as a continuous moderator. h Family-level adjustment as a binary moderator [0 = unadjusted estimates, 1 = adjusted 

estimates (estimates adjusted for parental education level or family socioeconomic status)]. 

For moderators abcdh, dummy variables were created for each category of the potential moderator. In order to obtain the mean effect (including significance and confidence 

interval) of all categories, separate meta-regressions were conducted, taking each category as the reference category in turn.  

For moderators efg, the moderator was treated as a continuous variable.   

 


