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Abstract 

 

Quantitative diffusion imaging techniques enable the characterization of tissue 

microstructural properties of the human brain “in vivo”, and are widely used in neuroscientific 

and clinical contexts. In this review, we present the basic physical principles behind diffusion 

imaging and provide an overview of the current diffusion techniques, including standard and 

advanced techniques as well as their main clinical applications. Standard diffusion tensor 

imaging (DTI) offers sensitivity to changes in microstructure due to diseases and enables the 

characterization of single fiber distributions within a voxel as well as diffusion anisotropy. 

Nonetheless, its inability to represent complex intravoxel fiber topologies and the limited 

biological specificity of its metrics motivated the development of several advanced diffusion 

MRI techniques. For example, high-angular resolution diffusion imaging (HARDI) techniques 

enabled the characterization of fiber crossing areas and other complex fiber topologies in a 

single voxel and supported the development of higher-order signal representations aiming to 

decompose the diffusion MRI signal into distinct microstructure compartments. Biophysical 

models, often known by their acronym (e.g., CHARMED, WMTI, NODDI, DBSI, DIAMOND) 

contributed to capture the diffusion properties from each of such tissue compartments, 

enabling the computation of voxel-wise maps of axonal density/morphology that hold 

promise as clinically viable biomarkers in several neurological and neuroscientific 

applications; for example, to quantify tissue alterations due to disease or healthy processes. 

Current challenges and limitations of state-of-the-art models are discussed, including 

validation efforts. Finally, novel diffusion encoding approaches (e.g., b-tensor or double 

diffusion encoding) may increase the biological specificity of diffusion metrics towards intra-

voxel diffusion heterogeneity in clinical settings, holding promise in neurological applications. 
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1. Introduction 

 

1.1. Water diffusion 

The noninvasive quantification of tissue microstructure has been largely investigated 

over the last years using diffusion-weighted Magnetic Resonance Imaging (DW-MRI). DW-

MRI exploits biological water, ubiquitous in living tissues, as a non-invasive probe of 

cytoarchitecture at the mesoscale (1-100 µm). Water molecules constantly undergo random 

fluctuations of their spatial position according to the well-known phenomenon of Brownian 

motion. 1 The intrinsic water self-diffusion coefficient characterizes such a phenomenon so 

that the average mean squared displacement of freely diffusion molecules in 𝑁 dimensions 

over a time 𝜏 can be calculated via Einstein’s relation:  

 

< 𝑟 2 > =  2𝑁 𝐷 𝜏 (1). 

 

 However, in biological tissues, water molecules do not diffuse freely, since Brownian 

motion happens within complex microenvironments (e.g., cell membranes) that hinder and/or 

restrict molecule random walks. Consequently, the effective mean squared displacement <

𝑟 2 > departs (i.e. is reduced) from the free diffusion behavior, and diffusion patterns carry a 

signature of the cellular characteristics where diffusion occurs. 

 

1.2 Linking diffusion and MRI signals 

DW-MRI utilizes magnetic field gradients to sensitize the MRI signal to such patterns 

of diffusion so that key cellular characteristics that drive these patterns (e.g., cell size, density, 

morphology) can be estimated from sets of diffusion-sensitized MRI measurements. In the 

classical DW-MRI experiment, 2 known as pulsed-gradient spin-echo (PGSE) or single 

diffusion encoding and illustrated in Figure 1 below, two different diffusion-sensitizing pulsed 

gradient lobes are used to obtain diffusion weighting.  

https://paperpile.com/c/7CeRMa/XGL6
https://paperpile.com/c/7CeRMa/q453
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Fig. 1. Schematic representation of the PGSE experiment. In the figure, 𝛿 is the duration of 

each gradient lobe, 𝛥 is the separation between the beginning of the first and second lobe, 

and 𝑔is the gradient strength. The term 𝛥 −  𝛿/3 is referred to as diffusion time. 𝛿, 𝛥 and 𝑔 

are typically combined to calculate the b-value (𝑏 =  𝛾2 𝑔2 𝛿2 (𝛥 −  𝛿/3), see Equation 4), 

which provides a measure of the overall diffusion weighting  (the higher the value of b, the 

stronger the signal attenuation and the lower the signal-to-noise ratio, SNR). 

 

The first lobe produces a spatially variant magnetic field that effectively tags the water 

molecule MRI phase according to their spatial position, while the second lobe is designed to 

cancel out such tags if the positions of the molecules do not change. In the presence of 

diffusion, water molecules move at random during the time interval separating the two lobes, 

so that the tag removal is not complete, being the final position of the molecules different from 

their initial one. This leads to overall dephasing when integrating the molecule phase over a 

spin ensemble, which results in an attenuation of the MRI signal, known as DW signal decay. 

More formally, let G(𝑡) be the diffusion-sensitizing gradient waveform and let r(𝑡)be the generic 

Brownian random walk overtime of a molecule. The total MRI phase accrual at the time of the 
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signal acquisition 𝑇for the generic molecule can be calculated as 𝜙 =  −𝛾 ∫
𝑇

0
G(𝑡)ᐧ r(𝑡) 𝑑𝑡, 

where 𝛾 is the proton gyromagnetic ratio (equal to 267.52 ᐧ 106 rad s−1 T−1 for the hydrogen 

nucleus 1H) and ᐧ the dot product, while the corresponding MRI signal as 𝑠 = 𝑒 𝑗 𝜙. The total 

MRI signal is obtained as the ensemble average of 𝑠 over the spins contained in the MRI 

voxel, i.e. 3 

 

𝐴 = <  𝑠 > = < 𝑒 − 𝑗𝛾 ∫
𝑇

0
𝐺(𝑡) ᐧ 𝑟(𝑡) 𝑑𝑡  > (2) 

 

Notably, the typical measurement time 𝑇in real-world MRI experiments (on the order of 10-

100ms) provides water molecules sufficient time to experience the effect of the cell boundaries 

at body temperature, so that the MRI signal 𝐴 carries sufficient information for their 

characterization. The intrinsic water diffusivity at 37 ℃ is of the order of  𝐷= 2.0 µm2 ms-1, so 

that the root mean squared displacement for measurement times in the range  𝑇= 10-100ms 

varies approximately in √< 𝑟 2 > =  √ 6 𝐷 𝑇 ~ 10-35 µm, which is comparable to the 

characteristic cell sizes in most biological systems.4 

 

1.3 b-value and diffusion time 

Several phenomenological or biophysical models and/or representations have been 

proposed to parametrize the DW MRI signal 𝐴 as a function of tissue properties of interest. In 

particular, two complementary approaches have been proposed for extracting information 

about tissue microstructure: phenomenological signal representations from statistical 

mechanics, and multi-compartment biophysical tissue models 5. Tissue models assume a prior 

picture of the underlying tissue while phenomenological representations (such as diffusion 

tensor and diffusion kurtosis imaging) use rely on mathematical approximations of the DWI-

MRI signal (e.g., cumulant expansions) without assumptions about underlying tissue. Thus, 

they are applicable to any tissue type, but the estimated parameters lack specificity. The 

models enable the practical estimation of such tissue properties from sets of measurements 

https://paperpile.com/c/7CeRMa/GOHLL
https://paperpile.com/c/7CeRMa/UHuW9
https://paperpile.com/c/7CeRMa/LvnQM
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performed by varying the direction, timing, and strength of the diffusion encoding gradient G(𝑡). 

The salient characteristics of G(𝑡) are typically summarized by a parameter known as b-value, 

which provides information on the total diffusion-weighting strength.6 The b-value has units of 

[s/m2], and is defined as 

 

𝑏 = 𝛾2 ∫
𝑇

0
 𝐾(𝑡) ᐧ 𝐾(𝑡) 𝑑𝑡    (3),  

where 𝐾(𝑡)  =  ∫
𝑡

0
 𝐺(𝜉) 𝑑𝜉 is a function encoding the history of the diffusion encoding 

gradient, ᐧ is the dot product and 𝑇 is the time at which the signal is acquired (e.g. the echo 

time for conventional PGSE). For the conventional PGSE diffusion experiment, expression (3) 

reduces to 

𝑏 =  𝛾2 𝑔2 𝛿2 (𝛥 −  𝛿/3)  (4),  

 

where 𝛿 is the duration of each gradient lobe, 𝛥 is the separation between the beginning of the 

first and second lobe, and 𝑔 is the gradient strength. The term 𝛥 −  𝛿/3 is typically referred to 

as diffusion time since it indicates the amount of time during which water molecules diffuse 

and senses the microstructure before the measurement is taken. 

 

 

1.4 Diffusion-weighted MRI models and representations 

Among the different signal models and representations proposed in the literature,  

diffusion tensor imaging (DTI) is certainly one of the most popular.7 DTI provides summary 

information about the covariance structure of the molecule diffusion displacement distribution, 

which is related to the directionality of the water diffusion process. DTI offers high sensitivity 

to small changes at both macro- and microstructural levels in white matter (WM) tissue and is 

a robust technique that can be implemented under high time pressure in clinical settings in 

most modern scanners. Nevertheless, while DTI scalar maps emerged as a measure sensitive 

to tissue structure, they fail to characterize highly complex diffusion topology, as in the 

https://paperpile.com/c/7CeRMa/Lowj1
https://paperpile.com/c/7CeRMa/9FxZP
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presence of WM crossing fibers, where the diffusion displacement distribution is multimodal.8 

Also, despite its high sensitivity, DTI suffers from limited biological specificity concerning 

several microstructural tissue properties within a given voxel and is also influenced by multiple 

non-biological factors (e.g. scanner parameters, data quality, head motion, and so on).9 

Recently, several advanced diffusion MRI techniques have been proposed to increase the 

sensitivity and specificity to certain microstructural properties,4,10 which are described in the 

following sections for the benefit of the readership. 

 

2. Phenomenological signal representations 

 

In the classical PGSE framework, the dependence of the DW signal on the diffusion 

encoding gradient can be handily parameterized concerning the experiment b-value and the 

gradient direction. The signal can be approximated as a function of increasing powers of 𝑏, 

according to a formalism known as cumulant expansion,11,12 which is in its construction 

similar to the Taylor expansion of a function in the neighborhood of a point. It can be shown 

that the logarithm of the DW signal for a gradient direction G and b-value (𝑏) can be written 

as:𝑙𝑛 𝐴 =  𝑙𝑛 𝐴0  + 𝑐1  𝑏 +   𝑐2  𝑏
2   +  𝑂(𝑏3)  (5),  

 

where 𝐴0  is the non-DW signal, and 𝑐1  , 𝑐2  , …  are the coefficients of the expansion. Such 

coefficients can be estimated voxel-by-voxel from sets of multi b-value DWI (also known as 

multi-shell), and are related to the cumulants of the water molecule displacement distribution 

due to diffusion, also known as diffusion propagator.13   

When the expansion in Equation 5 includes terms up to the first order (i.e. it discards 

terms proportional to 𝑏2, 𝑏3, etc), then the formalism is effectively equivalent to DTI. When 

terms up to the second-order are kept instead (i.e. terms proportional to 𝑏3 or higher powers 

of 𝑏are discarded), then the formalism is equivalent to diffusion kurtosis imaging (DKI). DTI 

and DKI parameters are highly sensitive to the underlying microstructure, being related to the 

https://paperpile.com/c/7CeRMa/lL9Rx
https://paperpile.com/c/7CeRMa/Aqbud
https://paperpile.com/c/7CeRMa/UHuW9+caDyw
https://paperpile.com/c/7CeRMa/ZbQVt
https://paperpile.com/c/7CeRMa/f9YHT
https://paperpile.com/c/7CeRMa/6Opdd
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properties of the spin displacement distribution, which carries a signature of microstructure. 

However, they have limited biological specificity, since they can be influenced by many factors 

at the same time (e.g. density of microscopic anisotropic structures, such as axons; overall 

geometrical configuration of such structures, as well as their intrinsic diffusion properties).  

 

2.1 Diffusion tensor imaging 

In DTI, the expansion in Equation 5 describing the logarithm of the DW signal for a 

gradient direction G and 𝑏 includes terms up to the first order, which characterizes the 

Gaussian characteristics of the diffusion process. The expansion becomes as shown below: 

 

𝑙𝑛 𝐴 =  𝑙𝑛 𝐴0  − 𝑏 𝐷  (6),  

 

 where 𝐷 is the apparent diffusion coefficient (ADC) along with direction G,7 which is 

proportional to the variance of the spin displacement distribution and inversely proportional to 

the diffusion time. Practically, in standard DTI Equation 6 is generalized to 3D space 

introducing a diffusion tensor D = [𝐷𝑖𝑗](𝑖 = 1,2,3; 𝑗 = 1,2,3; 𝐷𝑖𝑗  =  𝐷𝑗𝑖), a rank-2 tensor 

described by a positive semidefinite matrix containing 6 independent parameters. These may 

be estimated with as few as six diffusion-weighted images (DWIs) with constant b-value non-

collinear directions as well as a single non-diffusion-weighted image (b = 0) via linear or non-

linear fitting. Nevertheless, the increasing number of gradient directions (~45 DWIs) can 

significantly improve the angular precision of the diffusion signal.14 The fitted diffusion tensors 

(i.e. 3 x 3 matrices) can be mathematically decomposed in each voxel as the combination of 

three mutually orthogonal eigenvectors (є1,є2,є3) and 3 eigenvalues (λ1,λ2,λ3), with λi 

describing the ADC along spatial direction є1 for 𝑖 = 1,2,3 and such that λ1  ≥ λ2 ≥ λ3 such a 

mathematical representation of the tensor can be easily converted to a 3D geometric 

representation of the diffusion process, consisting of an ellipsoid with axes of length (λ1,λ2,λ3) 

aligned to the directions (є1,є2,є3). The first eigenvector є1, linked to the largest eigenvalue λ1, 

https://paperpile.com/c/7CeRMa/9FxZP
https://paperpile.com/c/7CeRMa/PA4vq
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can also be used to illustrate the directionality of the tensor through a color scheme (red: the 

right to left or x-axis, green: anterior to posterior or y-axis, and blue: head to feet or z-axis) and 

the eigenvalues stored all the information on the shape and size of the tensor independently 

on their orientation. In regions where coherent and tightly packed bundles are present, the 

diffusion tensor typically takes the shape of a prolate ellipsoid (λ1>> λ2 + λ3). In regions 

composed of free water, such as cerebrospinal fluid (CSF), the diffusion tensor is isotropic 

and the equivalent ellipsoid exhibits a spherical shape (λ1= λ2 = λ3). Finally, in regions with 

crossing fibers, the diffusion tensor typically takes a planar shape, i.e. that of an oblate ellipsoid 

(λ1 = λ2 >> λ3), as shown in Figure 2.  

 

 

Fig. 2. An illustration in which the diffusion tensor is represented by an ellipsoid, whose 

principal axis in each voxel is aligned with the dominant fiber orientation.15 In the limit case of 

a spherical representation, all eigenvalues are equal and the diffusion process is isotropic (i.e. 

https://paperpile.com/c/7CeRMa/65Xqj
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it exhibits the same characteristics along any spatial direction). Otherwise, the tensor exhibits 

a planar shape in crossing areas.  

 

In DTI, several quantitative measures can be defined from the eigenvalues of the 

tensor.16 The axial diffusivity (AD) is defined as the diffusion coefficient along the principal 

direction of the fastest diffusion of the tensor (AD = λ1), while radial diffusivity (RD) is defined 

as the average diffusivity perpendicularly to the principal diffusion direction (RD = (λ2  +  λ3)/2). 

The quantitative map that describes the average amount of diffusion in a voxel is instead 

obtained by averaging three eigenvalues and is known as mean diffusivity (MD = (λ1+ λ2  +  

λ3)/3) index. Finally, fractional anisotropy (FA) describes the degree of anisotropy of the 

diffusion process independently of the average diffusivity and the diffusion orientation.17 FA is 

a simple way of summarizing the degree of anisotropy by a range between 0 (isotropic) and 1 

(anisotropic).18 Quantitative DTI metrics are highly sensitive to changes at the microstructural 

level.16 However, they are often difficult to interpret, given their limited biological specificity: 

several biological characteristics (e.g. myelination, axonal packing, axonal orientation 

dispersion) can all affect the value of each of the DTI indices. Thus, interpreting observed DTI 

changes is difficult in several conditions, particularly when neuropathological information is 

not available.19,20 Moreover, as mentioned before in Section 1.4, one of the major limitations 

is the inability to disentangle the complex and heterogeneous microstructure contributions in 

a given voxel, such as fiber crossings.21 Nonetheless, DTI is still widely used in scientific 

research due to its exquisite sensitivity to microstructural alterations beyond focal lesions, its 

robustness, and its quality of capturing microstructural properties in a few and interpretable 

parameters. 

 

2.2 Diffusion kurtosis imaging 

In DKI, the b-value expansion in Equation 5 includes terms up to the second-order, 

becoming  

https://paperpile.com/c/7CeRMa/i5KuM
https://paperpile.com/c/7CeRMa/LTqXB
https://paperpile.com/c/7CeRMa/b4viL
https://paperpile.com/c/7CeRMa/i5KuM
https://paperpile.com/c/7CeRMa/HFiJq
https://paperpile.com/c/7CeRMa/VPS63
https://paperpile.com/c/7CeRMa/Q28r3
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𝑙𝑛 𝐴 =  𝑙𝑛 𝐴0  − 𝑏 𝐷  + 
1

6
 𝑏2𝐷2𝐾  (7),  

 

 where 𝐷 is again the ADC along with direction G and 𝐾 the kurtosis excess along the 

same direction. 𝐾 quantifies departures from Gaussian diffusion, such that a non-zero 𝐾 (i.e. 

non-monoexponential decay as a function of 𝑏) can arise either in presence of multiple 

Gaussian compartments with different ADC (i.e. with different intrinsic 𝐷, but each with intrinsic 

𝐾 =  0), as well as in presence of barriers that restrict water diffusion. 

DKI employs higher b-values (>2000 s/mm2 and <3000 s/mm2 in vivo in the brain) to 

capture information about non-monoexponential (i.e. non-Gaussian) signal behavior without 

making any assumptions of the underlying tissue types.22 Indeed, the DKI may provide more 

sensitive and accurate measures of tissue microstructure than DTI for their ability to describe 

the restricted diffusion compartment within biological tissues as shown in Figure 3.23,24 The 

kurtosis parameters quantify the deviation from a Gaussian distribution profile. Thus, when 

the diffusion behaves in a Gaussian fashion, the kurtosis coefficient approaches zeros, the 

signal decay is monoexponential and the diffusion properties are fully captured by simpler 

DTI.12 

 

 

Fig. 3. Illustration of the (A) non-monoexponential  MRI signal decay at higher b values ( > 

1000 s/mm2) due to non-Gaussian diffusion (e.g., when imaging a two-compartment system 

https://paperpile.com/c/7CeRMa/g4ore
https://paperpile.com/c/7CeRMa/TTnPz
https://paperpile.com/c/7CeRMa/EGb6q
https://paperpile.com/c/7CeRMa/f9YHT
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as in WM, leading to a bi-exponential signal decay)  and (B) examples of scalar DTI and DKI 

maps.  

 

In DKI, equation 7 is generalised to 3D space by introducing a rank-2 diffusion tensor 

D = [𝐷𝑖𝑗](𝑖 = 1,2,3; 𝑗 = 1,2,3), with 32 = 9 components and 6 independent parameters, and a 

rank-4 kurtosis tensor W = [𝑊𝑖𝑗𝑘𝑙](𝑖 = 1,2,3; 𝑗 = 1,2,3; 𝑘 = 1,2,3; 𝑙 = 1,2,3), with 34 = 81 

components but only 15 independent parameters. The total number of parameters to estimate 

in each voxel in DKI is 22 (the non-DW signal level; 6 diffusion tensor parameters; 15 kurtosis 

tensor parameters),22 implying that a minimal DKI protocol includes at least 21 non-collinear 

DW images over 2 shells, plus an additional non-DW b = 0 images. In practice, a higher 

number of measurements (e.g. 40 or 60) is typically used in DKI analysis, and key properties 

of the kurtosis tensor (i.e. axial, radial and mean kurtosis) can be computed using as few as 

13 images, as shown recently in brain MRI.25 All in all, the DKI fitting provides DTI parameters 

plus additional scalar metrics that provide additional information to DTI, being related to the 

non-Gaussian properties of the diffusion propagator.26,27 Furthermore, DKI properties are less 

sensitive to certain biological confounds effects, such as regions of complex fiber 

architecture.28 Although DKI is sensitive to microstructural changes in both gray (GM) and WM 

tissues, the DKI metrics are difficult to interpret (lack specificity) being influenced by several 

characteristics of the spin displacement distribution at the same time and due to other 

confounding effects, such as fiber orientation distribution, noise and image artifacts.29,30  

 

3. Diffusion microstructure imaging 

 

The continuous improvements in MRI scanner technology and the development of 

ever-faster acquisition strategies for High Angular Resolution Diffusion Imaging (HARDI) over 

multiple b-value shells have paved the way to new microstructural MRI methods aiming to 

increase the biological specificity of diffusion imaging, compared to DTI and DKI. As an 

https://paperpile.com/c/7CeRMa/g4ore
https://paperpile.com/c/7CeRMa/HDNmr
https://paperpile.com/c/7CeRMa/wlERK+gSGuT
https://paperpile.com/c/7CeRMa/qKyEO
https://paperpile.com/c/7CeRMa/dLMrv+avHfq
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example, rich gradient direction schemes are mandatory to overcome some limitations of DTI, 

which cannot model more than one dominant orientation for each voxel.31 In the following 

sections, we will first describe advanced DW-MRI techniques that enable the characterization 

of complex fiber configurations. Afterward, we will present several multi-compartmental 

models that aim to provide voxel-by-voxel estimates of key neuronal features relevant in 

neuroscience and neurology applications, such as axonal density. Finally, we will briefly 

introduce some of the latest advances in MRI acquisitions, beyond the conventional diffusion 

encoding based on PGSE.  

 

3.1. Models of complex diffusion patterns in areas with multiple fiber orientations 

The motivation behind the development of these models is the estimation of complex 

WM configurations that cannot be captured by the tensor representation. When the fibers are 

highly aligned in the same direction, a single tensor suffices to provide a good representation 

of the underlying fiber orientation. However, in presence of crossing fibers configurations, an 

undefined principal direction is obtained through single-tensor representations (i.e. the 

diffusion tensor is planar).32 This issue can be overcome by the reconstruction of full fiber 

orientation distribution (FOD) functions, which provides a more complete representation of 

how the fibers are oriented within a voxel, see Figure 4.33 Mathematically, the FOD is a 

probabilistic distribution on the sphere, which can capture distinct fiber populations contained 

in a voxel through distinct peaks, orientated along with different directions. HARDI acquisitions 

with at least 60 samples of DWIs are necessary to accurately reconstruct the FOD and resolve 

crossing fibers configurations.34 The most common model-based approach to recover the FOD 

directly from MRI measurements is using constrained spherical deconvolution. The main idea 

of this method is to assume the same diffusion properties across the whole brain to 

characterize a unique diffusion response function of a single fiber. Then, the diffusion signal 

is modeled by the spherical convolution of the FOD with the estimated response function of 

the anisotropic shape.35 Unfortunately, the presence of fiber crossing at shallow angles is 

challenging to decompose using FOD due to limited angular resolution and intrinsic FOD peak 

https://paperpile.com/c/7CeRMa/hmwno
https://paperpile.com/c/7CeRMa/HpyTX
https://paperpile.com/c/7CeRMa/pg3aF
https://paperpile.com/c/7CeRMa/P4Hfl
https://paperpile.com/c/7CeRMa/7RIT5
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width.36 A recent advanced approach derived from the information of FOD amplitude has been 

developed to obtain more robust anatomical features in areas of crossing fibers.37 Many 

quantitative scalar maps can be computed from the FOD. Among these, the apparent fiber 

density (AFD) holds promise as biomarkers of WM fiber integrity, as it may differentiate 

alterations to distinct, specific fiber bundles populations in group comparisons. Lastly, a new 

method proposed by Raffelt et al., has emerged to assess distinct local populations of fiber 

within a voxel (“fixel”). 38 The fixel-based analysis (FBA) is both sensitive and specific to 

resolve multiple fiber populations in areas of crossing fibers, which improves the quantitative 

discrimination of biological tissue patterns within a voxel compared to conventional DTI 

metrics. 39 

 

https://paperpile.com/c/7CeRMa/zom5o
https://paperpile.com/c/7CeRMa/4ZiaY
https://paperpile.com/c/7CeRMa/7rPpE
https://paperpile.com/c/7CeRMa/WqXgC


Seminars in ULTRASOUND CT and MRI 

 

Fig. 4. The FOD reconstruction is provided by multi-shells, multi-tissue constrained spherical 

deconvolution (MSMT-CSD).   

 

3.2. Biophysical tissue microstructure models 

In biophysical microstructural diffusion imaging, the DW signal is modeled as the sum 

of the contribution of different compartments. In WM, the standard biophysical model includes 

two compartments,4 modeling signals arising from intra-/extra-axonal water (excluding 

myelin), and can sometimes feature a third compartment to describe partial volume effects 

with the CSF (as shown in Figure 5). In GM, additional contributions can be included, for 

example, signals coming from cell bodies and neuronal somas. 40  Biophysical modeling 

typically requires the acquisition of both low and high b-values, sampling Gaussian and non-

Gaussian diffusion behavior respectively, to resolve the properties of the compartments as 

well as their relative signal fractions. A variety of microstructural models have been proposed 

in the literature, depending on the number of compartments included in the model as well as 

the assumptions made to capture the salient diffusion characteristics of each compartment 

(i.e., model constraints). Accordingly, increasing pathological specificity is one of the main 

objectives of developing biophysical models in diffusion MRI research. The estimation of the 

microstructural properties using advanced diffusion MRI will provide novel insights for 

understanding the relation between brain imaging and clinical manifestations. Unfortunately, 

the biological validation of microstructure imaging techniques is challenging due to the 

changes brought by postmortem diffusion properties and scanning samples. 41  Moreover, the 

oversimplification of these models in comparison with the complex underlying cellular 

components and structures are still debated. Despite these limitations, some of the most 

sophisticated biophysical models can offer useful non-invasive descriptors sensitive to specific 

microscopic tissue features, such as axon diameter and fiber packing density. 10 We point the 

reader to Jelescu et al., for a detailed description of the physics and the mathematical 

formalism behind each microstructural model. 5 Below, we include a description of the most 

https://paperpile.com/c/7CeRMa/UHuW9
https://paperpile.com/c/7CeRMa/PA1B
https://paperpile.com/c/7CeRMa/i8VVZ
https://paperpile.com/c/7CeRMa/caDyw
https://paperpile.com/c/7CeRMa/LvnQM


Seminars in ULTRASOUND CT and MRI 

 

promising models, making sure to point out that the appropriateness of the assumptions of 

each model is still a matter of debate within the diffusion MRI community. 42 

 

 

Fig. 5. An overview of biophysical tissue microstructure models. Three compartments of 

diffusion are shown: intra-axonal (restricted), extra-axonal (hindered) and CSF (free, isotropic 

water).  

 

3.2.1. Composite hindered and restricted model of diffusion 

The composite hindered and restricted model of diffusion (CHARMED) is a multi-

compartment model that describes the DW signal as originating from two independent 

components: one, characterized by restricted diffusion and describing the intra-axonal space 

(non-Gaussian diffusion); the other, characterized by hindered Gaussian diffusion and 

describing the extracellular environment.43 The CHARMED model adopts impermeable 

cylinders along multiple fiber orientations to model the restricted compartment, while the 

hindered compartment is described as Gaussian distribution (the dominant part of diffusion 

signal at low b-value). The fitted CHARMED parameters include the restricted volume fraction 

related to the “axonal density”, the restricted fiber orientations and the apparent diffusion 

coefficient of the hindered compartment. To disentangle these independent populations, 

several assumptions are made: (1) from the acquisition point of view, the diffusion gradients 

https://paperpile.com/c/7CeRMa/sFW5k
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are applied perpendicularly to the fiber direction, which is therefore assumed to be known a 

priori (e.g., in the corpus callosum), (2) there is no orientation dispersion about the fiber 

direction; (3) the cylinders, modeling axons, are perfectly impermeable, and (4) all cylinders in 

a voxel have the same axon diameters.44 The main drawback of CHARMED model is that, 

due to its increased complexity, it requires a time-demanding diffusion acquisition protocol 

(>3000 s/mm2 over multiple diffusion times) to provide a robust estimate of compartmental 

tissue structures.14,45 

 

3.2.2. Axon morphometry mapping  

AxCaliber and ActiveAx frameworks are innovative diffusion methodologies that are 

enabled to quantify axon morphometry characteristics using sophisticated diffusion MRI 

acquisition methods.46 AxCaliber is an extension of the CHARMED model that introduces an 

axon diameter distribution (ADD) in each voxel.47 The intra-axonal compartment is modeled 

as a set of cylinders with various diameters, whose ADD follows a gamma distribution whose 

parameters are estimated voxel-by-voxel. To do this, AxCaliber employs a combination of 

different diffusion times and b-values with high diffusion gradient amplitude (300 mT/m) to 

measure the diffusion properties exactly perpendicular to the fiber orientation.48 The previous 

implementation of AxCaliber in vivo data has demonstrated the feasibility of the axon diameter 

measures on rat corpus callosum on five established regions when it has been compared with 

the same sample by histological analysis.49 However, later work has suggested that AxCaliber 

may overestimate the ADD quantification within a voxel because it does not account for axonal 

orientation dispersion.50  

To overcome both limitations, a suitable scan time for “in vivo” human imaging enabling 

the estimation of both axon diameter and density, the ActiveAx technique was proposed.51 

The ActiveAx model describes the diffusion signal as a contribution of the restricted (within 

cylinders, modeling axons), hindered (in the extra-axonal space, including cell bodies) and 

isotropic (i.e. in partial volume with CSF) diffusion compartments. This model is capable to 

estimate the intra/extra-axonal volume fractions and the axon diameter index with a large 
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volume of high-quality DWI data. Several assumptions have been made in the ActiveAx model 

fitting to obtain the axon morphometry indices, namely: an equal value of intrinsic diffusivity of 

intra-axonal water and parallel diffusivity of the hindered compartment and the absence of 

axonal dispersion effects (all bundles are considered to be aligned axons with identical radii 

and orientation). The axon diameter indices obtained by ActiveAx using ultra-high gradient 

strengths acquisitions are comparable to the histological imaging measures, however, the 

results achieved through PGSE acquisition protocol using lower gradient strength are not 

sensitive to small diameters of axons.52 

 

3.2.3. White matter tract integrity  

 The biophysical white matter tract integrity (WMTI) model assumes highly coherent 

WM bundles and neglects the CSF compartment. WMTI links a two-compartment biophysical 

model of neural tissue, accounting for intra-/extra-axonal water, to the b-value expansion of 

the DW signal up to the power of 𝑏 2, i.e. to DKI metrics.53 In practice, in WMTI the intra-

/extra-axonal parallel diffusivities and intra-axonal volume fraction are computed analytically 

from the apparent diffusion and kurtosis tensors. These can be typically estimated via linear 

least squares, avoiding the need for time-consuming non-linear fitting of multi-exponential 

models. More recent approaches, such as LEMONADE,54 follow a similar approach in that 

they estimate tissue parameters analytically given the coefficients of b-value expansions but 

considering higher-order expansions (i.e. beyond 𝑏 2). In general, approaches such as WMTI 

or LEMONADE enable the computation of biophysical tissue parameters with limited fitting 

constraints. However, they are often difficult to implement in clinical settings, since they require 

very long acquisition times to enable the estimation of high-order tensors, which are 

notoriously noisy and prone to measurement errors. According to previous studies,55,56,57 the 

WMTI metrics, axonal water fraction and diffusion hindered tortuosity, showed a capability to 

distinguish specific mechanisms on the tissue damage and disability progression.  
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3.2.4. Neurite Orientation Dispersion and Density Imaging  

 Neurite orientation dispersion and density imaging (NODDI) has recently been 

proposed for clinically feasible mapping of neurite morphology over the whole brain.58 Neurites 

include axons in WM and axons/dendrites in GM. The NODDI technique uses a three-

compartment tissue model to describe multi-shell DW acquisitions. The intra-neurite space is 

modeled by a collection of “sticks” (i.e. zero radius cylinders), oriented according to a 

Watson/Bingham distribution defined over the sphere the extra-neurite space (including cell 

bodies) is described as a cylindrically symmetric diffusion tensor (hindered Gaussian diffusion, 

i.e. similarly to DTI when λ2 = λ3); the free water compartment is described as an isotropic 

diffusion tensor with intrinsic diffusivity of 3 µm2/ms. Both intra-/extra-neurite compartments 

have the same intrinsic diffusivity, which in in vivo imaging is not estimated from the data but 

is fixed across the whole brain to 1.7 µm2/ms. Moreover, the perpendicular diffusivity of the 

extra-neurite compartment is calculated analytically by combining the extra-neurite volume 

fraction and parallel diffusivity in a tortuosity model.59 Fitting the NODDI model voxel-by-voxel 

provides maps quantifying the degree of orientation coherence or neurites, as well as their 

density. The first feature is characterized by the orientation dispersion index (ODI), while the 

second one by the intra-neurite volume fraction, also known as neurite density index (NDI, 

sometimes also referred to as intra-neurite volume fraction or intra-cellular volume fraction, 

ICVF). Finally, the isotropic volume fraction (isoVF) quantifies the local amount of partial 

volume with free water (e.g. with CSF of edema in inflammation). Both ODI and NDI range 

from 0 to 1. An ODI of 0 implies that neurites are all perfectly aligned among each other, while 

an ODI of 1 implies that they are completely dispersed in space (i.e. randomly distributed). On 

the other hand, increasing NDI and isoVF respectively imply increasing local density of 

neurites and free water. One of the main advantages of the NODDI model is the clinical 

feasibility acquisition, with a minimum requirement of two-shell HARDI data, which are needed 

to fit the model robustly in both GM and WM tissue. NODDI parameters have been 

demonstrated to be more specific metrics of tissue damage than DTI-derived indices and 
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provided significant correlations with a variety of histopathological processes in multiple 

sclerosis (MS).60 Importantly, the NODDI model makes some strong assumptions on tissue 

microstructure that are not guaranteed to hold across the whole brain and, above all, in 

pathology. For example, recent works have demonstrated that fixing the value of the neural 

diffusivity to 1.7 µm2/ms to the whole brain and adopting a tortuosity model for the extra-

neurite, perpendicular diffusivity may produce biased parametric maps that are 

misrepresenting the real underlying microstructural changes.61,62 Moreover, it has also been 

shown that NODDI metrics, for example NDI, are less reliable in GM than in WM, suggesting 

that the assumptions beyond the NODDI geometric model are better suited to capture the 

salient microstructural characteristics of WM, than GM.63    

3.2.5. Spherical mean technique 

The spherical mean paradigm relies on the fact that the spherical mean of the DW 

signal (i.e. its average over sufficient, isotropically-distributed diffusion directions at fixed 

diffusion-encoding strength/diffusion time) is independent of the underlying FOD, but relies on 

the intrinsic characteristics of the single fiber element.64 This observation is used in the multi-

compartment spherical mean technique (MC-SMT) to fit the parameters of a two-compartment 

model,65 including an intra-/extra-neurite compartment as shown in Figure 6 (i.e. similar to 

NODDI, but without free water), without imposing any specific form to the FOD (e.g., like a 

Watson distribution in NODDI). To reduce the number of parameters estimated from the DW 

signal under the same mathematical framework, the MC-SMT model makes certain 

assumptions on the biophysical properties of the diffusion in the tissue, i.e.: (1) the intra-neurite 

radial diffusivity is assumed to be zero, (2) the AD in intra-/extra-neurite compartments are 

equal and (3) the transverse extra-neurite diffusivity signal is defined as tortuosity model.59 

MC-SMT provides the voxel-wise maps of NDI, intrinsic neural diffusivity and orientation 

dispersion entropy (ODE). The ODE measures how different the ODE is from a uniform 

distribution, and conveys similar information to NODDI ODI but with reversed contrast 

(increasing ODE implies decreasing neurite orientation variability). Kaden et al., studied a 
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tuberous sclerosis mouse model that demonstrated a direct link between microscopic diffusion 

indices and the quantification of myelin and axonal loss compared to controls.65 Although MC-

SMT does not make any assumptions about the orientation distribution and estimates the 

neural diffusivity from the data (unlike NODDI), the intra-voxel microscopic heterogeneity may 

bias MC-SMT metrics.66   A recent study has shown that metrics from NODDI and MC-SMT 

show similar correlations with conventional DTI indies and detect microstructural alterations 

due to multiple sclerosis that go in the same direction.67  

 

Fig. 6. Examples of microstructural parameter maps provided by the MC-SMT framework (top: 

fitting of a single-compartment model to spherical mean signals, providing the intrinsic 

properties of the diffusion tensor characterizing a fiber bundle; bottom: fitting of a two-

compartment model to spherical mean signals, providing estimates of the intra-/extra-neurite 

properties in a fiber bundle), which are not confounded (i.e. they are independent) of the 

underlying FOD.   

 

 

3.2.6. Diffusion Basis Spectrum Imaging 
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The diffusion basis spectrum imaging (DBSI) multi-tensor approach was proposed as 

a linear combination of multiple anisotropic and isotropic diffusion tensors to describe the full 

range of intra-voxel heterogeneities in diffusivities.68 The DBSI model assumes no exchange 

between intra-/extra-axonal compartments, and the isotropic diffusion patterns are separated 

from the other compartments to discriminate between diffusion within highly cellular tissue, 

vasogenic edema and non-restricted water diffusivity within CSF.69 DBSI is capable to 

generate distinct DBSI quantitative parameter maps that represent the anisotropic tensor 

(apparent axonal density), the restricted diffusivity (apparent cellularity) and the free isotropic 

diffusivity (CSF). DBSI holds promise to disentangle concurring axonal injury, demyelination 

and inflammation.69,70 However, DBSI requires the acquisition of a high number of DW 

measurements to accurately separate the different diffusion regimes within a voxel, and as a 

consequence may not be feasible in most clinical settings, where scan time is limited. 

3.3. Hybrid models 

The hybrid models characterize the diffusion signals by combining multi-compartment 

biophysical modeling and signal representations (e.g., DTI and DKI). 

3.3.1. Free Water Elimination  

The two-tensor free water elimination (FWE) technique was developed to separate the 

isotropic free water component from the rest of the microstructural tissue properties, aiming to 

increase the sensitivity and specificity of the diffusion measures both in health and pathological 

conditions.71 In FWE, the total DW signal in a voxel is modeled as the combination of a neural 

tissue compartment, characterized by a single diffusion tensor, as in DTI, and by an isotropic 

diffusion compartment, aiming to capture CSF partial volume. Such a free diffusion component 

was also associated with other pathological processes in neurodegenerative disorders, such 

as Alzheimer’s disease (AD) or schizophrenia.72,73 One of the major advantages of the FWE 

model is that it does not require spatial constraints or assumptions to be estimated and their 

clinical feasibility.74 Additionally, the FWE model is capable of measuring DTI indices without 
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the effects of CSF partial volume effects to improve the reliability of these metrics and the test-

retest reproducibility.75       

3.3.2. Distribution of anisotropic microstructural environments in diffusion imaging 

The distribution of 3D anisotropic microstructural environments in diffusion-

compartment imaging (DIAMOND) has been recently proposed by Scherrer et al. 76 The 

DIAMOND model decomposes the intra-voxel tissue compartments by a mixture of continuous 

distributions of diffusion tensors to capture the whole microstructural properties at a sub-voxel 

resolution, 77 similarly to DBSI. DIAMOND aims to better capture the multidimensional 

characteristics of intra-voxel diffusivity, as well as tissue heterogeneity within complex 

microstructural environments. Both intra-/extra-axonal diffusion by a single and symmetric 

distribution of 3D diffusivities. 78 To accomplish this, DIAMOND requires numerous b-values 

with uniform angular coverage and low TE, which are likely to be unfeasible to acquire in most 

clinical settings. 

  

 

 

 

 

 

 

Table 1 summarizes the main features of the brain microstructure diffusion models. 

Note that the terms axonal density, neurite density index, (intra-)axonal water fraction, intra-
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neurite volume fraction are used interchangeably in literature to indicate the fraction of the 

restricted water compartment in white matter modelling axons.  

 

 Models Assumptions Main quantitative 
maps 

Signal 
Representations 
methods 
 

DTI 

 

 

Acquisition comprising at least one non-zero 
b-values at fixed diffusion time, with b-value 
not exceeding roughly 1000-1500 s/mm2 in 
the brain  

Diffusion tensor 
elements, sensitive 
to changes of both 
macro- and 
microstructural 
tissue structure 

DKI Acquisition comprising at least two non-zero 
b-values at fixed diffusion time, with b-values 
not exceeding roughly 2500-3000 s/mm2 in 
the brain 

Diffusion tensor and 
diffusion kurtosis 
elements, highly 
sensitive to multiple 
factors of 
microstructural 
properties 

Biophysical 
multi-
compartment 
models 

CHARMED Two non-exchanging compartments 
(restricted and hindered diffusion), modelling 
intra-/extra-axonal space, with  restricted 
diffusion assumed to take place within 
impermeable cylinders with the same axon 
diameters; multiple fibre populations per 
voxels; intra-axonal perpendicular diffusivity 
and axon diameter fixed to literature values 
before fitting. Rich multi-shell data acquisition 
at fixed diffusion time required.  

Axonal density, 
extra-axonal 
diffusion tensor 

AxCaliber Two non-exchanging compartments 
(restricted and hindered diffusion), modelling 
intra-/extra-axonal space, with  rRestricted 
diffusion assumed to take place within 
impermeable cylinders with gamma-
distributed diameters; multiple fibre 
populations per voxels. Rich multi-shell, 
multi-diffusion time data acquisition required.  

Axon diameter; 
axonal density  

ActiveAx Three non-exchanging compartments (intra-
/extra-neurite; isotropic; an additional 
stationary water compartment required for 
fixed tissue); Single diameter index (identical 
radii and orientation); intra-/extra-neurite 
intrinsic diffusivities equal to 1.7μm2/ms; free 
water diffusivity equal to 3.0μm2/ms; 
tortuosity constraint for extra-axonal 
perpendicular diffusivity; no modelling of 
orientation dispersion variability  
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WMTI Two non-exchanging compartments (intra-
/extra-axonal); coherently aligned axons 
(model applicable only in areas featuring one, 
coherent fibre population, e.g., the corpus 
callosum); the model can be fitted to a DKI-
like data set 
  

Axonal water 
fraction; intra- and 
extra-axonal 
diffusivities 

NODDI Three non-exchanging compartments (intra-
/extra-neurite; isotropic); zero intra-neurite 
perpendicular diffusivity; intra-/extra-neurite 
intrinsic diffusivities equal to 1.7μm2/ms; free 
water diffusivity equal to 3.0μm2/ms; 
tortuosity constraint for extra-axonal 
perpendicular diffusivity; neurite orientations 
distributed according to a Watson/Bringham 
distribution.The acquisition must include b = 
0 images plus two non-zero b-value (one of 
approx. 1000 s/mm2 and one of approx. 3000 
s/mm2)  

Orientation 
dispersion index, 
neurite density (i.e., 
intra-neurite volume 
fraction) index and 
isotropic volume 
fraction 

MC-SMT Two non-exchanging compartments (intra-
/extra-neurite); zero intra-neurite 
perpendicular diffusivity; intra-/extra-neurite 
intrinsic diffusivities are equal; tortuosity 
constraint for extra-axonal perpendicular 
diffusivity. The acquisition must include b = 0 
images plus two non-zero b-value (one of 
approx. 1000 s/mm2 and one of approx. 3000 
s/mm2)  

Orientation 
dispersion entropy, 
neurite density 
index (i.e., intra-
neurite volume 
fraction), intrinsic 
neural diffusivity  

DBSI Multi-compartment model with one 
anisotropic compartment per fibre population; 
multiple isotropic diffusion compartments. No 
water exchange among compartments; 
threshold of 0.3 μm2/ms used to distinguish 
between restricted and hindered isotropic 
diffusion. Rich multi-shell acquisition protocol 
including roughly 100 images  

Intra-axonal water 
fraction; restricted 
isotropic water 
fraction (mapping 
cellularity); hindered 
isotropic water 
fraction (mapping 
vasogenic oedema)  

 

 

 

 

 

4. Advanced diffusion encodings 
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Over the last decade, advanced diffusion sequences are gaining popularity in diffusion 

imaging. The use of these advanced acquisition strategies provides a powerful tool to improve 

the specificity of the quantitative measures related to the tissue microstructure.4 However, the 

advanced data acquisition techniques on 3T clinical scanner require further research before 

its clinical application, and the availability of such novel acquisition approaches in vendor-

provided exams remains limited. 

 

4.1. Oscillation gradient spin echo 

Oscillating diffusion encoding (ODEnc) sequences use oscillating gradient waveforms 

over multiple frequencies to probe very short diffusion times (~ 1ms) along a single direction, 

as shown in Figure 7. This provides better tissue contrasts and smaller length scales and 

increases the sensitivity of the acquisition to the intrinsic diffusivity of the tissue (i.e. with the 

limited effect of restriction caused by cell membranes).79,80 Moreover, for the case when 

gradients are not exactly perpendicular to neural fibers (as in presence of orientation 

dispersion), ODEnc enables better angular resolution at a lower b-value compared to standard 

PGSE acquisition.81 This is particularly advantageous on the high-performance gradient 

amplitude (300 mT/m), where ODEnc sequences provide better sensitivity to restricted 

diffusivity effects increasing the reliability of the microstructural feature measurement.82   

 

4.2. Double diffusion encoding 

Differently from the conventional PGSE acquisition, the double diffusion encoding 

(DDE) advanced protocol combines two successive diffusion encodings gradients separated 

by a mixing time before the signal readout, see Figure 7.83 DDE is typically performed by 

varying the angle between the pairs of diffusion encodings with a specific mixing time. This 

enables resolving microstructural properties (size and shape) as well as diffusion 

displacement correlation tensors within a voxel.84,85  

 

4.3. B-Tensor encoding 
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 The B-tensor encoding was developed to remove the effects of tissue orientation and 

improve the sensitivity of specific microstructural properties.63 This type of sequence replaces 

the pulsed-gradient encoding paradigm with diffusion-encoding waveforms design (Figure 

7).86 Other benefits included in the gradient waveform is their ability to minimize the common 

effects of diffusion-encoding gradients, such as eddy currents.87 The B-tensor encoding gives 

access to new diffusion contrasts that are not achievable with linearly polarised diffusion 

gradients, as in PGSE.88 This enables disentangling cytoarchitectural scenarios that would 

provide the same PGSE signal, as a distribution of isotropically restricted compartments with 

various radii from the distribution of randomly-oriented anisotropic compartments. This holds 

promise in several applications, for example in brain tumors.89  
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Fig. 7. Schematic representation of the OGSE and b-tensor encoding experiment. In OGSE, 

the gradient lobes on either side of the spin-echo refocusing pulse are not pulsed as in PGSE, 

but exhibit an oscillating waveform. However, the gradient is still linearly polarised, in that its 

direction does not change over time, hence that the three independent components of the 

gradient vector (𝑥, 𝑦 and 𝑧) are perfectly in phase. The b-value is proportional to the cube of 

the oscillation duration 𝛿(i.e. to 𝛿3), while the diffusion time is proportional to the oscillation 

period 1/𝑓. In the b-tensor encoding instead, the diffusion gradient is not necessarily linearly 

polarised (e.g., it can feature spherical polarisation, planar polarization, etc), leading to unique 

waveforms for each of its 𝑥, 𝑦 and 𝑧 components. 
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5. Clinical applications 

 

 Diffusion studies have been widely used to analyze cerebral microstructural changes 

in patients with several neurological diseases.90 Results have demonstrated abnormal tissue 

microstructure with subsequent loss of structural network integrity.91 However, DTI does not 

account for structural heterogeneity and is affected by multiple confounding tissue properties 

leading to reduced specificity of clinically relevant pathological features. Advanced 

multicompartmental diffusion methods can characterize the diffusion signal in the presence of 

multiple tissue compartments and increase the specificity for tissue subtypes and the 

associated damage.92,93 Therefore, they may be more suitable tools to describe disease 

burden in pathologies of the central nervous system and be considered as new biomarkers of 

demyelination and neurodegeneration, which can be used to unravel disease progression 

before irreversible disability manifests.93 Some of those methods have recently been applied 

in several clinical conditions such as traumatic brain injury,94 brain tumors95 and 

neurodegenerative diseases.96  

 

5.1. Multiple sclerosis 

MS is an immune-mediated, demyelinated and neurodegenerative disease of the 

central nervous system characterized by focal lesions and diffuse damage involving 

demyelination, neuroaxonal damage and gliosis, which leads to significant clinical variability 

among patients.97 DTI-derived measures, mainly FA and MD, have been extensively used to 

grade the severity of damage inside lesions and in normal-appearing WM (NAWM),98 found 

from early stages of the disease. Decreased FA and increased MD seem to be more 

pronounced in advanced stages and are partially linked with physical and cognitive disability.99 

However, inconsistent results have been found in the study of GM with some reports 

describing decreased or increased FA values, this latter possibly due to tissue compaction.100 

Multicompartmental diffusion models have been demonstrated to be more accurate and 
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provide more precise microstructural tissue information.60,101 Patients with MS showed 

decreased mean kurtosis (MK), one of the parameters derived from DKI, that has been 

associated with lower axonal and myelin density in NAWM and normal-appearing GM in both 

the brain and spinal cord.102,103 DKI metrics correlated with physical disability assessed by the 

Expanded Disability Status Scale (EDSS).104 Studies using NODDI reported a reduction in the 

NDI in lesions compared to NAWM in the brain and spinal cord of patients with MS compared 

with healthy controls.60,105,106 Reduced NDI has also been observed in GM.103 Lower NDI was 

associated with higher lesion load, greater physical disability assessed by EDSS but not with 

cognitive behavior.105 On the contrary, ODI changes that may reflect reduced angular 

variations of axons possibly caused by demyelination were more contradictory. Authors found 

both reduced or increased ODI in lesions compared to normal-appearing tissue.105,106 

Inconsistencies may be due to degrees of axonal loss and tissue inflammation.105–107 

Moreover, the reduction of corpus callosum neuronal density, measured by NDI, is associated 

with lower neuronal density in WM lesions and suggests retrograde neurodegeneration of 

axons transected from the WM damaged.105–107 Axonal volume fraction and intrinsic diffusivity 

measures of MC-SMT have demonstrated the potential to differentiate tissue subtypes in the 

brain and spinal cord of patients with MS,93,108,109 and combined with DTI, indices improve the 

definition of the amount of damage within MS lesions,110 see Figure 8. Overall, results 

demonstrate that more sophisticated microstructural measures are more sensitive than DTI 

indices, they can provide us with additional information on brain damage, and therefore, be 

more accurate and powerful biomarkers of tissue disease burden in MS patients compared 

with DTI.60,103,111 However, further efforts are needed to translate the results into clinical 

practice. 

https://paperpile.com/c/7CeRMa/qVRPH+ttp82
https://paperpile.com/c/7CeRMa/6euCR
https://paperpile.com/c/7CeRMa/xnKyX
https://paperpile.com/c/7CeRMa/FzBHI
https://paperpile.com/c/7CeRMa/CuLqJ+qAc8p+ttp82
https://paperpile.com/c/7CeRMa/xnKyX
https://paperpile.com/c/7CeRMa/CuLqJ
https://paperpile.com/c/7CeRMa/CuLqJ+qAc8p
https://paperpile.com/c/7CeRMa/CuLqJ+qAc8p+qdaUx
https://paperpile.com/c/7CeRMa/CuLqJ+qAc8p+qdaUx
https://paperpile.com/c/7CeRMa/CuLqJ+qAc8p+qdaUx
https://paperpile.com/c/7CeRMa/CuLqJ+qAc8p+qdaUx
https://paperpile.com/c/7CeRMa/DY2oU+FUWwm+yHEEV
https://paperpile.com/c/7CeRMa/ILjva
https://paperpile.com/c/7CeRMa/EOcGp+xnKyX+ttp82


Seminars in ULTRASOUND CT and MRI 

 

 

 

Fig. 8. MS lesions characterisation based on diffusion properties. The diffusion maps from the 

DTI (a, b) and MC-SMT models (c, d) are able to reflect different degrees of damage into MS 

lesions types. Regardless of the lesion location, B-type had larger diffusion changes (lower 

FA, μFA and ƒin, yet a higher RD) and higher volume compared to the type-A lesions. The 

number and volume of B-type lesions were associated with disease severity and clinical and 

cognitive decline 110. FA = fractional anisotropy; RD = radial diffusivity; μFA = microscopic 

fractional anisotropy; ƒin = intra-neurite volume fraction.  

 

5.2. Stroke 

Stroke is a major cause of death worldwide. Neuronal death in the brain area affected 

by ischemia is accompanied and sustained by inflammation, edema, and tissue remodeling. 

Those events eventually lead to axonal degeneration of connected brain regions through 

Wallerian degeneration. Neuroimaging is essential for stroke assessment and although 

computed tomography is the most used neuroimaging technique due to its wider availability 

in the acute phase, DWI is considered the most sensitive technique to depict infarct. Indeed, 

ADC reduced values are considered to demonstrate the presence of cytotoxic (intracellular) 
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edema, a sign of irreversible lesion, and represent the best image marker for the infarct core.112 

Advanced diffusion techniques have been applied to characterize microstructural changes in 

brain tissues during ischemic stroke and its sensitivity has been compared with DTI and DKI. 

NODDI showed increased NDI and ODI and lower isoVF in lesions compared to contralateral 

areas. Changes in NODDI metrics were larger than those found with other techniques, 

supporting a larger sensitivity to damage. Moreover, isoVF was correlated with the duration 

since stroke onset and was different among the distinct periods of ischemic stroke, indicating 

an added value to characterize the lesion stage.113 Other studies investigating changes 

between subacute and chronic phases of a stroke found a significant FA and AD reduction in 

the ipsilateral posterior limb of the internal capsule and the cerebral peduncle compared to the 

contralateral one, a significant decrease in kurtosis anisotropy (KA) and higher ODI without 

significant alterations in Fic (intra-neurite volume), suggesting that in subacute phase fiber 

dispersion is the main alteration. In chronic phases, Fic reduced significantly, potentially due 

to a reduction in the fiber volume in parallel to disorganization of fibers indicated by persistent 

higher ODI values in the ipsilesional hemisphere, which could be compatible with Wallerian 

degeneration.114 ODI results have also been associated with clinical outcomes. 115 Recently, 

single-Shell 3-Tissue Constrained Spherical Deconvolution (SS3T-CSD) was applied to 

differentiate within different classes of WM hyperintensities (WMHs) in patients with previous 

ischaemic stroke. The authors found that juxtaventricular and periventricular WMHs exhibited 

a relatively greater fluid-like (free water) content compatible with the accumulation of interstitial 

fluid compared to deep WMHs. Thus, the technique provided evidence of the heterogeneity of 

those lesions in vivo.116 

 

5.3. Alzheimer disease 

AD is the most common neurodegenerative disorder characterized by gradual memory 

deficits. The underlying pathological changes of AD involve the accumulation of amyloid-β 

(Aβ) and hyperphosphorylation of tau protein, both of which lead to the formation of Aβ plaques 

and intracellular neurofibrillary tangles, resulting in neuronal death.96,117 Diffusion MRI, most 

https://paperpile.com/c/7CeRMa/AfH46
https://paperpile.com/c/7CeRMa/9jD9C
https://paperpile.com/c/7CeRMa/PdxaG
https://paperpile.com/c/7CeRMa/2YOa
https://paperpile.com/c/7CeRMa/VImod
https://paperpile.com/c/7CeRMa/6fHUl+zfRfE


Seminars in ULTRASOUND CT and MRI 

 

using DTI measures, has been widely applied to the study of WM and GM damage in patients 

with AD. Results showed reduced FA and increased MD in the core areas of the disease, 

including the corpus callosum, temporal lobes, cingulate gyrus, precuneus and frontal pole. 

DTI is also sensitive in detecting diffusion changes in patients with mild cognitive impairment 

(MCI), considered an early stage of AD, being more pronounced with disease severity.96,117,118 

However, DTI measures are not more informative than temporal structural volumetric in the 

early stages of the disease.96 Diffusion kurtosis studies demonstrated the superiority of the 

DKI measures in detecting early microstructural changes both in MCI and in AD compared to 

healthy controls, as well as, during the trajectory of the disease course.96,119 Changes were 

mainly observed in the temporal and frontal poles and the corpus callosum of patients with 

both AD and MCI compared to healthy controls, with the lowest values observed in patients 

with AD. Although DKI is superior in detecting WM abnormalities to DTI measures, the 

combination of both techniques significantly improves the automatic tissue discriminating 

task.120 Using the NODDI technique, a reduced widespread neurite dispersion was evidenced 

in both cortical GM and WM microstructural tissue in patients with AD, especially in areas 

described as relevant for the disease.117,118 Studies described that patients displayed lower 

NDI values and ODI than healthy controls in the medial and inferior temporal cortex and 

precuneus adjusted for cortical thickness,118 and in the corpus callosum superior longitudinal 

fasciculus and WM of the frontal and occipital lobes.117 Lower NDI was also observed in the 

precentral cortex, an area partially preserved from atrophy in patients suggesting that the 

microstructural changes may precede volume reduction.118,121 NODDI metrics were associated 

with cognition.117,122 Additionally, apolipoprotein (APOE) ε4-positive carriers, a genetic risk 

factor for heritable AD, displayed widespread NDI reductions in the parieto-occipital lobes 

while ε4-negative carriers showed more focal posterior reductions suggesting different 

patterns of WM damage in patients.122 

 

5.4. Tumors 
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Gliomas and brain metastasis are the most common intracranial neoplasms. Indeed, 

differential diagnosis and glioma grading are essential to determine the prognosis and clinical 

management. DKI has been applied to distinguish gliomas from other intra-axial brain tumors 

in several studies and a systematic review and meta-analysis have shown an estimated 

sensitivity of 0.87 in the differentiation between high and low-grade glioma from the 2016 

World Health Organization glioma classification.123 These results indicate that MK has good 

diagnostic accuracy and seems to be a useful index of tissue complexity.123,124 However, there 

is only scarce information on its ability to differentiate gliomas from other brain tumors.123 DKI 

has been compared with DTI in discriminating high-grade glioma recurrence from 

pseudoprogression, and while relative MK and relative MD were significantly different between 

enhancing lesions or perilesional edema in high-grade glioma compared to 

pseudoprogression, relative MK appeared to be the best independent predictor.125 NODDI has 

also been recently applied to the assessment of glioma grades, delineate tumoral and 

peritumoral areas and differentiate between glioblastoma and solitary brain metastasis. ODI 

and NDI were different between WHO glioma grades,126 with the high predictive power of 

intracellular volume for glioma grading.127 Also, NDI had the best distinguishing power 

comparing fibers inside normal, tumoral and edematous regions.128 Extracellular volume had 

an area under the receiver operating characteristic curve of 0.87 for differentiating between 

glioblastoma and metastasis.95 Finally, when comparing different diffusion-weighted MRI 

models, isoVF from NODDI outperformed other techniques in differentiating high-grade 

gliomas from metastases.95,129   

 

 

6. Conclusions 

In conclusion, diffusion-weighted imaging offers unique opportunities to characterize 

neural tissue microstructure in vivo non-invasively through a variety of techniques that focus 

on different aspects of the diffusion contrast. Elegant, phenomenological approaches such as 

DTI or DKI offer great sensitivity to microscopic alterations but provide metrics that are 
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influenced by several neuropathological characteristics at the same time. Conversely, multi-

compartment biophysical models aim to improve diffusion imaging’s pathophysiological 

specificity compared to DTI and DKI. Nonetheless, they often require making several 

assumptions and/or oversimplifications on the underlying neural tissue characteristics to keep 

model computation feasible even with short, clinical protocols, implying that their metrics must 

be interpreted with care, especially in disease. The next generation of quantitative diffusion 

imaging, based on new diffusion encoding strategies such as b-tensor encoding, holds 

promise as a versatile tool that better captures salient tissue microstructural features in both 

healthy and pathological conditions, and is therefore likely to play a key role in the clinical 

translation of MRI research to clinical practice.       
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