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Abstract 

MOG-antibody-associated disease (MOGAD) is a recently identified autoimmune disorder 

presenting in both adults and children with central nervous system demyelination. Although 

there are clinical phenotypic overlaps between MOGAD, multiple sclerosis (MS), and 

aquaporin-4 antibody (AQP4-Ab) neuromyelitis optica spectrum disorder (NMOSD), 

cumulative biological, clinical and pathological evidence clearly discriminates between these 

conditions. Here we advocate that the diagnosis of MS or NMOSD should no longer be used in 

the presence of MOG antibodies in the serum (MOG-Ab). Yet, many questions related to the 

clinical characterization and pathogenetic role of MOG-Ab are still open. Furthermore, current 

concepts on MOGAD therapy are mainly based on AQP4-Ab NMOSD and MS standard 

protocols, and more evidence is needed regarding who, how and when to treat MOGAD.  
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Introduction 

Myelin oligodendrocyte glycoprotein (MOG) constitutes a quantitatively minor component 

(0.05%) of the central nervous system (CNS) myelin 1 and is expressed on the outer lamella of 

the myelin sheath1, 2  Though MOG knock-out mice display normal myelin ultrastructure and 

no apparent phenotype3, in human, MOG is thought to be involved in completion and 

maintenance of the myelin sheath and in cell-cell communication,  While MOG has been 

controversially discussed as a putative autoantigen in autoimmune CNS demyelinating diseases 

for decades4, it is a well-established  antigenic target in the experimental autoimmune 

encephalomyelitis (EAE) model5, 6. Emergence of protein conformation-dependent assays7 for 

the detection of MOG-antibodies (MOG-Ab) has revealed a distinct clinical phenotypes in 

adults and children with CNS demyelination8, 9. Different terms have been proposed to 

characterize patients with CNS syndromes associated with the presence of MOG-Ab. We will 

use here the term “MOG-Ab-associated disease” (MOGAD), which suggests the concept of an 

autonomous entity but does not preclude the incorporation of a heretofore unidentified clinical 

phenotype, and does not imply pathogenicity of the antibody itself.  

Although there are clinical phenotypic overlaps between MOGAD, multiple sclerosis (MS), and 

aquaporin-4 antibody (AQP4-Ab) neuromyelitis optica spectrum disorder (NMOSD), 

cumulative biological, clinical and pathological evidence clearly discriminates between these 

conditions. In patienst with MOGAD the characteristics of lesion pathologies is  characterized 

by inflammatory demyelination and not astrocytopathy as seen in AQP4-Ab disease. The 

perivascular deposits of activated complements and immunoglobulins which are typical for MS 

leisons are also rarely found. Furthermore, although MOGAD shares some overlapping 

pathological features with MS (such as demyelination and immune cell infiltration), the lesions   

in MOGAD are characterized by perivascular infiltrated MOG-laden macrophages, and CD4+ 

T cells infiltation by contrast to MS lesion which are characterized by CD8Tcells infiltration , 

10.  

Many questions, related to the clinical characterization and the pathogenetic role of MOG-Ab, 

are still open, and more evidence is needed regarding who, how and when to treat MOGAD. 

This review is based on a Focused Workshop on MOGAD, organized by the European 

Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS).  
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The purpose of this Personal View paper was to review and discuss the immunology and 

pathology, the clinical spectrum and the current knowledge on treatment of MOGAD, from a 

large panel of expert in the field.   

Search strategy and selection criteria 

The review was composed from the 2-day ECTRIMS workshop and included topics and 

referances discussed in the meetings. These topics were selected as key priorities in the field of 

MOGAD. Additionally, we searched PubMed for articles published in English between Jan 1, 

1975, and March 1, 2021, using the search terms “myelin oligodendrocyte glycoprotein”, 

“neuromyelitis optica spectrum disorders”, “acute disseminated encephalomyelitis”, “optic 

neuritis”, “transverse myelitis”, OR “demyelinating diseases” combined with “MOG” OR 

“autoantibodies”. We prioritised articles published between 2016 and 2021, which correspond 

to the broadly use of recombinant antigens expressed on cells (cell-based assay, CBA) as the 

substrate for the MOG-IgG testing. We only included older material if it was seminal to the 

field. We excluded single case reports and data only published in abstract form and reviewed 

the bibliographies of included articles for additional references.  

1. Clinical features in adults and children  

MOGAD accounts for approximately 1.2-6.5% of all demyelinating syndromes in adults11, 12. 

In children, the frequency of MOG-Ab seropositivity during a first acute demyelinating 

syndrome (ADS) is high, with multinational studies from Europe13-15, North America16 and 

Australia17 identifying these antibodies in about 40% of all ADS presentations18.  The most 

common presentations, stratified to the different demyelinating phenotypes, are summarized in 

Table 1; for references see appendix pp 3–5).   

In both adult and children the frequency is phenotype dependent. A single center retrospective 

study detected MOG-Ab in 12/20 (60%) of adults with ADEM either at onset or at follow-up19. 

A Danish population-based prospective study detected MOG-Ab in 2/51 adults with a first 

ON20, and the multicenter, randomized, placebo controlled Optic Neuritis Treatment Trial 

reported identified MOG-Ab in 3/177 (1.7%)21. In AQP4-Ab seronegative longitudinally 

extensive transverse myelitis (LETM), two retrospective studies reported that 16-23% of 

individuals were MOG-Ab seropositive 22, 23. In children, MOG-Ab are identified most 

frequently in  children with acute demyelinating encephalomyelitis (ADEM, up to 64%24) and 

in almost all those who relapsed following ADEM (multiphasic ADEM  or ADEM-ON)25-28; 
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33-43% of children presenting with ON14, 16, 28; but in only 6% (3/50) pediatric myelitis28.  

MOG-Ab were identified in 26/110 (23.6%) children with relapsing demyelinating syndrome 

and 26/48 (54.2%) of non-MS relapsing demyelination9. Most of the studies describing the 

frequency of MOG-Ab and the clinical phenotypes associated with it were performed in tertiary 

referral centers for neuroinflammatory disorders, which may lead to selection bias. This is 

especially relevant when evaluating clinical phenotypes such as optic neuritis (ON) or myelitis 

that might be referred only because of severe or atypical presentation. In addition, the first 

cohorts evaluated for MOG-Ab by CBA were restricted to patients with monophasic or 

recurrent ON or myelitis thus not reflecting the real frequency of MOG-Ab across all acute and 

chronic inflammatory  demyelinating CNS diseases. 29-32Clinical phenotypes and paraclinical 

features stratified to the age of onset are summarized in Table2. 

No racial groups seem to be more or less likely to be diagnosed with MOGAD,by contrast to 

AQP4-Ab which is more common in non-Caucasians. There is an equal number of males and 

female in young children (<10y) and a slight female predominance (less so than in AQP4-Ab) 

in older post-pubertal children and adults33. No definitive evidence has been reported linking 

MOGAD with other autoimmune diseases or specific malignancy.Although an HLA 

association, similar to other autoantibody associated disease is likely, in a recent study of 43 

Dutch patients with MOGAD no significant HLA association was found34. As found in other 

genetic and acquired white matter diseases, there is an age-dependent phenotype in MOGAD35. 

Younger children are more likely to have brain involvement compared to older children and 

adults36, 37. Similar to MS both the severity of the attacks and the recovery from attacks is also 

age-dependent, with with worse severity and better recovery in children38. The risk of relapse 

is lower in children with the majority remaining monophasic16. Less than 10% of children who 

relapse (typically very young children), can develop a leukodystrophy-like phenotype with 

large confluent highly enhancing lesions on MRI and significant brain atrophy over time 35. 

These children have poor outcome with permanent cognitive and motor disabilities35. Younger 

children are more likely to have symptomatic brain involvement compared to older children 

and adults37.   

Recent cohort studies and case reports have shown that the disease course is very heterogeneous. 

The number of clinical relapses itself does not accurately explain the disability accrual at the 

individual level, possibly because of individual differences in the susceptibility for myelin 

damage and mechanisms of remyelination and repair. For instance, children under 9 years of 

age are more likely to have a severe brain pathology with higher lesion load detected on 
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conventional imaging than children older than 9 years of age37; nevertheless, recovery from 

acute attacks appears faster than in older children and adults. This may not be disease specific 

and was also observed in comparison between adult and children with MS demonstrating that 

every 10 years of age, reduced EDSS recovery by 0.15 points39. It is estimated that about 40% 

of adult40s33 and 30%18 of children28 with MOGAD present with a second clinical attack within 

five years.  

Approximately  60% of adult patients develop permanent neurological deficits, including motor 

and visual symptoms41 and about 50%of children with relapsing MOGAD and brain 

involvement develop cognitive problems37. Prediction of disability based on characteristics of 

the first attack remains elusive. Earlier studies suggested that high MOG-Ab titres could predict 

further clinical events15, but more recent data indicate that patients may remain seropositive for 

many years and not relapse, and even patients who become seronegative may still relapse  (and 

become seropositive at time of relapse)16. Antibody titres, even when measured longitudinally, 

did not clearly correlate with disability outcomes8. Similarly, baseline MRI parameters are not 

predictive of risk of relapse or disability 16, 33 . 

2. Biomarkers 

Assays for MOG-Ab detection  

Over the last years, great efforts have been made to improve MOG-Ab detection techniques42. 

More consistent results have occurred when the substrate for the tests were recombinant 

antigens expressed on live cells (live cell-based assay, CBA). As glycosylation and 

conformation of the protein play a key role in MOG-Ab recognition43-46, surface expression of 

the full-length human MOG protein (usually α-1 isoform, 218 aminoacids) expressed typically 

on human embryonic kidney cells (HEK293)7 is used to detect pathogenic MOG-Ab more 

specifically.  A summary of the immunopathology in MOGAD  is ilustarted in Figure 1 and 

panel 1. The frequency of MOG-Abs and their titers are higher during the acute attack among 

young children than among adolescents or adults32 but more likely to become negative after the 

attack16.  Timing of testing is important as antibody titers fluctuate and may decrease over 

months from presentation, and some can serorevert and being subsequently tested negative16. 

A higher cut-off for seropositivity and use of specific secondary antibodies to IgG1 or IgG-

Fcγ47  increased specificity (ranging from 99.6% to 100%)48. The use of anti-IgG (H+L) 

secondary antibody is a matter of active debate. It was previously shown that using  IgG (H+L) 

secondary antibodies may cross react with MOG-IgM which can be found in healthy contols47. 
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However, two recent studies demonstrated that IgG (H+L), IgG1 and IgG-Fcy antibodies were 

comparable, and no IgM binding was observed49, 50. These discrepancies are likely due to assay 

methodologies. Of note, the sensitivities and specificities reported in all these studies15, 16, 47-51 

were evaluated in the research setting, and the applicability of this remains to be evaluated in 

the clinical context. Importantly, in a recent large multicenter comparitive study  MOG-Ab 

CBAs showed excellent agreement with each other for high positive and negative samples. Low 

positive/bordeline samples were more frequently discordant51. These borderline/low MOG-Ab 

titers represent a currently undefined group and are likely to impact the sensitivity and 

specificity of the results across all MOG-Ab testing laboratories. Each credited laboratory uses 

specific cut off for positivity.  Like with any test, low positive/borderline results are more 

frequently discordant and should be evaluated as such.    

MOG-Ab are now rarely found in patients with typical MS using CBA. Only 0.4 % (1/244) MS 

patients were found MOG-Ab positive by live-CBA in a multicenter study52. Accordingly, two 

cross-sectional studies reported detection of MOG-Ab  in 0/200 patients with progressive MS53 

and in 2/685 patients with relapsing or progressive MS from two tertiary centers11. It is 

exceptionally rare for any patient to have serum antibody to MOG and AQP48, 42. MOG-Ab-

positive patients with clinical and paraclinical features discordant or uncommon for MOGAD 

must be closely monitored to determine the positive predictive value of this antibody for clinical 

management. This is particularly relevant in adult patients with MS, in whom testing of all 

patients with suspected demyelinating disease would result in many borderline results and 

probably false positives. With thecurrent absence of  established criteria for MOGAD, 

diagnosis in antibody-positive patients with atypical presentation, rests on the rigor of the test 

method and the expertise of the clinician. 

One half of the patients presents with CSF pleocytosis (predominantly lymphocytes and 

monocytes) with cell numbers that often tend to be higher than in MS54, 55. Pleocytosis correlates 

with the extension of the disease being higher in ADEM or LETM phenotypes than in ON8. 

Oligoclonal bands and a positive IgG index are found in less than 15%, mainly during attacks54, 

55. The CSF cytokine profile during attacks in MOGAD seems to be more similar to AQP4-Ab 

NMOSD compared to MS56. Finally, the usefulness of MOG-Ab detection in the CSF is not yet 

fully evaluated. When paired serum and CSF are analyzed, there is a good concordance between 

serostatus and CSF status; i.e. most CSF-positive patients are seropositive. Not all seropositive 

patients are CSF-positive, and only a small percentage are seronegative and CSF-positive57.  
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3.Imaging Biomarkers  

Brain MRI in MOGAD can be abnormal in more than 50% of patients, regardless the clinical 

phenotype at presentation8. In general, brain lesions are more widespread in children compared 

to adults reflecting a higher disease burden. Apart from the deep white and grey matter lesions 

found in ADEM-like phenotypes, brainstem lesions are found in up to 40%, frequently 

involving the pons and middle cerebellar peduncles9, 58-60. Interestingly, in a discriminant 

analysis using only routine clinical scans obtained on different MRI machines, MOG-Ab and 

AQP4-Ab related diseases could not be distinguished, but displayed different imaging 

characteristics from MS58 : lesions were poorly demarcated, fewer in number, and ‘Dawson 

fingers’ or lesions adjacent to the body of lateral ventricles were less frequent58, 61. Others have 

suggested that the involvement of cerebellum, brainstem or both as a part of a multifocal CNS 

episode is more likely to indicate the presence of MOG-Ab when compared with MS, but not 

with AQP4-positive patients62. Dramatic lesion resolution on MRI, sometimes within a month 

of presentation, is not rare in MOGAD59. Patients with MOGAD are less likely to develop 

clinically silent MRI lesions than patients with MS63.  

Although initially thought to be associated with predominantly white matter disease, both 

adults64, 65 and children24, 66, 67 with MOGAD may experience  cortical encephalitis and seizures. 

Brain MRI in these patients may be normal or may have reversible cortical changes occasionally 

with leptomeningeal enhancement64. Recent reports of isolated seizures (with normal brain 

MRI) during the first episode of relapsing MOG-Ab associated demyelination in children66 and 

aseptic meningoencephalitis and pseudotumor cerebri-like presentations68 highlight that normal 

conventional imaging should not preclude the diagnosis and that contrast-enhanced scans can 

increase the diagnostic yield in symptomatic patients.  

Spinal cord MRI findings, such as the presence of longitudinally extensive T2 lesions spanning 

at least 3 vertebral segments on sagittal sequences or the hyperintensity of the grey matter on 

axial sequences (longitudinally extensive transverse myelitis), may resemble those commonly 

seen in AQP4-Ab positive NMOSD69. MRI features  suggesting a diagnosis of MOG-Ab over 

AQP4-Ab or MS are involvement of the conus medullaris, abnormality confined to grey matter 

(sagittal line and axial H sign) and nerve roots, and lack of or minimal gadolinium 

enhancement69. Occasionally, large lesions may be associated with mild impairment, a clinical-

radiological paradox, particularly in children35.  
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MRI of the optic nerves may demonstrate extensive T2-hyperintensity and T1-gadolinium 

enhancement that predominates in the anterior portion of the nerve. These features together 

with severe swelling of the optic nerve head with or without hemorrhage on fundoscopy can 

help differentiate MOGAD from episodes of ON in AQP4-Ab NMOSD and MS. A perineural 

edema is another radiological finding which is observed in up to half of MOGAD patients with 

optic neuritis70-72.  

Optical coherence tomography (OCT): Patients usually display a thickening of the 

peripapillary retinal nerve fiber layer (pRNFL), likely due to the optic disk swelling at the acute 

phase of an ON attack73. Subsequently, the pRNFL progressively evolves towards a progressive 

thinning which is greater in temporal quadrants. Although findings are still inconsistent, on 

average, optic neuritis associated with MOG-Ab causes less retinal damage than optic neuritis 

associated with AQP4-Ab 74.  In affected eyes, longitudinal OCT analysis has found a decrease 

of the pRNFL but not of the combined ganglion cell and inner plexiform layer (GCIP) in the 

absence of new clinical attacks73, in contrast to the reduction of both layers observed in AQP4-

ON and MS-ON over time74, 75. In non-affected eyes, a subclinical neuroaxonal retinal damage 

has been found with a decrease of the GCIP74. Conflicting results have been reported regarding 

the pRNFL involvement in this subgroup of patients73, 76  A subclinical chiasmal or optic nerve 

inflammation are the most likely explanation. Similarly to the MRI paradox, a clinical-

radiological discordance has also been observed with OCT , with preserved visual acuity despite 

severe atrophy of RNFL77, in contrast to  MS or AQP4-ON, in which RNFL thickness and 

visual acuity frequently  correlate78-80. 

 

4. Treatment 

Attack treatment  

There are currently no randomized control trial or evidence-based guidelines for the acute 

treatment of MOGAD relapses. There is no evidence that MOG-Ab positivity should influence 

acute attack treatment and most neurologists treat these patients according to the demyelinating 

phenotypes. Importantly, in most circumstances, MOG-Ab results are not available within the 

first few days of acute presentation, and thus do not guide immediate therapies. 

Observational studies show that patients with MOGAD are highly sensitive to corticosteroids 

and may achieve complete and dramatic symptom remission following a short course of 

intravenous steroids 26, 33, 63, 81.  First line immunotherapy therefore consists of intravenous 
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methylprednisolone (IVMP) (30mg/kg/ day or 1g; for 3-5days). Treatment escalation is 

warranted for  patients who do not improve following IVMP or individuals with a severe attack 

such as complete loss of vision, paralysis or severe encephalopathy requiring intensive care 

admission. In the absence of evidence directly related to MOGAD, the treatment algorithm 

proposed for CNS demyelination18 is followed in most expert centers, adapted to local clinical 

practice or age group. Escalation therapies include plasma exchange (PLEX, 5 exchanges on 

alternative days), immunoadsorption or intravenous immunoglobulins (IVIG, total of 2g/kg 

over 2 or 5days), or PLEX followed by IVIG. As, it is trhe case in AQP4-Ab NMOSD82, it may 

be anticipated that time to initiation of acute treatment is one of the predictors of long-term 

outcome. 

The decision for how long and whether to wean the corticosteroids is a matter of active debate. 

The choice is dependent on the severity of the attack and the risk of flare-up while weaning the 

steroids too early. The decision of a prolonged oral steroid treatment probably depends also on 

timing and mode of action of the chosen relapse treatment and maintenance therapies. 

Classically, in adults, some centers proposed to use 1 mg/kg/day for 3 months and then 

progressively taper over the next 3 months. In a study of 59 patients with MOGAD, of the 146 

episodes treated with oral prednisolone taper, the majority of the 103 subsequent episodes 

occurred towards the end of the taper or shortly after prednisone cessation 63. For children, the 

use of prolonged course of oral corticosteroids is also a matter of active debate. Some 

paediatricians apply a protocol similar to the one used for adults with 3-6 months oral steroids 

(akin to protocols used in rheumatological conditions); others feel strongly that the steroids 

course should be less than 4-weeks to avoid side effects and propose alternatively intravenous 

immunoglobulins for 3 to 6 months (expert opinion).  

Chronic treatment for relapse prevention 

The accumulation of disability in patients with antibody-mediated diseases, such as MOGAD, 

is thought to be primarily relapse-related. Given the risk of disability due to incomplete relapse 

recovery, identifying patients at risk for relapse, and treating those with relapses, is the main 

focus of current management. The clinical differentiation between true relapse, disease rebound 

(during steroid wean or shortly after discontinuation of steroids) or pseudo-relapses secondary 

to intercurrent illness is challenging. Clinical history and examination, preferably in specialist 

centers, are crucial when making treatment decisions.   

Currently there are no predictors of risk of relapse and long-term outcome. Given that ~70%16 

of pediatric patients will have a monophasic outcome, the decision to intiate chronic 
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immunosuppression in a pediatric patient is even more controversial. Currently, with the 

absence of natural history studies and the known infectious risks of current immunosuppressive 

agents , most clinicians would start treatment only after a second event.   

The decision regarding the need for a continuous immunotherapy for relapse prevention is 

typically influenced by (i) the response to treatment of initial attack; (ii) the severity of initial 

attack; (iii) risk of short-term disability (associated to the first episode or accumulation of 

episodes); (iv) risk of short- and long-term immunosuppression. ; and (v) age.   

No clinical trials have been performed for patients with MOGAD and the current literature 

reports real-world clinical data which are not optimal for evaluation of treatment efficacy. Data 

from the six largest retrospective studies on treatment of relapsing MOGAD37, 63, 81, 83-85,  

revealed that at a median of 9-16 month, 20/29 (69%) of patients remained relapse free on IVIG 

monotherapy, 30/63 (47%) on mycophenolate mofetil, 21/55 (39%) on azathioprine and 47/94 

(50%) on rituximab. Of note, although anti-CD20 therapy seems to show some effect, it appears 

less potent than in AQP4-Ab NMOSD86. In AQP4-Ab NMOSD, relapses mostly occur when 

the biological effect of rituximab decreases, whereas in MOGAD patients may relapse despite 

absent B-cells86,87. Importantly, time to treatment efficacy is highly variable, and need to be 

taken into account. 

First-line injectable MS treatments (interferon-beta and glatiramer acetate) were shown to be 

ineffective in preventing relapses in both adults85 and children37 with relapsing MOGAD.  with 

no change in annual relapse rate. Although conceptually the use of natalizumab may prevent 

autoreactive T-and B-cells from accessing the brain case reports of natalizumab use in patients 

with suspected MS but finally diagnosed with MOGAD, severe relapses were reported in 5 out 

of 6 patients37, 81. There are only anecdotal reports for alemtuzumab, dimethyl fumarate, and 

fingolimod, not allowing judgement of treatment efficacy.  

 

5. Conclusions and future directions  

The key to improving outcomes in MOGAD is (i) making early diagnosis based on accurate 

and reproducible detection of MOG-Ab (ii) improved understanding disease mechanisms 

leading to relapses and disability accumulation and (iii) establishing treatment protocols.  

There are currently no formal criteria for the diagnosis of MOGAD. Once established and 

validated, these will improve time to diagnosis and diagnostic accuracy.  
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A key question in view of the phenotypical heterogenicity seen with MOGAD, is whether 

patients with MOG-Ab presenting with NMO, ADEM or cortical encephalitis may infact have 

different pathobiology driving their disease and should therefore be treated differently.  To 

provide further evidence on the mechanisms involved in MOGAD, it is essential to improve 

our in vivo and in vitro models. Human-derived oligodendrocyte cultures, rodent models with 

humanized MOG or animal models with a higher homology to human MOG (e.g. rhesus 

monkeys) will provide a better basis to investigate the pathogenic mechanisms. The 

methodological challenge of measuring antigen specific CD4+ T and B cells, which are most 

likely present in the peripheral blood of MOGAD patients at low frequency, are major obstacles 

that will have to be overcome in order to address frequency and phenotype of these cells88, 89.  

These studies are important to better understand the mechanisms behind the development of an 

autoimmune response to MOG and may pave the way for antigen specific immune therapies.    

With the rarity of the condition, multicenter multinational studies evaluating initial therapy and 

intensified therapies are required to determine efficacy and side effects of treatment. One 

approach would be to standardize treatment protocols across centers similar to the approach 

used in oncology. Alternatively, the heterogeneous treatment protocols across centers may be a 

method in capturing real world data, without indication bias, and answer important clinical 

questions as recently done comparing clinical outcomes of escalation vs early intensive disease-

modifying therapy in patients with MS90. Repurposing of medications tested for other antibody 

mediated conditions with similar pathological mechanism may be explored while specific drugs 

are developed for MOGAD. Utilization of data from the randomized control trials for NMOSD 

and subanalysis of the treatment response in  patients with MOG-Ab (some of them included 

in the seronegative  NMOSD91, 92) would be a quick approach to evaluate the efficacy of anti-

IL-6R and anti-CD19.However the number of patients are likely to be small and the trials were 

not primary power for thes analyses. Preliminary results from phase II trial of Rozanolixizumab  

(anti-FcRn) demonstrating improvements in functional outcome measures in patients with 

myasthenia gravis and acetylcholine receptor antibodies  may also proove beneficial in 

MOGAD as these two conditions share similarities in tem of immunopathology. Finally, in 

anticipating the launch of a randomized control trial in MOGAD, there is an urgent need to 

identify disease specific biomarkers of outcomes and treatment response.  
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Table 1 : Main clinical and paraclinical features in MOGAD 
 Optic Neuritis Transverse Myelitis Acute Disseminated Encephalomyelitis 

Clinical 
features  

• Up to 80% of patients, either at 
onset or during the disease course 
1,2 

• Simultaneous bilateral involvement 
in up to 40%1,3 

• Average high contrast VA at nadir 
counting figures3,4 

• Optic nerve head swelling 
(papillitis)3 

• May have peripapillary 
haemorrhage3 

• More steroid responsive than in 
AQP4-Ab NMOSD and MS3 

• Spinal cord involvement in 30% 
of episodes at onset and up to 
50% during the disease course.1,2 

• Motor disability may be similar 
than AQP4-Ab NMOSD5 

• Urinary, bowel and erectile 
dysfunction are common5 

• More steroid responsive than 
AQP4-Ab NMOSD and MS 

 

• Most frequent presentation in 
children 6–8 

• Only in 5% of adult presentation  2,9 

• Seizures at onset observed in up to 
40% of children with ADEM 7,10 

• Higher risk of post-ADEM epilepsy 
8,10 

Imaging • Extensive T2 and gadolinium 
enhancing lesion in the optic nerve 
and/or chiasm, more evident on orbit 
MRI 11 

• Predominates in the anterior parts of 
the nerve but may extend to the 
optic chiasm11 

• Perineural gadolinium 
enhancement12  

• OCT peripapillary RNFL thinning 
frequent but clinical-radiological 
paradox (despite severe atrophy of 
RNFL- VA is preserved)13,14 

• Attack related RNFL thinning with 
temporal predominance 14 

• Microcystic macular in 24%15 
 

• Initially described as LETM but 
short myelitis in up to 40%.5,16   

• Involvement of the conus 
medullaris5 

• Abnormalities confined to grey 
matter (sagittal line and axial H 
sign) and nerve roots.5 

• Less frequent gadolinium 
enhancement than AQP4-Ab 
NMOSD and MS.5 

• Initial spinal cord MRI 
negative in 10% of 
patients. 17 

• Complete resolution at follow-up 
scan.5 

• Large, hazy and poorly demarcated 
asymmetrical bilateral lesions. 7,18,19 

• Deep grey matter involvement, most 
commonly affecting the thalamus. 
20,21 

• Lesions may be highly enhancing21 

• Corpus callosum, brainstem and 
cerebellum involved. 2 

• Frequently associated to spinal cord 
involvement 

• Complete resolution at follow-up 
scan7,22 

CSF • rare OCB (<10%) – frequent mild 
lymphocytic pleocytosis1,2 

• rare OCB (<10%) – frequent 
mild lymphocytic pleocytosis 1,2 

• rare OCB (<10%) – frequent mild 
lymphocytic pleocytosis1,2 

Risk of 
relapse and 
outcome  

• Patients <45 years at higher risk of 
relapse, compared to older ones 2 

• Permanent visual impairment (VA 
<20/100) rare at 2 years1,2,23 

• Reversible visual dysfunction was 
derived from the first episode in up 
to 75% 2 

• Progressive thinning of the pRNFL 
(but not of the combined ganglion 
cell and inner plexiform layer) may 
be observed in absence of new 
clinical attacks.24 

• Good or full recovery from the 
onset attack in 60%. 16 

• Younger patients were more 
likely to have a complete 
recovery from the onset attack. 9 

• Around 20% of patients reached 
a permeant motor disability at 2 
years (DSS>3). 1 

• In patients who reached DSS 
3.0 and DSS 6.0, irreversible 
motor disability was explained 
by disability at onset attack in 
68.4% and 87.5% of patients, 
respectively.1 

• Permanent bowel, bladder and 
erectile dysfunction are frequent 
despite good motor recovery5 

• Up to 50% of children will relapse 
following ADEM7 

• Phenotype at relapse may be 
MDEM, ADEM-O18,25N 

• A proportion of children will have a 
single relapse within 3month of first 
episode  

• Behavioural and cognitive problems 
may occur following ADEM and are 
more common in relapsing group 
(up to 50%)8,26 

• Up to 10% (predominantly very 
young children) can develop a 
“leukodystrophy-like” phenotype with 
large confluent highly enhancing 
lesions and significant brain atrophy 
over time.27 

 

 
Abbreviations; ON: optic neuritis; TM: transverse myelitis; ADEM: acute disseminated encephalomyelitis; AQP4: aquaporin-4; MS: multiple sclerosis; RNFL: 
retinal nerve fiber layer; LETM: longitudinally extensive transverse myelitis; OCB: oligoclonal bands; VA: visual acuity; DSS: disability status scale; MDEM: 
multiple disseminated encephalomyelitis; NMOSD: neuromyelitis optica spectrum disorder 

 

• Patients with MOGAD may have more uncommon phenotypes; 1) Isolated brainstem involvement in 7% and 30% of adult and 
children, respectively (postrema syndrome is rare);1,28,29 2) Cortical (unilateral or bilateral) encephalitis with or without white matter 
involvement;1,7,30–32 3) Cranial neuropathies or mixed central and peripheral syndromes; 33,34 4) Features of chronic lymphocytic 
inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERs);35,36 6) Pseudotumor cerebri-like, associating 
bilateral papillitis to elevated cerebrospinal fluid opening pressure.37 

For references see supplementary material pp 2-5. 
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Table 2 Demographic, clinical and laboratory differences according to age at disease onset in 

MOGAD 

 

Abbreviations; ADEM, acute disseminated encephalomyelitis; ARR, annualized relapse risk; 

SD, standard deviation; VA, visual acuity; ref cat, reference category; CSF, cerebrospinal fluid. 

Annualized relapse rates (ARRs) was calculated as number of relapses/year pre-treatment 

(excluding index event) and on-treatment only in patients with at least 6 months follow-up after 

initiation of treatment. Relapses were analysed for up to 2 years before initiation of therapy and 

for the duration of the time on therapy. 

 

†Patients aged <5 years-old initiated with ON in 10.5% and with ADEM phenotype in 68% of 

cases.  

††Age group <10 years-old is the reference category. Very low: lower risk than the reference 

category; low risk: 0-30% higher risk than the reference category; moderate risk: 30-60% higher 

risk than the reference category  

 Children Adults 

Age-groups33, 38 
< 10 

years 

10-17 

years 

All  

children 

18-39 

years 

40-59 

years 

≥ 60 

years 

All  

adults 

Female:male ratio33, 38 Similar Similar Similar 

Slightly 

favours 

female 

Slightly 

favours 

female 

Slightly 

favours 

female 

Slightly 

favours 

female 

Onset phenotype, %8, 28, 

36, 37 
   †Optic neuritis 

   Myelitis 

   Brainstem  
    †ADEM 

 

20-30 

15-20 

<10 

50-60 

 

50-60 

15-20 

<10 

20-30 

 

20-60 

15-20 

<10 

20-60 

 

50-65 

20-40 

<10 

<8 

 

50-65 

20-40 

<10 

<8 

 

50-70 

20-40 

<10 

<8 

 

50-70 

20-40 

<10 

<8 

Patients relapsing at 2 

years, %8, 15, 33 
- - 40 - - - 40-44 

††Risk of relapse38 very 

low 
low  low  

modera

te  
moderate  

very 

low  

modera

te 

ARR, mean (SD)38 
0.17 

(0.31)  

0.28 

(0.38) 

0.23 

(0.35) 

0.39 

(0.62)  

0.31 

(0.52)  

0.15 

(0.27) 

0.35 

(0.58) 

CSF- Oligoclonal 

bands, %54, 55 
<5 <12 <10 <10 <10 <10 <10 

‡Motor disability, % 

(reaching EDSS 3.0)33, 

38 

<10 <10 <10 20-30 20-35 30-40 20-40 

‡VA disability, % 

(reaching VA 0.2)38 
<10 <10 <10 <10 10-20 10-20 <20 

Bladder/bowel/erectile 

dysfunction33 
- - 20 - - - 28-46 
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‡Reported motor and visual acuity disability are based on cohort of patients with a median 

follow-up between 2 and 4 years. 

No data as evalable on the risk of relapse and Bladder/bowel/erectile dysfunction stratified to 

the different age group. We have therefor included a reference for all children and all adults. 

Refrain from drawing definitive conclusions regarding visual acuity disability and 

bladder/bowel and erectile dysfunction in children due to probable recall bias. 
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PANEL : Proposed Immunopathology of MOGAD 

• Human MOG-Ab are typically of the IgG1 isotype42 

• The hypothesis of their pathogenic potency was derived from a monoclonal mouse 

antibody against MOG (8-18C5), established several decades ago93  

• The transfer of this monoclonal Ab to rodents that already have complement-dependent 

EAE enhances demyelination94.  

• Studies looking at the effect of MOG-Ab  both in vivo and in vitro  reveal primary 

demyelination95 with loss of the microtubule cytoskeleton of oligodendrocytes, resulting in 

altered expression of axonal proteins96.  

• The presence of CD4+ T cells in lesions from MOGAD patients, and recent data from rat 

models, suggest that T cells are important in the pathogenesis of the disease10, 97 

• Recently, MOG-specific B cells were identified in the peripheral blood from patients with 

MOGAD98 

Figure 1: Proposed model for immunopathology of MOGAD and treatment strategies 

1A: The trigger for MOG-Ab production is yet unknown, but the auto-immune induction is 

thought to occur outside the CNS, in the peripheral immune system. Although post-infection 

autoimmunity has been raised as a likely mechanism for trigger no disease-specific pathogens 

have been identified. A number of mechanisms for post-infectious auto-immunity have been 

discussed, either in isolation or in combination, including molecular mimicry, bystander 

activation, epitope spreading, B-cell receptor mediated co-capture of antigens and polyclonal 

activation of B cells.  

1B: Apart from MOG-Ab and MOG-Ab specific producing cells (B cell98, plasmablasts and 

plasma cells), antigen-specific T follicular helper (Tfh) cells are also probably involved. Indeed, 

as human MOG-Ab are mainly of IgG1 phenotype, Tfh are required for differentiating B cell 

into MOG-Ab-producing plasma cells.  

1C. Then, B cell, plasma cell and auto-antibodies need to cross the blood brain barrier to interact 

with their autoantigen, and mediate their pathogenic effects. One can speculate that MOG-Ab 

may get into the CNS when the blood-brain barrier is damaged, or via endothelial FcR.  

1D. Once into the CNS, MOG-specific antibodies presumably bind MOG expressed on myelin 

where they lead to myelin injury and subsequent demyelination56, 97.  In parallel, MOG-Ab and 

plasma cells may also enhance activation of cognate MOG-specific CD4+ T cells or MBP-

specific T cells and macrophages (M𝜙) in the CNS99 Indeed, there is an increase of pro-

inflammatory cytokines such as IL-6, IL-17, G-CSF and TNFalpha as well as B cell cyto-



MOGAD: review from the ECTRIMS workshop  

 

 

 

/chemokines (BAFF, APRIL, CXCL13 and CCL19) described in the CSF of MOGAD 

patients56 

MOGAD= Myelin oligodendrocyte-IgG1 associated  disease; Tfh= T folliculat helper cell; 

FcR= FC receptor; M𝜙= macrophages; G-CSF= granulocyte colony stimulating factor, TNF= 

tumor necrosis factor; CSF= cerebrospinal fluid 

 

 

 


