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Abstract

The Human Developmental Cell Atlas (HDCA) initiative, part of the Human Cell Atlas, aims to 

create a comprehensive reference map of cells during development. This will be critical to 

understand normal organogenesis, the impact of mutations, environmental factors and infectious 

agents on human development, its relevance to congenital and childhood disorders, and the cellular 

basis of ageing, cancer and regenerative medicine. In this perspective, we outline the HDCA 

initiative and the challenges of mapping and modelling human development using state-of-the-art 

technologies in order to create a reference atlas across gestation. Like the Human Genome Project, 

the HDCA project will integrate the output from a growing community of scientists mapping 

human development into a unified atlas. We describe the early milestones achieved and the use of 

human stem cell-derived cultures, organoids and animal models to inform the HDCA, especially 

for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete 

atlas of human development. 

Introduction

Historically, most modern developmental biology research has focused on model organisms. Due 

to practical challenges, human development, from a fertilised ovum to a fully formed fetus at birth, 

has remained a poorly understood ‘black box’. The implications of a Human Developmental Cell 

Atlas (HDCA) for understanding human development are far-reaching, as many congenital 

disorders and childhood cancers may originate during susceptible windows of development1–3. The 

clinical relevance extends into adulthood for ageing, cancer and applications in regenerative 

medicine and stem cell therapies4–6. Furthermore, embryonic and fetal stem cells7,8 and 

developmental trajectories provide an essential reference and guide for engineering human stem 

cell-derived models9–13, organoids14 and cellular therapies. 

Human development begins with a fertilised oocyte that divides and differentiates through pre-

implantation, embryonic and fetal stages (Figure 1). Early studies began through morphometric 

and qualitative assessments of human embryos, leading to development of the Carnegie staging 

https://paperpile.com/c/WpjP5I/jYqjd+fBpBn+Y5PVT
https://paperpile.com/c/WpjP5I/n0JMk+pjwun+T15Uw
https://paperpile.com/c/WpjP5I/7mrz+s6hX
https://paperpile.com/c/WpjP5I/Owsc+tFVdR+YWnFj+qoZia+zDLET
https://paperpile.com/c/WpjP5I/FSGWx
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system (Figure 1)15. Advances in imaging, cytometry, and genomics technologies have revealed 

further insights into the complex spatio-temporal changes during organogenesis16. Recent progress 

in single cell profiling technologies has revolutionised our ability to study human development at 

unprecedented resolution17. Leveraging these advances to build a comprehensive atlas of human 

development (from fertilised oocyte to birth) at cellular resolution is an ambitious endeavour 

similar to the scale of the Human Genome Project (HGP), which required multidisciplinary 

scientific expertise from disparate fields working together collaboratively. Such a community has 

arisen from a grassroots assembly of researchers worldwide working as part of the Human Cell 

Atlas (HCA18) initiative. Like the HGP, the HCA will be a foundational scientific resource, 

composed of diverse data types and available freely through browsable and searchable web portals 

that visualise cells across anatomical space and developmental time. 

The HDCA, a strategic focus of HCA19, is pursued by scientists from individual labs and large 

national and international research consortia, and is open to all who adhere to its mission and open 

science values20. The HDCA aims for equity, inclusivity and diversity both in terms of scientific 

participation and human tissue sample representation. We encourage any interested researcher to 

become a member, participate, register their study and contribute their data and publication to the 

HDCA and the HCA21.

Building a developmental cell atlas

Successful construction of a HDCA poses enormous scientific challenges, in terms of experimental 

measurement technologies, computational analysis and visualization algorithms (Figure 2). In 

particular, the dynamic nature of gestation creates challenges for designing a sampling strategy, 

especially to capture transient morphological changes in the first eight weeks. A major endeavour 

for the HDCA will be to develop the conceptual and computational framework to capture 

development with respect to cellular and morphological changes. The HDCA through coordination 

with the HCA Organoid Network22 will incorporate data from in vitro culture model and organoid 

systems23 to cautiously infer development between 7 days to 4 post-conception weeks (PCW) 

when samples are difficult to obtain (Figure 1b-c).

https://paperpile.com/c/WpjP5I/JfhkE
https://paperpile.com/c/WpjP5I/CsBXW
https://paperpile.com/c/WpjP5I/x7xFj
https://paperpile.com/c/WpjP5I/hzhqG
https://paperpile.com/c/WpjP5I/46ywj
https://paperpile.com/c/WpjP5I/KE4ER
https://paperpile.com/c/WpjP5I/Nitcz
https://paperpile.com/c/WpjP5I/1Gdgt
https://paperpile.com/c/WpjP5I/O4a2
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The successful delivery of a HDCA will leverage the HGP-initiated restructuring of how large 

science projects are funded, conducted, coordinated and shared (based on the Fort Lauderdale 

Principles24) that form the basis for HCA, its committees (e.g. computation, ethics) and ‘Biological 

Networks’20. This organisational framework has enabled researchers to form large-scale 

coordinated collaborations across technologies and biological disciplines: developmental biology, 

embryology, genetics and model systems, computational biology, clinical specialties including in 

vitro fertilization, clinical genetics and pathology, as well as coordination with funders. 

Partnerships with allied biological networks, including organoid and paediatric atlas projects will 

facilitate clinical applications (Supplementary Table 1). 

Ethics, resources and data sharing 

Accessing human developmental samples is constrained by general and geographically specific 

ethico-legal challenges. These include issues relating to donation, access, and research use of 

legally-defined developing human tissue material, regulatory approvals processes and cultural 

sensitivities. Research on human embryos and fetuses is supported within European and national 

regulations, such as the UK National Research Ethics Service (NRES) and the French Agence de 

Biomédecine. In the UK, studies on preimplantation human embryos up to 14 days are governed 

by the Human Fertilisation & Embryology Authority (HFEA) and a research ethics committee 

(e.g., NRES). However, in the United States, research on donated human embryonic and fetal 

materials has been increasingly restricted over the last two decades, despite the existence of similar 

regulatory oversight.

Nonetheless, resources to support research in human development such as the UK’s Human 

Developmental Biology Resource (HDBR25) provide material to researchers. Non-UK recipients 

of tissue require their own project-specific ethics approval, prior to receipt of material. HDBR 

provides embryonic and fetal samples from 4-20 PCW with karyotype information and, 

increasingly, with anonymised maternal DNA and clinical history. Material from fetuses with 

prenatally diagnosed disorders is also available. The French Human Developmental Cell Atlas 

(HuDeCA: https://hudeca.genouest.org) was recently established and aspires to constitute a 

comprehensive European resource of human embryonic or early fetal samples.

https://paperpile.com/c/WpjP5I/8R6j
https://paperpile.com/c/WpjP5I/KE4ER
https://paperpile.com/c/WpjP5I/fZEm4
https://hudeca.genouest.org/
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International sharing of genomic sequencing and clinical data derived from prenatal or paediatric 

tissue samples is subject to governing data protection regulation that considers live/deceased 

status, consent regarding research data use and confidentiality. Data from living donors is shared 

under appropriate access controls. The HCA Ethics Working Group is developing tools, guidance 

notes (available at26), consent form templates and sampling information for embryonic, fetal and 

paediatric tissue material, and international data sharing guidance for HDCA.

Mapping development across space and time

Development is intricately orchestrated in three spatial dimensions and gestation time. Human 

embryogenesis cannot be easily assessed at high resolution in vivo27. Time-lapse studies are limited 

to in vitro pre-implantation embryos. The application of high-throughput genomics technologies 

to dissociated cells and tissue sections in situ is beginning to provide data of unprecedented 

resolution (Figure 3 and Figure 4).  

Cellular and molecular heterogeneity

Single cell molecular profiles based on RNA, chromatin accessibility, methylation or select protein 

signatures, have enabled a more nuanced definition of cell types and states. The data underpinning 

such definitions are increasingly derived from single cell RNA-sequencing (scRNA-seq), 

barcoded antibodies and accessible chromatin sequencing of dissociated cells28,29-28. Resolving cell 

types and trajectories at high granularity is aided by full-length scRNA-seq but primarily 

performed by profiling large numbers of cells. Cell type definition is currently guided by existing 

knowledge from model organisms and adult cellular profiles, which may not faithfully reflect 

prenatal cell types, transient cell types only present during development and transitional states of 

differentiation. 

To overcome these challenges, many time points need to be profiled, and defined cell states need 

to be mapped back into their 3D space over time and functionally characterised. High levels of 

multiplexing can attain this level of granularity at an affordable cost for a complete HDCA30,31. 

Molecular profiles, morphology, functional assessment and other features can reflect a cell’s multi-

faceted state. For example, the transcriptome reflects the present and potential future of a cell, 

https://paperpile.com/c/WpjP5I/oi2q2
https://paperpile.com/c/WpjP5I/ewdZj
https://paperpile.com/c/WpjP5I/e3UrH+6PP8c
https://paperpile.com/c/WpjP5I/KDpQt+A07O6
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protein expression captures the immediate past and present state of a cell, chromatin profiles reveal 

its invariant type and potential for future differentiation, and ontogeny reveals its history. 

The field of developmental biology has traditionally drawn on ontogenic relationships to define 

cell types, but this is challenging in humans where information is captured as snapshots across 

gestation. CRISPR scarring is only applicable in stem cells, organoid systems and short-term 

explants32,33. Somatic mutation tracking is the only available technology to definitively determine 

ontogeny, but is limited by its current lack of scalability34,35. Recent methods that rely on 

simultaneous measurement of mitochondrial DNA/RNA, transcriptome and open chromatin may 

overcome this challenge36,37. We anticipate the field moving towards a consensus cell ontology 

that integrates multi-modal single-cell profiling data as well as legacy knowledge of embryonic 

cell type definitions augmented by information from diverse animal models. 

Mapping cells in 2D and 3D

Spatial genomics methods to measure RNA in tissue sections typically offer a trade-off: high 

resolution (single cell and subcellular) methods that typically measure hundreds of transcripts or 

whole transcriptome profiles at multi-cellular level38,39. This trade-off can be mitigated by 

integration with single-cell profiles from dissociated cells, expanding the genomic coverage by 

predicting spatial expression of unmeasured genes, or enhancing resolution by deconvolution of 

multi-cellular measurements. Tissue clearing methods to render organs transparent40 combined 

with whole-mount protein immunostaining and RNA single-molecule FISH41,42 can now provide 

3D molecular profiling at cellular or subcellular resolution using light-sheet microscopy43–45. 

Increasing multiplex capacity and use of artificial intelligence/machine learning algorithms to 

overcome data analytical challenges was successfully deployed to image whole-organismal 

vasculature following tissue clearing46,47.

Biophysical methods and live imaging

Mounting evidence from Drosophila and other models shows that mechanical forces play a key 

role in development processes and tissue morphogenesis48. Surface tension and pressure can be 

measured in single cells of preimplantation mouse embryos49. Adapting these technologies to 

https://paperpile.com/c/WpjP5I/PMVJg+ikr4F
https://paperpile.com/c/WpjP5I/CpPSR+0PUve
https://paperpile.com/c/WpjP5I/ed2Gl+70fJl
https://paperpile.com/c/WpjP5I/wdILY+oevUd
https://paperpile.com/c/WpjP5I/5CkhU
https://paperpile.com/c/WpjP5I/9jRkI+BZk8u
https://paperpile.com/c/WpjP5I/D3jgx+Edbj9+1GEG6
https://paperpile.com/c/WpjP5I/OSswq+pfk5O
https://paperpile.com/c/WpjP5I/6HPo
https://paperpile.com/c/WpjP5I/H4bo4
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human pre-implantation embryos and stem cell-based embryo models50 can build a spatiotemporal 

mechanical atlas. 

Positional landmarks in development   

A standard coordinate system for locations in the human body (a common coordinate framework; 

CCF) is crucial for the HCA and HDCA51. Two types of systems are useful: absolute, similar to 

postcode/zip-code addresses, and relative, similar to a landmark-based address system. CCF 

anatomical ‘postcodes’ enable integration of multi-modal datasets of different spatial and 

longitudinal resolution. The Allen Mouse Brain Reference Atlas v3 provides a CCF of 3D 

anatomical features and local features grouped in a hierarchy to facilitate multilevel analysis of the 

mouse brain. Efforts are currently underway to establish CCFs for adult human organs within the 

NIH-HuBMAP initiative. The HDCA will need to develop a CCF that incorporates space and time, 

as well as cell movement and patterns during organogenesis based on existing macro-level 3D 

coordinates for human embryos, such as the HDBR Atlas (http://hdbratlas.org/) and the 

Transparent Human Embryo (https://transparent-human-embryo.com/).  

Computation and data visualisation

Among the key algorithmic challenges to integrating data into a developmental atlas are i) mapping 

cells with more intermediate states compared to adult counterparts; ii) inferring time orderings and 

lineage relations, including branching lineages and multiple paths converging on the same 

outcome; iii) inferring spatial movement of cells; iv) building a temporal series of CCF, each as a 

probabilistic model for a time window as well as a model for their morphing along space and 

time52; v) mapping across modalities and time points (e.g. chromatin states in one time window to 

RNA and protein levels of another), and vi) regulatory and molecular network inference within 

and across cells. New theories and insights from multiple fields will be required to model the 

mechanisms underpinning tissue formation and growth. It is likely that additional emergent 

properties of cells and their ecosystems will be discovered using interdisciplinary approaches. 

These will need new vocabularies, ontologies and modelling approaches to be understood. The 

HDCA community must also apply FAIR principles to help ensure reproducibility and data 

accessibility53.

https://paperpile.com/c/WpjP5I/Nualt
https://paperpile.com/c/WpjP5I/9zmE3
http://hdbratlas.org/
https://transparent-human-embryo.com/
https://paperpile.com/c/WpjP5I/anLXF
https://paperpile.com/c/WpjP5I/VWU9Z
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Computational integration of multi-omics data for ‘Google maps’-like visualisation, such as the 

Open Microscopy Environment (https://www.openmicroscopy.org/) will enable zooming to the 

single cell level from a large-volume tissue view. Additional complexity will combine 

visualisations from imaging and sequencing data. Sophisticated abstraction of raw data and 

integration across modalities, anchored by a developmental CCF will be essential. Links to clinical 

relevance and applications will enhance the utility of the atlas.

Emerging cell atlases of human development

The advantages of whole tissue/organ profiling compared to lineage-centric analysis include 

comprehensive cellular analysis and the discovery of emergent biological properties. For example, 

the developing liver functions as a haematopoietic organ during early gestation until mid-second 

trimester, before it functionally transitions into a metabolic organ like the adult liver54. To meet 

the high demand for erythropoiesis during development, the first trimester human skin and adrenal 

glands can also support erythrocyte maturation54,55.  

In stark contrast to our terrestrial postnatal life, the human embryo/fetus exists in an aquatic 

environment. Our lung, gut and skin are exposed to amniotic fluid. In contrast to postnatal lung, 

the developing lung does not perform oxygen transfer or receive the same volume of blood through 

the pulmonary veins. The impact of these physiological factors on individual tissues and the role 

of placenta and maternal decidua in supporting human embryogenesis and fetal life are 

emerging56,57.        

Organ atlases of brain, gut, heart, liver, kidney, placenta, thymus and skin (Figure 4) underscore 

the importance of studying human samples and reveal the unique aspects of human development 

not conserved with animal model systems58–61. These include timelines of development during 

gestation, cell type markers and expression pattern of transcription factors between mouse and 

human organs62,63.

The specification of functional tissue niches occurs during both prenatal and postnatal life. Fetal 

gut studies highlight the importance of interactions between the epithelial and mesenchymal 

compartments to allow the formation of villi and have identified fetal gut transcription factors that 

https://www.openmicroscopy.org/
https://paperpile.com/c/WpjP5I/PNg0Z
https://paperpile.com/c/WpjP5I/PNg0Z+Vj3kq
https://paperpile.com/c/WpjP5I/bLVqx+69Zf2
https://paperpile.com/c/WpjP5I/FyeFI+R6rjn+go53m+BnJ1D
https://paperpile.com/c/WpjP5I/hQulW+EgmoQ
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are aberrantly activated in paediatric Crohn’s disease64. Comparison between developing and adult 

kidney demonstrated the establishment of a dedicated spatial zonation pattern that protects against 

uropathogenic bacterial challenges postnatally61,65. Single-cell transcriptomics of germ cells 

during development have revealed important insights into the main pathways controlling their 

differentiation66,67 with ongoing studies focused on unravelling the regulatory mechanisms of sex 

determination (https://hugodeca-project.eu).

Early developmental studies of the brain have focused on human and primate cortical 

development68–70. The developing human and rodent midbrain, which contains the clinically 

relevant dopaminergic cell groups that are lost in Parkinson's disease, has also been extensively 

studied63,71,72, as has the developing mouse spinal cord and cerebellum73,74, the hypothalamic 

arcuate nucleus and the diencephalon75. 

Atlases of distributed systems such as the immune system have been initiated, detailing 

haematopoietic organs such as the yolk sac76,77 and liver54, lymphoid tissues such as thymus where 

T cells differentiate78 and non-lymphoid tissues such as skin and kidney where immune cells 

reside. These studies revealed an intrinsic change in the differentiation potential of haematopoietic 

stem progenitor cells with gestational time, together with the importance of the local tissue 

microenvironment for blood and immune cell development. 

Model organisms and culture systems 

Our understanding of human development has been largely inferred from studies on animal model 

systems that are not always conserved across species (Figure 1)79. Two recent studies contrast the 

kinetics of development between human and mouse, highlighting the need for caution in 

interpreting heterospecific graft studies and findings from non-primate preclinical models80,81. 

However, the feasibility of perturbation and in-depth mechanistic studies using animal models and 

culture systems provide a valuable scaffold and complement the HDCA, particularly for the 

immediate weeks after implantation where human samples are inaccessible.  

Single cell molecular profiling has transformed many aspects of developmental biology research 

across all major model organisms82–86 providing new mechanistic insights into fundamental 

https://paperpile.com/c/WpjP5I/mR5Hk
https://paperpile.com/c/WpjP5I/xfcc2+BnJ1D
https://paperpile.com/c/WpjP5I/GN7aa+PViUq
https://hugodeca-project.eu/
https://paperpile.com/c/WpjP5I/wCIFc+hgdtJ+s2gWi
https://paperpile.com/c/WpjP5I/EgmoQ+5QVkQ+eUVOx
https://paperpile.com/c/WpjP5I/MLXdo+Z03mK
https://paperpile.com/c/WpjP5I/KlLIa
https://paperpile.com/c/WpjP5I/eAu4f+UeiMk
https://paperpile.com/c/WpjP5I/PNg0Z
https://paperpile.com/c/WpjP5I/BlY5f
https://paperpile.com/c/WpjP5I/LCiKW
https://paperpile.com/c/WpjP5I/P10wp+cyxTT
https://paperpile.com/c/WpjP5I/rx7kQ+R8zRw+siARE+4EAdf+6afiI
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biological processes including the early specification of germ layers and diversification of early 

cardiovascular cells29,87. Comparative biology has the potential to make major contributions to cell 

ontology. The availability of parallel human and model species data will support expanded cross-

species analyses. Computational analysis can align cells and inferred lineages across species to 

extrapolate findings from non-primate models and help optimise animal models of normal and 

pathological human development. From a computational perspective, it will be important to 

develop tools for better annotation of 3’ and 5’ UTRs of animal model data as most scRNA-

sequencing technologies capture only these regions. Development of computational tools that can 

robustly map developmental trajectories across species that can account for different 

developmental kinetics between cell types within and between species will be required. 

Comparative studies of human and mouse pre-implantation and gastrulation embryos indeed 

revealed conserved and divergent transcriptional programs. For example, Klf2 expression in mouse 

embryo-fated epiblast progenitor cells is not observed in humans; and by contrast, KLF17 is 

enriched in human but not mouse epiblast88. 

Self-organization of human embryonic tissue can be captured from the earliest moments in 

vitro50,89, and extended to gastrulation, anterior-posterior embryonic patterning, and early phases 

of somitogenesis11. The recent human gastrulation embryo dataset will be informative as a 

benchmark to further refine in vitro directed differentiation of human cells, including gastruloid 

models11. Other processes during organogenesis can also be monitored, including clock control of 

somite segmentation90,91, boundary formations during hepato-biliary-pancreatic organ budding92

and patterning of the neural tube. Protocols are now established to mimic development of diverse 

human tissues that exhibit morphologies and physiologic functionalities of developing human 

tissues. Such organoid systems include hair-bearing skin93; small intestine with a crypt-villus 

axis94; region-specific95 and multi-region96 brain tissue modelling neurogenesis, neural migration, 

and synapse formation; multi-layered neural retina with photoreception responses97; and arterio-

venous specification during blood vessel development98. 

A comprehensive reference atlas of cell types and states present during human development will 

be critical to benchmark stem cell-derived organoids. Such roadmap comparisons will highlight 

similarities69, deficiencies99, and define strategies for improving organoids for disease modelling. 

https://paperpile.com/c/WpjP5I/6PP8c+SlqTV
https://paperpile.com/c/WpjP5I/7btHn
https://paperpile.com/c/WpjP5I/8gWFZ+Nualt
https://paperpile.com/c/WpjP5I/YWnFj
https://paperpile.com/c/WpjP5I/YWnFj
https://paperpile.com/c/WpjP5I/5PcZ+FWEo
https://paperpile.com/c/WpjP5I/GL8qp
https://paperpile.com/c/WpjP5I/fPmjV
https://paperpile.com/c/WpjP5I/w0GZy
https://paperpile.com/c/WpjP5I/6x9nw
https://paperpile.com/c/WpjP5I/mQZBG
https://paperpile.com/c/WpjP5I/hREOT
https://paperpile.com/c/WpjP5I/J6wqF
https://paperpile.com/c/WpjP5I/hgdtJ
https://paperpile.com/c/WpjP5I/pIjqj
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In the future, high-fidelity human stem cell-derived human organoids and single-cell multi-omic 

modalities will be powerful tools to understand mechanisms controlling human organogenesis.

Clinical relevance and applications 

The interaction of genotype and environment leading to phenotype underlies developmental 

disorders. A range of childhood and adult disorders have their origins in prenatal life (Figure 5). 

These include structural birth defects100, neurodevelopmental disorders including schizophrenia101, 

childhood cancers2,65, inborn errors of immunity102, infertility and differences of sex 

development103, as well as many paediatric disorders104. Thousands of rare genetic diseases can 

each present a spectrum of perturbed developmental sequelae at birth, sometimes differing widely 

in medical presentation even when classified as the same disease105. As examples, Down syndrome 

(trisomy 21)106 and 22q11.2 deletion syndrome107 separately present significant risks for 

schizophrenia, Alzheimer’s disease, and hypothyroidism starting in adolescence108. Identifying the 

aetiology of developmental disorders and the effects of maternal genotype, paternal age and other 

external risk factors such as diet, alcohol, toxins, endocrine disruptors and pathogens have been 

hampered by our limited understanding of normal human development.

Development atlases are also unravelling the pathogenesis of childhood cancers (Figure 5). 

Paediatric and adult brain tumours in their early stages often present impaired developmental 

programs within tumour cells109,110. Comparing the expression profile of tumour cells with HDCA 

can identify the cancer cell of origin and its oncogenic pathways. For example, a single-cell atlas 

of the developing mouse cerebellum was used to dissect subtypes of human medulloblastoma, a 

pediatric brain tumour2,111 and cell states during nephrogenesis discerned the developmental 

cellular origin of Wilms tumour65. High resolution mapping of developing immune cells will 

inform the molecular and extent of disease phenotypes of childhood leukaemias and primary 

immunodeficiencies. 

Many adult cancers also recapitulate a dysregulated version of human developmental programs112.  

The acquisition of early developmental molecular programmes is characteristic of malignant 

pathology and a previously unrecognised hallmark of immunological disease and cancer immune 

environment113,114. HDCA data have also facilitated our understanding of differential susceptibility 

https://paperpile.com/c/WpjP5I/pZr6I
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of adult and prenatal cells to SARS-CoV2 through examination of viral entry receptor and protease 

expression in a wide range of organs115.   

Cell and tissue engineering for clinical therapies and regenerative medicine are areas with 

enormous potential for the direct utility of the HDCA. Cell therapies derived from human 

pluripotent stem cells are now entering early clinical trials for Parkinson’s disease116 using 

protocols that were refined based on developmental studies of midbrain dopaminergic neurons72. 

Similar approaches are being followed to develop a range of other stem cell products for human 

trials117. Haematopoietic stem cell (HSC) transplantation is an established and widely used 

treatment for many haematological and increasingly non-haematological disorders. Leveraging the 

potency factors of fetal HSCs could have significant benefit to patients receiving HSC transplants.

Towards a whole embryo atlas 

The initial HCA White paper emphasised 12 distinct organ systems within the human body and 

highlighted the importance of a developmental cell atlas. Integrated multi-organ analyses will 

provide novel insights into tissue microenvironment shaping resident epithelial, stroma and 

immune cells and the cellular heterogeneity of innervating blood vessels, lymphatics and 

peripheral nerves. Eventually, this may illuminate system-level lineage development and cell fate 

decision across an entire organism. The datasets from human developmental organ-based profiling 

were critical in interpreting recent multi-organ developmental atlases55,118.  

There are several large-scale organ-based studies by HDCA researchers. These include NIH 

BRAIN Initiative BICCN consortium focusing on the developing human cortex, the Swedish HCA 

consortium performing large-scale scRNA-seq, ATAC-seq and spatial-omic analysis of the 

developing human brain, heart119 and lung during the first trimester, the French HuDeCA 

consortium to map eight first trimester human organs using 3D-imaging and scRNA-seq, the EU 

H2020-funded developing brain (Braintime) and gonad (HUGODECA), the NIH Developmental 

Genotype-Tissue Expression (dGTEx120) and Wellcome and MRC-funded consortia in the UK. 

The logical next step will be to coordinate these efforts and extend the current approach to 

contextualise the development of different cell lineages across all organs. 
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However, multi-organ approaches do not permit the analysis of distributed tissue networks as a 

continuum from a single donor sample. Whole embryo analysis has been limited to very early pre-

implantation samples88,121,122 and one gastrulation stage embryo123. Multi-omics suspension and 

spatial-genomics profiling of anatomically dissected units from whole human embryos at 6/7 PCW 

is being undertaken by the UK HDCA researchers. We anticipate a first whole human embryo 

profiling within the next two years. Based on existing HDCA data and the rapid changes during 

early development, we propose a minimum of three replicates for each biologically relevant 

gestation period (e.g. each week from 6 PCW). All such data produced and shared by the global 

research community, formally registered with the HCA or not, contributes to the HDCA. Defining 

a universal organising framework for this data will enable it to be unified into a complete atlas that 

will be a transformative resource for the research and clinical communities.     

Figure and table legends 

Figure 1: Human embryo development and model systems

a. Timeline of human development from fertilization to birth.

b. In vitro model systems to study early embryonic development. 

c. Experimental model systems to study development, including D. melanogaster, D. rerio, 

X. laevis, G. gallus, M. musculus, cell culture and organoids, and their amenability to 

facilitate various aspects of scientific study. 

Figure 2: The Human Developmental Cell Atlas: how to build it and what will it provide?  

a. ‘How to build an atlas’ modules, including an interdisciplinary team, multi-modal 

technologies, and integration of data across platforms. 

b. Key features of the Human Development Cell Atlas. Single cell measurements across 

three-dimensional space, alongside a fourth dimension of time, allow for capture of 

dynamic developmental processes including cell proliferation, migration and regulation. 

https://paperpile.com/c/WpjP5I/nmbqx+7btHn+8CQu5
https://paperpile.com/c/WpjP5I/fg9Ha
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c. Utility and applications of the Human Development Cell Atlas: cellular and molecular 

biological insights applied to advance regenerative medicine, tissue engineering and 

therapeutics. 

Figure 3: Multi-omics profiling and data integration

a. Organ or anatomical unit profiling of a prenatal embryo derived from multiple germ layers.

b. Single cell atlas technologies by relative resolution and genome scale.

c. Integration of datasets from different technologies (e.g., spatial transcriptomics, single-cell 

RNA sequencing, targeted in situ sequencing) to profile organs or whole embryos. 

Figure 4: Publications registered with the Human Development Cell Atlas. There are 48 

researchers from 13 countries currently registered with the HDCA. Developmental datasets are 

contributed to public repositories including the HCA Data Coordination Portal. 

Figure 5: Clinical relevance and applications of the Human Developmental Cell Atlas 

a. A timeline of brain development across human life, with examples of diseases with onset 

at different gestational stages and ages.

b. How a single cell atlas with temporal and spatial information can be used as a reference to 

understand disease state.
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Descriptions of the 5-10% most important references 

Asp, M  et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing 

Human Heart. Cell. vol. 179(7):1647-1660.e (2019).

● A temporal and three-dimensional spatial map of the developing human heart from 

the first trimester by using a combination of transcriptome wide single cell RNA 

sequencing and spatial transcriptomics methods with cellular validation by in situ 

sequencing. 

Belle, M. et al. Tridimensional Visualization and Analysis of Early Human Development. Cell vol. 

169 161–173.e12 (2017).

● A three-dimensional map of first trimester human development by tissue clearing and 

lightsheet imaging, providing high resolution images of the developing 

cardiopulmonary, vascular, peripheral nervous, muscular and urogenital systems, 

unveiling insights into complex processes such as skin innervation and differential 

vascularisation of male and female genital systems. 

Camp, J. G., Wollny, D. & Treutlein, B. Single-cell genomics to guide human stem cell and tissue 

engineering. Nat. Methods 15, 661–667 (2018).
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● This review highlights the potential utility of single-cell genomics to optimise cell and 

tissue engineering, with a focus on emerging methodologies that can guide this 

process, such as transcription factor combinatorics, spatial reconstruction, CRISPR-

Cas9 screens and lineage-coupled transcriptomics.  

Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, (2020).

● A set of two studies on integrating single cell gene expression (this study) and 

chromatin accessibility (Domcke, S. et al. 2020) from 15 first and second trimester 

human organs.  

Gerrelli, D., Lisgo, S., Copp, A. J. & Lindsay, S. Enabling research with human embryonic and 

fetal tissue resources. Development 142, 3073–3076 (2015).

● The HDBR (Human Developmental Biology Resource) is a biobank collecting and 

distributing material for research from human embryos (from 4 PCW) and fetuses 

(up to 22 PCW); the website https://www.hdbr.org/ shows the range of facilities 

offered by the HDBR and provides access for prospective users. 

Han, X. et al. Construction of a human cell landscape at single-cell level. Nature 581, 303–309 

(2020).

● A single cell gene expression study of multiple organs during first and second 

trimester human development, with comparative analyses between human and mouse 

to identify conserved genetic networks. 

Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. 

Nature 566, 490–495 (2019).

● A densely sampled time course analysis covering mouse gastrulation and early 

organogenesis provides a single cell RNA-Seq reference atlas, which is then exploited 

to provide new insights into early blood and endothelial development through parallel 

analysis of mouse chimaeras lacking the key regulator Tal1/Scl.

Popescu, D.-M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).

● A detailed single cell characterisation of fetal liver blood and immune cell 

development revealing inferred differentiation trajectories from HSC and gestation-

specific HSC differentiation potential. 

Reynolds, G. et al. Developmental cell programs are co-opted in inflammatory skin disease. 

Science 371, (2021).

https://www.hdbr.org/
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● Comparative analyses of fetal skin with healthy and diseased adult skin, unveiling the 

co-optation of developmental cell programs in two common inflammatory skin 

conditions, atopic dermatitis and psoriasis.  

Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. 

Nature 563, 347–353 (2018).

● A detailed single-cell RNA sequencing analysis of first trimester decidua and 

placenta, highlighting the cell-cell interactions that take place at the maternal-fetal 

interface during human development using a receptor-ligand database CellPhoneDB. 

Yan, L. et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic 

stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139 (2013).

● A comprehensive single-cell RNA-sequencing analysis of human oocytes to blastocyst

stage embryos that has been widely used to investigate lineage-associated gene 

expression and as a comparative analysis to human pluripotent stem cell lines. 

Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of 

renal tumors. Science 361, 594–599 (2018).

● Comparative single cell analyses of fetal kidneys, paediatric, adult kidneys and 

Wilm’s tumours, demonstrating the origin of Wilm’s tumour as aberrant nephron 

development. 
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