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Abstract 

Purpose: Real-time spiral phase contrast MR (PCMR) enables rapid free-breathing 

assessment of flow. Target spatial and temporal resolutions require high acceleration rates 

often leading to long reconstruction times. Here we propose a deep artifact suppression 

framework for fast and accurate flow quantification. 

Methods: U-Nets were trained for deep artifact suppression using 520 breath-hold gated 

spiral PCMR aortic datasets collected in congenital heart disease patients. Two spiral 

trajectories (uniform and perturbed) and two losses (Mean Absolute Error -MAE- and 

average structural similarity index measurement -SSIM-) were compared in synthetic data 

in terms of MAE, peak SNR (PSNR) and SSIM. Perturbed spiral PCMR was prospectively 

acquired in 20 patients. Stroke Volume (SV), peak mean velocity and edge sharpness 

measurements were compared to Compressed Sensing (CS) and Cartesian reference. 

Results: In synthetic data, perturbed spiral consistently outperformed uniform spiral for the 

different image metrics. U-Net MAE showed better MAE and PSNR while U-Net SSIM 

showed higher SSIM based metrics. 

In-vivo, there were no significant differences in SV between any of the real-time 

reconstructions and the reference standard Cartesian data. However, U-Net SSIM had 

better image sharpness and lower biases for peak velocity when compared to U-Net MAE. 

Reconstruction of 96 frames took ~59s for CS and 3.9s for U-Nets. 

Conclusion: Deep artifact suppression of complex valued images using an SSIM based loss 

was successfully demonstrated in a cohort of congenital heart disease patients for fast and 

accurate flow quantification.  

Keywords: Cardiac MRI, Congenital Heart Disease, Real time, Flow imaging, Image 

Reconstruction, Machine Learning. 

  



Introduction  

Flow quantification using Phase Contrast MR (PCMR) [1] is an important component of 

the CMR protocol in pediatric heart disease. Real-time PCMR is of particular interest in 

children, as it allows rapid, non-gated and free breathing flow quantification [2,3]. 

However, acquisition of real-time PCMR requires significant acceleration. This can be 

achieved using non-Cartesian trajectories [2–4] and/or data undersampling combined with 

state-of-the-art reconstructions such as compressed sensing (CS) [5]. Although these 

methods do enable accurate real-time PCMR flow quantification [4,6], long reconstruction 

times limit their clinical utility. 

Deep learning (DL) is increasingly used for MR image reconstruction [7] and a variety of 

methods have been proposed, including image artifact suppression [8] and unrolled 

reconstruction networks [9,10]. A benefit of these methods over CS reconstructions is that 

computational load is shifted to training and reconstruction times are short.   

A recent study applied DL image artifact suppression to radial real-time flow imaging in 

adults and demonstrated good image quality and accurate flow metrics [11]. Spiral 

trajectories have also been used for real-time PCMR, as their k-space filling efficiency 

enables higher spatio-temporal resolution imaging. However, DL artifact suppression may 

be more difficult for undersampled uniform spirals due to the presence of coherent aliasing 

[4]. This problem has been addressed for CS reconstructions with the use of perturbed 

spiral trajectories that produce more incoherent aliases [4]. This sampling pattern could 

also be well suited to DL approaches based on artifact suppression. The focus of this study 

was to develop DL artifact suppression methods for complex-valued undersampled 

perturbed spiral PCMR images. The specific aims were: 1) To demonstrate in synthetic 

PCMR data that artifact suppression of perturbed spiral images was superior to uniform 

density spiral images, 2) To use the trained models to perform artifact suppression in  

prospectively acquired perturbed spiral real-time PCMR data in children, 3) To compare 

flow quantification using the proposed DL models and CS reconstruction of the same real-

time data, as well the reference standard Cartesian breath-hold, cardiac gated PCMR.  



 

Methods  

This study was approved by the local research ethics committee (Ref. 06/Q0508/124), and 

written consent was obtained in both prospective and retrospective cohorts. An overview 

of the proposed DL framework for real-time flow imaging is shown in Figure 1. In this 

study, we define U-Net augmented reconstruction as all the steps from raw k-space to the 

phase subtracted final image. This includes coil sensitivity estimation, non-uniform Fourier 

Transform, coil combination, U-Net deep artifact suppression (gridded to recovered 

images) of both the flow-encoded and flow-compensated data and combination to obtain 

the final flow maps. 

Perturbed spiral design 

The perturbed spiral design (Figure 1.A) has previously been described in detail [4] and 

has been shown to produce incoherent aliases in both space and time. Briefly, a uniform 

density spiral trajectory was perturbed by varying the radial acceleration as a function of 

both normalized distance from the k‐space center and the interleave angle. In this study 

these interleaves were continuously rotated by the golden angle (~222º) and two interleaves 

were acquired per frame (with the same trajectory for flow-compensation and flow-

encoding pairs). This sampling pattern was used for generation of both synthetic training 

data and the prospective study. 

Preparation of synthetic data 

The training data was created from 520 breath-hold, retrospectively cardiac gated, uniform 

density spiral PCMR [3] datasets in the aortic position of patients with pediatric and/or 

congenital heart disease (21.0 ± 13.5 years old, heart rate: 71 ± 12 bpm). Each dataset 

consisted of 40 combined magnitude and phase subtracted images, representing one heart-

beat (acquired resolution: 1.73x1.73x6.0 mm3) stored in the DICOM format. 490 datasets 

were used for training, 15 for validation and 15 for testing.  



The final network needed to suppress artifact in both the uncombined flow-compensated 

and flow-encoded images. Thus, a smooth random additional background phase was added 

to simulate background offsets seen in uncombined (flow-compensated and flow-encoded) 

data. To obtain truth “real-time” images for training, the PCMR data was first interpolated 

to the target temporal resolution (~ 26.6 ms). A requirement for artifact suppression of real-

time flow images is the ability to artifact suppress 2D+time data containing a non-integer 

number of heartbeats (>1) starting at any point in the cardiac cycle. Thus, the interpolated 

single heartbeat PCMR data was replicated over multiple heartbeats (2-4 depending on 

heartrate) to better reflect the prospective real-time data.   

To create the paired corrupted images, the truth data was first Fourier transformed and 

undersampled with the chosen trajectory (uniform or perturbed spiral with golden angle 

increment and acceleration factor R~18). The synthetic undersampled k-space data was 

then inverse Fourier transformed to produce the aliased data (i.e. corrupted complex valued 

images). Both truth and corrupted images were independently normalized (divided by the 

maximum magnitude) and cropped to the volume size 192x192x40 centered spatially but 

with random start points in time (i.e. random point in the cardiac cycle and trajectory).  

Network 

The paired corrupted-truth images were used for supervised learning of a 3D U-Net 

architecture [8,12]. The input to the network consists of a 2D+time series of 18x spirally 

undersampled gridded images with a real and imaginary channel. The U-Net architecture 

(Figure 1.B) consisted of three scales separated by 2x2x2 max-pooling in the encoding 

branch and transpose convolutions in the decoding branch. Encoding/decoding blocks 

consisted of two 3D Convolutions (with 32 filters at the initial scale) and ReLU activation 

functions. Training was performed using an adaptive moment estimation algorithm (Adam 

[13]). Hyper parameters included an input/output size of 192x192x40 x2 (last dimension 

representing the real and imaginary channels), filter size of 3x3x3, batch size of 2 and an 

initial learning rate of 5x10-4. Although trained with 40 frames, at inference the network 

was applied to longer time-series (96 frames) to reduce artifact suppression times. 



Two loss functions were investigated in this study. Mean absolute error (MAE) as proposed 

in other works with complex valued outputs [11,14] and a novel 3D structural similarity 

index [15] loss (calculated as: 1 − AvgSSIM). The average SSIM metric was adapted for 

complex images and is computed over the real (real) and imaginary (imag) components as 

follows:  

AvgSSIM =
SSIM (

real + 1
2 ) + SSIM (

imag + 1
2 )

2
 (1) 

 

Networks (U-Net MAE and U-Net SSIM) were trained for 100 epochs each and the best 

performing, as measured by the minimum loss measured on the validation dataset, were 

selected. Implementation and training were performed using Python (v3.7.7) and 

TensorFlow (v2.2.0) (24) on a Linux workstation (Ubuntu 18.08, Intel Core i9-7900X, 

3.3GHz) using an NVIDIA Quadro GP100 (16GB memory). 

Experiments 

Synthetic data study 

Four networks were trained to compare the artifact suppression quality between uniform 

density and perturbed spiral trajectories using both MAE and SSIM losses. The four 

networks were compared using synthetic data in 15 test cases through MAE, peak signal 

to noise ratio (PSNR), Average SSIM (AvgSSIM), Magnitude SSIM and Phase SSIM. For 

SSIM metrics, the background was masked using the magnitude of normalized truth images 

(threshold set at 0.15). 

In-vivo study 

The population has previously been described in the original study that described real-time 

perturbed spiral PCMR with CS reconstruction [4]. Briefly, 20 children (11.6 ± 3.2 years 

old, heart rate: 81 ± 12 bpm) referred for routine cardiac MR were scanned on an Avanto 

1.5T scanner (Siemens Healthineers, Erlangen, Germany) using 2 spine coils and 1 body 



matrix coil setup (total of 12 coil elements). Reference standard flow imaging was acquired 

using a free-breathing retrospectively ECG-gated Cartesian PCMR sequence with the 

following parameters - voxel-size: 1.82x1.82x6.0 mm, FOV: 350x262 mm, TR/TE: 4.4/1.9 

ms, Flip Angle: 30o, VENC: 200 cm/s, averages: 2, GRAPPA: 2, temporal resolution: 18.5 

ms, acquisition time: 65.2±9.8 s. The real-time perturbed spiral PCMR sequence was 

acquired with the same trajectory (R~18) as used during training and the following 

parameters - voxel-size: 1.76x1.76x6.0 mm, FOV: 450x450 mm, Flip Angle: 20o, VENC: 

200 cm/s, TR/TE: 6.7/1.9 ms, temporal resolution: ~26.6 ms, acquisition time: ~7.2s. 

The real-time perturbed spiral acquisition results in 270 paired flow-encoded and flow-

compensated images. Offline U-Net MAE and U-Net SSIM augmented reconstruction was 

performed on blocks of 96 raw k-space frames with 6 frames of overlap. The reconstructed 

data was then cropped to keep the central 90 frames in order to remove temporal edge 

effects due to 3D convolutions. The same raw k-space data also underwent a state-of-the-

art CS reconstruction (combining parallel imaging with spatio-temporal total variation 

regularization as optimized in [4]). Coil sensitivity estimation was performed from 

temporally averaged k-space center using the Berkeley Advanced Reconstruction Toolbox 

[16]. Both CS and U-net augmented reconstructions were performed on the same 

workstation with Windows 10 and an NVIDIA Tesla K40c (12GB Memory) to enable 

comparison of reconstruction times. 

Analysis 

All quantitative analyses were carried out by using in-house plug-ins for Horos software 

(Horos, MD USA).  

For flow analysis, the aorta was segmented (GTK - 10 years experience) on the magnitude 

of the U-Net SSIM, CS and Cartesian images using a semi-automatic method based on the 

optical flow registration with manual operator correction [17]. The resultant regions of 

interest (ROI) were transferred to the corresponding phase images (U-Net SSIM based 

ROIs were also applied to U-Net MAE images) to produce flow and mean velocity curves. 

Peak mean velocity was taken as the maximum of the mean velocity curve. Stroke volume 



(SV) was calculated by integrating the resultant flow curve over a single r-r interval. As 

multiple heartbeats are evaluated with real-time PCMR, SV and peak velocity were 

averaged across all complete r-r intervals.  

Quantitative edge sharpness was calculated at peak systole by measuring the maximum 

gradient of the normalized pixel intensities across the aortic wall as previously described 

[4]. For the real-time data the edge sharpness measurements were performed in all peak 

systole frames and the averaged values were used for comparisons. 

 

Statistical Analysis 

All statistical analysis was performed using R software (R Foundation for Statistical 

Computing, Vienna, Austria) and a p-value of less than 0.05 indicated a significant 

difference. All the results are expressed as mean ± standard deviation. Differences between 

the imaging techniques were assessed using the one-way repeated measures analysis of 

variance (ANOVA). The imaging techniques were treated as the repeated measures factor. 

Significant results were further investigated with post-hoc pairwise comparison using the 

Tukey method. 

Results 

Synthetic data study 

U-Net MAE and U-Net SSIM both had 1,550,818 trainable parameters and took ~6 and 

~14 hours to train, respectively (U-Net SSIM was slower due to the additional computation 

time for the 3D SSIM loss). 

Quantitative results are summarized in Table 1. A representative test case showing gridded 

(input to the network), U-Net MAE, U-Net SSIM and truth images is shown in Figure 2 

and Supporting Information Video S1. Both DL networks successfully removed the 

artifacts from the undersampled input complex-valued images, with an improvement in all 

image metrics compared to the gridded images. The perturbed spiral consistently 



outperformed uniform spiral sampling in synthetic test data for all metrics (p<0.05) except 

phase SSIM where no statistical differences between the two were observed.  

The U-Net MAE resulted in lower MAE and higher PSNR, while the U-Net SSIM 

produced higher average SSIM, magnitude SSIM and phase SSIM. On inspection, U-Net 

MAE images appeared qualitatively blurrier than the U-Net SSIM ones.  

 

In-vivo study 

Representative gridded, U-Net MAE, U-Net SSIM and CS images of prospective real-time 

data, as well as Cartesian data are shown in Figure 3.A (corresponding movies are shown 

in Supporting Information Video S2 and Video S3). Separate flow-compensated, flow-

encoded, and phase subtracted images that were deep artifact suppressed using U-Net MAE 

and U-Net SSIM models are shown in Figure 4. It can be seen that both networks were able 

to suppress artifacts in both flow-encoded, and flow-compensated data. Quantitatively, 

edge sharpness was lowest in the U-Net MAE images (Table 2) and was significantly lower 

than both Cartesian (p<0.0001) and CS images (p=0.001). U-Net SSIM images were less 

sharp than the Cartesian images (p=0.002), but not than the CS images (p=0.24).  

Representative averaged flow and mean velocity curves are shown in Figure 3.B and Figure 

3.C (curves for all heart beats are shown in Supporting Information Figure S1). 

Quantitative results are summarized in Table 2 and Bland Altman plots comparing SV and 

peak mean velocities to the Cartesian reference are shown in Figure 5. Stroke volumes 

from all real-time methods had a small negative bias compared to Cartesian flow, but none 

reached significance. There were also no significant differences in stroke volume between 

the real-time methods (Table 2).  

Peak mean velocities were significantly lower for the U-Net MAE compared to the 

Cartesian sequence, due to blurring of the velocity curve (Figure 3.C). There was no 

significant difference in peak mean velocity between U-Net SSIM, CS real-time data and 



reference Cartesian data. However, the limits of agreement with the Cartesian data for both 

U-Net methods were wider than for CS reconstructions. 

The reconstruction of 96 frames took ~59 seconds (0.6s/frame) using CS, while U-Net 

augmented reconstructions took 3.9 seconds (0.04s/frame, ~15 times faster), which 

included 0.8 seconds for coil estimation, 1.8 seconds for gridding and FFT of both contrasts 

and 1.3 seconds for denoising and combining of both contrasts. 

 

Discussion 

In this study, we proposed a DL framework for fast artifact suppression of heavily 

undersampled real-time spiral PCMR data. The main findings were: 1) perturbed spiral 

trajectories were better suited for the proposed artifact suppression than uniform density 

spirals, 2) DL networks were able to remove undersampling artifact from prospectively 

acquired perturbed spiral real-time data, 3) A model trained with a complex SSIM loss 

produced more accurate flow quantification than complex MAE loss, 4) the DL method 

was 15 times faster than CS reconstruction enabling better integration in the clinical 

workflow.  

In this study, we focused on U-Net based artifact suppression to remove aliasing artifact 

from undersampled spiral PCMR data. This approach seems to be reliant on noise-like 

aliases [8] and therefore we investigated the use of a perturbed spiral trajectory designed 

to produce incoherent undersampling artifacts. Synthetic perturbed trajectory data 

produced more accurate images than uniform density spirals (higher SSIM, higher PSNR 

and lower MAE) and was thus used for the in-vivo study.  

We also investigated the use of different loss functions during network training. In previous 

MR studies, SSIM loss has been extensively used for reconstruction of magnitude images 

[18–20]. However, to our knowledge the use of SSIM has not been extended to complex-

valued problems, where MAE [11,14] or MSE [21] losses are more commonly used. 

Therefore, we proposed a novel 3D SSIM loss for complex-valued images which 



demonstrated higher magnitude and phase SSIM in the synthetic test set, compared to 

MAE. However, using MAE for training also resulted in lower MAE in the validation set, 

demonstrating the problem of using the same metric as a loss and measure of image quality. 

Thus, to determine which loss was better we compared U-Net SSIM, MAE and CS 

reconstructions of prospective real-time data to reference standard Cartesian flow in 

children undergoing routine CMR.   

Both U-Nets were able to successfully remove aliasing artifacts from prospective 18x 

undersampled perturbed spiral real-time data (both flow-compensated and flow-encoded 

images) acquired in free-breathing. This was despite the fact that the network was trained 

on 1) modified phase subtracted data and 2) breath-hold data suggesting good 

generalizability. As a result, there were no significant differences in stroke volumes 

between any of the techniques. However, peak mean velocity was significantly lower for 

the U-Net MAE images due to temporal blurring of the velocity curve. In addition, the U-

Net MAE produced images with the lowest edge sharpness. This implies that the SSIM 

loss performs better, producing sharper images in both space and time. There were some 

contrast differences between CS and DL based methods, even though the underlying raw 

data was the same. This was probably due to differences in the reconstruction framework 

including coil estimation, normalization of gridded images and data consistency. Learning 

from multi-coil raw data and including data consistency layers could lead to more 

consistent images and further improve final results [22]. 

It should be noted that the limits of agreement between U-Net SSIM and Cartesian 

measurements were wider than between CS and Cartesian measurements. However, they 

were similar to previously reported limits of agreement for a standard Cartesian breath hold 

PCMR that is extensively used in the clinical environment [3]. Furthermore, they are within 

the range of recently reported scan-scan repeatability [23].  Therefore, we believe that the 

magnitude of any errors are within the clinically acceptable range. Further improvement 

may be achieved using other losses such as multiscale SSIM (MS-SSIM) [24] or MAE + 

MS-SSIM [25] and these will be investigated in future work. The main benefit of our 



proposed DL artifact suppression method is that it leverages data routinely stored in clinical 

archives (magnitude and phase subtracted images, i.e. no raw data). This enabled us to 

retrospectively collect data from a substantial number of pediatric and congenital heart 

disease patients (520 cases). Our findings were in line with recent work [11] proposing 

deep artifact suppression for radial real-time PCMR. The main difference in our study was 

the use of spiral trajectories, which enabled imaging at higher spatial (2.0x2.0mm2 vs 

1.76x1.76mm2) and higher temporal (43.1ms vs 26.6ms) resolution [11]. Additionally, we 

investigated the framework in a specific cohort of patients (i.e. children with heart disease) 

in whom real-time PCMR is highly desirable.  

A hybrid method proposing to use DL for the creation of a high-quality prior for a kt-

SENSE reconstruction for real-time PCMR data [26] was recently proposed to provide data 

consistent reconstructions while speeding up the reconstruction compared to CS (3.6X 

speed up). The main advantage of our approach over hybrid and CS methods are the shorter 

reconstruction times, as demonstrated here (15x speed up). This leads to the reconstruction 

(raw k-space to final phase subtracted images) of 270 frames (7.2 seconds of acquisition) 

in 11.7 seconds which could help fluidify workflow compared to the 177 seconds needed 

for CS. This should significantly aid in the dissemination and deployment of novel real-

time PCMR sequences into the clinical environment.  

Future works will aim at applying a similar method for beat-to-beat monitoring of cardiac 

output with real-time feedback. The current method will require additional fully automatic 

segmentation, reduction in latency and online reconstruction. For this purpose, efficient 

online reconstruction, joint artifact suppression and segmentation [27] and lowering the 

number of input frames will be investigated. 

Conclusion   

We have demonstrated that a U-Net based method can successfully remove aliasing artifact 

from heavily undersampled spiral real-time phase contrast cardiac MR. The proposed U-

Net was trained using clinically available DICOMs only and optimized on an adapted 



SSIM for complex values. It outperformed the same U-Net with complex MAE loss in a 

prospective population of 20 pediatric patients with congenital heart disease and enabled 

fast and accurate flow quantification while significantly reducing reconstruction times.  
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Figures 

 

 

Figure 1. A) Proposed reconstruction of PCMR data acquired with a perturbed spiral trajectory (first four 

spiral arms shown). Flow-compensated and flow-encoded data are gridded, and Fourier transformed into 

image space, before being denoised using a 3D U-Net and then combined (average magnitude, phase 

subtraction) to provide PCMR images. B) U-Net model used for artifact suppression. The real and 

imaginary are concatenated in the channel dimension leading to a 3D (2D+time) input volume of size 

192x192x40x2. Two 3D convolutions are applied at each scale, with three image scales used in both 

encoding and decoding. The network was trained using either a mean absolute error (MAE) loss or an 

adapted 3D SSIM loss for complex valued output (AvgSSIM). 



 

Table 1. Results from synthetic test data: Mean absolute error (MAE), Peak Signal to Noise Ratio 

(PSNR), average SSIM (average of real and imaginary), magnitude SSIM and phase SSIM, obtained in 

the synthetic test data shown for uniform and perturbed spiral samplings and gridded, U-Net MAE and U-

Net SSIM methods. * indicates statistical significance (p<0.05) between the best and second best 

performing methods. 

 

Figure 2. Representative result from the synthetic test cases: Gridded, U-Net MAE and U-Net SSIM 

images (x-y frame at peak systole and x-t cross-section of the aorta) for uniform spiral (Top) and 



perturbed spiral (Bottom) compared to corresponding truth images (far right). U-Net MAE results appear 

blurrier than U-Net SSIM, (especially phase images) for both trajectories. 

 

 

Figure 3.  Results from a representative prospectively acquired subject. A)  Gridded, U-Net MAE, U-Net 

SSIM, CS and Cartesian results at peak systole. B) Corresponding average real-time flow curves 

compared to the Cartesian reference. C) Corresponding average real-time mean velocity curves compared 

to the Cartesian reference. Corresponding real-time videos can be found in Supporting Information Video 

S2 



 

Figure 4.  Prospective images from one patient. Flow-compensated, flow-encoded and PCMR combined 

images (x-y frame at peak systole and x-t cross-section of the aorta) for U-Net MAE and U-Net SSIM.  

Phase images appear sharper using U-Net SSIM (as depicted by the red arrow). 

 

 



 

Figure 5. Bland Altmann plots comparing U-Net MAE, U-Net SSIM and CS to reference Cartesian stroke 

volume (Top) and peak mean velocity (Bottom).  

 

Table 2. Table summarizing prospective in-vivo measurements. Average values, standard deviation (std), 

biases and limits of agreements (LOA) for stroke volume and peak mean velocity are reported. Edge 

sharpness and reconstruction times for the different methods are also reported. * indicates statistically 

significant differences (p<0.05) with reference Cartesian measurements. 

  



 

Supporting Information Figures 

 

 

 

Supporting Information Figure S1. Representative flow analysis from one prospective real-time data set 

A) flow and B) mean velocity curves acquired over ~7.2 seconds and reconstructed using U-Net MAE, U-

Net SSIM and Compressed Sensing (CS). Corresponding images are shown in Supporting Information 

Video S2. 

 



Supporting Information Video S1. Simulated gridded, U-Net MAE, U-Net SSIM reconstructions for 

uniform spiral (Top) and perturbed spiral (Bottom) compared to corresponding truth images (utmost 

right). 

Supporting Information Video S2. Gridded, U-Net MAE, U-Net SSIM and CS combined flow images in 

a representative prospectively acquired subject. Corresponding real-time flow and mean velocity curves 

are shown in Supporting Information Figure S1. Corresponding average curves are shown in Figure 3. 

Supporting Information Video S3. Gridded, U-Net MAE, U-Net SSIM and CS combined flow images in 

an additional representative prospectively acquired subject. 
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