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The Crowd Classification Problem: Social Dynamics of Binary Choice Accuracy 

 

Decades of research suggest that information exchange in groups and organizations can reliably improve 

judgment accuracy in tasks such as financial forecasting, market research, and medical decision-making. 

However, we show that improving the accuracy of numeric estimates does not necessarily improve the 

accuracy of decisions. For binary choice judgments, also known as classification tasks—e.g. yes/no or 

build/buy decisions—social influence is most likely to grow the majority vote share, regardless of the 

accuracy of that opinion. As a result, initially inaccurate groups become increasingly inaccurate after 

information exchange even as they signal stronger support. We term this dynamic the “crowd classification 

problem.” Using both a novel dataset as well as a reanalysis of three previous datasets, we study this process 

in two types of information exchange: (1) when people share votes only, and (2) when people form and 

exchange numeric estimates prior to voting. Surprisingly, when people exchange numeric estimates prior 

to voting, the binary choice vote can become less accurate even as the average numeric estimate becomes 

more accurate. Our findings recommend against voting as a form of decision-making when groups are 

optimizing for accuracy. For those cases where voting is required, we discuss strategies for managing 

communication to avoid the crowd classification problem. We close with a discussion of how our results 

contribute to a broader contingency theory of collective intelligence. 

Key Words: group decision making, collective intelligence, decision theory, wisdom of crowds, delphi 

 

1. Introduction 

Numeric estimates (e.g. forecasts) are important in organizational decision-making, such as strategic 

decisions informed by economic and industry forecasting as well as operational decisions informed by 

quantities such as project development cost. While such decisions are often made by the expert judgement 

of a single manager, both statistical and empirical findings show that the aggregated opinion of multiple 

people can be more accurate than even the most expert individuals (Ashton 1986, Hogarth 1978, Nofer and 

Hinz 2014), a phenomenon known as the “wisdom of crowds” (Atanasov et al. 2017, Budescu and Chen 

2014, Da and Huang 2020, Frey and van de Rijt 2020, Mannes 2009, Palley and Soll 2019). 

A central practical question is whether and how social influence between contributors impacts the 

accuracy of the contributed estimates (Da and Huang 2020, Dalkey and Helmer 1963, Frey and van de Rijt 

2020, Minson et al. 2018, Ven and Delbecq 1974). Taken together, current research suggests that the 

manager faced with a forecasting or estimation task has a simple strategy: ask contributors to first generate 

an independent estimate (Minson et al. 2018), then discuss in a way that lets everyone participate equally 

(Becker et al. 2017, 2020, Golub and Jackson 2010), and finally use the resulting group opinion.  

However, these prior studies have shown only that social influence increases the accuracy of the 

resulting numeric estimates—and a number is not in itself a decision. In practice, numeric estimates must 
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be converted to a decision as when a group considering the expected return of an investment takes a vote 

on whether or not to make the deal. For individuals, converting a numeric estimate to a decision is 

straightforward: the investment either offers a positive return, or it does not. For groups, however, you can 

get a different recommendation by taking an average than you would by taking a vote (Csaszar and Eggers 

2013, Hastie and Kameda 2005). We study how social information exchange impacts the accuracy of such 

binary choice votes.   

As an illustration, consider a hypothetical manager facing a software “build or buy” decision. Faced 

with the need for a software solution (e.g., a new client database) this manager can either purchase an 

existing solution for a known cost or employ a team of developers to build something new for an uncertain 

cost. Estimating software development cost is a commonly studied forecasting problem that in practice is 

frequently accomplished with subjective “gut” judgements by managers (Jørgensen 2004). The decision 

itself comes down to a simple determination of which one is more expensive, an example of a more general 

class of decisions made by comparing numeric estimates to a benchmark threshold.  

More complex decisions may involve multiple uncertain quantities, as in a market entry decision based 

on estimates for consumer demand, project development cost, and conversion rate for existing customers. 

Such complex decisions are often reducible to a single summary statistic, e.g. the expected payoff in rational 

choice models, as recommended by prescriptive theories of managerial decision-making (Bazerman and 

Moore 1994, Medvec and Galinsky 2005). When negotiating any deal, for example, the decision ultimately 

reduces to whether the offer on the table is better than the best alternative (Bazerman et al. 2000). In medical 

decision-making, multiple factors such as estimated cost and expected benefit are reduced to a single metric, 

and treatment may be given if that metric exceeds a benchmark threshold (Eichler et al. 2004). 

Critically, we find that the same social processes which increase the accuracy of numeric estimates can 

simultaneously decrease the accuracy of the resulting binary choice vote. This dynamic is possible because 

the numeric estimate and binary vote can become decoupled during social exchange, moving in opposite 

directions as the result of group information processing. Because binary choice decisions are known as 

‘classification tasks’ in statistical estimation theory (machine learning) we term this dynamic the ‘crowd 

classification problem.’ 

Briefly stated, the crowd classification problem manifests as the tendency for the initial majority vote 

share to grow—regardless of accuracy. We first consider the simple case where people communicate their 

vote only (henceforth “binary exchange”). These dynamics can be summarized with the simple observation 

that a person in the majority is unlikely to change their vote—only people with a minority opinion flip, and 

so the majority grows.  

However, communicating only binary votes eliminates the nuance carried in a numeric estimate. Thus 

one interpretation is that the problem arises from communication style. Based on the prior finding that 
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social influence improves numeric estimates, we consider a possible solution: encourage group members 

to form and share numeric estimates prior to taking a vote (henceforth “numeric exchange”). Even in this 

case, however, the majority is often amplified regardless of accuracy. Surprisingly, we find that the binary 

vote can become less accurate even as the numeric estimate becomes more accurate.  Figure 1 in §2 below 

shows an example of how this can occur. 

The rest of this paper proceeds as follows.  First, we review prior literature on belief accuracy and 

social influence. Then, we explain the dynamics of the crowd classification problem on an intuitive level.  

Next, we provide a formal theoretical analysis of both types of communication (binary exchange and 

numeric exchange).  Finally, we present empirical evidence for the crowd classification problem, first in 

binary exchange and then in numeric exchange.   

We close by discussing practical implications and possible solutions to the crowd classification 

problem.  These conclusions can be summarized with a brief rule of thumb: for groups that must make 

decisions by voting, accuracy is optimized by independence; for groups where alternative decision 

processes are possible, accuracy can be optimized via social learning. 

 

1.1. Belief Accuracy and Social Influence 

One of the most widely studied estimation tasks is forecasting (e.g. Atanasov et al. 2017, Dalkey and 

Helmer 1963, Jansen et al. 2016) including forecasting revenue (Da and Huang 2020) and sales (Cowgill 

& Zitzewitz, 2015), predicting the success of an advertising campaign (Hartnett, Kennedy, Sharp, & 

Greenacre, 2016), or estimating future macroeconomic indicators (Jansen, Jin, & de Winter, 2016). In one 

classic case study, Cyert and March (1963) describe a construction firm for whom expectations of future 

business volume played a central role in the decision to move operations to a new location. While forecast 

accuracy is a widely studied area of belief accuracy, the principles identified in this article broadly inform 

judgements based on the estimation of any uncertain quantity, i.e. “nowcasting” (Jansen et al. 2016). 

Numeric estimates can play a role even in decisions where there is no obviously “correct” choice, as in 

hiring decisions. Hiring ideally involves predicting factors such as performance, cultural fit, and likelihood 

of remaining employed (Arlotto et al. 2014, Rivera 2012). While many important employee characteristics 

are subjective, employees at lower levels of organizations are frequently evaluated with explicitly 

quantified metrics. Industries such as customer service call centers have a long history of quantifying 

employee productivity with metrics such as quality assurance scores and upsell rates (Holman et al. 2002). 

More recent advances in monitoring technology are allowing performance quantification for employees as 

varied as restaurant waitstaff (Pierce et al. 2015) and warehouse workers (Moore 2019). Thus a hiring 

decision becomes a forecasting task—what score will that employee receive? 
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When crowdsourcing numeric estimates, it has been popularly argued (Surowiecki 2004) that group 

accuracy requires strictly independent individuals, and that interacting groups are subject to risks associated 

with “herding” (Lorenz et al. 2011) and “correlated error” (Hong et al. 2016). Thus one area of research 

has been the development of strategies designed to optimize the aggregation of beliefs from a multiple 

independent contributors (Atanasov et al. 2017, Budescu and Chen 2014, Da and Huang 2020, Mannes et 

al. 2014, Palley and Soll 2019). This paradigm is motivated in part by the “diversity prediction theorem” 

by Page (2007), a reinterpretation of the variance-bias tradeoff in statistical estimation which states the 

following1: group error = average individual error – diversity. In this equation, group error is the error of 

the average estimate and diversity is the variance of individual estimates.  

A common interpretation of the diversity prediction theorem is that a decrease in diversity leads to an 

increase in the group error. This interpretation is motivated by the algebraic observation that a decrease in 

the rightmost term in the equation (diversity) must accompany an increase in the left term of the equation 

(group error). Notably, however, this only holds true if the middle term (average individual error) remains 

constant. 

However, individual error may not remain constant, and this equation also highlights a clear potential 

benefit of social influence. Suppose that after discussion, every group member holds an estimate equal to 

the pre-discussion average. Then final variance equals zero. While this outcome may be interpreted as 

reduced diversity, this outcome also means that average individual error after discussion is equal to the 

group error, and that group error itself remains the same. Since group error is guaranteed to be lower than 

individual error when variance/diversity is non-zero (i.e., before discussion), this convergence-to-the-mean 

process must necessarily decrease individual error. Empirically, the benefit of social influence for 

individuals in a group has been observed even for studies that were designed to show the risk of social 

influence (see letter by Farrell, 2011, in response to Lorenz et al., 2011). 

Moreover, a growing body of research has shown that under a wide range of conditions, social influence 

can even reduce group error. Early research in this direction motivated the development of the “Delphi 

method” (Dalkey and Helmer 1963) which used a carefully mediated process (people communicated via 

slips of paper) to allow social learning while mitigating the risks of conformity pressure (Asch 1951). While 

this early research often produced conflicting results (Hastie 1986), more recent research has begun to 

identify when social influence will and won’t improve belief accuracy by founding experimental design on 

formal statistical and agent-based models (Almaatouq, Rahimian, et al. 2020, Becker et al. 2020).  

 

 
1 Formally: (𝑥̅ − 𝜃)2 = 1

𝑁
∑ (𝑥𝑖 − 𝜃)2𝑁

𝑖=1 − 1

𝑁
∑ (𝑥𝑖−𝑥̅)2𝑁

𝑖=1  where an individual i in a population of N people holds 

belief 𝑥𝑖 and the true value is 𝜃. While this applies to squared error, a similar result applies to mean absolute 

deviation. In general, this will hold for any convex error function. 
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A general principle is that when everyone can participate equally as determined by factors such as 

discussion dynamics (Becker et al. 2020) and network structure (Becker et al., 2017), group information 

exchange is likely to improve belief accuracy as long as people begin with independently formed opinions 

(Minson et al. 2018). The potential benefit of information exchange among people making numeric 

estimates has been corroborated by multiple experiments (Almaatouq et al. 2020, Atanasov et al. 2017, 

Becker et al. 2017, Farrell 2011, Gürçay et al. 2015, Jayles et al. 2017, Minson et al. 2018, Navajas et al. 

2018).  

 

1.2. Binary Choice Decisions 

This prior research (Almaatouq et al. 2020, Atanasov et al. 2017, Becker et al. 2017, Farrell 2011, Gürçay 

et al. 2015, Jayles et al. 2017, Minson et al. 2018, Navajas et al. 2018) provides a compelling argument that 

social influence improves belief accuracy. However, as discussed above, numbers are not decisions, and 

numeric quantities are often converted to binary choice decisions by comparison to critical benchmark 

thresholds.  

In our opening example, a manager needs to estimate the uncertain cost of building a software project 

and compare this quantity against the known cost of buying a pre-built product, and thus the ‘buy’ cost 

represents a critical benchmark threshold. Additional examples from related research further illustrate the 

diversity of decisions that are based on thresholds. Csaszar and Eggers (2013) study a theoretical model of 

decision-making in which managers must choose to accept or reject a project based on whether the project 

meets a sufficient quality threshold. More generically, threshold decision-making is illustrated by the 

behavior of “satisficing,” a decision heuristic in which a person or organization adopts the first available 

solution that meets a minimum threshold of acceptability, as illustrated by a case study of an organization 

trying to find a new location for a warehouse (Cyert and March 1963).  

While these examples focus on operational issues, additional examples show how threshold related 

forecasts may inform strategic decisions. For example, the practical implications of an earnings forecast 

may rest on whether the final value is positive or negative. Similarly, the determination whether or not a 

firm will reach sufficient valuation for inclusion in a major index such as S&P 500 or Russell 2000 is based 

on a numeric threshold. Another example is US presidential elections. While it is common practice to 

forecast the number of electoral college votes a candidate may receive, the only practical outcome is 

determined by a threshold: whether a candidate receives more than 270 votes, the minimum (and sufficient) 

number of electoral votes needed to win.  

Economic and political forecasting is also driven by psychological thresholds in addition to formal 

thresholds. For example, predicting whether or not a market or index will break a new record (i.e., pass the 

threshold marked by a previous high point) or even pass a round number may have an impact on investment 
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decisions (Aggarwal and Lucey 2007, Schnusenberg 2006). For example, when the price of oil first passed 

the psychologically important threshold of US$100 per barrel it was reported as a major event by news 

media (Krauss 2008) and may have had an impact on market behavior more broadly (Parayitam and Dooley 

2007). 

 

2. The Crowd Classification Problem 

When people are independent, binary choice decisions offer the same statistical advantages as numeric 

estimates, i.e. the wisdom of crowds. For example, the collected intelligence of many independent 

physicians can outperform the best individual physicians in generating cancer diagnoses when structured 

as a binary classification task (Kurvers et al. 2016, Wolf et al. 2015). Hastie and Kameda (2005) used 

simulation to study a hypothetical scenario in which groups must identify the highest-payoff option among 

several alternatives, finding that the averaging rule (choose the option with the highest average numeric 

estimate) performs roughly as well as the majority vote rule. Csaszar and Eggers (2013) examined this 

finding under more general assumptions, finding that voting can even outperform averaging in some 

circumstances.  

The differences between numeric estimate and binary choice become more stark, however, when people 

are not independent. For numeric estimates, opinion sharing leads to convergence toward the average 

answer (Dalkey & Helmer 1963, Lorenz et al. 2011, Sherif 1935). As discussed above, this convergence 

can improve individual estimates with no impact on the group average or even improve the group average. 

In binary choice, however, the “average”—a vote tally or percentage—is not actually an opinion any person 

can hold. I.e. in the “build or buy” example, a group might vote 60% in favor of building, but a person 

cannot vote to build only a percentage of the software, nor can a group make their final decision as a 

percentage. They must simply choose either “build” or “buy.” Thus while numeric estimates can converge 

to the average (preserving or improving the wisdom of crowds), convergence in binary voting leads to 

100% agreement on one or another option. As a result, the social dynamics for numeric estimates and binary 

choice are starkly different despite showing similar properties for independent contributors. 
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One intuitive strategy thus might be to encourage people to discuss numeric estimates before taking a 

vote on a binary choice. However, even this process—forming and exchanging numeric estimates prior to 

taking a vote—can grow the majority vote share, regardless of the accuracy of that vote. Moreover, the 

numeric estimate can become more accurate even as the binary vote becomes less accurate. 

This seemingly paradoxical dynamic can be illustrated with a simple example, shown in Figure 1. 

Consider a team deciding whether to buy a client management database for $100k or build one in-house. 

Assume the true cost of building is less than $100k—they should buy (this truth is unknown to the team). 

Figure 1 shows an example of how the distribution of estimates might look before and after discussion. 

Grey points indicate pre-discussion estimates and black points represent post-discussion estimates. (Some 

members’ pre-discussion and post-discussion estimates are the same, indicated by grey points on top of 

black points.) The only people who change votes are those whose estimates cross the threshold (voters G 

and H). Before discussion, a poll of numeric estimates (“how much will it cost to build?”) shows that the 

mean estimate is $132.5k, meaning it’s too expensive, and also shows that 60% of committee members 

 

Figure 1. Conceptual illustration of crowd classification problem for numeric estimates. 

Notes. Points indicate beliefs pre- and post-discussion. Agents vote “buy” if their estimate is over 100, 

but a correct vote is “build.”  The dashed line shows the mean estimate pre- and post-discussion, getting 

closer to the true answer of “build” (less than $100k).  However, the total number of people voting for 

“buy” increases from pre- to post-discussion. 
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would vote against building. After discussion, the mean estimate is $120k—closer to the true value, and 

closer to the point of ambiguity—but now 80% of the committee members would vote against building.  

Thus while the mean estimates might convey that the group after discussion has become less confident 

in buying, the size of the majority vote has increased, signaling increased confidence despite decreased 

voting accuracy. Below, after reviewing related binary choice models, we identify analytically the 

conditions under which this paradoxical outcome will occur and show that these conditions are consistent 

with commonly observed properties of empirical data. 

 

3. Theoretical Analyses 

This paper investigates whether the benefits of social exchange observed for continuous numeric estimation 

extend to binary choice estimation. We study two distinct processes. (1) In binary choice with binary 

communication (“binary exchange”), agents answer a binary choice question and observe the binary 

responses of other agents before providing a final vote. (2) In the exchange of numeric estimates prior to a 

vote (“numeric exchange”), agents first answer a continuous numeric question and observe the responses 

of other agents. Agents then update their numeric estimate and provide a final binary vote based on a 

threshold decision, i.e. whether their estimate is above or below some critical value.  

In both models, our primary interest is the change in the vote. We will refer to a majority vote as 

growing (shrinking) if the number of people holding that belief increases (decreases). We note that this 

terminology is independent of accuracy, and our key finding is that the majority will grow in most 

circumstances. We will therefore additionally refer to the ‘accuracy’ of a binary vote, as measured as the 

percentage of people with the correct vote. We will thus refer to a group as getting more (less) accurate if 

the number of people holding the correct vote increases (decreases). 

 

3.1. Binary Exchange  

We study the following agent-based model. 

1. Each agent 𝑖 ∈ {1 … 𝑁} begins with a binary belief 𝐵𝑖 ∈ {0,1} distributed as binomial(N,P). 

2. In each timestep t>0, each agent i flips belief (i.e. adopts belief 1 − 𝐵𝑖) with probability Fmaj if their 

current belief 𝐵𝑖 is the majority opinion, and Fmin otherwise. 

3. The majority opinion is defined as 1 if S>0.5 and 0 otherwise, where S=∑ 𝑊𝑖𝐵𝑖, ∑ 𝑊𝑖=1, and Wi 

defines the amount of weight other agents place on agent i. (S is the influence-weighted vote.) 

 

Proposition 1a. When Wi is equal for each agent (they are all equally influential) initial majority is 

more likely to grow than to shrink, and the initial majority opinion is an equilibrium opinion. 
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Proposition 1b. When Wi varies, the unweighted majority opinion will be favored as long as the 

inequality П /(1- П)>R is satisfied, where П is the proportion holding the initial majority and R is the ratio 

between the average weight given to minority-belief-holders and the average weight given to majority-

belief-holders. 

 

The proofs follow algebraically from the assumptions and are given in the e-companion Appendix. 

When Fmaj=0, it follows trivially that the majority opinion will grow until all agents have adopted the initial 

majority in an absorbing state of 100% agreement, or consensus, since agents in the majority will never 

change their opinion. While it may not be common that people will change their opinion if the majority 

already agrees with them, for thoroughness we also consider the case where Fmaj>0. In this case the group 

will not reach an absorbing state of consensus, because there will always be some chance that an agent will 

flip, but as long as Fmin>Fmaj the group will reach an equilibrium that maintains the initial majority. We note 

that these results hold in expectation, meaning that small groups may of course deviate due to sample 

variation. Proposition 1 is therefore presented to characterize some basic dynamics of group behavior and 

is not intended as a deterministic law of group behavior.   

3.1.1 Discussion. Empirical research identified variation in response to social information (e.g., 

stubbornness) as an important mechanism in determining the effect of social exchange on group accuracy. 

However, a confident minority cannot overturn a less confident majority from this effect alone (see e-

companion Appendix).  Thus binary choice dynamics will favor an initial majority opinion regardless of 

accuracy, even under conditions that would improve the accuracy of numeric estimates. This claim is not 

itself surprising and is consistent with simpler models of binary choice such as the voter model (Mossel and 

Tamuz 2017). However, when considered in the context of belief accuracy, these majority-rules dynamics 

impose substantial limitations on prior claims (Becker et al. 2017, Farrell 2011, Jayles et al. 2017) that 

social information exchange improves accuracy for both groups and individuals. At the same time, however, 

the scope conditions identified in Proposition 1b show a possible solution to the crowd classification 

problem. While the empirical analysis in the present paper is designed to demonstrate the existence of the 

crowd classification problem, we discuss in the conclusion how these scope conditions offer guidelines for 

future empirical research. 

 

3.2. Numeric Exchange 

3.2.1. Summary. In this analysis, we formally describe the conditions generating the proof-of-concept 

example shown in Figure 1. This analysis consists of three parts. Proposition 2a describes the general 

conditions under which the initial majority will either grow or shrink. As in the preceding model, a majority 

is said to ‘grow’ if the number of people holding the majority opinion increases; and the majority ‘shrinks’ 
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if the number of people holding the majority opinion decreases. Critically, these conditions can be described 

without reference to the true answer. This characteristic is the heart of the crowd classification problem: 

binary choice belief dynamics are driven by the initial distribution, and not the true answer.  

 Proposition 2b illustrates a general set of conditions under which the mean numeric estimate becomes 

more accurate even as the binary vote becomes less accurate. As above, we describe a vote as becoming 

less (more) accurate if the number of people holding the correct answer decreases (increases). The 

conditions given in Proposition 2b are consistent with common empirical conditions and serves as an 

example of how the crowd classification problem may reverse the expected benefits of social influence. 

Notably, the conditions described in Proposition 2b are not the only way in which a vote may become less 

accurate, and are intended to serve only as an illustrative demonstration of the social dynamics of belief 

formation. Excepting the general result presented in Proposition 2a, we do not provide an exhaustive 

demonstration of all possible parameter combinations. The framework presented here can be readily 

adapted to address any particular scenario of interest. 

 Finally, Proposition 2c extends the asymptotic results of Proposition 2a and 2b to finite-time outcomes.  

Whereas Proposition 2a and 2b assumes that groups converge on a single shared consensus estimate, 

Proposition 2c shows that similar results are obtained when using the post-discussion mean as a proxy for 

the asymptotic consensus estimate. In order to test the validity of assumptions made to support Proposition 

2c, we further test these outcomes with numerical simulation. 

3.2.2. Model. We now consider the dynamics of the DeGroot (1974) model for N agents, with the added 

assumption that agents at the end convert their numeric estimate to a binary vote according to a threshold 

rule. This model can be described as follows: 

1. Each agent 𝑖 ∈ {1 … 𝑁} begins with a numeric belief 𝐵𝑖,𝑡=0 ∈  ℝ . 

2. Each agent i places some fixed weight Wi,j on the belief of agent 𝑗 ∈ {1 … 𝑁} (including weight Wi,i 

on their own belief) such that ∑ 𝑊𝑖,𝑗
𝑁
𝑗=1 = 1.  

3. At each timestep t+1, each agent’s new belief is a weighted sum across all other agent’s beliefs, 

i.e. 𝐵𝑖,𝑡+1 = ∑ 𝑊𝑖,𝑗 ∗ 𝐵𝑗,𝑡
𝑁
𝑗=1 . 

4. Whenever the process is stopped (we discuss both asymptotic and short-term outcomes) each agent 

will vote according to a threshold T, such that their vote is determined by whether Bi,t>T.  

W represents a matrix of weights that can be treated as a network adjacency matrix indicating how much 

weight each agent places on each other agent. If agent i either does not observe or ignores agent j, then 

Wi,j=0.  

3.2.3. Basic Dynamics. DeGroot (1974) demonstrated that if this network is aperiodic and consists of 

a single component, the group will asymptotically converge so that every agent holds the same belief, which 

we here term the consensus belief. For comparing pre- and post-discussion accuracy, we focus on the mean 
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belief as the ‘collective belief’ (Page 2007) because it is the primary outcome of interest to many researchers 

studying the wisdom of crowds in networks (Almaatouq, Noriega-Campero, et al. 2020, Atanasov et al. 

2017, Becker et al. 2017, Da and Huang 2020, Frey and van de Rijt 2020, Lorenz et al. 2011).  

We show that the dynamics of the binary vote do not depend on the relative location of the initial and 

final mean belief. Instead, we find that the dynamics of the binary vote depend only on the relative location 

of the median, consensus belief, and decision threshold. This includes the case where the mean belief does 

not move, i.e. where social influence has no effect at all on the average belief. For example, in a facilitated 

process where everyone is equally influential (𝑊𝑖,𝑗 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 for all i,j) the consensus belief will be the 

same as the initial mean. Critically, however, as individuals converge toward this pre-discussion mean their 

individual votes will change. This dynamic results in the crowd classification problem. 

 Formally we can state this claim as follows. Let M indicate the pre-discussion median belief; let C 

indicate the consensus belief; and let T indicate the threshold on which the binary vote is based, then:  

 

Proposition 2a. In continuous numeric information exchange reaching asymptotic consensus, the 

majority vote according to a threshold decision will grow except when C<T<M or M<T<C—i.e., the 

majority vote will shrink if and only if the threshold falls between the initial median and the consensus. 

 

The proof follows from the assumptions. First observe that the median estimate indicates where the 

majority opinion will fall relative to the threshold—i.e., what the majority vote will be. Prior to discussion 

this is given by M, and after discussion this is given by C. Therefore, when C<T<M or when M<T<C, the 

majority opinion will switch sides relative to T, by assumption, as the majority vote moves from M to C. 

In contrast when M<C<T, C<M<T, T<M<C, or T<C<M (i.e., when M and C are on the same side of T) 

then the majority opinion will be on the same side of T both before and after discussion. And as consensus 

by definition yields 100% agreement on votes, a majority opinion that is the same at the end has grown.  

3.2.4. Relationship to accuracy. Becker, Brackbill and Centola (2017) showed empirically and in 

numeric simulations that if individual agents’ self-weight (Wi,i), i.e. stubbornness, is positively correlated 

with accuracy—such that people with greater accuracy are more stubborn and therefore make smaller 

revisions—then the mean belief in a group will become more accurate over time as a result of information 

exchange. One implication of Proposition 2a is that the dynamics of the majority vote are decoupled from 

truth, since they are determined only by M, C, and T. As a result, it is possible for the mean belief to become 

more accurate even as the vote itself becomes less accurate. This scenario will occur when the initial 

majority vote is inaccurate, the conditions of proposition 2a are met (so the majority grows), and the mean 

becomes more accurate.  
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We can construct a formal possibility proof of this scenario by examining one possible set of conditions 

leading to this outcome. Let μ be the pre-discussion mean belief, and let θ be the true answer, then: 

 

Proposition 2b. The mean numeric belief will become more accurate even as the binary choice vote 

becomes less accurate when M<μ<C<T<θ or the symmetrical case θ<T<C<μ<M 

 

 Proof: Consider the case M<μ<C<T<θ, with the same argument applying to the symmetrical case. First, 

observe that the majority vote is initially inaccurate whenever M<T<θ or θ<T<M—i.e., when the threshold 

falls between the initial median and the true value. This is true because when the threshold falls between M 

and θ, the majority vote (determined by M) is on the opposite side of the threshold from θ, i.e. the majority 

gives an incorrect vote. Therefore if it is true that M<μ<C<T<θ then it will be true that the majority belief 

is initially inaccurate. And, by Proposition 1a, the majority vote will become amplified (more inaccurate 

i.e. less accurate). Moreover, it’s true both that μ<C<θ and that M<C<θ—i.e., the consensus belief (equal 

to the post-discussion mean and median) is closer to the true belief than either the pre-discussion mean or 

the pre-discussion median. In other words, both the mean and median numeric belief become more accurate 

as the vote becomes less accurate. As we discuss below, these conditions are both theoretically illustrative 

and also consistent with empirical data. 

3.2.5 Short Term Dynamics. The chief limitation is that this proof considers only asymptotic 

(consensus) outcomes and does not describe the case where people still disagree at the end. We next 

consider short-term outcomes. In the short term, there is no ‘consensus.’ In this case, let C represent the 

mean belief after some number of revisions. We first make the simplifying assumption that any individual’s 

belief change over time is monotonic in the direction of C. Then, it is trivial to argue that the conditions 

described in proposition 2b hold for short term dynamics. We verify the validity of this approximation with 

numeric simulations presented in the e-companion Appendix.  

 

Proposition 2c. Even for short-term dynamics, the conditions described in proposition 2a and 2b hold. 

 

Proof: We first make the simplifying assumption that individual belief change over time is monotonic. 

Note that the only people whose beliefs will change the final vote count are those individuals whose numeric 

beliefs cross the critical decision threshold. And by the assumption of monotonicity, the only people who 

change their votes will be those people who have an initial vote other than C, i.e. an initial vote different 

from what would be the consensus vote in an asymptotic model. Thus, the only people who flip votes are 

those who initially disagree with C. Therefore, the number of people supporting C only grows and the 
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number of people disagreeing with C only shrinks—thus, short term dynamics produce the same outcome 

as consensus dynamics.  

While monotonicity is an empirically plausible behavioral assumption, there are theoretical edge-cases 

in the DeGroot model in which an individual’s belief trajectory is non-monotonic with respect to time. To 

test the fitness of our approximation, we conducted 10,000 numeric simulations (i.e. Monte Carlo 

experiments) of the DeGroot model with N=1000 agents and 10 revisions with normally distributed beliefs 

and uniformly distributed self-weight Wi,i. Our simulations results, reported in the e-companion Appendix, 

generally support the simplifying assumption and resulting argument presented in Proposition 1c (see Fig. 

A1 in Appendix section EC.4.).  

Across most of the range of thresholds (0 to 1) our model fits 100% of simulated experiments. However, 

when the threshold is very close to the initial mean, the approximation breaks down slightly (see Fig. A1 

in e-companion Appendix) with about 2.5% of simulated experiments deviating from predictions. This 

deviation can be explained by the observation that as the mean belief changes, it will cross the points of 

some initial individual beliefs. Those individuals are the ones who will fail the monotonicity assumption in 

theory (if not empirically) as they move first one direction then another to follow the mean belief. Finally, 

note that the individuals nearest the threshold are most likely to cross the threshold and thus change the 

vote. Thus when the threshold is near the mean, those individuals who fail the monotonicity assumption are 

also the individuals who change their votes and thus determine the change in majority. 

3.2.6 Discussion. Proposition 2b identifies ‘worst case’ conditions under which the mean belief gets 

more accurate even as the binary vote gets less accurate. The conditions described in Proposition 2b are not 

the only conditions that can lead the vote to become less accurate, and Proposition 2b is not intended as an 

exhaustive description of the social dynamics of binary estimates. This particular example was chosen 

because it is broadly consistent with empirical data, as described in our empirical analysis below. 

The crux of the crowd classification problem is captured by Proposition 2a. At the heart of the crowd 

classification problem is the observation that the dynamics of the binary vote are decoupled from the 

dynamics of the numeric estimate. Notably, we identify two broad areas of the parameter space that 

determine whether the initial majority grows or shrinks. Importantly, when M=C—e.g., for a normal belief 

distribution where the group converges on the initial average—the majority will always be amplified. 

Empirically, numeric beliefs often follow a skewed distribution, opening the possibility for the majority 

vote to shrink or even flip. Still, these dynamics also represent the crowd classification problem, as the 

crowd vote remains decoupled from the crowd numeric estimate.  
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4. Empirical Analysis: Binary Exchange 

4.1. Methods 

To test Proposition 1, we conducted a pre-registered experiment. This experiment follows a procedure 

similar to prior research on belief accuracy (Almaatouq, Noriega-Campero, et al. 2020, Becker et al. 2017, 

Lorenz et al. 2011) in which subjects answer factual questions before and after being able to observe the 

responses of other subjects. Our estimation tasks consisted of a numeric estimate with a threshold-based 

binary choice. For example, one question asked subjects to estimate the number of Americans who think 

that science and technology improves our lives. Subjects were given two response options, “Above 60%” 

or “Below 60%”. Subjects were paid based on the accuracy of their answers. A single trial consisted of 20 

subjects simultaneously responding to a single question. We collected data for 5 unique tasks with 3 

different thresholds each. We replicated each unique task 4 times, collecting data on 60 trials total. Detailed 

methods, question wording, and screenshots are provided in the e-companion Appendix. 

Prior to conducting our experiment, we conducted a pilot test designed to estimate individual behavior 

to support statistical power tests and generate our pre-registered predictions. The methods and results are 

described in the e-companion Appendix. The primary goal of this pilot study was to estimate the function 

P(x), or the probability that a subject on our platform will change their answer when x% of people disagree 

with them. The estimates for individual behavior were used to simulate an empirically calibrated agent-

based model. The results of this simulation were pre-registered and used to generate Figure 2, allowing us 

to compare our experimental results with theoretical predictions. 

 

4.2. Results 

Our experimental results support our theoretical predictions. Figure 2 shows our experimental results 

(colored points, red line) compared against our theoretical predictions (black line). On average, groups with 

an initially inaccurate vote (N=26) decreased in accuracy by 6.3 percentage points (P<0.02, Wilcoxon rank 

sum test), while groups that were initially accurate (N=33) increased in accuracy by 9.3 percentage points 

(P<0.001, Wilcoxon rank sum test) and the two conditions were significantly different (P<0.001, Wilcoxon 

rank sum test). While our pre-registered analysis erroneously included the single 50/50 split group as 

initially accurate for this two-sample comparison, we omit that datapoint. Results are comparable if that 

datapoint is included, and both analyses are included in the supplemental materials. 

These tests are relatively conservative, since they include outcomes for groups in which the average 

belief (proportion voting for each answer) did not change at all. Table 1 shows the total count of each 

outcome (increase in accuracy, decrease in accuracy, or no change) conditional on initial accuracy 

(accurate, inaccurate, or split). Conditional on showing any change at all in the majority, 81% of the initially 

inaccurate groups became even less accurate (P<0.01, proportion test), with an average accuracy decrease 
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of 7.8 percentage points. In contrast, 100% of the initially accurate groups, conditional upon showing any 

change at all, became more accurate (P<0.001, proportion test) with an average increased accuracy of 12.4 

percentage points. We provide a more detailed analysis of the model fit in the e-companion Appendix. 

4.2.1 Relationship between accuracy and revision. In research on the social dynamics of numeric 

estimates, one important factor is the correlation between response to social influence (or confidence) and 

accuracy. In our pilot data, we observe an effect of accuracy, such that people were less likely to revise 

their answer if they were initially accurate (P<0.09, logistic regression controlling for observed 

disagreement). Overall, 19% of individuals who were initially inaccurate revised their answer, while only 

13% of those individuals who were initially accurate revised their answer. Results are comparable but 

statistically stronger in our main experiment: 21% of initially inaccurate individuals revised their answer 

after observing social information, while only 13% of initially accurate individuals revised (P<0.001, 

proportion test). In numeric estimation, such a correlation is sufficient to improve the accuracy of the group 

average (Becker et al. 2017, Madirolas and de Polavieja 2015). As expected from our theoretical analysis, 

however, this correlation is not sufficient to improve the accuracy of the group vote.  

 

 

Figure 2. Change in Group Accuracy as a Function of Initial Group Accuracy 

Notes: Black line indicates simulation results, colored points indicate experimental results, and red line 

indicates a polynomial best fit to the experimental data. 

 

Table 1. Count of Group Votes by Initial Accuracy and Change in Accuracy 
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4.3. Discussion 

This experiment demonstrates the main claim of this paper: the benefits of collective intelligence via social 

information processing, previously observed in several studies on numeric estimates (Almaatouq et al. 

2020, Atanasov et al. 2017, Becker et al. 2017, Farrell 2011, Gürçay et al. 2015, Jayles et al. 2017, Minson 

et al. 2018, Navajas et al. 2018), do not extend to binary choice estimates without further intervention. One 

aspect of majority amplification highlights a unique risk of binary choice estimates in small groups such as 

boards, task forces, and committees. If initial beliefs are close to evenly split, a committee vote may favor 

one or another decision simply by chance variation. While this initial random chance may tip the scales 

only slightly, social influence can turn this minor majority into an apparently robust democratic mandate. 

In one experimental trial, we observed an initial accuracy of 47%. Had we polled those people on another 

day, or had one person failed to offer an answer, then the vote may have turned out differently. Nonetheless, 

this slight 53% majority (in favor of the incorrect opinion) ballooned to a robust 74% support after group 

interaction. This increased agreement could encourage additional (unfounded) confidence in the group’s 

inaccurate collective decision. 

 

5. Empirical Analysis: Numeric Exchange 

5.1. Methods 

To test Proposition 2, we analyze data made publicly available as supplementary materials with research 

published by Gürçay, Mellers, & Baron (2015), Becker, Brackbill, and Centola (2017), and Lorenz et al. 

(2011). The experiments by Becker et al. and Lorenz et al. followed a nearly identical procedure to our 

experiment on binary exchange but with numeric estimation tasks. Full details on their method can be found 

in their publications. Gürçay et al. followed similar methods, but in addition to sharing numerical estimates 

they also provided subjects with text chat interfaces (i.e., allowing free discussion). Gürçay et al. also asked 

subjects to report confidence, and subjects were able to see each other’s reported confidence alongside the 

numeric information chat text. In brief, subjects in both studies provided independent estimates, then were 

exposed to information about the beliefs of other subjects in the trial, and then provided final estimates. 

To measure whether empirical data is consistent with Proposition 2, we first classify a trial based on 

the conditions that predict whether or not the initial majority vote share will grow. These conditions are 

given by Proposition 2a, applied to short-term dynamics in Proposition 2c: the majority vote will shrink 

only when the threshold (T) falls between the initial median (M) and the final mean (C), i.e. when C<T<M 

or M<T<C. Otherwise, the majority vote will be amplified. After determining whether a trial meets these 

conditions—i.e., whether the majority vote is expected to grow—we then determine whether or not the 

majority vote actually grew in the empirical data. That is, we use this condition to determine whether 

empirical data behaves as theoretically expected. 
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We define a trial as a single group answering a single question before and after social influence. Thus 

the median (M) and the mean (C) are given values for each trial. However, the decision-threshold T is not 

given by the data itself and must be assumed. We therefore test data for a range of possible thresholds for 

each trial. For a given threshold, we ask the hypothetical question: what would subjects have voted 

according to their numeric estimates before and after social influence? Thus for any particular assumed 

value of T we can ask for any a trial (given M and C) whether the majority vote share was predicted to grow 

and also whether the majority vote share actually grew. 

5.1.1. Analysis. One challenge is that a given threshold is not comparable across different questions. 

For example, very few people will think that the average temperature in January in London is over 100, but 

that might be a reasonable guess for the count of candies in a jar. Thus to normalize thresholds across 

questions, we measure thresholds not in the original units of the question but in quantiles. Suppose, 

hypothetically, that the 80th percentile response for temperature is 30 but the 80th percentile response for 

candies is 200. We would consider those two thresholds to be equivalent, since they reflect equivalent 

percentiles despite being different numeric values in the original units. 

We can express this process formally using the quantile function. The quantile function Q(P) indicates 

the value for any numeric distribution such that P% of people hold a belief under that value. For the example 

above, Q(80%)=30 for the temperature question and Q(80%)=200 for the candies question. Thus for any 

given trial and any given value P from the range 0% to 100%, we can set T=Q(P). In this context, the 

quantile function asks: what is the decision threshold T=Q(P) such that P% of people provide an answer 

lower than T? Using this threshold value T, we can then measure the accuracy of people’s hypothetical 

votes before and after social influence.   

Thus given values M and C provided by the data, and an arbitrary T=Q(P), we can measure our two 

key outcomes: (1) whether this trial/threshold pair meets the conditions given by Proposition 2, and (2) 

whether the majority as measured by T increased or decreased. Finally, we set T=Q(P) for the full range of 

values 0% to 100%, and test whether Proposition 2 correctly characterizes outcomes for each possible 

threshold. This process allows us to compare outcomes across trials with different questions by 

standardizing thresholds according to the percentile rather than the numeric value. 

To help interpret these results, we take advantage of the relationship between the quantile function P 

and group accuracy. Specifically, we note that each value P corresponds to an initial accuracy of either P 

or 100-P. This can be seen by observing that the threshold divides people’s initial numeric estimates into 

two camps—accurate and inaccurate—and the quantile function thus measures the percent on the 

accurate/inaccurate sides of the threshold. Thus to aid interpretability, we visually organize data according 

to initial accuracy—i.e., treating initial accuracy as the independent variable—since these rates correspond 

to the quantile values P. 
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For each experimental trial in our data reanalysis, we empirically assess the numeric threshold T=Q(P) 

based on pre-discussion responses for all values P from 1% to 99% in increments of 1%. For each value of 

T=Q(P), we measure the accuracy both before and after social influence. We then aggregate across all trials 

(for a given quantile threshold value P) and calculate the average change in accuracy as a function of initial 

accuracy. Critically, however, we divide outcomes (red/black) by the conditions given in Proposition 2—

whether the majority is expected to grow (black) or shrink (red). This process allows us to represent the 

theoretical framework given by Proposition 2 in the same way as we represent outcomes for experimental 

data on binary exchange. 

 

5.2. Results 

5.2.1. Binary Vote Dynamics. Figure 3 shows the change in accuracy as a result of initial accuracy for data 

in which the majority is predicted to grow (black lines) and data in which the majority is expected to shrink 

(red lines). This figure shows that the majority grew for trial/threshold combinations which meet the 

conditions described in Proposition 2a (black lines): those trials which were initially accurate became more 

accurate, and those trials which were initially inaccurate became less accurate. In contrast, trials which did 

not meet the conditions in Proposition 2a (red lines) show the reverse. As can be seen visually in Figure 3, 

Proposition 2 is less accurately predictive when the threshold is near the median, consistent with our 

discussion on numeric simulations of short-term outcomes (see also Figure A1, e-companion Appendix). 

5.2.2. Theoretical Fit. In order to quantify the model fit, we calculate—for each independent trial—

the percentage of threshold values for which our theoretical model correctly predicted outcomes. That is, 

for the 99 values of P ranging from 1% to 99% we count how many empirical outcomes matched theoretical 

predictions. We note that results are robust to variations in the ‘resolution’ of the threshold values (see 

Table A1, e-companion Appendix). This process produces a single measure of fit (percentage of trial-

threshold combinations correctly predicted) for each independent experimental trial. Across all trials, an 

average of 79% (2%), 76% (1%), and 84% (2%) of outcomes (standard error in parentheses) were accurately 

predicted for the Lorenz et al., Gurcay et al., and Becker et al. datasets. Note that our goal is not to produce 

the best-fitting model, but to test whether empirical data is broadly consistent with our theoretical argument. 

These results suggest that the theoretical prediction in Proposition 2 is broadly consistent with the 

qualitative dynamics shown in each empirical dataset. 
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One possible concern is that the crowd classification problem characterizes convergence dynamics in 

general, but that this problem is less descriptive when social learning takes place. That is, perhaps our 

predictions fail when groups become more accurate. Critically, we find no difference between those cases 

where the mean improves and those cases where the mean does not improve (Fig. A4, e-companion 

Appendix). This invariance to changes in numeric estimate accuracy supports our interpretation of the 

crowd classification problem as a de-coupling between the binary vote and the numeric estimate and a 

tendency for the majority to grow regardless of accuracy.  

5.2.3. Assessing the Problem. To assess the extent to which the crowd classification problem is likely 

to pose an issue, we measure the proportion of trials that fall into the different categories identified by 

Propositions 2a and 2b. The primary condition of interest is given in proposition 2a, which states that the 

majority will grow except when the threshold falls between the initial median and the final mean. While we 

cannot offer a theoretical basis for determining where the threshold is likely to fall in practical scenarios, 

we can measure the proportion of total answers which fall in this range. Across all trials in all datasets, we 

find that 21% of individuals provide a response that falls between their group’s initial median and final 

mean. Thus if a decision threshold were selected at random from among individual estimates (an illustrative 

hypothetical only) then groups on average would have a 79% chance of meeting the conditions that lead to 

majority growth. 

 

 

Figure 3. Empirical analysis testing Proposition 2 for two previously published datasets. 

Notes: For each trial, we test thresholds from 0 to 1 standardized across estimation tasks with the 

quantile function Q(P). Each threshold P corresponds to an accuracy of either P or (1-P) as described 

in the main text. This figure shows the change in group accuracy as a function of their initial accuracy, 

averaged across all trials for a given threshold value P. The black (red) line shows outcomes for 

trial/threshold pairs for which Proposition 2 predicts the majority will grow (shrink). 
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 The second scenario we can consider is Proposition 2b, in which the initial mean becomes more 

accurate. We find that the mean became more accurate in 72%, 55%, and 68% of trials collected by Lorenz 

et al., Gurcay et al., and Becker et al., respectively. This observation shows that, as expected from previous 

reports, social influence generally improves the accuracy of the mean estimate and that this outcome 

commonly occurs in the datasets we analyze. More specifically, the example given in Proposition 2b 

assumes that either M<C<θ or that θ<C<M. We find that this condition is met over 50% of trials averaged 

across all datasets. These measurements show that empirical data is commonly exposed to the worst case 

scenario for majority-amplification dynamics as predicted by the crowd classification problem. We next 

test whether these conditions correspond to the observed binary voting dynamics. 

 

5.3. Discussion 

These findings support the general argument that social influence will tend to grow the initial majority vote 

share, regardless of accuracy. As a result, social influence will often (but not always) undermine group 

accuracy precisely when they most need the benefits of collective intelligence—when they are initially 

inaccurate. More broadly, these dynamics suggest that it is both possible and likely that—for a binary choice 

task with an underlying numeric estimate—a group vote will become less accurate even as the mean 

numeric belief becomes more accurate.  

As one illustrative example, consider a trial in our re-analysis of the data by Becker, Brackbill, and 

Centola (2017) in which individuals were estimating the number of calories in a meal. If you had asked the 

group whether or not there were fewer than 600 calories in the meal (truth=729 calories) then 74% of 

subjects would have initially said “yes” (incorrect) while the mean estimate was 435 calories. After 

observing each other’s beliefs, the percentage voting “yes” increased to 84%—a stronger display of 

agreement around an incorrect answer—even as the mean belief shifted to 466 calories, closer to the 

decision threshold. Thus while the majority vote sends a more confident signal after social influence, the 

mean belief has moved closer to the decision threshold, indicating that an observer should doubt the group 

belief and seek additional information. 

 

6. General Discussion 

Our primary contribution is the demonstration that social exchange processes which reliably increase 

numeric estimate accuracy will not generally increase the accuracy of decisions based on that estimate. 

Critically we find that social influence can lead a group’s binary vote to increasingly favor the wrong choice 

even as the average numeric estimate becomes more accurate. The real challenge, however, is that groups 

do not know in advance whether social influence will help or harm voting accuracy. 
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At the heart of the crowd classification problem is a broad tendency to grow the initial majority. In 

binary exchange, we argue theoretically and find empirically that an initial majority is nearly always 

amplified. For numeric exchange, we find that symmetrical dynamics may sometimes occur in which the 

majority shrinks, but that empirical belief distributions suggest that majority-rules will be the most common 

outcome. Despite the qualitative process differences between binary exchange and numeric exchange, the 

similarities between Figure 2 and Figure 3 highlight this shared pattern: both show an ‘S’ curve relating 

initial accuracy to change in accuracy. Although these curves are generated by starkly different underlying 

dynamics, they nonetheless reveal a common outcome pattern for both types of group behavior. 

 

6.1. Practical Implications  

Our research is most informative for groups who are actively trying to optimize their decision-making, 

noting that decisions in organizations occur through both planned and haphazard processes (March 1991). 

When we discuss process optimization, we assume that a group has already decided to approach their 

decision with some intention. One central assumption is that the question itself is clearly defined, and that 

the group has reached the point of identifying a focally important numeric estimate. We therefore note that 

we provide a prescriptive approach to decision-making, rather than a descriptive approach. 

Consider again the opening example of a manager faced with the “build or buy” software development 

decision. In this example, the manager must compare an uncertain quantity, the cost of building a custom 

solution, against a known quantity, the cost of purchasing a commercial solution. A simple strategy to 

improve estimation accuracy is to harness the wisdom of crowds—i.e., poll multiple team members on their 

opinion and use the average answer. If this manager wishes to further improve their accuracy, they may 

encourage their team members to first produce an independent estimate, then discuss their opinions, and 

then provide a final post-discussion estimate. Whereas previous research would have offered this advice as 

a blanket strategy, our research offers both an important cautionary caveat and a simple corrective: do not 

poll team members directly on their binary “build or buy” opinion, and actively discourage them from 

discussing this binary opinion with each other. Instead, focus team discussion on the cost value (numeric 

estimate) itself.  

Our research has more critical implications for those groups for whom voting is an integral part of their 

process. Previous research suggests both that voting and averaging yield similar results when opinions are 

aggregated independently (Csaszar and Eggers 2013, Hastie and Kameda 2005) and that social influence 

improves opinion accuracy (Almaatouq, Noriega-Campero, et al. 2020, Becker et al. 2017, Farrell 2011). 

Critically, however, we find that voting and averaging produce dramatically divergent interactions with 

social influence: social influence improves numeric accuracy but undermines vote accuracy. Thus when 
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voting is required by norms or governance, our research suggests that such votes should be contributed 

independently in order to maximize the wisdom of crowds.  

Based on prior research, a manager observing increased agreement after discussion might conclude 

that they can proceed with confidence in their group’s decision, but the crowd classification problem reveals 

that this confidence would be misleading. By preserving the independence of votes, rather than reaching 

consensus, a group can more accurately reflect its relative certainty (or lack thereof). In those cases where 

social independence is not possible—e.g. where discussion or interaction is unavoidable—one strategy is 

to avoid discussing any opinions or judgements (either numeric estimates or votes). Instead, groups could 

focus discussion instead on sharing facts or other information without evaluation, such that people form 

opinions independently based on the available information. 

While our analysis focuses on threshold-based decisions based on single numeric estimate, other 

forecasting or estimation-based decisions may involve multiple uncertain values.  As we discussed in our 

opening example of market entry, prescriptive decision theory (e.g. negotiation theory) often recommends 

strategies for reducing even complex decisions to single test metrics, as when comparing the expected 

payoff of a complex business deal against the best “no deal” alternative (Bazerman and Moore 1994, 

Medvec and Galinsky 2005).  However, there may be additional complexities associated with multivariate 

estimation tasks that we do not consider here. Recent research has begun to demonstrate how crowds can 

collaboratively generate “system models” that specifically harnesses the complex structure of problems 

(Amipour et al., 2020). However, it’s important to note that if groups are in a context where they can explore 

such creative decision processes, then they presumably also have the option to avoid the crowd 

classification problem by avoiding voting. 

 

6.2. Complex Problem Solving and Collective Intelligence 

Our research contributes to a growing body of theory and experiments studying “collective intelligence,” 

which generally refers to the benefits that emerge from groups as compared with individuals. We note that 

the definition of collective intelligence varies across scholars, including the very broad definition “groups 

of individuals acting collectively in ways that seem intelligent” (Malone and Bernstein 2015). Nonetheless, 

the interdisciplinary body of researchers using this term all tend to share one thing in common: an interest 

in optimizing group processes. Our research aims to identify how to optimize group accuracy. 

Even to the extent that our work can apply to more complex issues of accuracy such as multi-variate 

estimation, we nonetheless take as assumption that the options being evaluated—what to build, what to 

buy—have already been determined, and we assume that the only task is evaluating given solutions. We 

also assume that the payoff function is given in advance, i.e. that there is no conflict over which features 

matter to evaluation and what they’re worth. In other words, we study the specific process of estimation in 
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isolation. At the same time, other models and experiments have been developed to study other components 

of problem solving and decision-making in isolation. For example, research on innovation (Lazer and 

Friedman 2007, Shore et al. 2015) and brainstorming (Stroebe et al. 2010) examines how factors such as 

information sharing impact the number and quality of solutions a group can generate. However, just as we 

take for granted that solutions have been identified—and need only to be evaluated—these models often 

take for granted that the payoff for a found solution is known with certainty, and assume away the 

uncertainty that forms the central interest in our present research. 

One strategy to integrate our research on estimation accuracy with other findings about group decision-

making is to adopt a normative, prescriptive process that intentionally isolates components. For example, a 

group would first engage in an agenda setting or sensemaking process that defines the question or need; 

would then identify possible solutions; and finally would evaluate them, i.e. an estimation process. For each 

step, the group would follow best practice according to theory and evidence on that particular process. This 

strategy would be consistent with the theoretical perspective—supported by the present results, as well as 

related research (Almaatouq, Yin, et al. 2020, Becker et al. 2020, Lazer and Friedman 2007, Straub et al. 

2020)—that different tasks are optimized by different processes. This strategy is also consistent with the 

methods of decision facilitation practitioners, who often isolate the steps of defining the problem, 

generating solutions, and evaluating/selecting solutions (Fisher et al. 2011, Fisher and Charkoudian 2008). 

In practice, groups often follow more chaotic and emergent processes of decision-making (Cohen et al. 

1972, Coleman 1966, Cyert and March 1963), and a full collective intelligence theory requires 

understanding how different types of tasks interact. Thus one important aim for future research will be to 

develop integrative models that explore how each of these tasks interact. For example, it may be possible 

to develop a model of problem-solving or brainstorming which also incorporates elements of estimation, in 

which a group must simultaneously or iteratively generate and evaluate ideas.  

 

6.3. Additional Limitations  

We note that neither our model nor our experiment addresses multiple choice scenarios. The many possible 

multiple choice voting procedures developed by democratic theorists (e.g. approval voting, ranking) 

introduce a large number of possible processes by which a group may reach a decision, and more complex 

models are needed to describe their social dynamics with respect to accuracy.  Importantly, our findings 

show that we cannot generalize prior results on social learning—including the present findings—to such 

multiple choice voting systems.  Rather, we show that the benefits and risks of social information processing 

depend highly on the structure of the task at hand.  Notably, our findings provide a warning not to assume 

that increases in numeric accuracy translate to increases in decision accuracy. Our research highlights the 
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importance of specifically examining the effect of social processes not only on binary choice but voting 

accuracy more broadly. 

In addition to the limited scope regarding the type of problem we study, the experimental results 

described here (both new and re-analysis) reflect only limited forms of communication. In particular, we 

study the role of strictly informational influence. In the case of binary exchange, this influence is further 

restricted to opinion sharing and excludes confidence sharing and free discussion. However, beliefs and 

social influence in many empirical contexts are shaped not only by strictly informational influence but also 

by factors such as informational framing (Gardikiotis et al. 2005) and emotional contagion (Collins 2014). 

In an effort to identify the basic dynamics of group belief formation, our analysis necessarily abstracted 

away some mechanisms that could influence the variables or assumptions defined in our theoretical models. 

We identify two key factors of interest that our current approach overlooks. First, we note that our 

model largely assumes decisions are made on some underlying numeric quantity. While prescriptive 

decision theory recommends that people quantify even subjective decisions, it would be valuable to 

understand how social influence impacts belief accuracy even in the absence of explicit quantification. In 

this respect, our first model and experiment offer some insight—suggesting that the initial majority would 

generally dominate. However, a second important factor is that people in practice may share detailed 

arguments which are inherently convincing, thus introducing additional avenues for influence. Convincing 

rhetoric, evidence, or argumentation is one possible way that an initial minority may overturn the initial 

majority. Nonetheless, we expect that such dynamics would be the exception and not the rule. For example, 

analyses of jury deliberations—which are unlikely to be explicitly quantified and which involve complex 

argumentation—suggest that majority-rules dynamics are the most likely determinant of outcomes 

(Burghardt et al. 2019).  

 

6.4. Towards a Solution to the Crowd Classification Problem 

One benefit of using such a simplified model is that our theoretical analysis precisely defines the scope 

conditions of our results, suggesting possible “solutions” to the crowd classification problem—i.e., the 

identification of conditions that might reliably improve vote accuracy.  

For binary exchange, the scope conditions on Proposition 1 suggest that an accurate minority might 

overturn an inaccurate majority if sufficient weight is placed on accurate individuals. One design suggested 

by Proposition 1b would be a mechanism that lets people self-report confidence—or any other kind of 

mechanism that causes accurate individuals to also be persuasive. However, despite the positive correlation 

observed here, that correlation is also frequently negative for binary choice (Koriat, 2012). Thus future 

research may focus first on aligning confidence with accuracy, and then on mechanisms for persuasion. 

Moreover, the requirements to overturn an inaccurate majority become greater as the majority becomes 
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larger—i.e. precisely when the benefits of collective intelligence are most needed. While jury deliberation 

analyses (Burghardt et al. 2019) suggest that the majority-rules dynamics are largely dominant even when 

people can express their confidence (i.e. in conversation), it remains possible that some individual juries—

overlooked in main effects analysis—did indeed “solve” the crowd classification problem. Nonetheless, 

such outcomes suggest that a minority overturning a majority is the exception rather than the rule.  

The more difficult challenge is that these strategies won’t solve the problem for numeric exchange. The 

irrelevance of social-weighting to Proposition 2 reveals that the crowd classification problem is more of a 

statistical effect than a reflection of human behavior—thus behavioral solutions are less likely to easily 

resolve the issue. This difficulty is demonstrated by our analysis of data from experiments (Gürçay et al. 

2015) in which subjects shared confidence and other information through natural language discussion, and 

yet produced comparable outcomes—i.e., consistent with predictions—to experiments without such 

mechanisms (Becker et al. 2017 and Lorenz et al. 2011).  

As the crowd classification problem is a statistical problem, future research may aim for statistical 

solution. When groups produce numeric estimates, the relative location of key values (median, threshold, 

truth) determines the effect of social dynamics on binary choice accuracy. For independent beliefs, some 

tasks have been found to produce regularly structured belief distributions allowing the true value to be 

inferred from observed properties (Kao et al. 2018). Similarly, it may be possible to identify statistical 

characteristics that serve as a clue to where in the parameter space a group may find themselves regarding 

the social dynamics of binary choice accuracy. One strategy may therefore be to “calibrate” decision-

making processes to a particular task. By combining theoretical and empirical research as we do here, it 

may be possible to identify regular properties for a given task of interest. 

 During the preparation of this manuscript, we explored theoretical strategies for identifying in advance 

whether social information exchange such as discussion would improve vote accuracy. For numeric 

estimates, accuracy improvements emerge due to fairly reliable group dynamics. For binary choice votes, 

however, the dynamics themselves depend on the relative location of initial beliefs and the true value—

which is outside the control of the group, and depends entirely on the particulars of the task at hand.  The 

challenge with social influence and binary votes is, as we identify here, that it is simply unreliable from this 

perspective. At present, we do not know of any way in advance to determine whether social influence will 

help or harm binary vote accuracy, and that is the heart of the crowd classification problem. 

Ultimately, we recommend against voting as a process for the manager concerned with optimizing 

decision accuracy. A person’s binary choice reflect less nuance of belief compared with a numeric estimate. 

We recommend following a process inspired by the studies referenced in the introduction, which show how 

group discussion can improve accuracy when carefully structured (Becker et al. 2017). As discussed above, 

one important factor is collecting independent estimates before people have a chance to talk (Minson et al. 



CROWD CLASSIFICATION PROBLEM 27 

 

2018). The present study addresses the point of final aggregation, and adds the importance of surveying 

contributors on their detailed numeric estimates regarding the factor or factors important to the decision at 

hand, rather than simply taking a vote. 

 

References 

Aggarwal R, Lucey BM (2007) Psychological barriers in gold prices? Rev. Financ. Econ. 16(2):217–230. 

Almaatouq A, Becker J, Houghton JP, Paton N, Watts DJ, Whiting ME (2020) Empirica: a virtual lab for 

high-throughput macro-level experiments. ArXiv Prepr. ArXiv200611398. 

Almaatouq A, Noriega-Campero A, Alotaibi A, Krafft PM, Moussaid M, Pentland A (2020) Adaptive 

social networks promote the wisdom of crowds. Proc. Natl. Acad. Sci. 117(21):11379–11386. 

Almaatouq A, Rahimian MA, Alhajri A (2020) When social influence promotes the wisdom of crowds. 

ArXiv Prepr. ArXiv200612471. 

Almaatouq A, Yin M, Watts D (2020) Collective Problem-Solving of Groups Across Tasks of Varying 

Complexity. psyarxiv 10.31234/osf.io/ra9qy. 

Aminpour P, Gray SA, Jetter AJ, Introne JE, Singer A, Arlinghaus R (2020) Wisdom of stakeholder 

crowds in complex social–ecological systems. Nat. Sustain. 3(3):191–199. 

Arlotto A, Chick SE, Gans N (2014) Optimal hiring and retention policies for heterogeneous workers who 

learn. Manag. Sci. 60(1):110–129. 

Asch SE (1951) Effects of group pressure upon the modification and distortion of judgments. Groups 

Leadersh. Men S:222–236. 

Ashton RH (1986) Combining the judgments of experts: How many and which ones? Organ. Behav. 

Hum. Decis. Process. 38(3):405–414. 

Atanasov P, Rescober P, Stone E, Swift SA, Servan-Schreiber E, Tetlock P, Ungar L, Mellers B (2017) 

Distilling the Wisdom of Crowds: Prediction Markets vs. Prediction Polls. Manag. Sci. 

63(3):691–706. 

Bazerman MH, Curhan JR, Moore DA, Valley KL (2000) Negotiation. Annu. Rev. Psychol. 51(1):279–

314. 

Bazerman MH, Moore DA (1994) Judgment in managerial decision making (Wiley New York). 

Becker J, Almaatouq A, Horvat A (2020) Network Structures of Collective Intelligence: The Contingent 

Benefits of Group Discussion. ArXiv200907202 Cs Econ Q-Fin. 

Becker J, Brackbill D, Centola D (2017) Network dynamics of social influence in the wisdom of crowds. 

Proc. Natl. Acad. Sci. 114(26):E5070–E5076. 

Budescu DV, Chen E (2014) Identifying expertise to extract the wisdom of crowds. Manag. Sci. 

61(2):267–280. 

Burghardt K, Rand W, Girvan M (2019) Inferring models of opinion dynamics from aggregated jury data. 

PloS One 14(7). 

Cohen MD, March JG, Olsen JP (1972) A garbage can model of organizational choice. Adm. Sci. Q.:1–

25. 

Coleman JS (1966) Foundations for a theory of collective decisions. Am. J. Sociol.:615–627. 

Collins R (2014) Interaction ritual chains and collective effervescence. Collect. Emot.:299–311. 

Csaszar FA, Eggers JP (2013) Organizational Decision Making: An Information Aggregation View. 

Manag. Sci. 59(10):2257–2277. 

Cyert RM, March JG (1963) A behavioral theory of the firm (Prentice-Hall, Englewood Cliffs, NJ). 

Da Z, Huang X (2020) Harnessing the wisdom of crowds. Manag. Sci. 66(5):1847–1867. 

Dalkey N, Helmer O (1963) An experimental application of the Delphi method to the use of experts. 

Manag. Sci. 9(3):458–467. 



CROWD CLASSIFICATION PROBLEM 28 

 

Eichler HG, Kong SX, Gerth WC, Mavros P, Jönsson B (2004) Use of Cost-Effectiveness Analysis in 

Health-Care Resource Allocation Decision-Making: How Are Cost-Effectiveness Thresholds 

Expected to Emerge? Value Health 7(5):518–528. 

Farrell S (2011) Social influence benefits the wisdom of individuals in the crowd. Proc. Natl. Acad. Sci. 

108(36):E625–E625. 

Frey V, van de Rijt A (2020) Social influence undermines the wisdom of the crowd in sequential decision 

making. Manag. Sci. 

Gardikiotis A, Martin R, Hewstone M (2005) Group consensus in social influence: Type of consensus 

information as a moderator of majority and minority influence. Pers. Soc. Psychol. Bull. 

31(9):1163–1174. 

Golub B, Jackson MO (2010) Naive learning in social networks and the wisdom of crowds. Am. Econ. J. 

Microecon. 2(1):112–149. 

Gürçay B, Mellers BA, Baron J (2015) The power of social influence on estimation accuracy. J. Behav. 

Decis. Mak. 28(3):250–261. 

Hastie R (1986) Experimental evidence on group accuracy. Decis. Res. 2:129–157. 

Hastie R, Kameda T (2005) The robust beauty of majority rules in group decisions. Psychol. Rev. 

112(2):494. 

Hogarth RM (1978) A note on aggregating opinions. Organ. Behav. Hum. Perform. 21(1):40–46. 

Holman D, Chissick C, Totterdell P (2002) The effects of performance monitoring on emotional labor and 

well-being in call centers. Motiv. Emot. 26(1):57–81. 

Hong H, Du Q, Wang G, Fan W, Xu D (2016) Crowd Wisdom: The Impact of Opinion Diversity and 

Participant Independence on Crowd Performance. 22nd Am. Conf. Inf. Syst. AMCIS2016. 

Jansen WJ, Jin X, de Winter JM (2016) Forecasting and nowcasting real GDP: Comparing statistical 

models and subjective forecasts. Int. J. Forecast. 32(2):411–436. 

Jayles B, Kim H rin, Escobedo R, Cezera S, Blanchet A, Kameda T, Sire C, Theraulaz G (2017) How 

social information can improve estimation accuracy in human groups. Proc. Natl. Acad. 

Sci.:201703695. 

Jørgensen M (2004) A review of studies on expert estimation of software development effort. J. Syst. 

Softw. 70(1–2):37–60. 

Kao AB, Berdahl AM, Hartnett AT, Lutz MJ, Bak-Coleman JB, Ioannou CC, Giam X, Couzin ID (2018) 

Counteracting estimation bias and social influence to improve the wisdom of crowds. J. R. Soc. 

Interface 15(141). 

Kinney W, Burgstahler D, Martin R (2002) Earnings Surprise “Materiality” as Measured by Stock 

Returns. J. Account. Res. 40(5):1297–1329. 

Krauss C (2008) Oil Hits $100 a Barrel for the First Time (Published 2008). The New York Times 

(January 2) https://www.nytimes.com/2008/01/02/business/02cnd-oil.html. 

Kurvers RH, Herzog SM, Hertwig R, Krause J, Carney PA, Bogart A, Argenziano G, Zalaudek I, Wolf M 

(2016) Boosting medical diagnostics by pooling independent judgments. Proc. Natl. Acad. 

Sci.:201601827. 

Lazer D, Friedman A (2007) The network structure of exploration and exploitation. Adm. Sci. Q. 

52(4):667–694. 

Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) How social influence can undermine the wisdom of 

crowd effect. Proc. Natl. Acad. Sci. 108(22):9020–9025. 

Macy MW, Willer R (2002) From factors to factors: computational sociology and agent-based modeling. 

Annu. Rev. Sociol. 28(1):143–166. 

Madirolas G, de Polavieja GG (2015) Improving collective estimations using resistance to social 

influence. PLoS Comput. Biol. 11(11):e1004594. 

Malone TW, Bernstein MS (2015) Handbook of collective intelligence (MIT Press). 

Mannes AE (2009) Are we wise about the wisdom of crowds? The use of group judgments in belief 

revision. Manag. Sci. 55(8):1267–1279. 

Mannes AE, Soll JB, Larrick RP (2014) The wisdom of select crowds. J. Pers. Soc. Psychol. 107(2):276. 



CROWD CLASSIFICATION PROBLEM 29 

 

March JG (1991) How decisions happen in organizations. Hum.-Comput. Interact. 6(2):95–117. 

Medvec VH, Galinsky AD (2005) Putting more on the table: How making multiple offers can increase the 

final value of the deal. HBS Negot. Newsl. 8:4–6. 

Minson JA, Mueller JS, Larrick RP (2018) The Contingent Wisdom of Dyads: When Discussion 

Enhances vs. Undermines the Accuracy of Collaborative Judgments. Manag. Sci. 64(9):4177–

4192. 

Mossel E, Tamuz O (2017) Opinion exchange dynamics. Probab. Surv. 14:155–204. 

Navajas J, Niella T, Garbulsky G, Bahrami B, Sigman M (2018) Aggregated knowledge from a small 

number of debates outperforms the wisdom of large crowds. Nat. Hum. Behav. 2:1. 

Nofer M, Hinz O (2014) Are crowds on the internet wiser than experts? The case of a stock prediction 

community. J. Bus. Econ. 84(3):303–338. 

Page SE (2007) The difference: How the power of diversity creates better groups, firms, schools, and 

societies (Princeton University Press). 

Palley AB, Soll JB (2019) Extracting the Wisdom of Crowds When Information Is Shared. Manag. Sci. 

Parayitam S, Dooley RS (2007) The relationship between conflict and decision outcomes: Moderating 

effects of cognitive- and affect-based trust in strategic decision-making teams. Int. J. Confl. 

Manag. Bowl. Green 18(1):42–73. 

Rivera LA (2012) Hiring as cultural matching: The case of elite professional service firms. Am. Sociol. 

Rev. 77(6):999–1022. 

Schnusenberg O (2006) The stock market behaviour prior and subsequent to new highs. Appl. Financ. 

Econ. 16(6):429–438. 

Sherif M (1935) A study of some social factors in perception. Arch. Psychol. Columbia Univ. 

Shore J, Bernstein E, Lazer D (2015) Facts and figuring: An experimental investigation of network 

structure and performance in information and solution spaces. Organ. Sci. 26(5):1432–1446. 

Straub VJ, Tsvetkova M, Yasseri T (2020) The cost of coordination can exceed the benefit of 

collaboration in performing complex tasks. ArXiv200911038 Nlin Physicsphysics. 

Stroebe W, Nijstad BA, Rietzschel EF (2010) Chapter four-beyond productivity loss in brainstorming 

groups: The evolution of a question. Adv. Exp. Soc. Psychol. 43:157–203. 

Surowiecki J (2004) The wisdom of crowds (Anchor). 

Ven AHVD, Delbecq AL (1974) The effectiveness of nominal, Delphi, and interacting group decision 

making processes. Acad. Manage. J. 17(4):605–621. 

Wolf M, Krause J, Carney PA, Bogart A, Kurvers RHJM (2015) Collective intelligence meets medical 

decision-making: the collective outperforms the best radiologist. PloS One 10(8):e0134269. 


