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1 Introduction
The maximum entropy spatial interaction model is derived and shown to incorporate both trip cost and von
Thünen (Puu 1997) rent per trip, a pure location rent. The similarity in result between calibrating against
mean trip cost and calibrating against rent is then demonstrated. This is shown by generating a sequence
of models using given values of β and then calibrating these by rent to give a comparison of β values. An
example of the use of location rent as a measure of accessibility is outlined.

• The paper is structured as follows:

– Section 2: The underlying gravity model is derived using maximum entropy
– Section 3: The classic von Thünen rent/trip cost model is outlined
– Section 4: Defining von Thünen rent within the gravity model
– Section 5: Estimating the von Thünen rent from the balancing factors of the gravity model
– Section 6: A description of the calibration method using J-divergence and balancing factors
– Section 7: A demonstration of calibrating a gravity model using balancing factors and J-divergence
– Section 8: A demonstration of the method used to derive Airbnb accessibilities to tourist destina-

tions in London
– Section 9: A discussion of accessibility and its equivalence to rent
– Section 10: Conclusions

This paper is written in R Markdown and is available, together with code and data, on a GitHub repository
as an R Studio project on https://github.com/robinmorphet/gravity-rent-calibration.

2 Deriving the Gravity Model
The maximum entropy model is derived by Wilson (1970). We follow that process but work in probabilities
rather than trips because we regard the latter as random variables whereas the probabilities are measures.
We begin by constructing the Lagrangian L

L =
n∑
i=1

n∑
j=1

pij lnpij + λ0

n∑
i=1

n∑
j=1

pij − 1 +
n∑
i=1

λi

n∑
j=1

pij − pi∗ +
n∑
j=1

λj

n∑
i=1

pij − p∗j + β

n∑
i=1

n∑
j=1

pijcij − c

(1)

Differentiating L with respect to pij and setting the result to zero delivers the maximum entropy model thus

pij = e−λ0e−λie−λje−βcij (2)

Summing both sides and recognising that λ0 is a constant we find that

eλ0 =
n∑
i=1

n∑
j=1

e−λie−λje−βcij = Z (3)
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We call the constant Z as it corresponds to the partition function of statistical physics and write the model as

pij = e−λie−λje−βcij

Z
(4)

We now take logarithms, multiply by −pij

β and sum over i, j to get

1
β
S = U + PV −G (5)

where S is entropy, U is mean energy, PV is λi+λj

β and G is − 1
β lnZ . These terms are used to show the

correspondence of the model to the classical gas model (Callen 1985) where G is the free energy and also
the Marshallian consumer surplus, and PV the product of pressure, P and volume V. Equation 5 gives the
classical definition of G as does − 1

β lnZ . As we will see, the value of G corresponds to the Marshallian
consumer surplus and PV to rent/unit area times area where area is the 2 dimensional quantity paralleled by
volume V in the classical gas model and rent/unit area corresponds to pressure.

Figure 1: Von Thünen Rent v Distance
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Figure 2: von Thünen Rent v Generalised Cost

3 Deriving the von Thünen Model
The von Thünen model postulates a single city surrounded by a uniform plain. Farmers sell all their product
in the city. The price of the product is determined by the cost of growing it, the cost of transporting it
to market and the level of profit. In the model the markets clear and the rate of profit is constant. This
together with the fact that the model is deterministic and there is only a single purchaser implies that it is a
model of perfect competition. A more detailed exposition can be found in Puu (1997). Figure 1 shows the
rent curve against distance. The rate of cost of transport for a farmer located at D is given by the slope
at B. Thus the cost of transporting produce to market fom D is AR and the level of rent paid is OR. In
Figure 2 we substitute generalised cost for distance in common with standard practice in trip modelling (Dios
Ortuzar and Willumsen 2011). This equalises AR and OD which gives a slope of -1. We may express this
linear relationship as an equation thus:

rent+ generalised.cost = constant (6)

In terms of the von Thünen model the constant is the distance from the city to his “wilderness” where rent
has declined to zero. In more modern terms it is that cost of transport which renders the goods in question
too expensive for, or beyond the range of, the market.

4 Matching the Gravity and von Thünen Models
In the gravity model we have n destinations but in the von Thünen model we have only one. The table of
trips from origin to destination in the gravity model is thus replaced by a single column showing trips from
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the origins to the single centre. In the von Thünen model the origin zones are annular rings with the city
at their centre. We therefore set up the model adapting Equation 4 with a single destination zone, k, and
without a destination constraint as all produce is sold in one place.

pik = e−λie−βcik

Z
(7)

Of course, knowing the pi we know the pik but for the moment we choose to ignore this and in fact all
we need to know is that the pi exist and are fixed. To make the comparison between the two models we
exploit the Legendre transform (Kennerly 2011; Zia, Redish, and McKay 2009; Callen 1985) which underlies
the structure of entropy maximising gravity models (Lesse 1982). Following Callen’s (1985) exposition we
consider a variable Y (X) and form its partial differential ∂Y∂X . The Legendre transform, Ψ, is then given by

Ψ (Y ) = − ∂Y
∂X

X + Y (8)

Applying this equation to the straight line graph of Figure 2 and Equation 6 we get

Ψ (rent) = 1.rent+ generalised.cost (9)

We now determine the equivalent Legendre transform using Equation 7 but with pik = pi a constant as is Z.
Rearranging and taking logarithms we get

λi
β

= − lnZpi
β
− cik (10)

Differentiating with respect to generalised cost we get

∂
(
λi

β

)
∂cik

= −1 (11)

giving the Legendre transform

Ψ (cik) = λi
β

+ cik (12)

Comparing Equation 12 and Equation 9 we see that

rent = λi
β

(13)

The rent, like the trip cost, is a cost per trip. The identification of the balancing factors with rent has a
somewhat chequered history. The relationship was initially suggested by Dieter (1962) but suffered widespread
rejection (e.g. Kirby 1970) although it was resuscitated to an extent in Williams and Senior (1978) who
interpreted λi and λj as penalty functions in a non linear program method. Alonso (1964) appealed to the
von Thünen model in his analysis of the residential housing market around a single centre (implying perfect
competition) using a bid rent curve of the kind shown in Figure 3. The later identification of von Thünen
rent with the balancing factors (Morphet 2012) also showed that the polycentric gravity model is a model of
imperfect competition in which the measure of imperfection (reflecting the triangle of Harberger(1964)) is:

1
β
I (pij , pipj) = 1

β

∑
i

∑
j

pij ln
pij
pipj

(14)
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the Mutual Information, I, times 1
β and pi and pj are origin and destination probabilities, their product

giving a trip matrix for the case of zero cost i.e. the case of perfect competition where impediments to trade
in the form of trip costs have been removed.

5 Estimating the rent from the balancing factors
The balancing factors are derived directly from the Furness iteration. We can rewrite Equation 4 as

pij = e−λie−λje−βcij∑
i

∑
j e

−λie−λje−βcij
(15)

rearranging the denominator we may write

pij = e−λie−λje−βcij∑
i e

−λi
∑
j e

−λje−βcij
(16)

and we can write for the origin balancing factors bfi

bfi = e−λi∑
i e

−λi
(17)

and taking logarithms and the using the Z notation we have

ln (bfi) = −λi − ln
(∑

i

e−λi

)
= −λi + Zi (18)

To identify λi we take the logarithm of the origin balancing factors which must then be corrected by a
constant. This may be based on existing estimates of land values or by identifying a minimum value and
adding a constant to the logged balancing factors to ensure that there are no negative rents. The value for λj
is derived in a similar fashion. It should be noted that adding a constant to either λi or λj does not affect
the value of pij as it is equivalent to adding a constant to −λi and −λj in Equation 15 which will be present
in both numerator and denominator and so cancel out.

6 Calibrating the Gravity Model
The standard method for calibration, i.e. finding the value of β, is to run the model with varying values
of β in a search to find that value which gives a mean trip cost sufficiently close to the observed trip cost
(Hyman and Wilson 1969; Dios Ortuzar and Willumsen 2011). The method of running the model is to use a
Furness iteration (Furness 1965) to balance Origins and Destinations for a given value of β. This introduces
the balancing factors e−λie−λj of Equation 2 which relate to the rents of Equation 13. The iteration provides
a result in which the balancing factors are unique (Lemma 2, Evans 1970) which ensures that the resulting
trip matrix, given β, is also unique. In the method of calibration by rent, instead of matching observed and
modelled mean trip costs, we match observed and modelled rents by minimising the J divergence (Rohde
2016) between them. The J divergence is an information based semimetric measure which satisfies all the
conditions for a distance measure apart from the triangle inequality. In particular it is finite, symmetric and
decomposable. The J divergence between two probability distributions, p (xi) and q (yi) is given by

J = 1
2
∑
i

(p (xi)− q (yi)) ln
(
p (xi)
q (yi)

)
= 1

2 (I (p, q) + I (q, p)) (19)
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7 A Demonstration
In this demonstration we use a small model for which we know the value of β is 0.1. We then extract the
origin balancing factors which will act as our target distribution. The model is then run for for several values
of β which are the compared using J divergence and the value of β estimated at the point of minimum
divergence. Our cost data is given by the 5x5 table:

Table: Inter Zonal Trip Costs

1 2 3 4 5
--- ----- ----- ----- ----- -----
1 10.0 14.1 14.1 14.1 14.1
2 14.1 10.0 20.0 28.3 20.0
3 14.1 20.0 10.0 20.0 28.3
4 14.1 28.3 20.0 10.0 20.0
5 14.1 20.0 28.3 20.0 10.0

the origins Oi and destinations Dj are given by

Table: Origins

1 2 3 4 5
---- ---- ----- ----- -----
500 500 3000 5000 1000

Table: Destinations

1 2 3 4 5
----- ----- ----- ---- ----
5000 3000 1000 500 500

We now set the deterrence function matrix

Table: Deterrence function

1 2 3 4 5
--- ---------- ---------- ---------- ---------- ----------
1 0.3678794 0.2441433 0.2441433 0.2441433 0.2441433
2 0.2441433 0.3678794 0.1353353 0.0590129 0.1353353
3 0.2441433 0.1353353 0.3678794 0.1353353 0.0590129
4 0.2441433 0.0590129 0.1353353 0.3678794 0.1353353
5 0.2441433 0.1353353 0.0590129 0.1353353 0.3678794

We now iterate the deterrence matrix to the row an column totals which are expressed as probabilities rather
than trips and we extract the origin balancing factors:
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Table: Balancing Factors: Beta = 0.1

1 2 3 4 5
---------- ---------- --------- --------- ----------
0.1599941 0.1609328 1.465261 3.236415 0.5107356

We now know our target values of β and of the origin balancing factors. It remains for us to construct a
search for the value of β knowing only the origin balancing factors.

This gives us a list of balancing factors for each value of β. From Equation 17 we see however, that the
balancing factors are standardised by their sum. For this reason it is appropriate to use the J-divergence as
the measure of deviation since it too assumes probabilities standardised to sum to 1. We now compute the
value of the J divergence for each set of balancing factors. We form the latter into a dataframe the head of
which is shown below

Table: Values of balancing factors by Beta

beta 1 2 3 4 5
------ ---------- ---------- ---------- ---------- ----------
0.080 0.0323141 0.0336704 0.2724989 0.5667591 0.0947575
0.082 0.0319594 0.0332086 0.2717458 0.5685563 0.0945299
0.084 0.0316081 0.0327470 0.2709891 0.5703576 0.0942982
0.086 0.0312601 0.0322858 0.2702288 0.5721629 0.0940624
0.088 0.0309155 0.0318252 0.2694649 0.5739719 0.0938226
0.090 0.0305741 0.0313654 0.2686974 0.5757845 0.0935787
0.092 0.0302359 0.0309065 0.2679263 0.5776004 0.0933310
0.094 0.0299009 0.0304488 0.2671515 0.5794195 0.0930793
0.096 0.0295691 0.0299923 0.2663733 0.5812415 0.0928238
0.098 0.0292403 0.0295374 0.2655914 0.5830664 0.0925645
0.100 0.0289146 0.0290842 0.2648060 0.5848937 0.0923015
0.102 0.0285918 0.0286328 0.2640171 0.5867234 0.0920349
0.104 0.0282721 0.0281835 0.2632246 0.5885552 0.0917646
0.106 0.0279553 0.0277363 0.2624287 0.5903889 0.0914908
0.108 0.0276414 0.0272914 0.2616293 0.5922244 0.0912136
0.110 0.0273304 0.0268490 0.2608265 0.5940613 0.0909329
0.112 0.0270222 0.0264092 0.2600203 0.5958995 0.0906488
0.114 0.0267168 0.0259722 0.2592107 0.5977388 0.0903615
0.116 0.0264141 0.0255382 0.2583979 0.5995789 0.0900709
0.118 0.0261137 0.0251058 0.2575762 0.6014280 0.0897763
0.120 0.0258164 0.0246778 0.2567561 0.6032704 0.0894793
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Figure 4: Calibration by balancing factors

We see from Figure 4 that we have achieved a minimum value of J at the 0.1 value of β. What we have
shown in this demonstration is that we can calibrate a gravity model knowing only the balancing factors for
the origins. We know however, from Equation 13 that the balancing factors are a function of rent. In the
following section we explore an application in which we construct a surrogate for rent from which is then
compared with the balancing factors. We then seek a minimum J fit as before.

8 An application
In this application (Shabrina 2020) we calibrate a gravity model using a surrogate for observed rent data as a
target in contrast to the synthesised balancing factor data used in the previous section. The data describes
the relation of Airbnb (platform-based short term holiday rentals) sites to popular tourist destination sites
in London. The data is at Lower Super Output Area level which, being a relatively small area, means that
some LSOAs have zero Airbnb sites and are therefore ignored in the initial calculation. So after reading in
the data it was cleaned by determining an index of LSOAs with zero Airbnb sites which was then used to
remove them from the data.

The cost data is journey time data from the LSOAs to the tourist attractions. This is read in as before, but
with the zero LSOAs already removed. The times were then converted to minutes.

The proxy for origins was the number of Airbnb bedrooms in each LSOA and the proxy for destinations was
the number of visitors to each attraction. Both origins and destinations were converted to probabilites as the
model of Equation 1 is defined in terms of probabilities. This process also ensures that the origin total equals
the destination total which is one of the requirements of the iteration used to estimate the model.

We now construct the target rent which we are trying to match with our model. This is, for each LSOA, the
cost per bed times the number of beds. This gives us a total rent for each LSOA which we then convert to
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probabilities.

The search range for β is then generated. The particular range chosen is determined by trial and error but in
general we would expect to find a value between 0 and 2 (Hyman and Wilson 1969). The model is then run
producing balancing factors and a matrix of trips. For each value of β a set of statistics is produced. Of most
concern to us here are the calculated J-divergences.
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Figure 5: Calibration against zonal bed cost

Figure 5 suggests a best fit value for β of 0.008. Knowing this value we then generate the value of the
balancing factors and hence of the rent proportions. These relative rents are taken as relative accessibilities
and can be used to generate an accessibility surface in which accessibilities for the zones without Airbnb beds
can be estimated by interpolation.

9 Accessibility
The early reference by Hansen (1959) to accessibility gave a definition which in terms of the model defined in
Equation 7 can be written

ai =
n∑
i

pje
−βcij (20)

where ai is accessibility.

This gravity formulation may be contrasted to Hansen’s original (1959) in which cij was distance and α
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equalled 2
ai =

∑
j

Dj

cαij
(21)

The deterrence function in Equation 20 reflects the diminishing number of trips as cij increases whereas in
Equation 21 the cost function represents a diminishing appreciation with distance of the destination potentials.
Hansen (1959) is arguing on intuitive grounds for a particular set of preferences whereas in the gravity model
these are more akin to preferences revealed under the constraints of the model.

In practice this measure has been found unsatisfactory (Dios Ortuzar and Willumsen 2011). A review by
Srour et al (2002) compared accessibility measures with empirically estimated land values confirmed the
link between land value and accessibility, particularly to jobs. We are more fortunate in being able to
derive the relationship theoretically from the von Thünen assumptions within the gravity model. Srour was
less successful in identifying the appropriate measure of accessibility. The use of a logsum method proved
problematic. Niemeyer (1997) argued for a logsum method suggesting that the logsum measure of consumer
surplus equated to accessibilty. If we consider accessibility as rent then this is only true if the model is
one of perfect competition i.e. of zero transport cost. The gravity model, however, is a model of imperfect
competition. The logsum approach is one of utility or value maximisation with the contentions that this
brings whilst the gravity model, through rent, is an approach based on cost.

It may be asked, in relation to the application above why, when we already have a proxy for rent, do we model
rent at all? The answer is that the rent we are modelling is a pure location rent. The observed rents may reflect
many other hedonic attributes such as the presence of local facilities, the age and construction/maintenance
costs of the building, the local environment and perceptions of safety from crime. We use the gravity model
to extract the pure location rent.

10 Conclusions
We have shown that the gravity model can be calibrated against the balancing factors. This should not be a
surprise since the more usual method of calibration against mean trip cost uses only one parameter whereas
the number of (origin) balancing factors equals the number of zones. We have shown that the J-divergence
is an effective statistic to minimise in order to achieve a good fit. We have demonstrated theoretically the
relation between balancing factors and location rent which we argue is a good measure of accessibility. This
has been used in an application to determine accessibilities of Airbnb properties in London which seems to
perform well and is shown elsewhere to perform rather better than other indices. The use of this method in
transportation practice may be not so much to replace mean trip cost calibration but rather to update models
continuously as new rent patterns are observed. Within the practice of Land-Use Transportation Interaction
modelling it is not clear that the conventional property price iterations are consistent with the gravity rents
or by implication, the underlying model itself. The recognition of the von Thünen location rent within the
gravity model lays the basis for a dynamic based on trip cost reduction followed by increased rent and hence
densification with the consequent increase in congestion determining the need for further trip cost reduction.

References
Alonso, W. 1964. Location and Land Use. Toward a General Theory of Land Rent. Cambridge, Mass:
Harvard University Press.

Callen, H. B. 1985. Thermodynamics and an Introduction to Thermostatistics. Second. John Wiley.

Dieter, K. H. 1962. “Distribution of Work Trips in Toronto.” Journal of the City Planning Division,
Proceedings of the American Society of Civil Engineers, 1: 9–28.

Dios Ortuzar, Juan de, and Luis G Willumsen. 2011. Modelling Transport. John Wiley & sons.

Evans, A. W. 1970. “Some properties of trip distribution methods.” Transportation Research 4 (1): 19–36.

10



Furness, K. P. 1965. “Time Function Iteration.” Traffic Engineering and Control 7 (7): 458–60.

Hansen, Walter G. 1959. “How Accessibility Shapes Land Use.” Journal of the American Institute of Planners
25 (2): 73–76.

Harberger, A. C. 1964. “The measurement of waste.” The American Economic Review 54 (3): 58–76.

Hyman, G. M., and A. G. Wilson. 1969. “The effects of changes in travel costs on trip distribution and
modal split.” High Speed Ground Transportation Journal, 79–85.

Kennerly, S. 2011. “A graphical derivation of the Legendre transform.” https://sites.google.com/site/samken
nerly/Legendre.pdf?attredirects=0.

Kirby, H. R. 1970. “Normalizing Factors of the Gravity Model – An Interpretation.” Transportation Research
4: 37–50.

Lesse, P. F. 1982. “A phenomenological theory of socioeconomic systems with spatial interactions.” Environ-
ment and Planning A 14 (7): 869–88.

Morphet, R. 2012. “Von Thunen’s Legendre Transform: Urban Rent and the Interaction Model.” Working
Paper 193. CASA Working Papers. UCL, London: Bartlett Centre for Advanced Spatial Analysis. https:
//www.ucl.ac.uk/bartlett/casa/publications/2013/jul/casa-working-paper-193.

Niemeier, Debbie A. 1997. “Accessibility: An Evaluation Using Consumer Welfare.” Transportation 24 (4):
377–96.

Puu, T. 1997. “Mathematical Location and Land Use Theory.”

Rohde, Nicholas. 2016. “J-Divergence Measurements of Economic Inequality.” Journal of the Royal Statistical
Society: Series A (Statistics in Society) 179 (3): 847–70.

Shabrina, Zahratu. 2020. “The Impact of the Platform Economy in Cities: The Case of Airbnb.” PhD thesis,
UCL (University College London). https://discovery.ucl.ac.uk/id/eprint/10093740/.

Srour, Issam M, Kara M Kockelman, and Travis P Dunn. 2002. “Accessibility Indices: Connection to
Residential Land Prices and Location Choices.” Transportation Research Record 1805 (1): 25–34.

Williams, H. C. W. L., and M. L. Senior. 1978. “Accessibility, Spatial Interaction and the Evaluation of Land
Use-Transportation Plans.” In Spatial Interaction Theory and Planning Models, edited by A. Karlqvist, L.
Lundqvist, F. Snickars, and J. W. Weibull, 253–87. Amsterdam: North Holland.

Wilson, A. G. 1970. Entropy in urban and regional modelling. London: Pion.

Zia, Royce KP, Edward F Redish, and Susan R McKay. 2009. “Making Sense of the Legendre Transform.”
American Journal of Physics 77 (7): 614–22.

11

https://sites.google.com/site/samkennerly/Legendre.pdf?attredirects=0
https://sites.google.com/site/samkennerly/Legendre.pdf?attredirects=0
https://www.ucl.ac.uk/bartlett/casa/publications/2013/jul/casa-working-paper-193
https://www.ucl.ac.uk/bartlett/casa/publications/2013/jul/casa-working-paper-193
https://discovery.ucl.ac.uk/id/eprint/10093740/

	paper223cover
	Rent-Calibration-Document
	Introduction
	Deriving the Gravity Model
	Deriving the von Thünen Model
	Matching the Gravity and von Thünen Models
	Estimating the rent from the balancing factors
	Calibrating the Gravity Model
	A Demonstration
	An application
	Accessibility
	Conclusions
	References


