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Abstract. VERDICT maps have shown promising results in clinical set-
tings discriminating normal from malignant tissue and identifying spe-
cific Gleason grades non-invasively. However, the quantitative estimation
of VERDICT maps requires a specific diffusion-weighed imaging (DWI)
acquisition. In this study we investigate the feasibility of synthesizing
VERDICT maps from standard DWI data from multi-parametric (mp)-
MRI by employing conditional generative adversarial networks (GANs).
We use data from 67 patients who underwent both standard DWI-MRI
and VERDICT MRI and rely on correlation analysis and mean squared
error to quantitatively evaluate the quality of the synthetic VERDICT
maps. Quantitative results show that the mean values of tumour areas
in the synthetic and the real VERDICT maps were strongly correlated
while qualitative results indicate that our method can generate realistic
VERDICT maps that could supplement mp-MRI assessment for better
diagnosis.
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1 Introduction

Multi-parametric (mp)-MRI, consisting of T2-weighted imaging, diffusion-weighted
imaging (DWI) and dynamic contrast enhanced (DCE) imaging, provides non-
invasive assessment of the prostate improving the detection and characterization
of prostate cancer. However, despite its merits, mp-MRI has some important lim-
itations. In particular, it is characterized by low specificity, provides equivocal
findings for around 30% of the patients and correlates moderately with Gleason
grade [1].

Towards addressing these limitations, advanced, model-based imaging tech-
niques focus on extracting quantitative metrics that characterize the underly-
ing tissue microstructure in-vivo by modeling the DWI signal [4]. In particular,
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VERDICT (Vascular, Extracellular and Restricted Diffusion for Cytometry in
Tumours) MRI [20,19], which has been recently in clinical trial [14] to supple-
ment the standard mp-MRI for prostate cancer diagnosis, is a model-based, DWI
technique that captures the main microstructural properties of cancerous tissue.
VERDICT MRI has shown promising results discriminating normal from malig-
nant tissue [19,8,9,25] and identifying specific Gleason grades in-vivo [15,26].

VERDICT MRI combines an optimized DWI acquisition protocol [18] and a
mathematical model to estimate microstructural features such as cell size, den-
sity, and vascular volume fraction, all of which change in malignancy (Fig. 1).
The general model characterizes water diffusion in three primary compartments
allowing the estimation of intracellular (fIC), extracellular-extravascular (fEEs)
and vascular (fVASC) volume fractions, and cell radius (R). However, the quan-
titative estimation of these parameters requires a specific DWI acquisition, dif-
ferent to the one widely used for the standard mp-MRI. Specifically, VERDICT
MRI requires multiple and higher b-values with different diffusion times (90, 500,
1500, 2000, 3000 s/mm2) in different directions to derive accurate estimates of
the microstructure parameters. Higher b-values improve tumour conspicuity and
characterization but require longer scan times. Thus, methods that can estimate
the VERDICT maps using standard DWI data from mp-MRI acquisitions would
be beneficial for improving diagnostic accuracy without increasing scan time and
patient discomfort.

Fig. 1. VERDICT MRI framework. It combines an optimized diffusion-weighted imag-
ing (DWI) protocol and a mathematical model to estimate microstructural features of
tumours in-vivo.

Recently, several machine learning methods have been proposed to map an
input image from one domain to an output image from a different domain aiming
to improve the quality of data coming from routine, low-cost acquisitions or scan-
ners or to eliminate the need for multi-modality scanning. Alexander et al. [2]
proposed a general framework for image quality enhancement based on patch re-
gression and demonstrated its effectiveness in super-resolution of brain diffusion
tensor images and estimation of parametric maps from limited measurements.



Synthesizing VERDICT maps from standard DWI data using GANs 3

They further extended this approach with probabilistic deep learning formulation
and showed that modeling uncertainty allows for better generalization [23,24].
Oktay et al. [17] proposed an image super-resolution approach based on a resid-
ual convolutional neural network (CNN) to reconstruct high resolution 3D vol-
umes from a 2D image enabling more accurate analysis of cardiac morphology.
In addition, approaches relying on generative adversarial networks (GANs) [11]
have been proposed for super-resolution of structural brain MRI [7,22], endomi-
croscopy [21] and musculoskeletal MRI [6]. Nie et al. [16] proposed a GAN-based
approach to generate CT images from MRI images to eliminate multi-modality
scanning. Wolterink et al. [29] used CycleGAN [30] to translate MRI to CT
in the absence of paired samples. Wang et al. [27] proposed a semi-supervised
approach to synthesize ADC images from T2 images to boost performance of
clinical tasks in settings where there is limited supervision. Chiou et al. [10] re-
lied on stochastic translation to translate DWI from mp-MRI to raw diffusion
VERDICT MRI to improve segmentation performance.

In this work we also rely on a GAN-based approach [12] to generate VER-
DICT maps from standard DWI data from clinical mp-MRI acquisitions to
obtain microstructural information without requiring a specialized acquisition
protocol.

2 Methods

2.1 Datasets

This study has been performed with local ethics committee approval as part of
the INNOVATE clinical trial [14]. The study involved a cohort of 67 men who
provided informed written consent.

All participants underwent a standard mp-MRI with a 3.0-T MRI system
(Achieva, Philips Healthcare, NL) as part of their standard clinical care. The
DWI data was acquired with diffusion-weighted echo-planar imaging sequences.
The DWI sequence was acquired with the following imaging parameters: a rep-
etition time msec/echo time msec, 2753/80; field of view, 220×220 mm; section
thickness, 5 mm; no intersection gap; acquisition matrix, 168×169mm; b values,
0, 150, 500, 1000, 2000 s/mm2. The total imaging time for the clinical diffusion-
weighted sequences was 5 minutes 16 seconds.

VERDICT MRI data was acquired with pulsed-gradient spin-echo sequence
(PGSE) using an optimised imaging protocol for VERDICT prostate character-
ization with 5 b-values (90, 500, 1500, 2000, 3000 s/mm2) in 3 orthogonal direc-
tions [18]. Images with b = 0 s/mm2 were also acquired for each b-value. The
DWI sequence was acquired with the following imaging parameters: repetition
time msec/echo time msec, 2482–3945/50–90; voxel size, 1.25×1.25×5 mm3; slice
thickness, 5 mm; slices, 14; field of view, 220×220 mm2. The images were recon-
structed to a 176×176 matrix size. The total imaging time was 12 minutes 25
seconds.

VERDICT MRI maps were generated by using the accelerated microstructure
imaging via convex optimization, or AMICO framework [3]. The model has three
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independent unknown parameters: fIC, R and fEES. fVASC is calculated as
fVASC = 1− fIC− fEES, and the diffusion and pseudo-diffusion coefficients are
fixed to dIC = dEES = 2 × 10−9m2/s, P = 8 × 10−9m2/s. As in [15], in this
study we use the fIC, fEES, fVASC and R.

The regions of interest (ROIs) corresponding to Prostate Imaging Reporting
and Data System (PI-RADS) [28] score 3, 4 and 5 were contoured on VERDICT
MRI using mp-MRI for guidance by an experienced radiologist reporting more
than 2000 prostate MR scans per year.

2.2 Proposed Model

Let x ∈ RH×W×Cdwi , where H and W are the height and the width of the DWI
data and Cdwi = 5, the number of input channels corresponding the different
b-values. Let also y ∈ YH×W×Cmaps , where Y = [0, 1], H and W are the height
and the width of the VERDICT maps and Cmaps = 4, the number of the maps.
Our goal is to train a model which takes as input 2D DWI slices (5 b-values)
and generates the corresponding VERDICT maps (4 maps).

Fig. 2. Schematic representation of the proposed framework for synthesizing VER-
DICT maps form standard DWI data from mp-MRI acquisitions. The discriminator
D is trained to discriminate between real and synthetic VERDICT maps while the
generator G maps DWI data to synthetic VERDICT maps (G : x → y) that cannot
be distinguished from real VERDICT maps by the discriminator D. A GAN-type loss
is used to push the distribution of the synthetic maps closer to the ground truth while
the L1 loss ensures that the global and local structure of the synthetic maps do not
deviate significantly from the real images.

In this work we use pix2pix framework [12], which has shown great success
in natural images, to map standard DWI data from mp-MRI acquisitions to
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VERDICT maps. As it is illustrated in Figure 2 the framework consists of a
generator network G and a discriminator network D. The discriminator D is
trained to discriminate between real and synthetic VERDICT maps while the
generator G maps DWI data to synthetic VERDICT maps (G : x → y) that
cannot be distinguished from real VERDICT maps by the discriminator D. The
adversarial loss, LGAN , can be expressed as

LGAN (G,D) = Ex,y[log(D(x, y))] + Ex[log(1−D(G(x))]. (1)

A generator trained solely using the adversarial loss function can synthesize
realistic-looking maps which however do not preserve the global and local struc-
ture and deviate significantly from the real images. To address this problem and
generate maps that both fool the discriminator and are close to the real ground
truth maps we use a pixel reconstruction loss, i.e., L1 distance. The L1 loss can
be expressed as

L1(G) = Ex,y[‖G(x)− y‖1]. (2)

The final training objective can be written as

min
G

max
D
LGAN (G,D) + λL1(G), (3)

where λ is the weight controlling the importance of the reconstruction loss.

2.3 Network architecture

The generator is an encoder-decoder convolutional network based on the U-Net
architecture. The encoder consists of 6 convolutional layers followed by batch
normalization layers, dropout layers and leaky rectified linear activation units
(LeakyRELU). The decoder consists of 6 transposed convolutional layers fol-
lowed by batch normalization layers, dropout layers and RELU. The last trans-
posed convolutional layer is followed by tanh activation. The output of layer i
of the encoder is concatenated with the output of the n− i layer of the decoder,
where n is the total number of layers, and it is given as input to the next layer
of the decoder. The discriminator consists of 3 convolutional layers followed by
batch normalization and LeakyRELU. The convolutional layers are 4x4 spatial
filters applied with stride 2 and padding 1.

2.4 Implementation details

We implement the framework using Pytorch. We train both the generator and
discriminator networks using mini-batch stochastic gradient descent and apply
the Adam solver with a mini-batch size of 32, and momentum parameters β1 =
0.5, β2 = 0.999. We train the networks for 10000 epochs with an initial learning
rate at 0.0001 that starts decreasing linearly to 0 after 5000 epochs. We employ
dropout as a regularization strategy with dropout rate 50%. We use 60% of the
patients for training, 20% for validation and 20% for testing.
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Table 1. Mean squared error (MSE) calculated on the entire maps and on the prostate
region only for the four maps (fIC, fEES, fVASC, R). The results are given in mean
(±std) format.

MSE MSE (prostate)

fIC 0.18 (0.05) 0.13 (0.03)
fEES 0.12 (0.04) 0.16 (0.04)
fVASC 0.21 (0.05) 0.18 (0.04)
R 0.23 (0.07) 0.19 (0.06)

Fig. 3. A) Mean values of ROIs calculated from the real fIC as a function of the values
calculated from the synthetic fIC. B) Mean values of ROIs calculated from the real
fEES as a function of the values calculated from the synthetic fEES. C) Mean values
of ROIs calculated from the real fVASC as a function of the values calculated from the
synthetic fVASC. D) Mean values of ROIs calculated from the real R as a function of
the values calculated from the synthetic R.

3 Results

We evaluate the quality of the synthetic maps based on the mean squared error
(MSE). Table 1 shows the mean/std of the MSE over 13 test subjects computed
on both the entire maps and the prostate region only.
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Fig. 4. fIC, fEES, fVASC, R maps and the corresponding synthetic maps for two
patients with prostate lesions in the transition zone and the central zone respectively.
The first row shows the ground truth maps. The second row shows the synthetic maps
obtained using the L1 loss alone while the third row shows the maps obtained adding
the L1 and GAN losses together.

We also calculate the mean value of each ROI on the real and the synthetic
maps. Then we compute the correlations between the mean values of the ROIs by
computing the Pearson’s correlation coefficient and perform linear regression to
quantify the relationships between the mean values in the ROIs. The relationship
between the values calculated from the real and synthetic fIC maps is shown in
Figure 3 (A). The values show a linear relationship following the regression
line fICsyn = 0.87fICreal + 0.09 and the Pearson correlation coefficient is 0.81
(P < 0.05), indicating that there is a strong correlation between the values.
Figure 3 (B) shows the relationship between the mean values obtained by the
real and the synthetic fEEs maps. The linear relationship is the regression line
fEESsyn = 0.61fEESreal + 0.17 and the Pearson correlation coefficient is 0.74
(P < 0.05). The real and the synthetic fVASC values have a liner relationship
given by the regression line fVASCsyn = fVASCreal0.61 + 0.05 and the Pearson
correlation coefficient is 0.67 (P < 0.05). The real and the synthetic R values
exhibit a linear relationship Rsyn = 0.53Rreal + 0.30 and the Pearson correlation
coefficient is 0.82 (P < 0.05).

Figure 4 demonstrates an example of real and synthetic VERDICT para-
metric maps for two patients with prostate lesions in the transition zone and
the central zone respectively. L1 loss alone leads to reasonable but blurry maps;
adding the GAN loss gives much sharper results.
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4 Discussion

In this study, we investigate a GAN-based approach for image synthesis for
prostate cancer characterization. Our results demonstrate that the proposed
approach is viable for generating realistic VERDICT maps from standard DWI
data from mp-MRI acquisitions.

Table 1 gives the average MSE calculated between the synthetic and real
VERDICT maps. As we can see in the table there is a small difference between
the MSE computed using the whole image and using only the prostate region.
This indicates that our approach is stable among all regions and all maps, espe-
cially the most important one (fIC) that has low error.

In addition the ROI measurements of the synthetic and real VERDICT maps
are highly correlated. In particular, there is high correlation for fIC maps (0.81
(P < 0.05)), which have been shown to be the most important in differentiating
specific Gleason grades.

Figure 4 shows that the synthetic maps have realistic appearance and pre-
serve important quantitative information. In alignment with the real maps, the
synthetic fIC, fEEs, fVASC and R maps clearly depict the lesions which are char-
acterized by high signal in fIC and R maps and low signal in fEES and fVASC
maps.

Our objective is to investigate the feasibility of generating VERDICT maps
from the clinically-available DWI data from mp-MRI acquisitions to bring the
advantages of VERDICT maps in clinical practice. We demonstrate that GAN-
based methods have the potential to generate realistic VERDICT maps that
preserve important clinical information without requiring specified DWI acqui-
sition protocols, but only using the widely available DWI data from mp-MRI
acquisitions. Obtaining VERDICT maps using standard DWI data would re-
duce acquisition time and patient discomfort. This would also allow us to use
already acquired mp-MRI data to get microstructural information.

Despite the good quality of the synthetic maps there are still some limi-
tations. Specifically, the synthetic images are smoother compared to real ones
which means that for small ROIs the quantitative values could be wiped out.
Methodological improvements that enforce semantic consistency before and after
translation [5,13] could resolve this issue and allow the synthesis of high quality
VERDICT maps.

5 Conclusion

In this work we present an approach for synthesizing realistic VERDICT maps
from standard DWI data from prostate mp-MRI acquisitions. Our results indi-
cate that the synthetic maps have realistic appearance and preserve important
quantitative information. This could allow the exploitation of VERDICT maps
for improved prostate cancer diagnosis without increasing acquisition time and
patient discomfort.
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