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Abstract 25 

Three-dimensional printing (3DP) is a transformative technology that is advancing 26 

pharmaceutical research by producing personalized drug products. However, advances made 27 

via 3DP have been slow due to the lengthy trial-and-error approach in optimization. Artificial 28 

intelligence (AI) is a technology that could revolutionize pharmaceutical 3DP through 29 

analyzing large datasets. Herein, literature-mined data for developing AI machine learning 30 

(ML) models was used to predict key aspects of the 3DP formulation pipeline and in vitro 31 

dissolution properties. A total of 968 formulations were mined and assessed from 114 32 

articles.  The ML techniques explored were able to learn and provide accuracies as high as 93% 33 

for values in the filament hot melt extrusion process. In addition, ML algorithms were able to 34 

use data from the composition of the formulations with additional input features to predict the 35 

drug release of 3D printed formulations. The best prediction was obtained by an artificial neural 36 

network that was able to predict drug release times of a formulation with a mean error of ±24.29 37 

minutes. In addition, the most important variables were revealed, which could be leveraged in 38 

formulation development. Thus, it was concluded that ML proved to be a suitable approach to 39 

modelling the 3D printing workflow.   40 

 41 

Keywords: additive manufacturing and continuous manufacturing, personalized and precision 42 

pharmaceuticals, machine learning and predictive analysis, digital health and digital 43 

technologies, fused filament fabrication, drug delivery 44 
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1 Introduction 46 

Three-dimensional printing (3DP), or additive manufacturing, is a cutting-edge fabrication 47 

technology that involves the layer-by-layer fabrication of a 3D object based on a computer-48 

aided design (CAD) model [1-6]. Since the approval of the first 3D printed medicine, 49 

Spritam®, 3DP has been touted as the next disruptor of the pharmaceutical manufacturing 50 

industry [7, 8]. Promising bespoke medicines with precise dosing, pharmaceutical 3DP may 51 

contribute to the clinical goal of precision medicines, allowing every individual to be able to 52 

receive the right dose at the right time [9-14]. The growing interest in this field has led to an 53 

ever-expanding number of 3DP technologies deemed suitable for fabricating tailored 54 

medicines. These can be grouped based on the technique; (1) Material Extrusion, which 55 

includes Fused Filament Fabrication (better known as Fused Deposition Modelling (FDM™)) 56 

[15-20], Semi-solid Extrusion (SSE) [21-25], and Direct Powder Extrusion (DPE) [26, 27];  (2) 57 

Powder Bed Fusion, which includes Selective Laser Sintering (SLS) [28-32]; (3) VAT 58 

Photopolymerization, which includes Stereolithography (SLA) [33-36]; and (4) Material 59 

Jetting, which includes Inkjet Printing (IJP) [37-41]. Each of these technologies possess unique 60 

features and advantages; for example, IJP is capable of printing unique patterns such as QR 61 

codes that can help in the international war against counterfeit medicines [42, 43]. Amongst 62 

these, FDM is the most actively explored 3DP technology in pharmaceutics [7, 44-46].  63 

FDM is a thermal material extrusion technology whose popularity is mainly attributed to 64 

its affordability, versatility and compact size [7, 17, 47]. It involves processing raw 65 

pharmaceutical material through hot melt extrusion (HME) to obtain long strands of filament, 66 

which are subsequently fed into an FDM 3D printer [48]. The printer melts the filament and it 67 

is deposited layer-by-layer onto a build plate to create a 3D object. The size and shape of the 68 

object can be easily modified using software. This technology has been used within the 69 

pharmaceutical arena to produce an array of drug products, ranging from printlets (3D printed 70 

tablets) [49] and capsules [13], to transdermal microneedles [50], subcutaneous implants [51], 71 

and other innovative drug delivery devices [52-55]. Yet, developments in pharmaceutical FDM 72 

3DP has been hampered by the empirical process of formulation development. Numerous 73 

parameters within this two-step process can influence the performance of the final product. 74 

These include, but are not limited to, pre-HME variables (e.g. proportion of materials, object 75 

design), HME variables (e.g. extrusion temperature, torque, extrusion speed), and FDM 3DP 76 

variables (e.g. printing speed, printing temperature, platform temperature) [56, 57]. 77 

Consequently, in order to produce the desired product, researchers must undergo a process of 78 
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trial-and-error, slowly adjusting each parameter one at a time and evaluating the performance 79 

of each prototype. Not only is this time-consuming and inefficient, it also necessitates large 80 

amounts of material waste and monetary costs.  81 

Therefore, to have a means of predicting the optimal parameters that will produce the 3D 82 

printed object with the best performance would be desirable. Machine Learning (ML) may hold 83 

the key to optimising this process [58, 59]. ML is an Artificial Intelligence (AI)-based, state-84 

of-the-art technology that enables pattern recognition from complex datasets [60-63]. Recent 85 

years have seen AI receive immense and well-deserved media coverage, owing to its successes 86 

in affording unparalleled insights and enhanced efficiency in numerous disciplines. For 87 

instance, Google DeepMind’s AI program (AlphaFold) determines the 3D shapes of proteins 88 

from its amino-acid sequence, potentially saving computational biologists time and resources 89 

compared to existing lab techniques such as X-ray crystallography [64]. Successful 90 

applications of AI in other sectors have prompted the pharmaceutical industry to re-evaluate 91 

the traditional costly and time-consuming process of bringing drugs into market [65-69]. 92 

Indeed, AI is a versatile and revolutionary technology that warrants consideration for 93 

accelerating and transforming pharmaceutical 3DP [70].  94 

We have previously reported an AI-based web application, named M3DISEEN 95 

(http://m3diseen.com), that employs five ML techniques to enhance the efficiency of FDM 96 

formulation development [71]. This software was successful at predicting four key process 97 

parameters: extrusion temperature, filament mechanical characteristics, printing temperature 98 

and printability. The dataset comprised a total of 614 drug-loaded formulations evaluated by 99 

expert HME and FDM operators from University College London – School of Pharmacy and 100 

the company FabRx, using 145 excipients and drugs. An advantage of ML is its ability to 101 

improve its predictive performance as the sample size increases. Expanding the M3DISEEN 102 

dataset could be achieved by conducting further experiments in-house, however, this approach 103 

is time-consuming. Alternatively, a potentially more efficient strategy would be to data mine 104 

FDM formulations from published studies. This strategy would also present the opportunity to 105 

gather data generated by other research groups, thus minimising potential bias. In addition, 106 

more information could be extracted from the literature e.g., drug dissolution results from 107 

formulations.  108 

As more intricate 3D designs are fabricated via FDM 3D printing, it may become more 109 

difficult to gauge the drug release profile a priori. Thus, the ideal prediction model should 110 

include this feature. Dissolution testing is a fundamental analysis in formulation development, 111 

used to conclude the suitability of a drug product and for further development. As a product is 112 

http://m3diseen.com/predictions/
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formulated, it is important to ensure that the drug release occurs in an appropriate manner. The 113 

dissolution process may be time-consuming, particularly if the experiments are conducted over 114 

weeks or months, which cannot be avoided. Due to its necessity, researchers have investigated 115 

modelling techniques to predict dissolution behaviour, particularly for controlled release 116 

systems [72, 73]. A mathematical description of the release profile is rather difficult, given the 117 

numerous factors that will need to be considered. This is particularly true for FDM, since it 118 

affords researchers the ability to produce different and intricate designs [48]. ML on the other 119 

hand can utilise existing data, which is made possible by the abundance of dissolution data 120 

published, to predict dissolution results of new formulations.  121 

The present study reports the ML pipeline developed, using formulations mined from 122 

previously published studies, to predict key HME and FDM 3D printing conditions and drug 123 

dissolution properties. The key parameters predicted are extrusion temperature, filament 124 

mechanical characteristics, printing temperature and printability. The work especially focussed 125 

on the prediction of the drug dissolution performance of the 3D printed formulations and the 126 

features that affected dissolution. This study will provide a critical analysis of the performance 127 

of ML techniques for the prediction of different parameter of 3D printed formulations from 128 

data obtained from the literature and the requirements of the collected data.  129 

 130 

2 Materials and methods 131 

2.1 Data mining from literature 132 

PubMed, Google Scholar, and Web of Science were used to search for articles published in 133 

English using the terms “hot melt extrusion”, or “fused deposition modelling”, or “fused 134 

filament fabrication”, and “drug”, or “tablet”, or “capsule”, or “printlet”, or “drug device”, or 135 

“printability” between Jan 1, 2013, and November 30, 2020. 136 

 137 

2.2 Data collection 138 

The data collection from the literature were arranged as shown in Table 1.  139 

2.2.1 Identification of the Formulation 140 

The formulations extracted from literature were identified by the article’s DOI, author ID, 141 

formulation ID in the manuscript and year of publication. 142 

 143 
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2.2.2 Composition 144 

The components and their respective weight ratio for each formulation was recorded. Any 145 

formulations where the accumulative ratio did not sum to 1 (i.e. 100 w/w%) were removed 146 

from the analysis.  147 

  148 
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 149 

Table 1. The variables used within this study   

Identification of 

the formulation  

Article DOI DOI_1 DOI_2 … DOI_n 

Author Author_1 Author_2  Author_n 

Formulation ID ID_1 ID_2 … ID_n 

Composition Material 1 0.2 0.5 … … 

Material 2 

… 

0.3 

… 

0 

… 

… 

… 

… 

… 

Material 410 0.1 0.1 … … 

Hot Melt 

Extrusion 

Extruder (brand type) HAAKE_MiniCTW Noztek_Pro … … 

Extrusion Speed (RPM) 22.5 135 … … 

Extrusion temperature (ºC) 145 169 … … 

Extrusion torque (N.cm) 15 15 … … 

Filament aspect Good Good … … 

3D printing Printer (brand type) Makerbot_Replicator_2X Makerbot_Replicator_2X … … 

Nozzle diameter (mm) 0.4 0.4 … … 

Printing Speed (mm/s) 90 10 … … 

Printing temperature (ºC) 210 200 … … 

Platform temperature (ºC) 30 80 … … 

Printability Yes  Yes … … 

3D printed 

formulation 

Object Tablet  Film … … 

Shape Cylinder  Square … … 

Type of shell 1 1 … … 

Length (mm) 10 20 … … 

Width, Diameter (mm) 10 20 … … 

Depth, Thickness (mm) 3.2 0.2 … … 

Volume (mm3) 258.97 80 … … 

Surface area (mm2) 257.61 816 … … 

Surface area/volume 0.995 10.2 … … 

Weight (mg) 181.02 112.8 … … 

Layer thickness (mm) 0.2 0.05 … … 

Shell (top/bottom) (mm) 0.2 0.4 … … 

Shell (lateral) (mm) 0.2 0.4 … … 

Infill (%) 0 60 … … 

Infill type Rectilinear Hexagonal … … 

3D printed product aspect Good Good   

Dissolution test Dissolution T20 (min) 20 y … … 

Dissolution T50 (min) 80 y … … 

Dissolution T80 (min) 230 y … … 

pH of the dissolution media (pH) Acid Mixed … … 

Volume of dissolution media (ml)  900 50 … … 

Dissolution apparatus USP_II  bottle … … 

Dissolution speed (RPM) 50 50 … … 

Drug solubility Drug Solubility (mg/L) 0.1 0.007   

 *”y” was used to represent information that could not be found 
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2.2.3 Hot Melt Extrusion 150 

The HME process parameters recorded were extruder type, extrusion speed, extrusion 151 

temperature (as per the temperature reported in the respective manuscripts; this may refer to 152 

the nozzle temperature or maximum barrel temperature), extrusion torque, and filament 153 

mechanical characteristics (good, brittle or flexible).  154 

 155 

2.2.4 3D Printing 156 

The FDM printing process parameters recorded were printer brand and type (e.g. direct drive), 157 

nozzle diameter, printing speed, printing temperature, platform temperature, and if the 158 

formulation was printable or not. 159 

 160 

2.2.5 3D Printed Formulations 161 

This part included the information about the object printed, shape of the object, dimensions of 162 

the object (Length x Width x Height), weight, layer thickness, the type of shell, thickness of 163 

the shell, and percentage infill. The printed products were classed by a feature called ‘object’ 164 

that refers to the type of delivery system, either a tablet, film, device or other. Since 3D printing 165 

can produce complex shapes, a feature called ‘shape’ was created to detail the shape of the 166 

delivery system. This feature helped to elaborate whether a film was cylindrical or square; or 167 

whether a tablet was a cylinder or in the shape of a unique structure, such as a radiator [74]. 168 

Examples of objects and shape can be found in Figure 1. 169 

  170 
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 171 

 

Film – Cylinder 
 

Tablet - Cylinder  

 

Tablet – 

Discorectangular 

Cylinder  

 

Tablet - Caplet 

 

Tablet – Radiator  
 

Tablet – Cuboid  

  

Device - Ring 

 

 

Device - Torus 

 

 

 

Device – Y-Shaped 

 

 

Device – Helix 

 

 

Other – Sphere 

with hole  

 

Other – Cylinder 

with Cone Tip  

Figure 1. Examples of some 3D designs of objects and shapes found in the literature (object – 172 

shape) 173 

 174 

Any 3D printed object consists of an external structure called shell that provides the 175 

shape to the object, and the internal structure called infill (Figure 2). The information about the 176 

percentage of infill of the 3D printed object was also recorded. The information related to the 177 

type of shell were represented through 3 options: “0” - no shell, “1” represented an object with 178 

lateral or top/bottom shell, and “2” represented an object with lateral and top/bottom shells. 179 

Cylindrical objects that were printed with 100% infill were consistently regarded as having 180 

both lateral and top/bottom shells, i.e. shell type 2. The formulations that contain multiple drugs 181 

or structures with different composition for the shell and the infill (e.g. 3D printed enteric 182 

coating) were not taken into account for the prediction of the dissolution profiles. 183 

 184 
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 185 

Figure 2. Schematic representation of (A) cylinder with different infill percentage (from 0% 186 

left to 100% right) and of (B) different shell type “0” represented “with no shell”, “1” 187 

represented “with lateral or top/bottom shell”, and “2” represented “with lateral and top/bottom 188 

shells”. The composition of the shell and the infill is the same in all the analysed formulation, 189 

the different colour is for visualization purposes. 190 

 191 

Shell thickness was extracted from the information from the articles or calculated by 192 

multiplying the thickness of the FDM extrudate by the number of shells for the lateral shell 193 

thickness; and multiplying the layer height by the number of shells for either the top or bottom 194 

shell thickness.  195 

The volume and surface area were calculated using the dimensions of the object, as 196 

reported in the respective articles, and basic geometric formulas. However, for objects with 197 

complicated structures, image processing techniques in MATLAB (version R2020a, 198 

MathWorks, USA) were used to estimate their volume and surface area. Briefly, the images 199 

were first binarized according to their colour, which allowed the image of the drug product to 200 

be separated from the background. By calculating the area of the segmented image, it was 201 

possible to determine the surface area, volume and surface area to volume.  202 

 203 

(A) 

(B) 

Type 0 

(no shell) 

0% infill                                                                                                                    100% infill                                                

Type 2 

(lateral and top/bottom shell) 

Type 1 

(lateral or top/bottom shell) 
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2.2.6 Drug Solubility 204 

Drug solubility values in water were obtained from the relevant supplier datasheets or from 205 

reported literature. The parameter called weighted drug solubility was calculated using the drug 206 

solubility of the drug multiplied by the percentage of drug in each formulation.  207 

 208 

2.2.7 Dissolution Test 209 

The dissolution profiles reported in previous studies varied in scale, whereby different studies 210 

measured the drug release to different time points. Instead, the time taken to reach 20% (T20), 211 

50% (T50) and 80% (T80) drug release were recorded to ensure a consistent and complete 212 

feature was created. As most articles reported results from drug release studies in the form of 213 

graphs, an online software named Digitizer (version 4.3, Ankit Rohatgi, USA) was used to 214 

determine the time at the relevant percentage drug release. Each dissolution figure was 215 

uploaded to the software, which was able to determine the time points by defining the axes. 216 

For sustained release formulations where the dissolution test did not reach a specific percentage 217 

the time was omitted from the dataset. Other dissolution features included; volume and pH of 218 

the dissolution media, type of dissolution apparatus and its speed. The pH of the dissolution 219 

media was recorded in the dataset as “acid” for tests conducted in stomach pH-simulating 220 

media (taken as media less than pH 4.5) and “basic” intestinal pH-simulating media (taken as 221 

media more than pH 4.5). The rationale for choosing pH 4.5 as the threshold between the two 222 

types of media is based on gastric pH typically ranging from 1.5 to 4.5. The dissolution studies 223 

performed partially in acid media and then in basic media were recorded as “mixed” pH.  224 

 225 

2.2.8 General considerations  226 

Information fields that were relevant but were not reported in the article were represented using 227 

“y”. Examples of such information include extrusion torque if the filament was extrudable, and 228 

dissolution time if the 3D object was printable but not evaluated in dissolution tests. The 229 

notation “x” was used to represent information when downstream processes were not 230 

applicable, e.g. printing speed and temperature were marked “x” when the filament was not 231 

extrudable. 232 

 233 

2.3 Predicted target variables 234 

The key parameters that the study aimed to predict were the extrusion temperature, filament 235 

mechanical characteristics, printing temperature, printability, and T20, T50 and T80 (Table 2). 236 

These are referred to as targeted variables.  237 
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 238 

Table 2. Summary of the predicted targeted variables 

Targeted variables Values Analysis Type 

Extrusion temperature HME temperature (ºC) Regression 

Filament mechanical 

characteristics 

Unextrudable, Flexible, 

Good or Brittle 
Multi-classification 

Printing temperature Printing temperature (ºC) Regression 

Printability Yes or No Binary Classification 

Dissolution time (T20, T50 

and T80) 

Time (min) Regression 

 239 

Regression analyses were used to predict the HME temperature, FDM printing 240 

temperature and dissolution time, since these target variables were continuous numerical 241 

values. Classification analyses were performed to predict the filament mechanical 242 

characteristics and printability [71], since these target variables are categorical. The labels used 243 

for filament mechanical behaviour were either ‘Good’, ‘Brittle’, ‘Flexible’ or ‘Unextrudable’ 244 

based on the comments found in the reported studies. The definition of ‘Good’, ‘Flexible’, 245 

‘Brittle’ and ‘Unextrudable’ can be found in a previous publication [71]. Printability was 246 

classified as either ‘Yes’ or ‘No’ to indicate whether the filament was printable via FDM, given 247 

the selected printing parameters. The drug release results reported in the studies varied in scale 248 

because different studies measured the drug release at different time points. For dissolution 249 

prediction, the time in minutes taken to reach 20% (T20), 50% (T50) and 80% (T80) drug 250 

release were recorded to ensure the feature was consistent.  251 

 252 

2.4 Feature set selection and creation 253 

Five feature sets used herein were material, material name, material type, physical properties 254 

and physical properties per material type. The feature sets were created similarly to those 255 

previously reported [71]. Briefly, material refers to the individual excipient or drug, respective 256 

of supplier, and uses the weight fraction of the material as input. Material name is the same as 257 

material, but materials from different suppliers were grouped together (Figure 3). The feature 258 

set material type groups materials by their chemical structure, whereas physical properties uses 259 

the weighted glass transition temperature, melting temperature and molecular weight as inputs. 260 

The final feature set is a combination of physical properties and material type, where the 261 

materials are grouped by their chemical structures and the input is the weighted physical 262 

properties. Schematics illustrating the creation of the feature sets are presented in Figure 3. 263 
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  264 

Figure 3. Schematic illustrating how materials from the formulations were classified in the 265 

different feature sets: material, material name, material type, physical properties and physical 266 

properties per material type. 267 

 268 

2.5 Data analysis - Machine learning (ML) techniques 269 

A standard PC (running on Operative system: Debian 5.4.19-1 x86_64) was used for the data 270 

analysis and the development of the algorithms described below (Processor: Intel® Xeon® 271 

CPU E5620 (2.40 GHz), RAM Memory: 32 GB). 272 

Five different ML techniques were used in this study for classification tasks, which were 273 

support vector machines (SVM), random forests (RF), artificial neural networks (ANN), K-274 

nearest neighbors (KNN) and logistic regression (LR). Different ML techniques were used 275 

since each ML technique has its own learning characteristics. Three different ML techniques 276 

were used for regression task, which were SVM, RF and ANN. Multi-linear regression and 277 

KNN were unable to result in meaningful predictions, and hence the results are not included in 278 

this study for regression analyses. Brief explanations of each ML technique can be found in a 279 

Formulation 

composition 
Feature sets Data sets 
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previous study [71]. The ML techniques were developed using python 3.7 (Python Software 280 

Foundation), using the Scikit-Learn package (scikit-learn package, v0.21.3). A 75:25 split was 281 

used for training and testing the ML techniques.  282 

For developing models to predict the dissolution time the original five feature sets 283 

(Figure 3) were used, however additional features were taken into account (Table 1, sections 284 

3D printed formulation, Dissolution test, Drug solubility). These features (e.g. surface area, 285 

weight, infill, pH of the media) were included since they could affect the drug dissolution 286 

results and could be considered dissolution-related data. 287 

 Predicting the dissolution profile was more demanding than, for example, predicting 288 

printability or printing temperature. This was because not every literature mined 3D printed 289 

formulation contained dissolution data, and hence the results had to be discarded prior to 290 

performing ML. Additionally some articles may report some features (e.g. weight of the 291 

formulation) but not others (e.g. infill or shell thickness), whereas ML techniques need to be 292 

fed with complete dataset, without missing values. The more data fed into the ML algorithms 293 

the greater their performance would be, but due to the missing values in some features, feeding 294 

the algorithms with all the dissolution related features would reduce the number of rows 295 

(formulations). For example, if weight, shape, pH and dissolution speed were included and 296 

then any row containing any null values were removed, which resulted in a 351 formulations 297 

dataset; if infill, weight and dissolution speed were selected, then this resulted in 336 298 

formulations. Generally, it was observed that including more features resulted in a higher 299 

percentage of missing data, and hence the smaller the size of the data set and the number of 300 

formulations included (Figure 4). To avoid this situation, different combinations of input 301 

features were tested and compared in terms of the ML algorithms prediction performance. 302 
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 303 

Figure 4. Diagram representing the dataset, used to illustrate the missingness of the data for 304 

each of the 968 formulations. Green indicates information was available in the literature, 305 

whereas white areas indicates the data was missing. 306 

 307 

In this study each possible combination of the 12 features that can affect drug dissolution 308 

were computed (shape, type of shell, surface area/volume, weight (mg), infill (%), infill type, 309 

pH of the dissolution media (pH), volume of dissolution media (ml), dissolution apparatus, 310 

dissolution speed (RPM), drug solubility (mg/L), weighted solubility). This led to a to 2 to the 311 

power of 12 (212 = 4096) combinations of features that were merged with the 5 feature sets that 312 

take in to account the composition of the formulations (Figure 3). We disregarded those 313 

datasets that lost more than the 40% of the original formulations and used the rest for training 314 

a ML model for each algorithm (RF, SVM and ANN). This led us to consider a total of (212) × 315 

5 × 3 different ML experiments. Additionally, each experiment was tested in 50-fold random-316 

split cross validation to avoid the negative impact of outliers (Figure S1). The dissolution data 317 

is spread on a considerably large scale (e.g. T20 could be either 5 min or 2000 min), where the 318 

effect of randomly splitting the data into training and testing had a pronounced effect on the 319 

results and an undesirable impact in the metrics. The ML pipeline for predicting the dissolution 320 

times is detailed and illustrated in the supplementary document (Figure S1). Categorical values 321 

(e.g. print shape) were label encoded, and numerical values (e.g. surface area, dissolution time) 322 
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with large ranges were quantile transformed. Label encoding is one means of vectorising 323 

categorical data. Using shape features as an example, cylinder, caplets and capsules were 324 

represented as 0, 1 and 2, respectively.  325 

 326 

2.6 Data evaluation 327 

Different metrics were used for scoring the accuracy of the ML techniques, as no single metric 328 

conveys a complete picture of a model’s performance. A brief explanation of each metric can 329 

be found in our previous study [71]. For classification analyses, five classification metrics were 330 

used; accuracy, Cohen’s kappa, precision, recall, and F1. For the processing temperature and 331 

dissolution time predictions, two regression metrics were used: the mean absolute error 332 

(MAE), and the coefficient of determination (R2).  333 

An additional metric that we called RADOC (Real Area Difference Of Curves) was 334 

developed for predicting the dissolution times. The metric is used to compare two "curves", in 335 

a two-dimensional space, formed by the two series of points (the experimental and the 336 

predicted points) respectively connected by straight lines. RADOC computes the area 337 

corresponding to the absolute difference between those two curves (Figure S2 (A)). The smaller 338 

this difference area, the more similar the shape of the two curves will be, leading to a more 339 

fine-grained measure of the dissolution dynamics. That difference area is then relativized 340 

against the area under the real curve (Figure S2 (B) and (C)) (leading to a [0%, ∞%] error 341 

range), which helped us to also address the scale problem. 342 

 343 

3 Results and Discussion 344 

3.1 Exploratory data analysis 345 

A total of 968 formulations were literature mined from 114 articles, and only formulations 346 

incorporating drugs were added to the database. Information relating to the starting materials, 347 

HME process, 3DP and drug dissolution was obtained, which were identified as having a 348 

potential effect on the fabrication workflow and drug release profile. Figure 4 illustrates the 349 

distribution of the data collected. During the data collection stage, it was clear that there was a 350 

lack of data in some of the selected parameters, which could be a potential problem for the 351 

machine learning (ML) algorithms. It is worth mentioning that only 57.02% of FDM articles 352 

reported the drug dissolution profile of their printed product. 353 
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In total, 411 excipients and drugs were recorded from 121 different suppliers. Grouping 354 

similar materials together, irrespective of supplier, resulted in a total of 254 materials, 355 

presented as packed bubble diagrams in Figure 5, where it is evident that a large number of 356 

excipients had been used. Figure 5 (B) presents the materials when grouped by similar chemical 357 

structure. From both analyses, it appears that materials were used evenly, displaying equal 358 

distribution. The most widely used excipient type was acrylics, which was used slightly more 359 

used than HPMC and PVA. Similarly, the most used drug was theophylline, which was  360 

marginally more used than paracetamol.  361 

 362 

 363 

Figure 5. Packed bubble diagrams to illustrate the distribution of (A) individual materials used 364 

and (B) material types. 365 

Four different physical properties pertaining to each material were recorded in the 366 

present study. The glass transition temperatures (Tg) of the individual materials ranged from -367 

107.65 to 1201.85ºC, with the majority possessing a Tg below 200 ºC (Figure 6 (A)). The 368 

melting temperatures (Tm) of the materials ranged from -76 ºC to 1,974 ºC, with the majority 369 

of materials possessing Tm values below 400 ºC (Figure 6 (B)). The small number of outliers 370 

with high Tm and Tg values correspond to inorganic fillers, such as titanium dioxide and barium 371 

sulphate. The molecular weight of materials ranged from 58.4 to 7,000,000 g/mol (Figure 372 

6(C)). Drug solubility is also a determinant of the dissolution behaviour, and the value for each 373 

formulation was recorded, ranging from 0.0004 to 2,450 mg/L (Figure 6 (D)).   374 

 375 
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 376 

 377 

Figure 6. Box plot-histogram depicting the distribution of (A) glass transition temperature, (B) 378 

melting temperature, (C) molecular weight and (D) drug solubility of the formulation. 379 

Exploratory data analysis of the outcome of HME revealed that 84.6% of the filaments 380 

reported in the literature were identified as ‘Good’ with respect to filament characteristics 381 

(Figure 7). These values are likely to be positively skewed, due to bias reporting wherein 382 

researchers are incentivised to only publish positive results. As illustrated by the Sankey 383 

diagram in Figure 7, the majority of ‘Good’ filaments were printable. Conversely, filaments 384 

exhibiting either ‘Flexible’ or ‘Brittle’ characteristics were found to mainly yield unprintable 385 

formulations. Nevertheless, the majority of the 968 formulations reported in the literature were 386 

printable (85.74%), which highlight again that most of the articles only report positive results. 387 

 388 
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 389 

Figure 7. Sankey diagram depicting the flow of literature-mined formulations across three 390 

different features.  391 

The extrusion temperatures used in HME ranged from 22 to 210 ºC, with a mean of 132 392 

ºC (Figure 8 (A)). Twenty-four extruder brands were used to prepare filaments, with the 393 

Thermo Scientific Process 11 filament extruder and the HAAKE MiniCTW found to be the 394 

most used. Extrusion speeds ranged from 5 to 200 rpm. Values of torque during extrusion were 395 

reported in some articles but, due to low levels of reporting, this feature was not further 396 

analysed. The printing temperatures used in FDM 3DP ranged from 53 to 240 ºC, with a mean 397 

of 174 ºC (Figure 8 (B)). As evidenced by the box-plot, there are a notably larger number of 398 

outliers in the printing temperature compared to the HME temperatures. Outliers due to 399 

incorrect information can negatively impact modelling performance since the ML techniques 400 

will be making predictions based on incorrect relationships. However, these outliers, although 401 

statistically determined as outliers by the box-plot, were in fact correct values. These outliers 402 

reflect that, despite being a relatively high-temperature fabrication process (> 100 °C), a small 403 

number of studies have investigated whether certain formulations can be printed at lower 404 

temperature. Keeping the outliers in the dataset provides the potential to develop a modelling 405 

technique for low-temperature FDM processing, which will benefit researchers investigating 406 

thermally labile drugs.  407 

The platform temperature is also an important feature because it can affect the 408 

adherence of the formulations to the build plate while printing. These values ranged from 16 409 

to 115 ºC, with a mean of 41 ºC, although in 47% studies the temperature was not controlled, 410 

and hence the value was room temperature. A total of thirty different types of printer brands 411 

were used in the studies, with Makerbot Replicator 2X and Prusa i3 3D desktop printer being 412 
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the most commonly used, and with nozzle diameters ranging from 0.2 to 0.5 mm (mode 0.4 413 

mm). Values of Printing Speed ranged from 0.5 to 500 mm/s, with a mode of 90 mm/s. 414 

 415 

 416 

Figure 8. Box plot-histogram plots depicting the distribution of (A) extrusion and (B) printing 417 

temperatures recorded in the dataset. 418 

Regarding the 3D printed objects, FDM 3DP can be used to fabricate a range of items, 419 

however the majority of objects printed were oral formulations that were encoded as “tablets”, 420 

with a comparatively smaller proportion of “films” and “devices” printed (Figure 9 (A)). 421 

Although 3DP can print complex geometries, most of the literature has focused on developing 422 

cylinders, capsules and caplets (Figure 9 (B)). Overall, a total of 38 different shapes were 423 

recorded, with the most common shape printed being a cylinder (48.03%), followed by caplets 424 

(6.98%) and elliptical cylinder (4.65%).  425 
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Figure 9. Pie charts, box plot-histograms and bar charts illustrating the proportion of (A) 427 

objects and (B) shapes printed, (C) surface area, (D) surface area to volume ratio, (E) weight, 428 

(F) type of shell, (G) infill and (H) infill type. 429 

 430 

Other physical characteristics of the 3D printed objects that could be relevant due to 431 

their potential effect on the drug release from the formulation were collected and analysed 432 

(Figure 9). The dimension of the objects (length, width, diameter, depth) were collected and 433 

were used to derive features like volume (ranged from 10.6 mm3 to 1658.8 mm3, with a mean 434 

of 332.8 mm3), surface area (ranged from 26.6 to 4350.4 mm2, with a mean of 384.8 mm2), and 435 

surface area to volume ratio (ranged from 0.5 to 10.4, with a mean of 1.5) (Figure 9).   436 

The weight of the printed object ranged from 30 to 3200 mg, with a mean of 308.5 mg 437 

and the layer thickness ranged from 0.05 to 0.5 mm, with a mean of 0.18 mm. Most of these 438 

objects (65.2 %) were printed with including lateral and top/bottom shells (Figure 9). Only 439 

12.5 % of the objects did not include any external shell. The thickness of top/bottom shells 440 

ranged from 0.05 to 2.4 mm with a mean of 0.4 mm, and thickness of the lateral shells ranged 441 

from 0.1 to 2.4 mm, with a mean of 0.7 mm. A wide range of infill percentages were used 442 

(from 0 to 100 %) with a mode of 100 %. Fourteen types of infills were used in the mined 443 

studies, with rectilinear and hexagonal infills being the most used. Due to the missing data, the 444 

feature infill type was not used for further analysis.  445 

Data mining the literature allowed the extraction of the dissolution behaviour of 3D 446 

printed formulations. The results revealed that 48.04% of the printable formulations were 447 

analysed for their drug releasing characteristics. The distribution of times taken for the 448 

formulation to reach 20%, 50% and 80% drug release are presented in Figure 10. The times 449 

spanned several orders of magnitude, ranging from 0.4 min to 46,123 min (32 days). This 450 

reflects the ability of FDM to be applied in a range of drug delivery systems capable of both 451 

immediate and extended-drug release. However, the data is positively skewed, highlighting 452 

that the majority of studies focused on release in the order of hours. Skewed data is known to 453 

negatively impact ML techniques, and hence the data will need to be transformed prior to 454 

modelling. Skewed data will result in ML techniques being trained on a disproportionately 455 

higher number of shorter dissolution times, and will be less likely to accurately predict times 456 

for larger dissolution times. Addressing this issue usually involves collecting more data to 457 

balance the distribution, which is not feasible since all the published results have already been 458 

collected. Alternatively, the majority class can be minimised to balance the distribution, but 459 
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this will come at the expense of a smaller dataset. Hence, in this instance, it is better to 460 

transform the data. The log transformed data highlights that when the data is transformed it 461 

results in a near-normally distributed data across several orders of magnitude (Figure 10 (B)). 462 

 463 

  464 

Figure 10. Histogram and boxplot depicting (A) the distribution of time taken to reach 20%, 465 

50% and 80% drug release and (B) the log transformed data. The log transformation clearly 466 

illustrates the distribution of dissolution times were recorded across several orders of 467 

magnitude. 468 

 469 

The values of other dissolution test parameters that could affect the drug dissolution 470 

rate were also collected and analysed. 45.2% of the formulations were tested in simulating 471 

intestinal pH condition using a “basic” dissolution media (pH media higher than pH 4.5), 472 

36.5% of tests were conducted in stomach pH-simulating conditions (pH media lower than pH 473 

4.5) and some studies (14.3%) evaluated the formulations first in acid and then in basic pH 474 

media, simulating the transit through the GI tract (Figure S3). Some studies (3.9%), especially 475 

for formulations made with materials that are pH dependent, e.g. enteric polymers, evaluated 476 

the drug release of the same formulations using acid and basic pH media. The volume of 477 

dissolution media ranged from 1 to 1000 mL, with a mode of 900 mL. The main type of 478 

dissolution apparatus used in those studies was USP type II, and the dissolution speeds ranged 479 

from 10 to 200 rpm, with a mode of 50 rpm (Figure S3). 480 

                       481 
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3.2 Predictability evaluation 482 

3.2.1 Predicting Filament Mechanical Characteristics 483 

ML techniques were used to predict the filament characteristics using the literature dataset. 484 

ANN obtained the highest accuracy of 91%, with the feature set Material Name (Figure 11 485 

(A)). Similarly, this feature obtained the highest kappa value of 0.49.  486 

For imbalanced datasets, using the accuracy as a metric to compare different datasets 487 

can be misleading, particularly if one dataset has a greater imbalance. For example, the 488 

literature-mined dataset contained 84.6% labelled as ‘Good’ for printability. If as prediction 489 

criterion, one blindly assigned all formulations as ‘Good’, then one would trivially obtain an 490 

accuracy of 84.6%. This high accuracy value may incorrectly seem a good result while, in 491 

reality, the trivial ML “algorithm” would not be learning any patterns as it would just be 492 

predicting the majority class for all formulations. Thus, despite the simplicity for calculating 493 

the accuracy, it is more informative to use a metric that factors in a baseline value, such as the 494 

kappa value. The kappa value factors in the probability of a chance agreement (i.e. random 495 

guessing), and measures the predictive performance of an ML technique compared to random 496 

guessing. Kappa values can be negative, indicating the ML technique performed worse than 497 

random guessing; 0, indicating a performance comparable to random guessing; or a positive 498 

value, indicating the performance was better than random guessing. From the results presented 499 

in Figure 11, it can be concluded that ML techniques are able to perform better than random 500 

guessing. There were some exception, primarily with using the Physical Properties feature set 501 

as input, where the kappa value was 0 for ANN, SVM and LR. Nevertheless, from a practical 502 

sense, and using the Material name feature set, ML will provide researchers with an enhanced 503 

accuracy in predicting the filament characteristics compared to random guessing. The precision 504 

and recall metrics are equally informative for 3DP researchers from a practical perspective. 505 

These metrics reveal how well a model is able to predict the positive class (‘Good’, in the 506 

current study).  507 
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  508 

 509 

Figure 11. Radar plot with the metrics result for the (A) filament mechanical characteristics 510 

and (B) printability. RF - random forests, SVM - support vector machines, LR - logistic 511 

regression, KNN - K-nearest neighbors, ANN - artificial neural networks. Please see Table S1 512 

& S2 for the specific values. 513 

 514 

3.2.2  Predicting printability 515 

The printability metrics for the literature are presented in Figure 11 (B). The feature set 516 

Material was found to produce the highest metrics, which were obtained using RF. The 517 

accuracy and kappa values were 93% and 0.56, respectively. The positive label was set to ‘Yes’ 518 

for precision and recall, since there is more interest in knowing if a filament will be printable. 519 

The precision and recall values were 82% and 83%, respectively. In a practical sense, the recall 520 

value suggests that for every ten formulations, there will be 1.7 formulations that are printable 521 

but incorrectly predicted as unprintable by RF.   522 

 As previously mentioned, overall, the classification analyses revealed that the Material 523 

features set produced the highest metrics. This feature set possessed the largest number of 524 

features, a total of 411, and hence provided comparatively the most comprehensive information 525 

pertaining to the materials. Equally, the Physical Properties feature set comprised of only three 526 

features, which could explain why the lowest predictive accuracies were obtained with it. It 527 

should also be noted that more effective models could be developed if the dataset was more 528 
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balanced. However, the imbalance reflects the current state of academic publishing, which is 529 

to publish mainly the positive results.  530 

 531 

3.2.3  Predicting extrusion temperature 532 

The extrusion temperature is a parameter difficult to anticipate, especially without prior 533 

knowledge. The values are continuous, ranging from 20 to 220 °C, and thus a regression task 534 

was performed to predict the individual temperature values for each formulation. The metrics 535 

used were the coefficient of determination (R2) and the mean absolute error (MAE). R2 536 

measures the variance in the data between the actual temperature and the predicted temperature, 537 

with a perfect prediction resulted in an R2 of 1.00. For more practical usage, the MAE measures 538 

the absolute errors between the actual and predicted temperatures. The lower the error the more 539 

accurate the prediction, with a perfect prediction producing an MAE of 0 °C. MAE is more 540 

practical because a value, e.g. of 5 °C indicates that on average, the predicted temperature will 541 

deviate by ± 5 °C.  542 

 The optimal MAE and R2 were achieved with ANN; 5.18 °C and 0.90, respectively, 543 

again using the Material feature set (Figure 12 (A)). These results were an improvement over 544 

previous work, that used a smaller dataset [71], wherein the MAE and R2 were 10.8 °C and 545 

0.56, respectively. This was despite the present work possessing a wider temperature range, 546 

where a larger error would have been expected to account for the wider range. The increase in 547 

R2 clearly highlights the significant improvement in the predictive performance of the present 548 

study, suggesting that collecting data from the literature could be a suitable approach for 549 

predictions, and is even better than generating the data in house.  550 

 551 
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 552 

 553 

Figure 12. The R2 and MAE for the (A) extrusion and (B) printing temperatures for the 554 

different ML algorithms. RF - random forests, SVM - support vector machines, ANN - 555 

artificial neural networks 556 

 557 

3.2.4  Predicting printing temperature 558 

The printing temperature is an important variable that affects the printability of a formulation 559 

but predicting its value is a time-consuming approach without prior knowledge. Similar to 560 

HME, the incorrect temperature can result in nozzle blockage if the temperature is too low, or 561 

blockage caused by degradation of the polymer and the drug if the temperature is too high. To 562 

date, there is no rule-of-thumb or an established model for pre-determining the printing 563 

temperature, other than the assumption that the printing temperature should be higher than the 564 

extrusion temperature in the HME. The optimal MAE and R2 were obtained by RF, which were 565 

6.87 °C and 0.86, respectively, using the Physical Properties per Material Type feature set 566 

(Figure 12 (B)). The MAE and the R2 values were better than the values in the previous study 567 

(8.3 ºC and 0.83, respectively) [71], where all the data was obtained using the same FDM 3D 568 

printer brand and generated in-house. These new results were remarkable, indicating that 569 
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printing temperature data obtained from the literature, published by many different research 570 

groups using many different FDM printer models, were comparable or even better at predicting 571 

printing temperature. Nevertheless, the MAE infers that using the literature-mined data can 572 

yield an accuracy of ± 6.87 °C, which is a narrow range considering that the printing 573 

temperatures attempted to date vary from 40 to 260 ºC. 574 

  575 

3.2.5 Predicting Dissolution Behaviour 576 

The drug dissolution behaviour of the formulations is affected by more than just the material 577 

components of the delivery system. The drug dissolution is influenced by design parameters of 578 

the formulation, such as weight and surface area-to-volume ratio [8, 48], drug solubility [75]; 579 

and the dissolution conditions, such as media pH and volume. The physical characteristics of 580 

the 3D printed object, the conditions of the dissolution test and the solubility of the drug were 581 

therefore used as inputs for each one of the feature configurations. Hence, developing a 582 

predictive model requires additional inputs to those used for modelling printability. The 583 

complete list of input variables that could affect drug dissolution profiles are detailed in Table 584 

1. 585 

 The analysis began by incorporating the new added features and finding the best 586 

configuration of features to obtain the highest predictive performance. The best configurations 587 

were selected based on a new metric used herein, which is referred to as RADOC, due to the 588 

shortcomings of the other metrics. The pragmatism of MAE is useful since the units for this 589 

metric are the same as the data under analysis. The MAE is a scale-dependent metric that 590 

requires the data, including during the training-test partition, to be on the same scale. However, 591 

this was not the case for predicting the dissolution time, where some partitioning exhibited 592 

longer dissolution times. Due to the scale difference between T20, T50 and T80, relative 593 

metrics such as R2 or the mean absolute percentage error (MAPE) are more suitable for this 594 

task. However, although a high score in those metrics would normally mean the evolution of 595 

both profiles is also similar, this is not the case when having only three points (T20, T50 and 596 

T80). To address this problem, when selecting the best model, the RADOC metric was used. 597 

RADOC is both scale-free and capable of capturing the evolution of the graphs, and hence is 598 

suitable for predicting the dissolution times (Figure S2). RADOC compares the relative 599 

difference between the area under the curve for both the actual and predicted curves, where the 600 

smaller the value the smaller the deviation between the two curves. This helped to determine 601 

which configuration provided the best predictive performance. The training-test split 602 
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partitioning was performed 50 times using different random splits. This was due to the 603 

incompleteness of data, whereby certain formulations would be missing values for particular 604 

features (Figure 4). As a result, the same random split could not be achieved for each 605 

configuration, which made it difficult to determine the true optimal configuration. Performing 606 

the analysis 50 times with varying random splits provided a more holistic determination of the 607 

optimal configuration. Again, the RADOC metric proved to be useful when comparing the 608 

optimal configuration due to the variability in random splitting.  609 

The features that were the most occurring in the best 100 analyses, in terms of 610 

producing the lowest RADOC value, are presented in Figure 13. The main features used in the 611 

best analyses were, in descending order, Surface area-to-volume ratio, pH, infill, shape, 612 

weighted drug solubility, shell type, drug solubility and weight. The mean RADOC for the best 613 

100 analyses was 48.01 and a standard deviation of 12.37. 614 

  615 

Figure 13. Histogram depicting the feature importance. The count number indicates the number 616 

of times a feature was used in the best 100 analysis.  617 

 618 

The feature surface area-to-volume ratio was identified as the most important feature 619 

and was used in more than 80 of the best predictions. The feature was already identified as a 620 

relevant parameter to control dissolution of 3D printed formulations in one of the first studies 621 
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in 2015 [48]. This feature is also related to the shape of the 3D printed object that was also 622 

identified as a relevant feature, used in more than 60 on the best 100 predictions. 623 

The pH of the media is the second most relevant parameter that needs to be controlled 624 

when performing the dissolution test. The pH is not a characteristic of the 3DP formulation but 625 

the dissolution media. The pH is included in more than 65 of the best 100 predictions. It is 626 

important because some materials used to prepare 3D printer medicines show different 627 

properties or solubility in different pH. The best example of this is the enteric polymers that do 628 

not dissolve at pH acid (lower than 4.5) but disintegrate/dissolve when the pH is close to 5. 629 

Dissolution studies performed in acidic media are typically for immediate release formulations, 630 

so the selection of the pH of the media is partially linked to the type of formulations that are 631 

evaluated in the dissolution test too. 632 

The infill percentage of the formulations is the third most important feature and was 633 

also identified as a relevant in previous studies [76, 77]. Higher infill percentage is associated 634 

with longer dissolution times. Other important features are solubility and weighted solubility 635 

of the drug used in 45 and 35 of the 100 best predictions, respectively. Higher solubility of the 636 

drug leads to faster dissolution. The shell type is a feature that affect the dissolution and it is 637 

related to the surface area-to-volume ratio feature; formulations without external shells tend to 638 

release the drug faster due to easier penetration of dissolution media to the inner part of the 639 

formulations. Moreover, the weight of the formulations also affects the dissolution process, 640 

and in some cases higher weight leads to longer dissolution times. 641 

The incorporation of the additional feature inputs resulted in a good predictive 642 

performance. The results from the 50-fold random split, for each feature set and algorithms are 643 

presented in Figure 14. It was evident that the selected random split and configuration can 644 

affect the predictive performance of the MLTs. For example, if the test split contained higher 645 

dissolution times, then this was found to increase the error rate. The best prediction was 646 

obtained by an ANN algorithm that used the material feature set combined with the surface 647 

area-to-volume ratio, volume dissolution media, weighted solubility shape and pH of the media 648 

as additional input features. Although each of the inputs gathered in (Table 1) were considered 649 

important variables by the authors of this study prior to the ML analyses, they were not all used 650 

by the ML algorithms. The ANN algorithm achieved an MAE of 24.29 minutes and a R2 of 651 

0.86 in the test set, which means that on average it is able to predict the dissolution times (T20, 652 

T50 and T80) of a formulation with an error of ± 24.29 minutes. This is remarkable considering 653 

that some of the dissolution tests run for days.  654 
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 655 

Figure 14. R2 and mean absolute error results of the 50-fold random split for each of the MLTs, 656 

and across the different feature sets for predicting drug dissolution profiles. The results 657 

demonstrate that the random split can affect the results of the MLTs, due to the wide range in 658 

dissolution times. RF - random forests, SVM - support vector machines, ANN - artificial neural 659 

networks. 660 

 661 

Figure 15 illustrate the prediction vs actual results from the best performing model. The 662 

MAE is an average of the absolute errors and thus influenced by large errors which, as 663 

expected, were obtained from sustained release data. This was evidenced when examining both 664 

the scatter plot and residual plot (Figure 15(A & B)). The residual plot (Figure 15 (B)) revealed 665 

a common trend, whereby an increase in residuals is observed as the actual dissolution time 666 

increases, with the exception of a few anomalies. Figure 15 (C-E) presents examples of three 667 
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different release studies, illustrating that ML techniques were able to produce accurate 668 

simulations of the released drug, thereby confirming the models suitability for both immediate 669 

and sustained release. Figure 15 (C-E) also demonstrated that the ML techniques were able to 670 

learn the trajectory of the dissolution profile insofar as learning that the concentration of drug 671 

release increases over time. A benefit of ML is that multiple predictions can be made from the 672 

same data point (i.e. formulation). This was leveraged in the present study by investigating 673 

whether the three time points could be predicted simultaneously, rather than developing 674 

separate models for each time point, which is a faster approach to model development. This 675 

feature was not coded into the ML techniques, and hence all three ML techniques were able to 676 

independently learn the graph trajectory.  677 

 678 

 679 

 680 

Figure 15. (A) Scatter plot illustrating the actual vs. predicted scatter plots, and (B) the 681 

corresponding residual plot of the best performing ML technique. (C-E) Are three 682 

representative actual vs predicted dissolution profiles, across three different time scales (8, 60 683 

and 850 min).  684 
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 685 

 The predictive performance of the ML strategy applied herein were considered 686 

satisfactory. Considering that dissolution studies are performed from days to weeks, an MAE 687 

in the order of minutes will indeed prove to be an asset to researchers. Previous work using 688 

ML to predict the dissolution profile of 3D printed products has demonstrated that high 689 

accuracies can be attained using ML [78, 79]. However, a current limitation of the previous 690 

work for predicting dissolution profiles was that the formulations were developed in-house and 691 

limited to one drug. In contrast, the model developed herein offers prediction to a larger 692 

material pool. Moreover, the information was gathered from different researchers, making it 693 

less susceptible to bias and thus providing greater generalisability for making new predictions. 694 

 695 

3.2.6 General consideration 696 

This study integrated data from articles published by researchers all over the world, with 697 

different materials, methodologies and objectives, which produced ML models that were 698 

successfully able to generalize for predicting the targeted variables (extrusion temperature, 699 

filament mechanical characteristics, printing temperature, printability and drug dissolution 700 

performance). Even though the same MLTs were used as in the previous study, higher 701 

predictive performances were obtained in this study, particularly with the HME and FDM 702 

temperatures [71]. This was expected as the current study consisted of more formulations. It is 703 

also worth acknowledging that in the previous study it took six years to achieve an in-house 704 

dataset of 614 formulations, whereas in the same time period 968 formulations were published 705 

– an increase of 58% in data – highlighting the fast data generation nature of literature mining. 706 

While the data used in the previous study was very straightforward to use, it was somewhat 707 

limited, since the data was obtained from the same laboratory and using the same equipment, 708 

work methodology and objectives.  709 

Although the findings of the present study provided additional benefits to the previous 710 

study in modelling key aspects of the 3DP workflow [71], the integration of the literature-711 

mined data presented several challenges. One salient disadvantage is that the data is not 712 

structured and hence it is not machine-learning compatible, requiring an exhaustive and time-713 

consuming pre-processing step to collect and structure the data. For example, for unifying 714 

dissolution time in different scales (immediate release, long-term release, etc), the authors had 715 

to collect the data as “time to reach a certain percentage of release” rather than “percentage of 716 

drug released after a certain time”.  717 
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The literature data is biased towards positive results which may have reduced the 718 

learning performance of the ML techniques in predicting printability. Most researchers only 719 

publish the good results in their studies. Even though there are some unsuccessful formulations 720 

in the articles, the information is limited. As a result, most information about the filament 721 

aspect and printability is positive, which causes a deficiency of negative examples and this is 722 

not ideal for training ML algorithms, as they tend to learn the majority class. In addition, part 723 

of the data in this study was estimated by using relevant software. Although estimation is a 724 

common data generation technique, it may have contributed and additional error in some of the 725 

data, and consequently may have reduced the accuracy of the prediction.  726 

Finally, different articles missed different features when presenting data. For the ML 727 

algorithms to work, rows containing null values (i.e. missing) must be removed from both 728 

training and test sets, which is known to negatively impact the accuracy of ML algorithms due 729 

to fewer learning instances. In addition, removing these null values forced additional pre-730 

processing workload to the ML pipeline. If the literature data was more complete then a simpler 731 

pre-processing methodology could have been used, and potentially better results could be 732 

achieved for drug dissolution prediction. To assist in developing more effective ML models, 733 

the authors of this study encourage other authors in the field to publish complete data including 734 

both positive and negative results. All the articles should provide the sufficient information 735 

even if the data may not be relevant for the specific aim of the study. Ideally, standards on 736 

which data and how it should be reported would avoid some of the problems encountered in 737 

this study regarding missing information. The minimum parameters that we consider should 738 

be published are included in Table 1, although additional data could be useful for future studies. 739 

The features selected herein are known determinants of the target variables. The research in 740 

3DP of pharmaceuticals remains nascent, and as the research develops more information will 741 

come to light. This could potentially lead to an improved feature selection, enabling ML 742 

techniques to attain a higher accuracy. 743 

Current ML algorithms have the potential to overcome some of the challenges that the 744 

field of 3DP of pharmaceuticals faces, including the optimization of the fabrication parameters, 745 

reducing the inefficient empirical trial approach, and the requirements of expert knowledge. 746 

The performance of the AI tools is expected to drastically improve in the following years, 747 

however, one of the main needs of these algorithms to exploit its full potential is Big Data, 748 

which means having data with several orders of magnitude of cardinality bigger than the data 749 

set used for this study. While in other fields ML is applied to massive amounts of automatically 750 
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generated historical data, the application of ML to 3DP of medicines is based on experimental 751 

data. This data requires big investment in time and resources as well as human intervention to 752 

be generated and reviewed. The optimal amount of data will only be achieved via an open 753 

sharing and collaboration-based program. Even if one institution or company were capable of 754 

reaching a good amount of data alone, data from different sources would be preferable since it 755 

would produce less biased or unbalanced datasets, which subsequently will be more 756 

appropriate for training ML models. 757 

Considering the future trajectory of 3DP medicines, the ultimate goal will be to digitally 758 

simulate the entire 3DP workflow in an effort to move towards sustainable research, where 759 

both costs and material waste are minimised, as well as the time needed to realise the research 760 

hypothesis. In essence, the ML models developed could expedite developments in the field of 761 

3DP pharmaceuticals. In addition, digital simulations can offer insight that otherwise would be 762 

difficult to experimentally determine. The present study demonstrates that ML could be an 763 

effective component of such digital simulation by offering high predictive performance and in 764 

rapid time. Moreover, the low computational demands of ML mean that it can be deployed as 765 

a web-based software, or seamlessly integrated into other modelling tools similar to the 766 

M3DISEEN web-based service. The aim with ML will be to produce an end-to-end model that 767 

can simulate the entire 3DP workflow. 3DP and ML (and other AI tools) offer a unique 768 

opportunity to move the pharmaceutical development to the next level, and this will indeed 769 

depend on the availability of data and the quality thereof.  770 

4 Conclusion 771 

The study investigated the use of literature-mined data for developing artificial intelligence 772 

(AI) machine learning (ML) techniques models to predict key aspects of the 3D printing 773 

formulation pipeline. The analysis of the literature mined data revealed that positive results are 774 

overwhelmingly published, which consequently resulted in an imbalanced dataset for filament 775 

aspect and printability. Nevertheless, the ML techniques explored herein were able to learn and 776 

provide high predictive accuracies for the values of the filament hot melt extrusion processing 777 

temperature, filament aspect, printing temperature and printability. ML algorithms using data 778 

based on the composition of the formulations and additional input features that could influence 779 

drug release (e.g. surface area/volume, weight, infill percentage, pH and volume of dissolution 780 

media, drug solubility) were used to predict the drug release profile of FDM printed 781 

formulations. The best prediction was obtained by an ANN algorithm, which was able to 782 
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predict the dissolution times (T20, T50 and T80) of a formulation with an error of ±24.29 783 

minutes. Thus, it was concluded that data mined from the literature was an efficient approach 784 

to modelling 3D printing workflow. It was also concluded that a structured repository for 3DP 785 

data will greatly facilitate the creation of new knowledge via ML.  786 

 787 

 788 

  789 
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