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Abstract

Ultra-high-field (UHF) magnetic resonance (MR) scanners, that is, equipment operating at static magnetic field of 7
tesla (7 T) and above, enable the acquisition of data with greatly improved signal-to-noise ratio with respect to
conventional MR systems (e.g., scanners operating at 1.5 T and 3 T). The change in tissue relaxation times at UHF
offers the opportunity to improve tissue contrast and depict features that were previously inaccessible. These
potential advantages come, however, at a cost: in the majority of UHF-MR clinical protocols, potential drawbacks
may include signal inhomogeneity, geometrical distortions, artifacts introduced by patient respiration, cardiac cycle,
and motion. This article reviews the 7 T MR literature reporting the recent studies on the most widespread
neurodegenerative diseases: Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis.
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Key points

� Ultra-high-field MRI enables improved signal-to-
noise ratio, resolution and tissue contrast.

� In Alzheimer disease, 7-T MRI enables high-
resolution assessment of neurodegenerative pro-
cesses affecting hippocampal structures as well as
vascular lesions and vascular reserve.

� 7 T imaging of substantia nigra has outstanding
accuracy in identifying Parkinson disease patients.

� In Amyotrophic lateral sclerosis, 7-T MRI reveals
motor neuron impairment signs in cerebral cortex.

Introduction
Magnetic resonance (MR) is used in medicine since
nearly four decades ago. While its ability to represent
soft tissues in vivo non-invasively has had a crucial im-
pact on clinical diagnosis since its early days, the steady
quest for improved data quality and signal-to-noise ratio
(SNR) has led to the recent use, in clinical studies, of
MR scanners operating at ultra-high field (UHF) of 7 T
and beyond.
In imaging (MRI) applications, the main advantage of

higher SNR is the increased sensitivity to signal changes
related to tissue composition and physiological parame-
ters [1]. The higher SNR, which increases linearly with
the static magnetic field strength, enables also to achieve
improved spatial resolution. Another important feature
in UHF MR is the change in tissue relaxation times: in
particular, the combination of higher SNR and shorter
T2* at UHF has been exploited to obtain images with
unprecedented anatomical detail in susceptibility-
weighted imaging (SWI) and quantitative susceptibility
mapping (QSM) [2]. In functional MRI (fMRI), these
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two features have enabled researchers to obtain activa-
tion maps based on blood oxygenation level dependent
(BOLD) contrast with sub-millimetric resolution [3, 4].
Such an increased sensitivity to magnetic susceptibility
is, however, also a source of undesired effects, primarily
signal loss at tissue interfaces [5], vulnerability to arti-
facts introduced by patient respiration and cardiac cycle
[6], motion [7], and geometrical distortions [8]. Tech-
niques to mitigate these effects have not yet been imple-
mented in the majority of clinical scenarios.
Another challenge in UHF MRI is posed by the short-

ening of the resonance wavelength at UHF, which can
cause signal inhomogeneity at spatial scales of the size of
the human head. This problem has been solved with
parallel transmission [9] at a number of UHF MR sites;
however, this technology is not yet available in the most
part of clinical contexts.
In MR spectroscopy (MRS), besides the increase in

SNR, one main advantage of operating at UHF is the in-
crease in spectral resolution [10]. Further, as the reson-
ance frequency increases linearly with the static
magnetic field, operating at UHF also facilitates MRI
and MRS of other nuclei, such as 23Na and 31P, whose
abundance (hence, MR signal) and resonance frequen-
cies are far lower than those of the 1H proton. In this
context of intertwined potential advantages and chal-
lenges, this article aims to provide an overview of recent
results and future perspective of UHF MR in clinical
studies addressing three major neurodegenerative dis-
eases, namely Alzheimer’s diseases, Parkinson’s disease,
and amyotrophic lateral sclerosis.

Alzheimer disease
Alzheimer disease (AD) is characterized by long pre-
clinical and prodromal stages with progressive mo-
lecular pathology, neurodegeneration and cognitive
impairment. The ATN (amyloid, Tau, neurodegenera-
tion) [11] research framework considers ß-Amyloid,
Tau-pathology, and neurodegeneration (neuronal or
synaptic loss, atrophy) as the hallmarks of clinical
diagnosis and individual staging for the purpose of
clinical trials. While the levels of ß-amyloid and tau-
pathology can be determined using cerebro-spinal
fluid (CSF), plasma, and molecular imaging methods
[12], determining the degree of neurodegeneration (as
defined in the ATN framework) remains challenging
and 7-T magnetic resonance imaging could provide a
substantial advantage over MRI at 1.5 or 3 T. In
addition to assessing neurodegeneration, 7-T imaging
provides innovative readouts for vascular pathology
occurring either as a consequence of AD or as a co-
morbidity, for dysfunction of macro- and mesoscale
neural networks and for molecular pathology.

Assessment of neurodegeneration in AD
Measures of cortical and subcortical grey matter volume
or thickness with MRI and their progression over time
are likely to be the most direct measures of local neuro-
degeneration that are currently available. Structural MRI
with visual inspection at 1.5 and 3 T has been at the
heart of diagnostic radiology in dementia for two de-
cades, while volumetric analysis from structural imaging
has been the principal imaging marker of major cohort
studies and trials of disease modifying therapies in symp-
tomatic sporadic dementia with approval by the Euro-
pean Medicines Agency [13, 14] and pre-symptomatic
genetic dementias [15]. Structural sequences have
proven sufficiently robust to site and even manufacturer
effects, to allow large scale multi-center collaborative
studies. Following this widespread use, there is extensive
modelling and empirical evidence for the power of T1-
and T2-weighted imaging to detect rates of change and
the effect of treatment, for a given cohort size, study
duration, and drug effect [16]. 3 T structural MRI has
become an industry standard surrogate marker for drug
trials in Alzheimer’s disease. However, 1.5 T and 3 T
structural imaging is fundamentally limited by its coarse
resolution (typically about 1 mm; macro-scale) and
contrast-to-noise ratio (SNR), which prevents accurate
quantification of volumetric change within short-
intervals or pre-symptomatic change, and accurate delin-
eation of medial temporal sub-region and hippocampal
subfield changes that characterize early stage neuropath-
ology. This has been highlighted recently outlining the
inadequacy of the common use of 3T-based 1 mm iso-
tropic MRI to perform hippocampal subfield segmenta-
tions [17] using automated or manual methods. Given
that cortical thickness is around 2–3 mm, the limited
sensitivity of current structural imaging to detect cortical
atrophy is apparent. Efforts are underway to harness the
superior resolution of 7 T for AD research. Examples for
high-resolution structural imaging scans that have been
successfully implemented in multi-center studies and
across vendors, e.g., in the setting of the EUFIND (Euro-
pean ultra-high-field imaging network for neurodegener-
ative diseases) consortium, include a T1-weighted
magnetization-prepared rapid gradient echo sequence
for whole-brain anatomy (3D MPRAGE, 0.65-mm iso-
tropic resolution), and a T2-weighted acquisition cen-
tered on the medial temporal lobe (2D Turbo-Spin
Echo, 0.4 × 0.4 × 1.0 mm resolution, orthogonal to the
hippocampus’ longest axis) [18]. As illustrated in re-
cently developed 7-T segmentation protocols for the
medial temporal lobe (MTL) [19], certain key landmarks
that are difficult to identify at 3T, such as the endfolial
pathway distinguishing dentate gyrus from hippocampal
subfield CA3, can be identified reliably in 7-T scans
using these types of resolution (Fig. 1). Other structures
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for which morphometric quantification of volume or
thickness is difficult at 3 T include subregions of the
entorhinal cortex [20, 21] and the transentorhinal cor-
tex, which are affected early on in the pathological cas-
cade of AD [12, 22–24]. These initial efforts revealed
two acquisition problems, namely excessive head mo-
tion and signal loss in the inferior temporal lobe on
T2-weighted scans. Future solutions could include pro-
spective motion correction [25] and utilization of paral-
lel transmission to homogenize the transmit field [9]
and these solutions are indeed likely to be commercially
available in foreseeable time.
While the benefits of 7 T for assessing cortical and

subcortical morphometry at the macro-scale are ready-

to-use for studies in AD, the high-resolution of 7 T
could also provide new, more mechanistic insights into
how neurodegeneration progresses across brain regions
by allowing to quantify structural integrity in different
cortical layers by way of its submillimeter (meso-scale)
resolution. Such quantification of laminar thickness and
its changes in disease and with age and disease path-
ology [26, 27] can reveal microstructural insights into
the causal cascade of neurodegeneration because of the
layer-specific organization of feedforward and feedback
connectivity [28].
Another emerging area of advanced structural imaging

at 7 T that is relevant for AD is imaging of the locus
coeruleus (LC). The LC is the sole origin of cerebral

Fig. 1 Structural and vascular hippocampal and medial temporal lobe imaging at 7T in an older adult. a T2-weighted coronal 7-T MRI scan
through the body of the hippocampus, immediately distal to the hippocampal head. Color legend of segmented regions: entorhinal cortex
brown, Brodmann area 35 (transentorhinal) teal, Brodmann area 36 dark blue, subiculum mauve, CA1 red, CA2 green, CA3 yellow, dentate gyrus
blue. b High-resolution time of flight imaging of hippocampal vascularization allowing to identify supplying vessels from the anterior choroidal
artery (solid arrow) and the posterior cerebral artery (dashed arrow). c A structural T1-weighted coronal 7-T MRI in a patient with mild cognitive
impairment and markedly enlarged perivascular spaces, particularly in the insular regions (long arrow) but also in the hippocampus (middle
arrow). The scan also shows linear perivascular spaces alongside vessels (short arrow). d A microbleed in the anterior temporal lobe (white arrow)
in a patient with cerebral amyloid angiopathy imaged with QSM at 7T. e A microbleed with a venous connection, as visualized with a QSM
based venography
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noradrenergic supply, and one of the first sites of the
human brain to develop neurofibrillary tangles in pre-
clinical AD (for a review see [29]). Studies at 3 T have
already showed that the LC MRI contrast is reduced in
AD in proportion to CSF Aβ levels [30]. Given the
small size of the LC and its limited contrast, efforts are
made to image its structural and functional integrity at
7 T [29] for instance by developing optimized
magnetization transfer (MT)-weighted imaging ap-
proaches (e.g., [31]).

Vascular system and vascular pathology
Vascular pathology is an important risk factor and co-
morbidity that can modify neurodegeneration and dis-
ease progression in AD [11]. While it can be associated
with neurodegeneration even in the absence of Alzhei-
mer’s disease pathology [32, 33], it is now clear that
there is an interaction between vascular and non-
vascular pathology in AD. Indeed, vascular pathology
has been proposed as an important driver of neurode-
generation for amyloid-positive but tau-negative individ-
uals [11]. Besides established markers of small vessel
disease (SVD) at 3 T (white matter hyperintensities,
lacunes, microbleeds [34, 35], perivascular spaces), ultra-
high-resolution imaging offers new possibilities to
quantify vascular pathology and vascular reserve. Corre-
sponding ultra-high-resolution sequences have been im-
plemented in multi-center networks such as EUFIND.
Measures technically feasible at 7 T include Fluid-
Attenuated Inversion Recovery (FLAIR), T2 and T1 to
image white matter hyperintensities, microinfarcts (hy-
perintense on FLAIR and hypointense on T1 MPRAGE)
[36, 37], perivascular spaces, diffusion tensor imaging
(DTI) to infer information about axonal integrity in the
vicinity of white matter hyperintensities, ultra-high-
resolution 2D phase-contrast imaging to assess the pul-
satility of perforating arteries [37–42], QSM to image
microbleeds (spherical hypointensities on the magnitude
images of the QSM datasets) [34, 35], venous vessel
density, length, tortuosity and branching patterns, and
time-of-flight (TOF) angiography to measure small ar-
terial features including the hippocampal small-vessel
vascularization patterns [43, 44].
Enlarged perivascular spaces (Fig. 1c), which are en-

larged pathways of clear interstitial fluid, while still un-
clear whether they represent perivenular or
periarteriolar phenomena [45], are likely to indicate a
failure to clear fluid and waste, including amyloid and
tau protein [46–48]. Combinations of FLAIR, T2-
weighted, and susceptibility-weighted imaging submilli-
meter resolution venography and TOF angiography with
high resolution at 7 T [49, 50] could provide new in-
sights into pathological progression of vascular dysfunc-
tion in AD and the interaction between small vessel

disease and AD. For instance, high-resolution 7-T as-
sessments of the progressive build-up of perivascular
spaces alongside the temporal progression of amyloid
and tau pathology could indicate whether dysfunction in
clearance precedes the progression of amyloid and tau
pathology or is a consequence of its progression (i.e.,
more waste products to clear). Furthermore, in combin-
ation with structural imaging of cortical neurodegenera-
tion (see above), 7 T could help to assess individually
whether progression of neurodegeneration is related pri-
marily to AD pathology (amyloid and tau) or concomi-
tant vascular disease. A quantitative vascular profile
including white matter hyperintensity volume, number
of microinfacts, number of microbleeds (Fig. 1d), mean
length and tortuosity of arteries and veins, mean venous
density, number of perforating arteries, mean perforating
artery velocity and mean perforating artery pulsatility
index, perivascular spaces, and their spatial distribution,
could be assessed and related to neurodegeneration and
the progression of amyloid and tau pathology. Given the
superior resolution of 7 T, it can be expected to assess
this prognostic question with higher sensitivity and in a
shorter time period than with 3 T, but this needs to be
demonstrated in comparative studies. Given the advent
of disease modifying treatments targeting amyloid-
pathology, such individualized assessments of the cause
of neurodegeneration could have important impact for
therapeutic decisions in a personalized medicine frame-
work. Finally, a clinically important question to which
this type of multimodal imaging could contribute is the
differential diagnosis of small vessel disease and cerebral
amyloid angiopathy (Fig. 1e).
Recently, it has been shown that 7-T high-resolution

TOF-angiography enables to classify individual hippo-
campal vascularization patterns [43, 44]. Five hippocam-
pal vascularization patterns can be distinguished,
according to the origin of the hippocampal arteries. We
have shown that the 7T-based in-vivo classification
yields similar results as former post-mortem studies and
that individuals whose hippocampus is supplied by one
vessel system (posterior cerebral artery) as opposed to
two systems (also anterior choroidal artery) and have
cerebral small vessel disease, have poorer cognitive
scores [43]. Hence, 7 T may provide a window to indi-
vidually assess hippocampal vascular reserve and thus
opens new perspectives for personalized risk modifica-
tion and disease management. In this context, the inter-
action between vascular reserve and progression of
Alzheimer’s disease could also be particularly relevant. It
can be hypothesized that individuals with lower hippo-
campal vascular reserve as determined on the basis of
hippocampal vascular supply patterns, could suffer
steeper cognitive decline (fast progressor) with advan-
cing amyloid and tau pathology.
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Functional imaging
While synapse loss correlates closely with symptoms in
Alzheimer’s disease [51] and therefore neurodegenera-
tion is an important target of MRI imaging, it is also well
established that amyloid and tau-pathology can impair
brain function through synaptotoxicity. Animal studies
show that misfolded and hyperphosphorylated tau can
impair neuronal function [52]. Mislocation of tau to
dendritic spines can cause synaptic dysfunction [53] and
there is evidence that pathological tau reduces network
activity [54]. This is well compatible with the reduction
of a novelty response in the hippocampus and amygdala
as recently reported to be independent of hippocampal
and amygdala MRI volume [55]. It is also well estab-
lished that Aß oligomer species are neurotoxic and cause
synaptic dysfunction [56, 57]. A recent study indicated
that the earliest accumulation of Aß oligomers reduces
the resting state connectivity of the precuneus [58].
The main advantages of higher field strength for func-

tional MRI (fMRI) are the increased nuclear
magnetization and susceptibility effects, leading to in-
creased blood oxygenation level dependent (BOLD) con-
trast [59, 60] and therefore 7-T fMRI can provide up to
30 times higher spatial resolution than fMRI at 3 T and
allow to gain new insights into brain dysfunction in AD.
Of particular interest in AD is the dysfunction in hippo-
campal circuits. Currently, it is still unclear whether hip-
pocampal dysfunction is related to the progression of
tau- or amyloid-pathology or is related more to neurode-
generation (synaptic loss). This is an important question,
because neurodegeneration-independent dysfunction is
potentially reversible with treatments targeting tau- or
amyloid-pathology. According to this possibility, circuit-
specific dysfunction is the first impact of tau- and/or
amyloid-pathology which is then followed by neurode-
generation. Currently, due to the limited resolution of 3
T, this question cannot be advanced much beyond what
is already known. 7-T imaging, by enabling more sensi-
tive measures of atrophy and brain function, can help to
gain new insights into the question how neurodegenera-
tion and/or synaptic dysfunction contribute to cognitive
deficits and clinical disease progression.
Amyloid pathology can also be associated with intrin-

sic neuronal hyperexcitability of pyramidal neurons,
which is already detectable at pre-plaque stages [61]. It
is paralleled by inhibitory dysfunction which is thought
to underlie the generation of network hyperexcitability
and hypersynchrony that is observed in neurocognitive
circuits of patients and of disease models [62]. Although
fMRI studies are compatible with the presence of hyper-
activity in preclinical and prodromal AD, thus far it
could not be established whether increases in hippocam-
pal activity reflect intrinsic hyperactivity or are rather a
compensatory upregulation of activity in some subfields.

7 T based assessment of subfield-connectivity profiles
could provide new insights into these questions.
The combination of ultra-high-resolution structural

and functional imaging may be particularly powerful by
allowing to assess the function of local circuits that are
affected early by neurodegeneration and by allowing to
quantify neurodegeneration precisely (Fig. 1). In the pre-
clinical course of Alzheimer’s disease, tau-pathology
spreads from perirhinal and entorhinal subregions to
hippocampal subfields and amygdala and later to lateral
temporal, frontal, and midline parietal regions [22, 63].
Therefore, 7T-based tools to assess the detailed func-
tional connectivity profile of the hippocampus, its sub-
fields and of the perirhinal and subregions of the
entorhinal cortices in preclinical AD are expected to be
highly valuable.

Iron mapping
Iron dysregulation is thought to play a significant role in
the pathogenesis of neurodegenerative diseases such as
Alzheimer’s disease [64], Parkinson’s disease [65], and
amyotrophic lateral sclerosis [66]. Large numbers of iron-
laden glial cells are commonly found in the vicinity of
pathological aggregates in these disorders [67–70]. QSM
[71] and apparent transverse relaxation rate (R2*)—both
related to brain iron levels in vivo—revealed differential
patterns of involvement in aging [72–76] and Alzheimer’s
disease [77–79]. QSM studies at 7 T may provide new in-
sights into the role of iron-deposition in the pathophysi-
ology of AD. In addition, QSM can help imaging venous
vessels and their role in clearance of interstitial fluid and
toxic waste and thus provide complementary information
to TOF imaging of the arterial system. Finally, micro-
bleeds can be well imaged with susceptibility-weighted im-
aging (see above) and imaging them may play an
important role in the stratification for and monitoring of
amyloid-modifying treatments where edema and micro-
bleeds are major complications [80–84].

Parkinson disease
Parkinson disease (PD) is a disabling neurodegenerative
disorder, characterized clinically by motor and non-
motor symptoms, and pathologically by synuclein intra-
cellular inclusions with Lewy bodies formation.
Disease progression is characterized by the loss of

dopaminergic neurons, the decreasing of neuromelanin
content and the accumulation of iron in the substantia
nigra (SN). The SN has been studied as the target of PD
pathology with MR imaging since several decades; how-
ever, conventional MR sequences [85], segmented
inversion-recovery ratio imaging [86] as well as DTI
[87–89] did not enable the definition of the normal anat-
omy of the SN and have a limited role in diagnosing PD
in individual subjects [90, 91].
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Ultra-high-field (UHF) MRI offers several advantages
for studying brainstem nuclei by enabling the assessment
of their neuroanatomy and neurophysiology [92]. In par-
ticular, since magnetic susceptibility effects and signal
phase tissue contrast increase with the static magnetic
field (B0), higher contrast-to-noise ratio is achieved in
susceptibility-weighted imaging at UHF. Moreover, the
increase in signal-to-noise ratio (SNR) [93] can be spent
to improve the spatial resolution in small brain struc-
tures such as the midbrain [92, 94]. With these premises,
the introduction of 7-T MR equipment gave a new im-
pulse to the imaging investigation of patients affected by
PD: until the advent of 7-T MR, the evaluation of the
substantia nigra, its inner structure, and its pathological
changes in PD remained a prerogative of nuclear medi-
cine, and neuroradiologic techniques were limited to the
differential diagnosis.

Iron sensitive 7-T MR of the substantia nigra
7-T MR has been used in PD to identify a radiological
surrogate marker of nigral pathology to increase the
diagnostic accuracy with respect to conventional MR
systems.
7-T MR imaging of the midbrain ex vivo and in vivo

allows to depict the borders of the SN and its inner
organization [95–97]. Iron-sensitive imaging sequences
at 7 T targeting the midbrain demonstrated that the SN
is structured into three tiers of signal intensity along the
dorsoventral axis. From back to front, susceptibility-
weighted images of the SN exhibit a thin hypointense
signal band, followed by a high signal structure, which

appears oval at the upper level, and, more anteriorly, by
a large band of signal hypointensity extending until the
crus cerebri (Fig. 2). The hyperintense ovoid area in the
dorsolateral area of SN has been demonstrated to cor-
respond to the largest nigrosome (nigrosome 1) [96] per-
taining to calbindin-negative structures containing the
neuromelanin of dopaminergic neurons and a low level
of iron [98]. The nigrosome 1 has been variably de-
scribed at 7 T [95, 97, 99] and finally the normal appear-
ance of SN has been summarized with the term
“swallow tail sign” [100] also at 7 T [101]. In PD, the
nigrosome 1 is the most severely affected region of the
SN [102]. The loss of signal hyperintensity of nigrosome
1 in PD is age-independent [103] and related to the loss
of melanized neurons and to the increase of iron depos-
ition [104] that, enhancing the magnetic susceptibility
phenomena, masks the nigrosomal compartmental pat-
tern based on calbindin of the SN [105]. The nigrosome
1 identification in healthy subjects [101] and its dis-
appearance in PD has an outstanding diagnostic accur-
acy (sensitivity and specificity are respectively 100%,
92.3–100% [95]). Although MR signs of nigrosome 1 de-
generation have been identified also at 3 T [100, 106]
and are accepted in the clinical practice for diagnosing
PD [107], in comparative studies the diagnostic accuracy
at 3 T was about 10% lower than that at 7 T [108].
Ferric iron rich (paramagnetic) brain tissues can be

conveniently studied with susceptibility-weighted im-
aging (SWI), an MRI technique that uses the informa-
tion of both signal magnitude and phase. The
information embedded in phase data can also be used to

Fig. 2 Ex vivo and in vivo MR imaging of the SN. The oval-shaped hyperintense formation indicated by arrows corresponds to nigrosome 1 (N1).
a Proton density axial image of an ex-vivo sample. b Gradient echo imaging at high resolution allows to define the N1 formation with typical
“swallow tail appearance” in healthy subjects in vivo
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generate quantitative maps of magnetic susceptibility
(QSM), which enable the measurement of local suscepti-
bility and reflect the amount of iron content in the SN
of PD patients [2]. An increase of QSM values in the SN
of PD patients at 7 T has been reported [109], which has
opened the perspective to quantify nigrosome degener-
ation along the disease course and its changes in re-
sponse to therapy.
The immunohistochemical evaluation of the SN pars

compacta reveals five calbindin-negative nigrosomes
(N1 to N5) [98] that can be identified in ex vivo sam-
ples by using UHF MR [105]. All nigrosomes 1–5 have
recently been detected in vivo in PD patients and con-
trols using high-resolution iron-sensitive 7-T MRI. In
PD patients the nigrosome 1 showed the most pro-
nounced decrease in T2*-weighted signal and the best
correlation to clinical scales (Unified Parkinson's Dis-
ease Rating Scale, UPDRS) even in the earliest stages of
disease, confirming its role as a measure of disease se-
verity [110, 111].
Considering the long premotor period before the

manifestation of motor symptoms, a preclinical diagnosis
of PD would be desirable to test possible disease-
modifying therapies. With this aim, a 7-T MR investiga-
tion of the midbrain has been attempted also in patients
with predisposing conditions to develop PD. Carriers of
gene mutation (parkin, PINK1, LRRK-2, DJ-1) [112], or
patients with rapid eye movement behavior disorder
(RBD) [113, 114] exhibited altered nigral anatomy with
absent nigrosome representation in a preclinical condi-
tion (Fig. 3). Longitudinal studies on these subjects could
provide important insights on the role of iron-sensitive
7-T MRI as a potential prognostic biomarker of
neurodegeneration.

One of the main goals of MRI in PD is differential
diagnosis. To investigate the causative role of nigrosome
degeneration in PD, some studies have been conducted
in patients with secondary parkinsonism without con-
ventional MR abnormalities, such as drug-induced par-
kinsonism, and in patients with suspected vascular
pseudoparkinsonism. Drug-induced parkinsonism occurs
in the absence of presynaptic dopaminergic deficits: in
such case, in accordance with the normal DAT scan, the
visualization of nigrosome 1 is preserved [115]. Similarly,
the nigrosome preservation characterizes patients with
essential tremor, allowing a differential diagnosis with
PD with high diagnostic accuracy [116]. These studies
were conducted at 3 T and it can be expected that a
comparative investigation with a 7-T system might re-
veal an increased confidence in the differential diagnosis.
The most frequent and challenging differential diagnosis

attempted with 7-T MRI and iron sensitive sequences is be-
tween idiopathic PD and atypical parkinsonisms, particu-
larly in the early stages of disease [117] when a significant
number of patients have an incorrect clinical diagnosis.
UHF MR imaging studies of atypical parkinsonisms re-

ported that anatomical changes of SN are not exclusive
of PD; however, the impairment of the SN is not uni-
vocal in the different types of neurodegenerative parkin-
sonisms. The majority of patients with multiple system
atrophy—clinical phenotype p (MSA-p) studied at 7 T
have a loss of the signal hyperintensity corresponding to
nigrosome 1, a pathological finding that is not invariably
present in patients with MSA-c [99, 118]. A preservation
of dopaminergic nigro-striatal function [119] reported
with SPECT corresponds to an unremarkable imaging of
the substantia nigra in some cases of corticobasal degen-
eration [120]. On the other hand, in progressive

Fig. 3 3D multi-echo T2*-weighted images of the substantia nigra at the level of the nigrosome 1 (arrow) in a an RBD patient with a normal
imaging of the substantia nigra who has not developed symptoms or signs of parkinsonism in the follow-up; b an RBD patient with abnormal
findings at imaging (the nigrosome 1 was not visible), who eventually converted to PD
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supranuclear palsy (PSP) the SN is invariably altered,
with the loss of nigrosome 1 hyperintensity. In this type
of atypical parkinsonism, the signal hypointensity at 7 T
is more evident in the medial part of the pars compacta
[120] where the iron deposition is prominent [121].
In summary, nigrosome imaging differentiates neuro-

degenerative from non-neurodegenerative parkinsonisms
but, similarly to DATscan, is less effective in distinguish-
ing PD from atypical parkinsonisms [122].

Other potentialities for 7-T MR in PD
The dopaminergic neurons of the SN and the
noradrenaline-containing neurons of the locus coeruleus
(LC) contain high levels of neuromelanin, which is the
target of neuromelanin-sensitive MRI. In PD, non-
dopaminergic pathways such as noradrenaline neurons
of the pons are involved in the neurodegenerative
process [123].
The LC is the largest nucleus of noradrenergic neu-

rons in the brain: it was indicated as the most af-
fected extra-striatal area in PD [124], and
neuromelanin depletion in the LC probably precedes
that in the SN [125]. The depiction of the LC with
MRI in vivo is based on the presence of neuromela-
nin, a paramagnetic pigment produced in noradrener-
gic neurons, and is achieved by using a T1-weighted
Turbo Spin Echo sequence [126]. By leveraging on
the different tissue relaxation times, which are field-
strength-dependent, and on the increased SNR, which
enables higher spatial resolution, several 7-T MR
techniques provide detectable contrast between the
LC and surrounding tissue. In particular, T1-weighted
imaging with spectral presaturation inversion recovery
(SPIR) provides higher contrast than Turbo Spin Echo
(TSE)-based sequences at lower field strength. Not-
ably, the small isotropic voxels that can be obtained
at 7 T are an important advantage when visualizing
small structures such as the LC [127]. The LC of pa-
tients with PD is currently under investigation also
with Magnetization Transfer (MT)-weighted imaging
at 7 T [128].
7-T MR spectroscopy has been used to investigate

brainstem nuclei aiming to reveal non-dopaminergic sys-
tem impairment that cannot be disclosed at conven-
tional magnetic field strength. UHF provides not only
improved SNR for MRS techniques, but also increased
spectral resolution and reduced chemical shift dispersion
of peaks [129]. Single-voxel 7-T MRS enabled the detec-
tion of metabolites including GABA [130]: in PD, in-
creased GABAergic activity in the pons has been
supposed to cause a reduction of excitatory outflow of
the noradrenergic tone of the LC to the neurons of the
substantia nigra. MRS at UHF could therefore reveal the
earliest changes of metabolite concentrations in the

brainstem of PD patients [131]. Indeed, UHF MRS of
the brainstem revealed GABA increase in the pons rela-
tive to putamen in PD [132], indicating an earlier patho-
logical involvement of the brainstem before nigrostriatal
affection, according to the caudo-rostral spreading of
synucleinopathy [133].
7-T MRI has also been aimed at to facilitate the surgi-

cal therapy of PD. Deep Brain Stimulation (DBS) is a
well-established surgical technique for treating PD, con-
sisting of the placement of stimulating electrodes within
the motor component of the subthalamic nucleus (STN)
to inhibit parkinsonian symptoms. The targeting of the
STN can be done with stereotactic atlases or directly
with MRI. Recently, the direct targeting of the STN
[134] has been demonstrated to be feasible [135]. In
addition, 7-T MRI data have been used to parcellate the
globus pallidus into motor, associative and limbic re-
gions in individual subjects to improve the precision of
electrode placement [136]. Recently, a machine learning
method based on 7 T data enabled the accurate predic-
tion of the STN shape and position on the clinical image
for targeting the STN in DBS [137], opening new per-
spectives in functional neurosurgery.
In conclusion, UHF MR in PD is currently used to

identify a surrogate marker of disease with the aim to
overcome the intrinsic limitations of conventional mag-
netic field strength MR, and until now 7 T has provided
a better understanding of the anatomy and pathology of
different brain structures involved in the pathologic pro-
cesses in parkinsonisms.

Amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a progressive
and clinically heterogeneous neurological disease af-
fecting both upper and lower motor neurons [138,
139]. Up to about 50% of patients also show cognitive
or behavioral disturbances, and frontotemporal de-
mentia is diagnosed in about 25% of these cases
[140]. The etiopathogenesis of the disease is not com-
pletely known; both genetic and environmental factors
have a pivotal role [141] and neuroinflammation, oxi-
dative stress and glutamate induced excitotoxicity
have been investigated as possible pathogenetic mech-
anisms [142–144].
The typical features of the upper motor neuron path-

ology are the loss of pyramidal cells of Betz in the layer
V of the primary motor cortex together with the axonal
loss and gliosis in the corticospinal tract; the lower
motor neuron pathology, instead, is reflected by loss of
motor neurons in the motor nuclei of the brainstem and
in the anterior horn of the spinal cord [145, 146]. More-
over, reactive microglia/macrophages were found to be
abundant in the affected areas of the brain and the
spinal cord [145].
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Even though MRI is not currently recommended for
the specific search of brain abnormalities reported in
ALS patients [147], imaging of the central nervous sys-
tem has gained interest in the past two decades mainly
with the purpose of finding, non-invasively, accurate bio-
markers of disease which could aid early diagnosis and
provide surrogate endpoints in clinical trials [148, 149].
Indeed, MRI can reveal the consequences of pathological
changes, and MRS can detect the associated metabolic
abnormalities. The advent of UHF (7-T) MR has further
increased the interest in this field. At 7 T, the higher
signal-to-noise ratio, sensitivity to magnetic susceptibil-
ity effects, spatial resolution of images, and spectral reso-
lution of metabolites have allowed and could further
enable in the future a more detailed depiction of mor-
phological, metabolic and functional abnormalities in
the brain and spinal cord of ALS patients, improving the
accuracy in detecting motor neuron pathology with both
qualitative and quantitative techniques.

Brain
T2*-weighted imaging and quantitative susceptibility
mapping
7-T MRI has enabled the detailed depiction of the radio-
logical anatomy of the primary motor cortex in normal
conditions and its changes in ALS patients. Even though
MRI cannot directly reveal pathology at the cellular
level, it can show the consequences of Betz cells loss and
intracortical accumulation of microglia. As neuronal loss
can be revealed by the cortical thinning, the presence of
ferritin-laden microglial cells can be unveiled indirectly
by the abnormal hypointense rim in the motor cortex in
T2*-weighted imaging. The high ferritin content in
microglial cells, whose meaning in the disease process
has not been fully clarified yet, causes the shortening of
the relaxation time T2 and the consequent T2* hypoin-
tensity [69].
The primary motor cortex was shown to have a typical

MR appearance characterized by a thin superficial

Fig. 4 T2*-weighted images and QSM images of the primary motor cortex in a healthy subject (a–c) and an ALS patient (d–f). a In healthy
subjects, two strips are recognisable in the primary motor cortex: a thin superficial hyperintense strip (arrow) and a thicker and slightly
hypointense deep band (*). In many ALS patients, the deep strip is abnormally hypointense in T2*-weighted images (arrows in d and e), and the
hypointensity corresponds to higher values of magnetic susceptibility (arrow in f)

Düzel et al. European Radiology Experimental            (2021) 5:36 Page 9 of 17



hyperintense strip, always preserved in ALS patients,
which lies just above a thicker and slightly hypointense
band, radiologically affected in ALS [150] (Fig. 4). In
many patients, in fact, the deep strip was shown to be
thinner and more hypointense than normal [150] (Fig.
4d, e), with fewer pyramidal cells of Betz and many
ferritin-laden microglial cells [69].
The cortical signal hypointensity, described for the first

time in T2-weighted images of ALS patients in 1993 [151,
152] and reported with variable sensitivity [153, 154], was
proved to be more visible and accurate in identifying pa-
tients at 7 T than at 3 T [155, 156]. It has been proposed
as a sign of upper motor neuron impairment [152] and
that hypothesis has been confirmed in recent studies. The
regional grade of cortical atrophy and hypointensity was
found to correspond to a somatotopic functional disability
related to the upper motor neuron pathology [150] and
can differ from one body region to another [150, 155]: the
lower the T2* signal intensity and the thickness of the
deep layers of the primary motor cortex, the worse the
upper motor neuron impairment of the corresponding
body regions [150].
The signal hypointensity has been further investigated

and the iron concentration estimated using QSM. Differ-
ently from conventional T2*-weighted sequences, quan-
titative susceptibility maps provide objective and more
reproducible data for cortical assessment. Even though
the mean magnetic susceptibility of a tissue is influenced
by all the components, iron is the prevalent source of
magnetic susceptibility-based contrast in the cerebral
cortex [157] and its expected concentration has been
proven to correlate with magnetic susceptibility mea-
sures [158]. The marked hypointensity in the primary
motor cortex of ALS patients was confirmed to be re-
lated to paramagnetic tissue [158] (Fig. 4f); moreover,
the cortical magnetic susceptibility, which is associated
with the degree of microglial activation [159], was found
to significantly correlate with the clinical upper motor
neuron impairment [158].
Therefore, although cortical atrophy, hypointensity,

and increased magnetic susceptibility were known find-
ings in many ALS patients also at conventional magnetic
fields [151–153, 155, 160–163], their characterization
and accuracy in diagnosing the upper motor neuron
pathology have been improved by using 7-T MR
systems.

Magnetic resonance spectroscopy
MRS can reveal metabolic changes of the brain related
to one or more key points of ALS pathology. This is true
at conventional magnetic fields and even more so at 7 T,
where the higher signal-to-noise ratio and spectral reso-
lution can lead to an increased precision in metabolite

quantification and detectability of low concentration me-
tabolites [164].
Both 1H and 31P MRS have been employed at 7 T: the

former has enabled the assessment of changes in the tis-
sue concentration of mainly N-acetylaspartate (NAA, a
marker of neuronal density and integrity [165]), myo-
inositol (mI, a marker of glial cells [166]), glutamate
(Glu, the main excitatory neurotransmitter), and
gamma-aminobutyric acid (GABA, the main inhibitory
neurotransmitter in the cortex); 31P 7-T MRS has been
employed to investigate the energetic status of the cells
and the membrane metabolism.

MRS in ALS patients There is only a small number of
published studies investigating metabolic changes in ALS
patients at 7 T and they focused mainly on the primary
motor cortex [167, 168]. Both NAA and total NAA (tNAA)
were found to be significantly decreased in the precentral
gyrus of ALS patients compared to controls [167], and the
level of tNAA was shown to depend on the diagnostic sub-
category, with probable/definite ALS being more affected
than possible ALS [168]. Compared to controls, mI was
higher in the primary motor cortex of patients, in particular
in probable/definite ALS patients [168].
Reported results about Glu are conflicting, with signifi-

cantly reduced levels in the precentral gyrus of patients
in one study [167] but not in the other [168]. Interest-
ingly, the significant and positive correlation between
Glu and NAA levels suggests that the Glu reduction in
ALS patients is driven by neuronal loss [167]. On the
contrary, GABA was not found to be significantly differ-
ent between patients and controls [167].
The effect of taking riluzole, a glutamatergic neuro-

transmission inhibitor [169], was also investigated. Ad-
dressing the suggested glutamate induced excitotoxicity
pathogenetic mechanisms of ALS, riluzole might influ-
ence levels of Glu but also those of metabolites related
to neuronal density and neuroinflammation. Even
though no difference was observed between riluzole-
treated and riluzole-naive patients, riluzole-naive pa-
tients showed lower tNAA/mI than controls [168].
Another topic in MRS is the search for a relationship

between clinical data and metabolite concentrations or
ratios. At 7 T, the greater disease severity (assessed with
the Revised Amyotrophic Lateral Sclerosis Functional
Rating Scale, ALSFRS-R) was found to be associated
with lower levels of tNAA, tNAA/tCr, tNAA/mI, and
Glu in the precentral gyrus [168], and the heavier clin-
ical upper motor neuron impairment with higher mI/
tNAA in the motor cortex only in one study [167]. Un-
fortunately, different research groups employ different
clinical scales to assess upper motor neuron dysfunction,
and they could have different sensitivity to pathology.
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When interpreting results of MRS studies, some fac-
tors have to be considered. In single voxel studies, a lim-
ited part of the potentially affected tissue is investigated,
and disease duration at the time of the MR acquisition
and clinical phenotype can influence the results. Synap-
tic concentrations of Glu and GABA might be influ-
enced by riluzole [169, 170], the precision of GABA
quantification might not to be sufficient even at 7 T
[168], and Glu is located in both the intracellular and
extracellular space, even though the extracellular con-
centration is much higher than the intracellular one
[171]. Therefore, changes in Glu concentration revealed
by MRS could be driven by the reduced intracellular
concentration via neuronal loss, increased extracellular
concentration responsible for excitotoxicity or both, with
the possible influence of riluzole.

MRS in asymptomatic C9orf72 repeat expansion
carriers C9orf72 hexanucleotide repeat expansion is the
most frequent gene mutation in both familial and spor-
adic ALS cases [172, 173] and is associated with an al-
most full penetrance by 80 years [172]. Therefore,
investigating asymptomatic C9orf72 repeat expansion
carriers might provide non-invasively new insights into
the pathophysiology of ALS and possible pre-
symptomatic alterations, and some metabolic changes
have been documented in many brain regions using both
1H MRS and 31P MRS.
Compared to non-carriers, in C9orf72 repeat expan-

sion carriers lower levels of tNAA/tCr and Glu/tCr were
found in the left putamen and lower levels of Glu/tNAA
were observed in the putamen and thalamus of the left
hemisphere [174]. These results might reflect a lower
concentration of neurons and Glu per neuron, whose
meaning needs further research to be elucidated. More-
over, glycerophosphoethalonamine-to-phosphocreatine
ratio (GPE/PCr) and uridine diphosphoglucose-to-
phosphocreatine ratio (UDPG/PCr) were found to be
significantly higher in many brain regions of asymptom-
atic carriers [175]. Being GPE one of the cell membrane
degradation products and UDPG a precursor of glyco-
gen, these results might reflect an increased catabolism
of the cell membranes and an imbalance of energy me-
tabolism, respectively [175].
In conclusion, MRS studies at ultra-high-field confirmed

lower levels of NAA and higher levels of mI in the precen-
tral gyrus of ALS patients, provided new insight into the
pre-symptomatic brain changes, but showed inconsistent
results about Glu. Further studies including larger cohorts
of patients and subjects at high risk of developing the dis-
ease are needed, using whole-brain and multi-nuclear
MRS, to explore metabolic brain changes and possible
patterns related to diagnostic subcategories, clinical phe-
notypes or pharmacological treatments.

Quantitative T1 mapping, magnetization transfer contrast,
and amide proton transfer-weighted imaging
The corticospinal tract has been widely investigated in
ALS using DTI at conventional magnetic fields, and re-
duced fractional anisotropy was consistently reported
[176]. The basis for this diffusivity change, explored at 7
T by combining quantitative T1 mapping, magnetization
transfer ratio and amide proton transfer-weighted im-
aging, might be more likely related to gliosis and expan-
sion of the extracellular matrix rather than to
demyelination [177].

Spinal cord
While UHF MR has the potential to greatly improve
spinal cord imaging, several technical issues, such as
physiological noise and inhomogeneities of the static
magnetic and radiofrequency fields, have limited its ap-
plication in clinical studies. A number of possible solu-
tions have been and are being explored to overcome
these limitations [178]. Recent studies have shown the
feasibility of conventional imaging [179], MRS [180],
glutamate-weighted chemical exchange saturation
transfer (CEST) MR imaging [181] and diffusion tensor
imaging of the spinal cord [182], opening the door to
their possible future applications in clinical research. So
far, only two studies investigating the spinal cord in
ALS patients at 7 T have been published; one study
assessed in vivo alterations [183] and the other made a
comparison between MRI and histology in an ex vivo
specimen [159].

Conventional imaging
Imaging the spinal cord at very high resolution (about
200–400 μm in-plane) can enable the depiction of alter-
ations occurring in ALS patients. It has the potentiality
of representing in the same images signal changes of the
lateral columns and the atrophy of the anterior horn of
the spinal cord, which reflect upper and lower motor
neuron degeneration, respectively.
Signal hyperintensity in the lateral segments of the

cervical spinal cord has been documented at 7 T in one
ALS patient [183] and in an ex vivo specimen [159] but
not in a control subject [183]. The location of such sig-
nal alteration in patients together with the presence of
histological signs of degeneration [159] have suggested
the hyperintensity as a sign of corticospinal tract degen-
eration [183].
On the other hand, the detailed differentiation be-

tween white and grey matter and the measurement
of the grey matter area have been proven to be feas-
ible at 7 T [179] but not employed yet in clinical
studies.
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Diffusion tensor imaging
So far, there are no published accounts in the literature
about DTI of the spinal cord at 7 T in ALS patients
in vivo. However, in an ex vivo specimen, the signal
hyperintensity and histological fibre degeneration in the
lateral segments of the cervical spinal cord were found
to parallel the significant decrease of fractional anisot-
ropy and increase of mean diffusivity [159]. DTI metrics
can therefore contribute to further assess the upper
motor neuron pathology in the spinal cord of ALS
patients.
In conclusion, magnetic resonance techniques at 7

T have provided new insights into the pathophysi-
ology of ALS. They have allowed revealing morpho-
logical, quantitative and metabolic changes in the
central nervous system, mainly in the primary motor
area and in the corticospinal tract, which are related
to pathologic abnormalities that occur in the disease.
Technical developments and overcoming current is-
sues and limitations will open interesting prospects
for future research.

Conclusion
This review has described how UHF MR has recently
impacted on clinical studies addressing AD, PD, and
ALS and provides new avenues for research. Researchers
have capitalized on higher SNR, signal sensitivity, and
improved spatial resolution offered by UHF-MRI, to ob-
tain a clearer depiction of the anatomical regions in-
volved in each disease. The pathological changes of
brain function and circuitry have been studied with
fMRI with improved BOLD contrast and spatial detail,
while the increased spectral resolution and reduced
chemical shift dispersion enabled by UHF MRS have
shed new light on the metabolic changes occurring in
each pathology.
The introduction of UHF scanners allowed to identify

radiological signs in neurodegenerative disorders, previ-
ously undetectable at magnetic fields ≤ 3 T: the detec-
tion of structural and functional degeneration within the
hippocampus of AD patients, loss of anatomical integrity
of the substantia nigra in PD and increased magnetic
susceptibility in the primary motor cortex of ALS pa-
tients with upper motor neuron degeneration are exam-
ples of the clinical/radiological impact deriving from the
current research in neurodegenerative disorders with
UHF.
UHF scanners have also offered new ground for more

advanced and challenging techniques, such as CEST im-
aging and magnetic resonance of nuclei other than 1H
(x-nuclei). However, at the present time, the use of such
techniques is still little documented in the published lit-
erature on neurodegenerative diseases.

While on the one hand, there is no doubt about the
clear advantages offered by UHF MR, and on the other
hand, some limitations still restrict its applicability
mostly to the field of clinical research. However, the
steady technological progress in MR hardware and ac-
quisition techniques, including for example the develop-
ment of improved parallel imaging transmission systems,
gradient coils, and prospective motion correction
methods, together with the recent introduction in the
market of 7 T scanners certified for diagnostic use, sug-
gest that in the near future UHF MR might have a fur-
ther increasing impact in the study and diagnosis of AD,
PD, and ALS.
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