
1

Globally Optimal Fetoscopic Mosaicking Based on
Pose Graph Optimisation with Affine Constraints

Liang Li, Sophia Bano, Jan Deprest, Anna L David, Danail Stoyanov, and Francisco Vasconcelos

Abstract—Fetoscopic laser ablation surgery could be guided
using a high-quality panorama of the operating site, representing
a map of the placental vasculature. This can be achieved
during the initial inspection phase of the procedure using image
mosaicking techniques. Due to the lack of camera calibration in
the operating room, it has been mostly modelled as an affine
registration problem. While previous work mostly focuses on
image feature extraction for visual odometry, the challenges
related to large-scale reconstruction (re-localisation, loop closure,
drift correction) remain largely unaddressed in this context. This
letter proposes using pose graph optimisation to produce globally
optimal image mosaics of placental vessels. Our approach follows
the SLAM framework with a front-end for visual odometry and
a back-end for long-term refinement. Our front-end uses a recent
state-of-the-art odometry approach based on vessel segmentation,
which is then managed by a key-frame structure and the bag-
of-words (BoW) scheme to retrieve loop closures. The back-
end, which is our key contribution, models odometry and loop
closure constraints as a pose graph with affine warpings between
states. This problem in the special Euclidean space cannot be
solved by existing pose graph algorithms and available libraries
such as G2O. We model states on affine Lie group with local
linearisation in its Lie algebra. The cost function is established
using Mahalanobis distance with the vectorisation of the Lie
algebra. Finally, an iterative optimisation algorithm is adopted to
minimise the cost function. The proposed pose graph optimisation
is first validated on simulation data with a synthetic trajectory
that has different levels of noise and different numbers of loop
closures. Then the whole system is validated using real fetoscopic
data that has three sequences with different numbers of frames
and loop closures. Experimental results validate the advantage
of the proposed method compared with baselines.

Index Terms—Surgical robotics, pose graph optimisation, fe-
toscopic camera, image mosaicking, affine Lie group

I. INTRODUCTION

IMAGE mosaicking or stitching is a classic problem in
robotics and computer vision for field-of-view expansion.
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This has relevant applications in image guided minimally
invasive surgery [1], where endoscopic cameras typically have
a very narrow field-of-view when compared to the entire
operating site, and therefore image mosaicking can offer a
global map of the targeted anatomy to guide the surgeon.
This is the case of fetoscopic laser ablation surgery for
treating twin-to-twin transfusion syndrome (TTTS) [2]. It
is a minimally invasive procedure for complicated identical
twin pregnancies with a single shared placenta and is guided
by a fetoscopic camera and ultrasound. The objective of
the procedure is to stop unbalanced blood transfusion from
one twin to another, which is achieved by photocoagulating
anastomoses on the placenta surface with a laser fiber exiting
the fetoscope [3]. In this context, image mosaicking would
provide a panorama of the placental surface where a map of
the entire vasculature network and the targeted anastomoses
are visible. This can be achieved during the initial phase of the
procedure, where the operating site is being inspected by the
surgeon with the fetoscopic camera. Additionally, the image
mapping an localisation techniques that mosaicking relies on
can potentially drive the autonomous navigation of robotic
fetoscopic instruments currently under development [4]–[6].

The main problem is to estimate the pose of every image
with respect to a single reference frame. Mosaicking methods
can be based on direct (photometric) [7] or indirect (feature-
based) [8]–[11] methods. While feature-based methods are
limited by the scene environment and require distinctive
landmarks, direct methods are computationally heavier to run.
Considering the two factors, semi-direct algorithms have also
been proposed [12], which combine the advantages of both.

There are several mosaicking challenges that are particular
to fetoscopic imaging such as fluid immersion, floating parti-
cles, moving light source and reflections, close-range and often
out of focus frames. Therefore, the ongoing development of
mosaicking techniques in this domain diverges from the state-
of-the-art in computer vision literature. Most of the research
in this domain has concentrated on addressing the short-
term challenges in sequential video frame registration and
therefore most of the existing methods rely on visual odometry
that eventually accumulates drift error. The clinical need for
reliable and consistent mosaics of the entire operating site has
therefore not been met with the existing approaches.

This letter aims at addressing the long-term challenges of
loop closure and global map consistency in longer fetoscopic
sequences. We propose a graph-based globally optimal image
mosaicking algorithm and emphasise its usage in fetoscopy.
The overall framework is inspired by SLAM, containing a
visual odometry front-end and a global optimisation back-end.
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The front-end relies on the approach from Bano et. al. [13],
that performs vessel segmentation followed by registration of
vessel probability maps. A keyframe library is then established
based on sparse sampling of visual odometry frames. Loop
closures are detected with a Bag-of-Words (BoW) scheme
followed by direct image registration. To globally refine odom-
etry and loop closures, the back-end follows closely the G2O
framework [14]. The problem is formulated as pose graph op-
timisation, with the pose of every image as vertex, constraints
of odometry and loop closure as edges. Following previous
literature on fetoscopy mosaicking, the state of each vertex is
a 6 DoF affine matrix. This is different from available pose-
graph approaches that work in SE(2) or SIM(2). Instead,
we propose to construct the cost function and derive the
solution in affine Lie group, i.e., a combination of GL(2)
and 2-DOF translation. The linearisation of the state is its Lie
algebra, with which the Jacobian and operation of plus can be
conducted when updating the state during optimisation. The
computation between Lie group and Lie algebra is achieved by
exponential and logarithm maps. Diagram of the whole system
is summarized in Fig. 1. The contributions of this letter can
be summarised as:

1. We propose a SLAM-based fetoscopic mosaicking frame-
work with the full pipeline from the front-end to the
back-end where we use pose graph consistency instead
of photometric error to optimise the map.

2. We propose an explicit form of Lie group-based pose
graph optimisation algorithm on 2D affine space. This
not only tackles the fetoscopic mosaicking problem, but
is also generalisable to other problems in computer vision
and robotics1.

3. We test our complete mosaicking algorithm on real feto-
scopic sequences, showing its advantage compared to the
baseline [13] without back-end optimisation. Addition-
ally, the affine graph-optimisation formulation is further
validated with simulation data.

The rest of this letter is organised as follows. Section II
discusses the related work in fetoscopic mosaicking and pose
graph optimisation. Section III gives a detailed description
of the proposed method. Section IV presents the results on
simulation and real-world data. Finally, Section V concludes
this letter.

II. RELATED WORK

Fetoscopic mosaicking aims at obtaining a panorama of
the fetal vasculature on the chorionic surface of the placenta
from an intraoperative video sequence. The early methods are
based on classic point feature detection and matching such as
SURF [15] and SIFT [16] and have been tested on synthetic
data. However, these methods have low repeatability in more
realistic experiments, and explicit detection of vessel features
is suggested as a better option [17]. None of the above methods
has been shown to work reliably with in-vivo fetoscopic data.
In this setting, most breakthroughs have been achieved with
direct methods. This includes pixel-wise gradient alignment

1The code and data are publicly available on github with the following link
https://github.com/LiangLiUCL/Affine-Pose-Graph-Optimisation.git

[18], a deep learning approach for direct homography re-
gression [19], [20], and more recently, registration of seg-
mented placental vessels [13]. While this last method shows
significant progress, it ignores accumulative drift errors that
would eventually occur in long videos. Only a small portion
of the above methods considers long-term global refinement.
A bundle-adjustment approach was proposed in [15], however,
it relies on SURF features, which are not reliable with in-vivo
data. A direct bundle-adjustment approach was proposed in
[18], however, both the retrieval of similar frames and the
global optimisation over an entire video are computationally
heavy and thus face challenges in an online setting. To the best
of our knowledge, a more efficient global refinement solution
based on keyframe management and graph pose optimisation,
such as Graph SLAM [21], has never been attempted for
fetoscopic mosaicking, despite its widespread usage by the
robotics community. This would allow a lightweight global
optimisation of large mosaics that is image free and does not
require the modelling of landmarks.

Pose graph optimisation methods in SLAM can be clas-
sified into two categories: filtering-based and error function-
based. Herein, we only discuss the error function-based
method which is the most relevant to this letter. G2O [14] is
one representative method in this category. It minimises Ma-
halanobis distance of all the constraints provided by odometry
and loop closures. Gauss-Newton or Levenberg-Marquardt
(LM) algorithms are used with an initial guess linearised by
its first-order Taylor expansion. In [22], the authors simplified
the computation by solving the rotation part first, then rectified
the translation part in 2D case. Robustness to outliers of loop
closures was investigated in [23], [24]. The convex relaxation
of the optimisation was addressed in [25]. A smoother error
function is exploited for the pose graph optimisation in [26].
The asynchronous property of distributed pose graph optimi-
sation was investigated in [27] for multi-robot systems. All
these methods work in SE(2), SE(3) and SIM(3), which
are the common kinematics spaces in robotics. Uncalibrated
camera projections are commonly modelled as a projective
transformation P (3). In in-vivo fetoscopy however, due to un-
calibrated distortions from the lens and water refraction [28],
approximating it with an affine approximation renders iterative
estimation more stable as indicated in [13], [18]. Therefore we
aimed to derive an algorithm that works on 2D affine space to
optimise the mosaicking directly without camera calibration.
In this letter, we combine fetoscopic mosaicking and pose
graph optimisation to make an efficient and optimal panorama
generation algorithm.

III. METHODOLOGY

This section details the full pipeline of the proposed method
from the front-end to the back-end.

A. The front-end odometry

Odometry is estimated with the method presented in [13].
We briefly introduce it in this section to make this letter
self-contained. It consists of two parts: feature extraction and
odometry estimation. The extracted features are segmented
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Fig. 1. Diagram of the proposed fetoscopic mosaicking algorithm. It has two parts: front-end and back-end. The main contribution of this work is to develop
a back-end to make the obtained panorama globally optimal given all the odometry and loop closure measurements.

vessels on the chorionic placenta surface, obtained using U-
Net [29] which has achieved good performance in many
biomedical image segmentation tasks. One favourable property
of U-Net is that it generalises well in cases where the training
dataset is relatively small [29]. The output of U-Net is a
probability map of each pixel being part of a vessel.

The odometry estimation is based on the vessel probability
map of consecutive frames as that in [13]. It is assumed that
the transformation between two frames is affine rather than
projective as suggested in [18], as in our case the camera
calibration parameters are not available. The image registration
is based on the pyramidal Lucas-Kanade framework [30],
where the least-squares error between the target image and
the warped source image is minimised. There is no analytic
solution to this problem, and therefore an iterative optimisation
method is adopted. Here, the LM algorithm is used as it
controls the convergence better than Gauss-Newton by using
a damping factor. The diagram of the front-end can be seen
on the left side of Fig. 1.

B. Loop closure detection

In order to deal with large-scale trajectories, we select a
subset of all odometry frames as keyframes, and only these
will be considered for subsequent optimisation. The first frame
is always a keyframe and afterwards keyframes are defined
when the movement (translation) estimated by the odometry is
beyond a threshold. For every new vessel segmentation image,
we determine if there is a loop closure by comparing it against
previous keyframes. The keyframes are constructed as clusters
using BoW with SURF features, from which a similarity score
between frames can be computed2. Then the score between
the current frame and every keyframe from previous upto 50
frames is computed. As usually the possibility of loop closure

2Please note that we mentioned before that fetoscopic mosaicing based on
local point feature matching methods such as SURF is not reliable, however,
here we are just using them as a lightweight approach to detect globally
similar frames and discarding their innacurate location within the image for
any motion estimation purposes

within 50 frames is small. It may be just caused by slow
motion of the camera. Moreover, short loop closures contribute
little for the global optimisation. If the score is larger than
a threshold (e.g., 0.1), this keyframe will be selected as a
loop closure candidate. Finally, the transformation between
the current frame and the loop closure candidate is computed
using the odometry method described in section III-A. When
the obtained transformation is smaller than a threshold, the
loop closure will be added. This is because when a real loop
closure is detected, the transformation should not be too large,
i.e., the current frame and the keyframe should be close to each
other.

C. The back-end optimisation

Both odometry estimation between consecutive frames and
loop closures between non-adjacent frames should be taken
into consideration to generate a consistent map. This problem
is modelled as a directed graph G = (V,E), where V is the
set of vertices (pose of the image) and E is the set of edges
(constraints of odometry and loop closures). Every edge is
associated with its uncertainty, i.e., the covariance matrix Σ.
We do not take the landmarks (vessels) into consideration,
and therefore the back-end optimisation does not need to use
any image appearance information. The flowchart of the back-
end optimisation can be seen on the right side of Fig. 1. An
illustration of the pose graph is shown in Fig. 2.

As mentioned in Section III-A, the vertex of the pose graph
is represented by a 2D affine matrix. We denote the i-th vertex
as:

xi =

[
Ai ti
0 1

]
(1)

where Ai ∈ GL(2) is a 2 × 2 non-singular matrix on the
general linear group, i.e., |Ai| 6= 0, and ti is a 2 × 1 vector
denotes translation. The affine matrix group is a Lie group as it
is a smooth manifold whose elements satisfy the group axioms
with closure under matrix multiplication, identity matrix as the
identity, matrix inverse and associativity. We define the plus
operation ⊕ on the Lie group as left matrix multiplication, i.e.,
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Fig. 2. An illustration of the pose graph. In our case, the vertex is the
pose of the image, the odometry is estimated by image registration between
consecutive frames, and the loop closure is detected based on similarity score
and transformation.

xi ⊕ xj = xjxi, while the minus operation 	 is defined as
xi	xj = x−1j xi. Odometry edges between the i-th node and
the i+1-th node zi and loop closure edges between the i-th
node and the j-th node zij , |i − j| 6= 1 are all on the affine
Lie group. Given a graph with n vertices, assuming there is
an edge between the i-th node and the j-th node, 0 < i, j ≤ n,
i 6= j, the error constraint by this edge is:

eij = e(xi,xj , zij) = (xj 	 xi)	 zij = z−1ij x−1i xj (2)

where the error eij is still a 3 × 3 matrix on the affine Lie
group. The affine matrix has 6-DOF, we need to define the
vectorisation of the matrix to construct a cost function. The
Lie algebra is a local linearisation of the Lie group, which is
a suitable tool in this case. The Lie algebra generators of the
2D affine group are:

g1 =

1 0 0
0 1 0
0 0 0

 ,g2 =

1 0 0
0 −1 0
0 0 0

g3 =

0 0 1
0 0 0
0 0 0

 ,
g4 =

0 0 0
0 0 1
0 0 0

 ,g5 =

0 1 0
1 0 0
0 0 0

 ,g6 =

 0 1 0
−1 0 0
0 0 0


(3)

The Lie algebra is a weighted sum of the generators:

g = [ω]× =

6∑
i=1

ωigi, ω = [ω1, ω2, . . . , ω6]
> (4)

The element T on the affine Lie group AFF (2) and its Lie
algebra ω∧ on aff(2) is converted through exponential map
and logarithm map:

T = exp(ω∧) =

∞∑
n=0

1

n!
(ω∧)n

ω∧ = log(T) =

∞∑
n=1

(−1)n+1 (T− I)n

n

(5)

where the operator ∧ takes an element on R6 and transforms it
to an element of aff(2) shown in equation (4). In the remainder
of this letter we also define the operator ∨ as the inverse of
∧. Thus, the affine Lie group and the vector space are related.

The computation of both maps are by the definition in equation
(5) with appropriate orders. Since the transformation between
consecutive frames or the loop closures is not large, i.e., the
image does not change dramatically in the next time step or
when a loop closure is detected, we can define the new error
function in the vector space as:

ẽij(xi,xj , zij) = log(eij)
∨ = log(z−1ij x−1i xj)

∨ (6)

Then the cost function can be defined as:

f(x) =
∑
i,j∈C

fij =
∑
i,j∈C

ẽ>ijΩij ẽij (7)

where the 6 × 6 matrix Ωij is the information matrix, i.e.,
the inverse of the covariance, C is the set of edges, x =
[x>1 ,x

>
2 , . . . ,x

>
n ]
> is the state to be estimated. As the Lie

algebra at different point of the manifold is different, it can
not be updated directly in the vector space. Instead, it should
be updated iteratively by adding a perturbation around the
current value in every step. In this way, it can be approximated
as a least squares problem in every iterative step. For the
error function in equation (2), a small perturbation on the Lie
algebra and taking the first-order Taylor approximation will
result in

ẽij(x⊕ exp(δξ∧)) = z−1ij x−1i exp(ξ∧i )
−1 exp(ξ∧j )xj

' ẽij(x) + Jijδξ
(8)

where Jij is the Jacobian of ẽij with respect to δξ. It can be
derived to obtain an approximation form with the Lie group
theory and the adjoint operation. However, it does not have the
elegant form as that in SE(3) or other Euclidean, orthogonal
spaces. In this letter, we do not derive it but use a numerical
method to compute it:

Jij =
∂ẽij(x⊕ exp(δξ∧))

∂δξ

∣∣∣∣
δξ=0

' ẽij(x⊕ exp(δξ∧))− ẽ(x)

δξ

∣∣∣∣
δξ→0

(9)

At every iterative step, we add a very small perturbation to
the current estimated state to compute Jij ∈ R6×6. Then
following the framework of G2O [14], we can have:

f̃ij (x⊕ exp(δξ∧))

= ẽij(x⊕ exp(δξ∧))>Ωij ẽij(x⊕ exp(δξ∧))

' (ẽij(x) + Jijδξ)
>Ωij(ẽij(x) + Jijδξ)

= ẽij(x)
>Ωij ẽij(x)︸ ︷︷ ︸
cij

+2 ẽij(x)
>ΩijJij︸ ︷︷ ︸
bij

δξ

+ δξ> J>ijΩijJij︸ ︷︷ ︸
Hij

δξ

(10)

By adding all the constraints in equation (7), we can get the
perturbed cost function as:

f̃ (x⊕ exp(δξ∧)) =
∑
i,j∈C

f̃ij

'
∑
i,j∈C

(
cij + 2bijδξ + δξ>Hijδξ

)
= c+ 2b>δξ + δξ>Hδξ

(11)
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where c =
∑
cij is the sum of cij presented in equation (10),

b =
∑

b>ij is the sum of bij presented in equation (10), and
H =

∑
Hij is the Hessian matrix. Equation (11) is a linear

function and has an analytic solution. In this letter, we use the
LM algorithm to solve the equation:

(H + λI)δξ∗ = −b (12)

where λ is called the damping factor that is controlled dynam-
ically to improve the convergence. The updated state at this
step is:

x∗ = x⊕ exp(δξ∧) (13)

The algorithm repeats equation (6) at the updated point to
compute ẽij , equation (9) at the updated point to compute
Jij , equation (10) and (11) to compute b, H, equation (12)
and (13) to update the state until the convergence criteria is
fulfilled. The back-end algorithm is based on the framework
of G2O [14], we define our own affine Lie group class,
the operation, exponential map, logarithm map, etc., the new
vertex type and new edge type to make it work on the 2D
affine pose graph optimisation.

IV. EXPERIMENTS

This section presents the results both on simulation data and
real in-vivo fetoscopic sequences.

A. Simulation

In order to verify the performance of the proposed pose
graph optimisation and give quantitative results, we create
simulated data on SIM(2), i.e., with rotation, translation and
scale, which is a special case of the 2D affine motion. The
state can be represented by an affine matrix:

xi =

[
sR t
0 1

]
where s ∈ R+ is the scale, R is a 2D rotation matrix, and
t ∈ R2×1 is the translation vector. The robot/camera starts at
(−100, 0) point, rotates with respect to the origin at a constant
angular velocity. Meanwhile, the scale s decreases gradually
from 1. This makes the ground truth trajectory a spiral curve.
It rotates five laps and there are fifty nodes in every lap, which
means the graph has 250 vertices in total. The ground truth
of the pose is 4-DOF, i.e., one scale, one rotation and two
translation parameters. Nevertheless, we add noise in all six
dimensions of the affine group, i.e., the coefficient on Lie
algebra from ω1 to ω6 of the noise in equation (4) are all
non-zero. We test the proposed graph optimisation algorithm
both with dense and sparse loop closures. In the dense case,
for the first three laps, we add loop closures between the i-th
vertex to the i+ 49-th, i+ 50-th, and i+ 51-th vertex, where
0 < i ≤ 150. For the last two laps, we add loop closures
between the i-th vertex to the i+ 49-th and i+ 50-th vertex,
where 150 < i ≤ 200. So, there are 550 loop closures in
total. Then we decrease the number of loop closures gradually
to 350, 91, and until the very sparse case 21. Noise for the
loop closure is the same as that in the odometry edges. We
test the algorithm with different levels of noise to validate

TABLE I
A COMPARISON OF THE AVERAGE POSITION ERROR BEFORE AND AFTER

OPTIMISATION WITH DIFFERENT LEVELS OF NOISE AND DIFFERENT
NUMBERS OF LOOP CLOSURES

LC Noise
Case 1 Case 2 Case 3

GLN TN GLN TN GLN TN
0.005 0.01 0.008 0.02 0.01 0.03

Bef. Opt. 17.99 28.78 36.05
550 Aft. Opt. 1.18 1.51 1.54
350 Aft. Opt. 0.78 1.13 1.33
91 Aft. Opt. 1.71 2.60 3.01
21 Aft. Opt. 1.97 3.15 3.92

GLN: General linear noise TN: Translation noise LC: Loop closure

its robustness. We first add a small amount of noise to the
ground truth (0.01 for translation, i.e., g3 and g4, and 0.005
for the general linear part, i.e., g1, g2, g5 and g6 for every
edge), which can simulate the condition where the odometry
estimation is accurate. The result of the dense case is shown
in Fig. 3 (a), from which we can see that after optimisation the
trajectory is much closer to the ground truth. For the second
case, the added noise is larger than that in the first case (0.02
for translation and 0.008 for the general linear component).
The result is presented in Fig. 3 (b), from which we can see
that the proposed pose graph optimisation is still able to correct
the pose and trajectory given the loop closures even though
the trajectory estimated by odometry has a larger drift. Finally,
for the third simulation, we increase the noise further (0.03 for
translation, and 0.01 for the general linear part), and the result
is shown in Fig. 3 (c). We can see remarkable improvement
after optimisation as that in the first two cases though the
trajectory before optimisation is much different compared to
the ground truth. The quantitative results of all the sparse
and dense cases in terms of loop closures are presented in
Table I, where we show the average position error, i.e., the
sum of the position error for every vertex divided by the total
number of vertices. It shows that after optimisation the error
becomes much smaller in all these cases. When the number
of loop closure decreases to 350, the errors after optimisation
are even smaller than those that have 550 loop closures. This
is due to the reason that when the loop closures are too dense,
the error of all the loop closures cannot be ignored. When it
becomes a little sparse, the error brought by the loop closure
becomes smaller. Thus, the optimisation result becomes better.
But when the density of loop closures decreases significantly
to 91 or 21, the constraints are not as good as the first two
cases. So, the error after optimisation increases a little bit. This
simulation demonstrates effectiveness and convergence of the
proposed pose graph optimisation.

B. Fetoscopic mosaicking results

We also test the proposed method using real in-vivo fe-
toscopic data. We use an extended version of the publicly
available data from [13]. While the original dataset includes
short sequences from 6 different surgeries, valid loop closures
were detected in 3 of them (sequences 1, 2, 3 in [13]), and
therefore the results in this section will focus on these. We
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Fig. 3. Results on the simulation data with different levels of noise in the front-end. In (a), the noise of general linear part is 0.005, and the noise of the
translation is 0.01 for every odometry edge. We can see that the trajectory after optimisation is very close to the ground truth. In (b), the noise increases with
0.008 for the general linear part and 0.02 for translation. In (c), the noise for the general linear part and translation are 0.01 and 0.03 respectively. Though
the odometry is farther from the ground truth in the last two cases, the proposed method can still bend the trajectories back.

TABLE II
NUMBER OF FRAMES AND LOOP CLOSURES OF THE THREE FETOSCOPIC

SEQUENCES

Sequence Sequence 1 Sequence 2 Sequence 3

Number of frames 400 300 150
Number of loop closures 19 13 1

also extend sequence 2 and 3 with 100 additional frames to
better visualise the effect of incremental drift. The 100 frames
are added to the original ’end frame’ of that in [13], where it
is the point when vessel-based mosaicking fails. The number
of frames and detected loop closures are presented in Table II.
The uncertainties of the odometry edges as well as the loop
closures are based on their similarity scores. Sequence 1 and 2
both have more than 10 loop closures detected, and the loops
are entangled. While sequence 3 only has one loop closure
detected. As results in [13] have already demonstrated that
vessel-based mosaicking outperforms equivalent approaches
based on RGB data, herein we focus on comparing vessel
mosaics before and after pose graph optimisation. We also
compare the proposed method with the deep sequential mo-
saicking (DSM) presented in [19], which is an end-to-end
method. Since we do not have the ground-truth motion of
these sequences, we only provide a qualitative analysis.

The result of sequence 1 is shown in Fig. 4 (a) - (d). Here we
present the vessel panorama and the trajectory before and after
optimisation. From Fig. 4 (a), we can see that the odometry
estimated by image registration is already reliable with no
noticeable drift, which is in accordance with the analysis in
[13]. Though the improvement after back-end optimisation is
marginal (Fig. 4 (b)), we can still notice that the result is
slightly refined. Especially when comparing the parts in the
dash cyan circle in Fig. 4 (a) and Fig. 4 (b), we can see that
small vessel discontinuities and breaks are eliminated after
optimisation. Fig. 4 (d) shows the estimated trajectories before

and after optimisation. They are the same until a loop closure
is detected. Most of the loop closures are around (−500, 150)
where the fetoscope moves very little over 100 frames. The
optimisation corrects the small drift during this time and the
difference is observable afterwards. From the result of this
sequence, we observe that if the front-end is accurate, the
back-end optimisation does not destroy the mosaicking. In
contrast, it can improve the result marginally. While Fig. 4 (c)
shows that the DSM-based mosaicking has lots of drift even
compared to the vessel-based mosaicking before optimisation.

The result of sequence 2 is shown in Fig. 4 (e) - (h).
The improvement after optimisation is more obvious in this
case, as the odometry is not as good as in sequence 1.
The segmentation result has some occlusions and false neg-
ative segmentation areas. The cyan circle in Fig. 4 (e) and
Fig. 4 (f) shows that the vessel after optimisation becomes
connected and more consistent. In Fig. 5, the fetoscopic
images stitched only by the front-end [13] and optimised
by the proposed method are presented. It demonstrates that
the proposed back-end optimisation improves the mosaicking
quality substantially when there are odometry errors due to
occasional vessel segmentation failures. From Fig. 4 (h), we
can see that the trajectories before and after optimisation
are much different, which means the correction by the back-
end is large. The result of sequence 3 is shown in Fig. 4
(i) - (l). The most significant difference is in the left side
of the stitched panorama. From Fig. 4 (i), we can see a
noticeable drift in the front-end estimations that makes the
same vessel appear twice in different parts of the mosaic.
The back-end optimisation corrects this error and improves
the alignment. Fig. 4 (l) also indicates that the trajectory after
optimisation noticeably improves the mosaics compared with
that estimated by the front-end. Similar to sequence 1, the
vessel-based method outperforms the DSM-based mosaicking
of the last two sequences significantly no matter before or
after optimisation. If there are heavy occlusions, some frames
and estimation of the front-end segmentation may have large
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(a) Panorama before opt. of seq. 1 (b) Panorama after opt. of seq. 1 (c) DSM-based panorama of seq. 1
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(d) The trajectory of sequence 1

(e) Panorama before opt. of seq. 2 (f) Panorama after opt. of seq. 2 (g) DSM-based panorama of seq. 2
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(h) The trajectory of sequence 2

(i) Panorama before opt. of seq. 3 (j) Panorama after opt. of seq. 3 (k) DSM-based panorama of seq. 3
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(l) The trajectory of sequence 3

Fig. 4. The result of fetoscopic mosaiking, with the first row of sequence 1, the second row of sequence 2, and the third row of sequence 3. The vessel
panoramas before and after back-end optimisation are shown in first and second columns respectively. The vessel panoramas based on DSM are shown in the
third column. And the fourth column shows the trajectories before and after optimisation. We can see that the panorama after optimisation is less blurry or
become connected in the cyan dash circle. And the vessel-based mosaicking is much better than the end-to-end method.

(a) Stitched image by odometry (b) Stitched image optimised by
the back-end

Fig. 5. The stitched image of sequence 2 using vessel only by the front-end
(a), and by the proposed method (b). From the cyan dash circle, it can be
seen that the shape after optimisation is much different.

errors or even fail. In this case, the back-end has two possible
performances. First, it can drive the trajectory/mosaicking
to a better result but still has noticeable errors. Or second,
it may converge to the local minima because of the poor
initial guess provided by the front-end. In future work, we
plan to investigate how to identify outliers in both odometry

and loop closure. As that of SLAM for mobile robots, the
proposed method works if there are loop closures, and the
error bound (noise) of the front-end is within a reasonable
range. For example, for sequence 4 to 6 of [13], there is no
loop closure detected, then it does not make sense to optimise
the mosaicking using the proposed back-end.

V. CONCLUSIONS

This letter presents a globally optimal fetoscopic mo-
saicking algorithm, based on the full pipeline of SLAM
from the front-end to the back-end. From the theoretical
perspective, we generalise pose graph optimisation to affine
transformations between edges and implement a 2D affine
extension to the G2O pose graph framework. While we focus
on fetoscopic mosaicking, this self-contained extension can
potentially find application in any other robotics or computer
vision domains where affine models are relevant. From the
practical perspective, the presented results extend the recent
state-of-the-art in fetoscopic mosaicking by combining vessel
segmentation with global consistency optimisation. Further
work is necessary to extend the current approach to map the
entire chorionic placental surface and finally tackle the targeted
clinical application. This includes a re-localisation module for
circumstances when vessel segmentation completely fails due
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to either significant and prolonged vascular occlusions or ves-
sels simply not being present in the camera view. Rectifying
the significant lens radial distortion of the fetoscopic camera
would remove mosaic inconsistencies that are impossible to
resolve with affine warpings. While traditional calibration
methods are unfeasible in the operating room, recent advances
in self-calibration should be investigated [31]. Additionally,
the visual appearance of anastomoses will change during
the procedure due to laser photocoagulation. Dynamically
updating the corresponding mapping areas in real-time is still
an open and interesting problem that requires investigation. We
also expect that experimentation with motion tracked cameras
can provide more insight into validating this approach as well
as enabling potential data-fusion approaches to mosaicking.
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