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Abstract 
 
In this work, we develop a unified lattice Boltzmann model (ULBM) framework that can seamlessly integrate 
the widely used lattice Boltzmann collision operators, including the Bhatnagar-Gross-Krook (BGK) or single-
relation-time (SRT), multiple-relaxation-time (MRT), central-moment or cascaded lattice Boltzmann method 
(CLBM), and multiple entropic operators (KBC). Such a framework clarifies the relations among the existing 
models and greatly facilitates model comparison and development as well as coding. Importantly, any LB model 
or treatment constructed for a specific collision operator could be easily adopted by other operators. We 
demonstrate the flexibility and power of the ULBM framework through three multiphase flow problems: the 
rheology of an emulsion, splashing of a droplet on a liquid film, and dynamics of pool boiling. Further 
exploration of ULBM for a wide variety of phenomena would be both realistic and beneficial, making the lattice 
Boltzmann method (LBM) more accessible to non-specialists. 
 

1. Introduction 
 
The lattice Boltzmann method (LBM), derived from the general kinetic theory, has achieved remarkable success 
for numerical simulations of complex fluid flows and beyond [1–4]. The LBM solves the discrete Boltzmann 
equation for distribution functions, using a highly efficient collision-streaming two-step algorithm. The basic 
LBM formulation is designed to reproduce the incompressible Navier-Stokes (N-S) equations in the low-Mach 
limit, and more advanced models have been developed for compressible, multiphase, reactive, multiphysics 
flows [3–5]. As an emergent simulation method, a huge number of models and numerical treatments have been 
developed over the past three decades, without a unified formulation. 
      In terms of the LB collision operator, the Bhatnagar-Gross-Krook (BGK) or single-relaxation-time (SRT) 
model, in which all the distributiion functions relax to their local equilibria at an identical rate [6],  is the 
simplest. However, the simplicity of  the SRT operator comes at the expense of numerical instability with 
increasing Reynolds number and inaccuracy in dealing with non-slip boundary conditions [7,8]. An improved 
model is the multiple relaxation time (MRT) operator, whereby the distribution functions are first transformed 
to the raw moments and the collision step is executed in the moment space. Individual relaxation times could 
be  used for different moments or kinetic modes in MRT, leading to improved stability and more freedom to 
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achieve non-slip boundary conditions [8,9],  though MRT may be  associated with reduced accuracy for 
capturing interfacial dynamics [10]. The cascaded (or central-moment-based) lattice Boltzmann method (CLBM) 
employs central moments in a co-moving frame in contrast to the raw moments in the stationary frame used in 
MRT, which improves the numerical stability further [11,12]. In the so-called KBC model, entropic 
considerations are employed to alter the relaxation parameter for high-order central moments by splitting the 
contribution to each distribution function into the kinematic part, shear part, and high-order part [13,14]. Each 
more sophisticated operator offers some improved performance while the computational complexity is also 
enhanced. To reduce the computational cost, non-orthogonal rather than classical orthogonal basis vectors can 
be chosen in the moments-based (raw or central) collision operators [15–17]. However, the different relaxation 
operators/models have been proposed and developed separately and the relations among them have not been 
systematically clarified so far. As each operator has been employed in conjunction with different physical 
models for different types of physical problems, it is not always clear how to select the best combination of a 
collision operator and physical models for a specific physical problem. 
      Multiphase flows are ubiquitous in nature, biological systems and engineering applications, which typically 
involve nonlinear, nonequilibrium and multiscale phenomena. Their complexity and diversity are reflected in 
the large number of physical parameters that influence the multiphase flow behaviours over a wide range of 
conditions. The LBM has proven to be advantageous in simulating multiphase flows thanks to its mesoscopic 
nature derived from the kinetic theory [1–4]. Four main types of approaches have emerged since the 1990s: the 
color-gradient [18,19], phase-field [20,21], free-energy [22,23], and pseudopotential LBMs [24,25]. In particular, 
the pseudo-potential LBM allows (1) equation of state for non-ideal fluids; (2) non-zero surface tension; (3) 
natural phase transition; (4) interface formation, deformation, merging, and breakup. Moreover, all the above 
features are achieved at a minimum programming effort [12]. On the other hand, the original pseudopotential 
LBM [24,25] suffers from thermodynamic inconsistency, limited parameter ranges (e.g. liquid-to-gas density 
ratio < 10), density-ratio-dependent surface tension and large spurious currents. Much work has been conducted 
over the last two decades to overcome these limitations. Significant progress has been made in the following 
areas: (a) dramatically reduced spurious currents [10,24,25]; (b) high density ratio [10,26–28]; (c) density-
independent surface tension implementation [32,33]; (d) contact angle treatment [34,35]; and so on. These have 
been achieved through enhanced thermodynamic consistency, conformation to Galilean invariants, and 
consequently, improved forcing schemes [4]. It is clear that a large number of models and methods have been 
developed for multiphase flow, which can serve as an ideal testbed for developing a unified modelling 
framework.  
      In this work, we integrate all the above collision models into a unified lattice Boltzmann model (ULBM) 
framework and test it in benchmark cases of multiphase flows. We show that various advances in the LB models 
for multiphase flows can be straightforwardly incorporated into the present framework to enable simulation of 
complex multiphase problems with realistic parameters. The resulting ULBM framework brings several 
significant advantages: 1) the relations among different collision operators are clarified, 2) switching between 
different models within one computer code is straightforward to facilitate model comparison and selection, and 
3) any improved model constructed for one collision operator can be easily adopted by other operators. As a 
result, strengths in different LB  models can be integrated to create more powerful models, and new models can 
be rapidly exploited by different LB formulations and codes. The rest of the paper is organized as follows: 
Section II gives a detailed description of the ULBM framework. Section III showcases the power of  ULBM 
through multiphase/thermal flow simulations. Finally, discussions and conclusions are provided in Sec. IV. 
 

2. Model description  
 
The LBM solves a discrete Boltzmann equation for the distribution function ( , )if tx , designed to recover the 

macroscopic conservation laws in the macroscopic limit. The distribution function, ( , ) ( , , )i if t f t≡x x v = e , 
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denotes the probability of finding a particle at the spatial point x  and time t, with molecular velocity iv = e
[26]. The fluid particles reside in a regular lattice, collide locally and then stream from one lattice node to another 
along with the discrete velocity ie . This enables a simple and highly efficient “collision-streaming” LBM 
algorithm, and the streaming step is independent of the collision step: 

*( , ) ( , ),i if + t t f t∆ + ∆ =x x x (1) 

where i t∆ = ∆x e and t∆ are the lattice space and time steps, respectively. For ease of discussion, we first 

consider the D2Q9 lattice [6], and the discrete velocities ,i ix iye e =  e are defined as, 

[0,1,0, 1,0,1, 1, 1,1] ,

[0,0,1,0, 1,1,1, 1, 1] .
ix

iy

e

e

= − − −

= − − −




(2) 

where 0...8i = , · denotes a nine-dimensional column vector, and the superscript   is the transposition 

symbol. 
The key is the post-collision distribution function, *

if , which differs according to the collision model 
constructed. In this work, we show that all the afore-mentioned collision operators can be integrated into a 
framework of a unified lattice Boltzmann model (ULBM).  To construct the ULBM framework, we first define 
the raw and central moments of *

if , 
m n

mn i ix iyk f e e= , ( ) ( )m n
mn i ix x iy yk f e u e u= − − (3) 

where xu and yu are the velocity components in x and y directions, respectively. In the ULBM framework, the 

post-collision distribution function is expressed as: 

( ) ( ) ( ) ( )* 1 1, , ( ) , ,eq
i i i if t f t f t f t− −  = − − x x M N SNM x x (4) 

where the transformation matrix M  is used to transform the distribution function to its raw moments, eq
mnk and 

eq
mnk are defined accordingly by replacing if  with the discrete equilibrium distribution function eq

if in the 

above. The shift matrix N  converts the raw moments (in MRT) of the distribution function into central 
moments (in CLBM), and the relaxation matrix S  contains the relaxation rates for different moments.  

By default, the ULBM provides a concise implementation of CLBM. To this aim, a set of central moments need 

to be specified. As discussed in [11,15,36,37],  the zero-order moment 00k (density) and first-order moments 10k

and 01k  (momentum components) should be included due to mass and momentum conservations. The second-

order moments, 20 02k k+  (trace of the pressure tensor), 20 02k k−  (the normal stress difference), and 11k (the off-
diagonal component of the pressure tensor) are chosen such that the model allows correct representation of the 
kinematic and bulk viscosity terms in the hydrodynamic equations. With the high order linearly independent 
moments, the central moment set is given as: 

00 10 01 20 02 20 02 11 21 12 22, , , , , , ,,i ii fT T k k k k k k k k k k k= = + − =  N NM           



(5) 

where iT  is the corresponding raw moment set, 

[ ]00 10 01 20 02 20 02 11 21 12 22, , , , , , ,,iT k k k k k k k k k k k+ −= 
(6) 

The explicit formulation of N can be obtained according to the binomial expansion of each central moment by 
raw moments of that order and below. Therefore, the shift matrix N is a lower triangular matrix. Due to the 
symmetry, its inverse matrix 1−N is also lower triangular, with the only difference from N in that all the odd 
order velocity terms have opposite signs [17,38]. As discussed in [11,15,17,36,38], the equilibrium central 



4 
 
 

 
Phil. Trans. R. Soc. A.  
 
 
 

moments eq
iT  are defined as the continuous central moments of the Maxwell-Boltzmann distribution in the 

continuous velocity space, namely 
2 4,0,0, 2 ,0,0,0,0,eq

i s sT c cρ ρ ρ =  



(7) 

where ρ  is the fluid density and 1/ 3sc =  is the lattice sound speed. In such a case, eq
if  is a “general” local 

distribution. According to the relation eq
ifNM , it could be verified that the local distribution is a fourth-

order Hermite expansion of the Maxwell-Boltzmann distribution [39].  
Within the ULBM formulation, when N = I, a unity matrix, the ULBM degrades into an MRT operator, 

( ) ( ) ( ) ( )* 1, , ( ) , ,eq
i i i if t f t f t f t−  = − − x x M SM x x      (8) 

Remarkably, such an MRT is slightly different from the classical MRT model expressed by Lallemandal and Luo 
[8], where the raw moment set is chosen based on the orthogonal constraint of the moment basis vectors. 
Therefore, the transformation matrix M of Lallemandal and Luo is orthogonal while the present M  is non-
orthogonal and more concise. Thanks to such a choice, the resulting non-orthogonal MRT model retains the 
numerical accuracy and stability while reducing the computational cost compared with the classical orthogonal 
MRT model [15,40], especially for three-dimensional simulations [41,42]. For both CLBM and non-orthogonal 
MRT model, the relaxation matrix S  is diagonal, 2 2 2 3 3 4(1,1,1, , , , , , )bdiag s s s s s s=S , where 2s  and 2bs  are 

related to the kinematic viscosity, 2
2(1/ 0.5) ss c tν = − ∆ and bulk viscosity, 2

2(1/ 0.5)b b ss c tν = − ∆ , 
respectively. The high-order relaxation rates can be tuned to improve the numerical stability or enforce the 
nonslip wall boundary condition. 

Further, if (1/ )τ=S I , then the ULBM reduces to the classical SRT scheme [6], 

( ) ( ) ( ) ( )* 1, , , ,eq
i i i if t f t f t f t

τ
 = − − x x x x (9) 

with a fourth-order-Hermite-expansion eq
if  and 2

21/ / ( ) 0.5ss c tτ ν= = ∆ + .  
In this way, SRT, MRT, and CLBM schemes are unified [38]. The present ULBM formulation could be further 

enriched through the incorporation of the entropic stabilizing condition [10,38]: 

2 2 2 2 2 2(1,1,1, , , , , , )diag s s s s s sγ γ γ=S (10) 

where γ is the entropic stabilizer, 

2 2

1 1(1 ) /i i i i
eq eq

i ii i

s h h h
s s f f

γ ∆ ∆ ∆ ∆
= − − ∑ ∑ (11) 

where eq
i i is s s∆ = −  and eq

i i ih h h∆ = − represent the deviations from the equilibria for the shear part and high-

order part of the distribution function. Usually, the shear part means the second-order moments ( 20 02 11, ,k k k ), 
which could be explicitly obtained by: 

1 1
i ss T− −= M N  (12) 

where the shear part vector sT  is: 

20 202 110200,0,0, , , ,0,0,0sT k k k k k+ − =  
    




(13) 

Similarly, the high-order part of the distribution function can be calculated by 1 1
i hh T− −= M N  , where hT  

is the high-order part of the vector: 

21 12 220,0,0,0,0,0, , ,hT k k k =  
  




(14) 
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It could be proven that the above formulation is equivalent to a central moment based KBC model   [13,14]. 
When the shift matrix N is a unit matrix, it reduces to the raw moment based KBC [13,14]. Moreover, if all the 
parameters in the matrix S are set equal to 2sβ , with the entropic modification coefficient β  defined in Ref. 
[43], the present formulation could further reduce to the original ELBM. With the stabilizing effects of the 
entropic condition, KBC and ELBM show considerable improvements in numerical stability, with successful 
applications to multiphase flows [44–46]. 

Via the Chapman-Enskog analysis, the present ULBM reproduces the incompressible N-S equations in the 
low-Mach number limit, and the hydrodynamics variables are obtained as, 

,    .i i ii i
f fρ ρ= =∑ ∑u e (15) 

Although the above derivations are based on the D2Q9 lattice, the present ULBM framework is compatible with 
any discrete velocity models (DVMs). The central moment sets corresponding to different DVMs are given in 
TABLE I, while the three-dimensional central moments are defined as 

( ) ( ) ( )m n p
mnp i ix x iy y iy zk f e u e u e u= − − −  and the discrete velocities can be found in [5]. The raw moment 

set is specified for each DVM analogously. Remarkably, it is seen that the central (or raw) moment set for a sub-
lattce (e.g, D3Q19) is exactly a subset of the one on the full-lattice (D3Q27). As a result,  the transformation 
matrix and shift matrix ( M  and N ) and their inverses on a sub-lattice can be directly obtained from the ones 
on the full-lattice by extracting the corresponding rows and columns. Such a feature enables much better 
portability across different lattices compared with the orthogonal MRT models [8,47], and makes it much more 
convenient for users to implement simulations with different lattices and dimensions. 

In summary, the SRT, MRT, CLBM, and KBC models can all be unified within the ULBM framework and the 
relaxations among different collision models are given in TABLE II. Such a framework can incorporate any new 
developments in forcing schemes, surface tension models, contact angle treatments, boundary conditions, etc. 
to form a powerful and general LBM. Besides, any improved scheme for any LB collision operator can be ported 
to other operators within the ULBM framework to facilitate both model development and application. In TABLE 
II , we also present a comparison of the numerical stability among different models, by gradually increasing the 
Reynolds number to find the maximum achievable value maxRe  for simulating a 2D double periodic shear flow 

[48]. The grid is fixed at 128 128× , and the stability is determined by running the simulations up to 
/ 10t TU L= =  (T=25600 time steps). The Reynolds number is defined as Re /UL ν= , with the initial velocity 

magnitude 0.05U = . For MRT and CLBM, numerical stability depends on the choice of the tunable 
parameters. Here, we choose 2 1.6bs = , 3 1.2s = and 2 1.8bs = for both the models as used by Liu et al [40]. The 
results suggest that the numerical stability is in ascending order of SRT, MRT, CLBM and KBC for the present 
settings. We would like to stress that such a conclusion holds for the cases we have tested so far,  and a more 
comprehensive model performance (e.g. stability) assessment is needed in further work under the ULBM 
framework. 

In many fluid systems, the flow is driven by various external or internal forces, which need to be appropriately 
incorporated into the LB model. By including the discrete lattice effect and using the second-order integration 
of the change of the distributions (moments) due to the force field, we show a general forcing term can be added 
on the right-hand side of the ULBM formulation [Eq. (4)], namely [17,38],  

       ( ) ( ) ( ) ( )* 1 1 1 1, , ( ) , , ( / 2)eq
i i i i if t f t f t f t t R− − − − = − − + − ∆ x x N M SMN SIx x N M MN            (17) 

 where iR  is the discrete forcing term. iR is defined based on the principle that its discrete central moment 

should be equal to the continuous central moments of MR , 

2

( )M M

s

R f
cρ

− ⋅
=

u Fξ
(18) 
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where Mf is the Maxwellian in the continuous particle velocity space ξ  and F is the forcing field imposed on the 

system. The explicit formulation of iR  is actually a fourth-order Hermit expansion of MR , as discussed by 
Huang et al. [39]. Taking the CLBM with the D2Q9 lattice as an example, we have [38], 

2 2[0, , ,0,0,0, , ,0] .i i x y s y s xC R F F c F c F= =NM  (19)  

For other models with different lattices, the forcing term could also be defined based on the above principle. 
With the redefined post-collision distribution in Eq. (17), the momenta are then computed by, 

                                                                       / 2.i ii
tfρ += ∆∑u e F                                                                   (20) 

We name the forcing scheme under such a principle as the consistent forcing scheme, because the forcing term 
is reduced to the widely used scheme in MRT-LBM or SRT-LBM, respectively, when the relaxation model is 
reduced.  

To demonstrate the importance of incorporating a  consistent forcing scheme, it is instructive to compare the 
consistent forcing scheme with other schemes where this constraint is not satisfied. We conduct simulations of 
a single static droplet in a 2D periodic square by CLBM with the consistent forcing scheme ( pM ) and three 

representative schemes in the literature, denoted by 1M [36], 2M [15], and 3M [49], respectively. The original 
pseudopotential multiphase model is adopted, where the pseudopotential-based interaction force among fluid 
particles is incorporated by different forcing schemes. As shown in Figure 1, the droplet’s stationary shape 
simulated by the present forcing scheme almost remains circular ( 1.0I = ) when the third-order relation 
parameter 3s  is varied over a wide range. The droplet shape is measured by a deformation parameter 

/4 0/I R Rπ= , where the subscript denotes the angle between the  x-axis and the line along which the radius 

R is measured. For other three forcing schemes, the deformation parameter varies with 3s . Under certain 
conditions, an initial circular droplet deforms significantly to be a non-circular (even square) shape, as also 
demonstrated by the insets. The comparison reaffirms the necessity to impose the consistent constraint on the 
forcing scheme for the ULBM framework. 
 

3. Results 
 
In this section, we demonstrate the application of the ULBM framework to a variety of multiphase and/or 
thermal phenomena over a wide range of conditions.  Three different problems are considered here to highlight 
the flexibility and capability afforded by the ULBM framework: the rheology of an emulsion, splashing of a 
droplet on a liquid film, and dynamics of pool boiling. In response to the different values of the physical 
parameters involved (Reynolds number, density ratio, viscosity ratio, Rayleigh number, et al),  ULBM can 
selectively use the SRT-LBM, non-orthogonal MRT-LBM, and CLBM, respectively, to balance model 
performance and computational cost.  The insights gained would allow judicial choices of models that are best 
suited to future simulations, all within the ULBM framework. Moreover, the current limitations of existing 
models are analyzed and put in context. 
 
3.1 Simulations of emulsion rheology 
First, we consider a droplet emulsion system, which consists of dispersed droplets (component 1) in the 
continuous matrix (component 2). In the experiments [50], the dispersion is stabilized against full phase 
separation due to the presence of surfactants, which reduce the interfacial energy and prevent droplet 
coalescence. The microscopic mechanism of the stabilization effect of surfactants can be interpreted at the 
mesoscopic level using the concept of disjoining pressure from the theory of thin liquid films [51]. The disjoining 
pressure works as a repulsive force per unit area between approaching interfaces, induced by inter/intra-species 
interactions, and stabilizes the thin film. It could be conveniently incorporated into the mesoscale LB models 
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[52–55]. Within the multicomponent pseudopotential model, the key technique is the introduction of a 
competing mechanism between short-range attractive and mid-range repulsive interactions, within each 
component, as originally proposed by Benzi et al. [52,53]. For 2D cases, the competing interaction force is written 
as [52,53],  

8 24 22
,1 ,2

0 0
( ) ( ) ( ) ( ) ( ) ( ) ,c

k k k i k i i k k j k j j
i j

G w G pψ ψ ψ ψ
= =

= − + − +∑ ∑F x e x e e x e x e e (21) 

where ,1kG  and ,2kG are strength coefficients for the short-range (within D2Q9 lattice) and mid-range (up to 

D2Q25 lattice) interactions for the component k (=1,2), respectively. More details, such as the weights 2( )iw e

and 
2

( )jp e  and the pseudopotential for each component kψ  are described in [56]. The inter-species repulsive 

force between component 1 and 2 is defined as [24,25], 
8

2

0
( ) ( ) ,( )r

k k i i ikk k
k i

G wρ ρ
=

= − +∑ ∑F x e x e e (22) 

Incorporating the body force b
kF , the total force imposed on each species is c r b

k k k k= + +F F F F . Considering 
that droplet emulsions are usually used in micro-fluidic systems, with the flow mainly in the low-Reynolds 
number regime, we can select the SRT model within the ULBM framework. The collision step in the SRT model 
with the forcing term is given as [56], 

( ) ( ) ( ), ,
*
, , ,( ) ( ), 1 1, , , 1 ,

2
eq eq eq

k i kk i k i i kk k i
k

f t f ft f Rtt ρ ρ
τ τ

  = − − + −    
∆x x u ux (23) 

where equ  is the equilibrium velocity for the multi-component mixture [57]. Incorporating the total force into 
the forcing term ,k iR  [56], we have 

2
4, 2

( )( )
eq eq

i i
i kk i

s
i

s

w
c

R
c

− ⋅ 
= + ⋅ 

 

e u e ue e F (24) 

The present model is able to achieve a positive disjoining pressure, independent of the viscosity ratio between 
components 1 and 2. This enables the simulation of highly-packed droplet emulsions under pressure-driven 
flows [56,58]. 

The SRT LBM with the new forcing term is then employed to simulate the flow of a concentrated emulsion in 
a 2D tapered microfluidic channel. Consistent with the experimental condition, the taper has a half-angle of 5°  
with an extruder of a width of 30 µm, which allows up to tens of droplets to pass through, depending on the 
droplet radius [50]. The emulsion consists of highly-packed monodisperse water droplets suspended in a 
fluorinated oil, with a volume fraction up to 85%. In the experiments, a constant inflowing velocity was 
controlled in the inlet, and the emulsion flowed and settled well into a hexagonally packed crystal, as shown in 
Figure 2 (a). In the simulations, the emulsion is driven by a constant pressure-gradient (body force), and the key 
non-dimensional parameters (Reynolds number and Capillary number) are set equal to the experimental values. 
As a result, the present simulations can well reproduce the pattern in experiments, as seen in Figure 2 (b). The 
experiments revealed a very interesting spatial-temporal periodicity of dislocation dynamics, which was 
attributed to the regular T1 event in such an emulsion configuration. As presented in Figure 2 (c), the present 
simulations also capture the dynamic T1 event involving one pair of diverging droplets (marked by 2 and 4) 
and another pair of converging droplets (marked by 1 and 3).  

3.2 Simulations of droplet splashing 
We now consider the problem of droplet splashing on a thin liquid film. Such a phenomenon is observed widely 
in both nature and technological applications, from a raindrop falling into a pond to spray cooling and coating 
[59], and the printing process [60]. It is challenging to simulate the droplet splashing process because it usually 
involves multiphase flows at a large density ratio, high Reynolds, and Weber numbers. 
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Such a process could be described by the single-component pseudopotential multiphase LB model, where the 
forcing term is written as, 

 2
int ( ) ( ) ( )i i i

i
G w tψ ψ= − + ∆∑F x e x e e (25) 

In the above, G controls the interaction strength, ψ is the pseudopotential function, and 
2( )iw e is the 

normalized weight. To achieve a wider parameter range while retaining high computational efficiency, the non-
orthogonal MRT collision operator is selected as a reduced form of ULBM. In the non-orthogonal MRT model, 
the collision step can be written as [42], 

                  ( ) ( ) ( ) ( )* 1 1, , ( ) , , ( / 2)eq
i i i i if t f t f t f t t R− − = − − + ∆ − x x M SM x x M MI S                    (26) 

where the third term on the right-hand side is the forcing contribution. Using the D3Q19 lattice model and the 
moment set in Table I, the explicit formulation of the forcing term in the raw moment space is written as, 

2 2 2 2 2 2 2 2 2

[0, , , , 2 , 2( ), 2( ), , ,

, , , , , , , 2 ( ), 2 ( ), 2 ( )]
i x y z x x y y x x z z x y y x x z z x y z

z y x s x s y s z s y s z s s x x y y s x x z z s

i

y y z z

F F F F F u F u F u F u F u F u F u F u F u

F u F c F c F c F c F c F c c F u F u c F u F u c F

R

u F u

= = ⋅ − − + +

+ + + +

F uM


(27) 

To incorporate the realistic equation of state (EOS) for the simulation of large density ratio multiphase flows, 

the square-root-form pseudopotential [61] 2 22( ) /EOS sp c Gcψ ρ= − is used in this work, where EOSp is the 

pressure in the EOS. With the square-root-form EOS, some elements in the forcing term need to be slightly 
modified to achieve thermodynamic consistency and tunable surface tension [31,32]. Alternatively, the 
thermodynamic inconsistency of the pseudopotential model could be addressed by a sophisticated two-range 
interaction scheme [62,63] instead of the single-range interaction in Eq. (25). In the present non-orthogonal MRT 
model, the modifications are given as [42], 
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(28)  

where the tunable parameter σ  restores the thermodynamic consistency. The variable Qαβ is given by [32], 

[ ]2( ) ( ) ( ) ( ) e ,
2 i i i i

i

GQ w t eαβ α βκ ψ ψ ψ= + ∆ −∑x e x e x (29) 

where the parameter κ is used to tune the surface tension. 
In the following, we adopt the above non-orthogonal MRT LBM model to simulate a droplet splashing on a 

liquid film. Firstly, following the experimental setup in [64], we simulate a water droplet impacting a thin water 
film. The initial diameter of the water droplet is 3.15 mm and the ratio of liquid film depth to droplet initial 
diameter is 0.22. The dynamics of the impacting droplet is displayed in Figure 3, where the dimensionless time 

𝑇𝑇∗ is defined as 𝑇𝑇∗ = 0u 𝑇𝑇/𝐷𝐷0,  0u is the impacting speed, 𝑇𝑇 is the time step and 𝐷𝐷0 is the droplet initial diameter. 
The simulation and experiment results are qualitatively compared for two Weber numbers. Figure 3(a) shows 
the We = 249 case, and Figure 3(b) represents the We = 328 case. To simulate the realistic situation, we set the 
density ratio as 1000 and Re more than 5000 for all cases. Additionally, in order to capture all the features of 
droplet splashing as well as ensuring numerical stability, the simulation is conducted at a very high resolution 
with the droplet radius fixed at 80 lattices. The simulation domain in x, y, and z directions extends to 14, 14, and 
5 times of the droplet radius, respectively, which leads to the total grid numbers over 500 million. As seen in 
Figures 3(a) and 3(b), the simulation (blue snapshots) and experimental results (grey snapshots) are in good 
agreement. Same to the experiment phenomena, for the lower We case (Figure 3(a)), only the formation of the 
liquid crown is observed in the simulation. For the higher We case (Figure 3(b)), both the liquid crown and 
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droplet “pearls” can be observed. Finally, we provide a prediction at a much higher We case (We=540) in Figure 
3(c), which presents the dynamic process of crown formation is accelerated as We is increased.  

3.3 Simulations of phase change and boiling dynamics 
Finally, the ULBM framework is employed to simulate the phase-change pool boiling process. Boiling is a highly 
efficient heat transfer process, which is routinely observed in our daily life and in many power plants. Boiling 
is an extremely complex process, including bubble dynamics (nucleation, growth, departure, deformation, 
coalescence, and breakup), phase-change heat transfer, and even turbulence. Usually, with the increase of the 
wall superheat, different boiling regimes would appear [65,66]: nucleate boiling (discrete bubble region and 
mushroom bubble region), transition boiling, and film boiling.  

In this subsection, we consider the simulation of the 3D pool boiling process, where vapor bubbles and heated 
liquid are driven by the gravity-induced buoyancy force. To simulate such a highly unsteady multiphase and 
thermodynamic phase transition process, a robust and stable method is required. Within the ULBM, the 
multiphase CLBM has superior stability and is thus chosen for the simulation. To model the multiphase flow 
field, the single-component pseudopotential is adopted and the interaction force is defined in Eq. (25). Inspired 
by the method of Li et al. [31], the forcing term is slightly modified to achieve thermodynamic consistency. For 
the D3Q19 lattice model and the moment set in Table I, the forcing term is given as [48], 

2 2 2 2 2 2[0, , , , ,0,0,0,0,0, , , , , , ,0,0,0] .i x y z x s x s y s z s y s z sC F F F F c F c F c F c F c F cη=  (30) 

where η  is defined as,  
2

int
2

2
1

6
,

( 0.5)bs t
σ

η
ψ δ−=

−
F

(31) 

in which σ is used to adjust the mechanical stability condition. 
  The temperature equation of the liquid-vapor phase-change process can be written as [68], 

(32) 

where  vc  is the specific heat at constant volume and λ  is the thermal conductivity. Previously, a hybrid LB – 
finite difference scheme was proposed by Li et al. [68] to simulate the boiling phenomenon. The same approach 
is adopted by Fei et al. [67], except that the flow field is solved by the above CLBM. The finite difference method 
is used to solve the temperature field [Eq. (32)], and the thermal and hydrodynamic fields are coupled via a non-
ideal equation of state.  

The boiling simulation is carried out in a computational box of 600 600 300x x x∆ × ∆ × ∆ , with periodic 
boundary conditions along the x  and y directions and the non-slip boundary conditions at 0z =  and 

600z x= ∆ . The system is heated by a constant wall superheat ( b sT T T∆ = − ), where bT and sT are the 
temperatures of the bottom wall and the saturation temperature, respectively. The bottom wall is hydrophilic 
with a static contact angle 50θ ≈  . Initially, the lower part of the system ( 360z x< ∆ ) is set as the saturated 
liquid ( ,l sT Tρ ρ= = ), and the upper part is set as the saturated vapor ( ,v sT Tρ ρ= = ). To trigger the 

nucleation, small temperature disturbances are added in the grid layer near the wall, i.e.,  sT T Tδ= + . By 
gradually increasing the wall superheat, boiling simulations at different Jacob numbers ( Ja ) are conducted. 
Figure 4 (a)-(d) shows the snapshots of the pool boiling process at 0.220Ja = , 0.283Ja = , 0.441Ja =  and 

0.448Ja = , respectively. In figure 4 (a), it can be seen that numerous bubbles are continuously formed through 
nucleation. These bubbles then grow, depart the hot solid surface, and rise through the liquid pool almost 
independently, either reaching the pool surface or breaking up before that. The bubbles carry hot fluids from 
the wall and facilitate heat transfer to the fluids. This case features the nucleate boiling regime. Compared with 
panel (a), the bubbles in panel (b) are larger and more likely to merge when they depart and rise, although both 
cases show very efficient heat transfer. The case at 0.283Ja = is in the mushroom bubble region of the nucleate 
boiling regime. With the further increase of superheat, the transition boiling regime and film boiling regime are 

( )2 EOS1· · · ,
v v

pT TT T T
t c c T ρ

λ λ
ρ ρ

∂∂  = − ∇ + ∇ +∇ ∇ − ∇ ∂ ∂ 
u u



10 
 
 

 
Phil. Trans. R. Soc. A.  
 
 
 

reproduced, as shown in Figure 4 (c) and (d), respectively. In total, up to hundreds of spontaneously generated 
bubbles are included in this 3D simulation of pool boiling, providing both unprecedented insights into the 
physics of boiling and valuable statistical data. 
 

4. Conclusion 
 
In this work, a unified lattice Boltzmann model (ULBM) framework is developed, which seamlessly integrates 
the widely used existing lattice Boltzmann models (SRT, MRT, Cascaded, Entropic, and KBC). In the ULBM 
framework, a transformation matrix is constructed to transform the particle distribution functions into their raw 
moments, a shift matrix converts the raw moments into central moments, and the entropic condition is 
incorporated to dynamically optimize the relaxation parameters at each lattice site in every time step. In this 
way, we not only put the popular LB models in a general mathematical framework but also clarifies the relations 
among them. The ULBM framework is generic, in the sense that it is applicable to all LB models designed 
specifically for incompressible/compressible, single-phase/multiphase, athermal/thermal, laminar/turbulent, 
nonreactive/reactive flows.  As a result, ULBM makes LB codes and models much more portable. For example, 
an LB code can easily incorporate different existing models into the same coding structure. Equally, any 
improved model constructed for one collision operator can be easily adopted by other operators. Finally, 
strengths in different LB models (e.g. forcing schemes) can be integrated to create more powerful models.  
      The validity and usefulness of the new ULBM are demonstrated through three different multiphase 
problems: 1) a pressure-driven two-species highly-packed emulsion in a two-dimensional tapered channel, 2) a 
droplet splashing on a thin water film at high Reynolds and Weber numbers and 3) a large-scale three-
dimensional pool boiling process. It is demonstrated that within the ULBM framework, it is convenient to switch 
between LB models and treatments, allowing judicial choices to suit the problems under investigation. Model 
comparisons are also made easy. As an additional outcome, we show that with the recent developments in 
multiphase LB models put under the ULBM framework, a wide range of complex multiphase flows, from single-
species to multi-species multiphase flows, and even with phase-change heat transfer can be simulated using 
realistic values of physical parameters. 
      The power of the ULBM framework will be explored in future work. In addition to multiphase LB models, 
the diverse LB models for compressible, multicomponent, thermal, turbulent, and reactive flows, respectively, 
can be assessed within a unified framework. A complete map of the stability and validity of each model can be 
constructed to facilitate judicial choices of models in terms of accuracy, reliability, and computational cost. 
Moreover, any new LB model or numerical method for a particular problem can be rapidly and conveniently 
extended to other problems.  
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Tables 
TABLE I. Central moment sets for different DVMs/lattices. 
DVMs Central moment sets 
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TABLE II. Comparisons among different collision models for the D2Q9 lattice, within the ULBM framework in 
Eq. (4). In the table, “-“ means that the specified matrix is not needed in the implementation. The maximum 
achievable Reynolds number maxRe is obtained by gradually increasing the Reynolds number until numerical 
instability happens, based on a 2D double periodic shear flow case. 
Models M  N  S  maxRe  
SRT - - 2s=S I  42 10×  
MRT As usual =N I  2 2 3 32b 4diag(1.0,1.0,1.0,s ,s ,s ,s ,s ,s )=S  51 10×  
CLBM As usual As usual 2 2 3 32b 4diag(1.0,1.0,1.0,s ,s ,s ,s ,s ,s )=S  81 10×  
KBC As usual As usual 2 2 2 2 2 2diag(1.0,1.0,1 , , ,, ).0 , ,s s s s s sγ γ γ=S  infinite 
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Figure 1: Simulation of a static droplet by ULBM (CLBM option with the consistent forcing scheme pM ) and 

other three schemes, denoted by 1M [36], 2M [15], and 3M [49]. The exponential pseudopotential is used, i.e., 

( ) exp( 1/ )ψ ρ ρ= − and the interaction strength parameter is 10 / 3G = , which leads to a density ratio of 8 
and interface thickness of 3 lattice spacings. The main panel shows the change of the deformation parameter 

/4 0/I R Rπ=  with the third-order relaxation parameter 3s , where 1.0I = denotes a perfect circular shape. The 

insets present four representative density contours by the four forcing schemes, respectively. The additional 
dashed circle is the theoretical location of the droplet. It is clearly seen that the consistent forcing scheme [38] 
always produces circular droplets, while other schemes result in 3s -dependent droplet deformations. 
 

 
Figure 2: Simulation (ULBM with the SRT multi-species option) of highly-packed monodisperse droplet 
emulsions (volume fraction up to 85%) in a 2D tapered channel: (a) the flowing pattern in the experiments [50] 
and (b) the flow pattern in the present simulation. The emulsions arrange automatically into a hexagonally 
packed crystal and flow with a regular spatial-temporal periodicity of dislocation dynamics. Such a dynamic 
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process consists of numerous periodic T1 events, which involves one pair of diverging droplets (by 2 and 4) and 
another pair of converging droplets (marked 1 and 3), as confirmed in our simulations in Panel (c). 
 

 
Figure 3: 3D simulation (ULBM with the non-orthogonal MRT multiphase option) of a water droplet splashing 
on a thin water film at a density ratio of 1000 and a Reynolds number of 5000 (based on the droplet diameter of 
160, impacting velocity of 0.08 and kinematic viscosity of 0.0025, in lattice units). The Weber number (We) is 
increased by reducing the surface tension approximately from 0.04 to 0.02. The comparison between the present 
simulations (blue snapshots) and experimental results [64] (grey snapshots) at We=249 and 328 is shown in 
Panel (a) and (b), respectively. Panel (c) gives the numerical predictions of the splashing outcomes at We=540. 
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Figure 4: 3D high-resolution simulation of pool boiling by hybrid ULBM (with the CLBM option) finite 
difference method. The computational domain is a 600 600 300x x x∆ × ∆ × ∆  box. In the lattice units, the 
surface tension is 0.066, the viscosities for the liquid and vapor phases are 0.1lν =  and 0.5 / 3gν = , 

respectively. The characteristic velocity is 0 0 0.024u gl= ≈  (with gravity 53 10g −= ×  and bubble length 

scale 0 19l ≈ ), which is much larger than the maximum spurious current 0.0018su ≈ . By varying the wall 

superheat T∆ , the boiling stages at different Jacob numbers ( Ja ) can be achieved. The liquid-vapor interface 
and isothermal surface [ 0.5( )b sT T T= + ] are marked by white and red colours, respectively. All the regimes 

observed in experiments are reproduced: (a) discrete bubble nucleate boiling at 0.220Ja = , (b) mushroom 
bubble nucleate boiling at 0.283Ja = , (c) transition boiling 0.441Ja = , and (d) film boiling regimes at 

0.488Ja =  [67].  
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