
Essays on Dynamic Unobservable
Heterogeneity

Silvia Sarpietro

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Economics

University College London

September 23, 2021



2



3

I, Silvia Sarpietro, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.

Date: September 23, 2021



4



Abstract

A large body of the recent literature has highlighted the importance of unobservable

heterogeneity and its dynamics for many questions in Economics. In this thesis, I

study the interplay between cross-sectional heterogeneity and dynamics with micro

panels, i.e., panel data with many units (N) observed over a relatively smaller num-

ber of periods (T). I focus on how to estimate dynamic unobservable heterogeneity

and exploit this for the problem of forecasting individual outcomes.

The second chapter, titled “Dynamic Unobservable Heterogeneity: Income Inequal-

ity and Job Polarization”, studies how to use state-space methods to estimate un-

observed heterogeneity and its dynamics when using micro panels. I illustrate the

methodology with an empirical application to earnings dynamics and job polariza-

tion using a novel dataset for the UK.

The third chapter, titled “Individual Forecast Selection”, continues with an analy-

sis of unobserved heterogeneity for forecasting with panel data. It proposes a new

methodology for forecasting that relies on individual forecast selection. For each

individual, the approach selects the best forecast out of a class of competing meth-

ods, based on the out-of-sample accuracy of the method in one past time period. It

is shown that this approach can be minimax-regret optimal relative to choosing the

same forecasting model for everyone.

Finally, the last chapter, titled “Regularized CUE: a Quasi-Likelihood Approach”,

discusses some GMM-type estimators used in panel data and a proposed modifi-

cation to the Continuous Updating Estimator (CUE). Analytical results and Monte

Carlo simulations show that this modification has nice finite sample properties: It

reduces the finite sample variance of the CUE, restoring its finite sample moments.
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Impact Statement

In this thesis, I study some methodologies to estimate and forecast unobserved het-

erogeneity and investigate how this has changed over time using micro panels.

In recent years, administrative datasets have become increasingly available.

While this wealth of data can be instrumental in answering several key questions

in Economics, it also introduces modeling challenges. Most of the time, adminis-

trative data, which are micro panels, provide rich information on individuals and

firms over time. However, micro panels usually have few dimensions of observable

heterogeneity: for instance, administrative data on earnings typically lack informa-

tion on education, marital status, and health conditions. This drawback makes it

crucial to model unobservable heterogeneity (e.g., ability, skills) both over time and

across individuals and the medium time-series dimension requires careful modeling

of the dynamics. Even when several variables are observed, it is still important to

assess the role played by unobserved heterogeneity. Unobservable heterogeneity is

not only interesting per se, but it also affects several other outcomes of interest. For

instance, heterogeneity in earnings dynamics influences predicted mobility out of

low earnings; heterogeneity in income profiles conditional on parents’ background

is crucial to the study of intergenerational mobility.

The second chapter analyzes how state space methods can be used to identify

and estimate this unobserved heterogeneity. Moreover, a modeling framework that

features pervasive unobservable heterogeneity and dynamics would be useful in ad-

dressing new empirical questions using administrative data. An example would be

how unobserved heterogeneity and dynamics differ by occupation and how this is

related to the observed phenomenon of job polarization, which is the empirical ap-
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plication I propose in the second chapter of this thesis to illustrate the methodology.

In the third chapter, we focus on forecasting individual outcomes with micro

panels. Forecasting individual outcomes (microforecasting) is a key component of

economic, policy, and business decisions and is becoming increasingly prominent in

empirical economics. For example, the literature on long-term treatment effects re-

lies on forecasting the effects of treatments such as early childhood interventions or

job-training programs. The literature on teacher value-added can be viewed as pre-

dicting teacher performance by estimating the unobservable teacher quality. Other

relevant examples of applications are forecasting individual incomes for consump-

tion/savings decisions and revenues of banks after regulatory changes. Panel data

models seem like the most natural candidates and the fact that we have richer time

series dimensions makes modeling the dynamics of individual outcomes increas-

ingly possible.

We investigate how forecasting with micro panel data changes the modeling

and econometric of the existing forecasting literature. We propose a methodology

that can optimally trade-off time series and cross-sectional information, where op-

timality is defined according to a minimax-regret criterion.

Finally, GMM-type estimators are widely used in panel data. This motivates

the importance of investigating their finite sample properties. In the last chapter, we

propose a modification to the Continuous Updating Estimator (CUE) that is shown

to have nice finite sample properties. Theoretical results and Monte Carlo simula-

tions show that the proposed estimator provides an attractive alternative to 2-step

GMM and CUE in empirical work.
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Chapter 1

Introduction

A large body of the recent literature has highlighted the importance of unobservable

heterogeneity and its dynamics for many questions in Economics. In this thesis, I

study how to estimate dynamic unobservable heterogeneity and exploit this for the

problem of forecasting individual outcomes with micro panels, which are panel data

where many units (N) are observed over a relatively smaller number of time periods

(T).

In the second chapter, I propose the use of state-space methods as a unified

econometric framework for studying heterogeneity and dynamics in micropanels,

which are typical of administrative data. I formally study identification and infer-

ence in models with pervasive unobservable heterogeneity. I show how to consis-

tently estimate the cross-sectional distributions of unobservables in the system and

uncover how such heterogeneity has changed over time. A mild parametric assump-

tion on the standardized error term offers key advantages for identification and es-

timation, and delivers a flexible and general approach. Armed with this framework,

I study the relationship between job polarization and earnings inequality, using a

novel dataset on UK earnings, the New Earnings Survey Panel Data (NESPD). I

analyze how the distributions of unobservables in the earnings process differ across

occupations and over time, and separate the role played on inequality by workers’

skills, labor market instability, and other types of earnings shocks.

The third chapter is based on a joint project with Raffaella Giacomini and Si-

mon Lee. We propose a new methodology for microforecasting, i.e. forecasting
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with micro panels, based on selection of the best forecasting model for each in-

dividual. Our approach to forecasting individual outcomes with micro panel data

relies on individual forecast selection. For each individual, the approach selects

the best forecast out of a class of competing methods, based on the out-of-sample

accuracy of the method in one past time period. Our proposed data-driven method

uses information about both the individual’s past behavior and the behavior of other

individuals to deliver a model-based clustering, which can improve the accuracy of

decisions based on prediction of individual behavior. We show that this approach

can be minimax-regret optimal relative to choosing the same forecasting model for

everyone - guarding against large losses when competing forecasts have different

accuracies and weakly improving accuracy even when choosing among equally ac-

curate forecasts. In the presence of unobserved heterogeneity, our approach can be

viewed as a way to harness the strength - but avoid the tyranny - of the majority

by deciding who to pool (or shrink towards the mean). We show that this delivers

accuracy gains over state-of-the-art approaches such as Empirical Bayes methods.

Finally, in the fourth chapter, I analyze some GMM-type estimators typically

used in panel data and a proposed modification to the Continuous Updating Es-

timator (CUE). This chapter is based on a joint project with Dennis Kristensen.

We propose a regularized version of the Continuously Updated Estimator (CUE),

which we call the quasi-likelihood GMM (QL-GMM) estimator, as a solution to

the no-moment problem of the CUE. The estimator is obtained by adding the log-

determinant of the optimal weighting matrix to the CUE objective function. The

motivation for this term is asymptotic: The QL-GMM objective function is the

large-sample log-likelihood of the sample moments. The additional term works as

a finite-sample penalization. Analytical results, for the linear setting, and extensive

Monte Carlo simulations show that QL-GMM restores the finite sample moments

of CUE at the cost of slightly bigger biases compared to the CUE in some settings.



Chapter 2

Dynamic Unobservable

Heterogeneity: Income Inequality

and Job Polarization

2.1 Introduction
In recent years, administrative datasets have become increasingly available. While

this wealth of data can be instrumental in answering several key questions in Eco-

nomics, it also introduces modeling challenges. Most of the time, administrative

data are micropanels, which are panel data where many units (N) are observed for a

medium number of time periods (T ), and thus provide rich information on individu-

als and firms over time. However, micropanels usually have few dimensions of ob-

servable heterogeneity: for instance, administrative data on earnings typically lack

information on education, marital status, and health conditions, with demographi-

cal variables for each worker limited to age and gender. This drawback makes it

crucial to model unobservable heterogeneity (e.g., ability, skills) both over time and

across individuals, and the medium time-series dimension requires careful model-

ing of the dynamics. Even when several variables are observed, it is still important

to assess the role played by unobserved heterogeneity. Unobservable heterogeneity

is not only interesting per se, but it also affects several other outcomes of interest.1

1For instance, heterogeneity in earnings dynamics influences predicted mobility out of low earn-
ings (Browning et al., 2010); heterogeneity in income profiles conditional on parents’ background is
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Indeed, many important questions in the earnings literature, covering topics such as

wage inequality or insurance against earnings shocks, require an understanding of

the interplay between dynamics and heterogeneity.2 In addition to this, a modeling

framework that features pervasive unobservable heterogeneity and dynamics would

be useful in addressing new empirical questions using administrative data.

In this chapter, I propose the use of state-space methods as a unified economet-

ric framework for the study of heterogeneity and dynamics in micropanels. I esti-

mate unobservable heterogeneity and uncover how such heterogeneity has changed

over time. As a key contribution, I formally study identification and inference in

models with pervasive unobservable heterogeneity. Armed with this framework, I

analyze how earnings dynamics of UK workers differ across occupations and over

time, making use of a novel dataset on UK earnings, the New Earnings Survey

Panel Data (NESPD). My approach and findings reconcile empirical evidence of

an increase in the 50/10 wage gap (the ratio of median and low wages) and the

documented phenomenon of job polarization (increase in employment in low- and

high-skill occupations alongside a simultaneous decrease in middle-skill occupa-

tions).

Several econometric methods, often applied to the study of earnings dynam-

ics, treat unobservable heterogeneity as nuisance parameters. Following Almuzara

(2020) and Botosaru (2020), I depart from the existing approach in the literature

and explicitly treat unobservable heterogeneity as the main object of interest. Al-

muzara (2020) and Botosaru (2020) adopt a non-parametric approach for estimation

of unobservable heterogeneity in earnings models. I consider comparatively richer

heterogeneity and dynamics, while imposing a mild parametric assumption on the

crucial to the study of intergenerational mobility (see Mello, Nybom, and Stuhler, 2020).
2The distinction between transitory and persistent shocks and the trade-off between heterogene-

ity and persistence are useful in explaining how individual earnings evolve over time and in decom-
posing residual earnings inequality into different variance components; the persistence of earnings
affects the permanent or transitory nature of inequality (MaCurdy (1982), Lillard and Weiss (1979),
Meghir and Pistaferri (2004)). The components of the stochastic earnings process drive much of
the variation in consumption, savings, and labor supply decisions, (see Guvenen (2007), Guvenen
(2009), Heathcote et al. (2010), Arellano et al. (2017)). Moreover, they play a crucial role for the
determination of wealth inequality, and for the design of optimal taxation and optimal social insur-
ance. Finally, separating permanent from transitory income shocks is relevant for income mobility
studies and to test models of human capital accumulation.



2.1. Introduction 21

standardized error term. I assume that innovations are Gaussian, but this assumption

can be relaxed, and several more flexible distributions, e.g. mixtures of normals, can

be considered.3 Moreover, the approach proposed in this chapter lends itself to sev-

eral generalizations, such as unbalanced panel data and measurement errors, and

can be adapted to accommodate a treatment of heterogeneity as either fixed or ran-

dom effects. Finally, my proposal for estimating the distribution of interest, which

builds upon results in the state-space literature, improves upon existing approaches

in that it allows to analyze heterogenous dynamics of income process in a flexi-

ble way, separating the dynamic component, modeled as a time varying parameter,

from the heterogenous time-invariant part, modeled as a state variable.

Knowledge of the distribution of unobserved heterogeneity allows us to answer

interesting economic questions or make policy decisions. For instance, understand-

ing the shape of the skill distribution, and separating this from skill prices and from

the heterogenous dynamics of income shocks, is important to investigate the sources

of the uneven distribution of labour market outcomes across workers. An example

is provided in the empirical application, where I recover the distribution of skills

for different categories of workers and disentangle this from the time-varying price

of the skill, and from the potentially heterogenous dynamics of the income process

(autocovariances and autocorrelations).4 The findings of large heterogeneity in the

dynamics of income process are informative in their own right.

The chapter’s contribution is twofold: methodological and empirical.

My first contribution is to derive theoretical results on how to adapt state-space

methods to the analysis of panel data featuring heterogeneous dynamic structures.

The choice of using state-space methods with filtering and smoothing techniques

is motivated by their usefulness for estimation and inference about unobservables

in dynamic systems. As emphasized by Durbin and Koopman (2012) and Hamil-

ton (1994), state-space methods include efficient computing algorithms that provide

(smoothed) estimates of unobservables, while providing flexible and general model-

3Note that, when errors are not normally distributed, results from Gaussian state-space analysis
are still valid in terms of minimum variance linear unbiased estimation.

4Several authors in the income dynamics suggest the importance of heterogeneity in income
dynamics, see (Browning et al., 2010)
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ing that can incorporate individual explanatory variables, macro shocks, trends, sea-

sonality, and nonlinearities. Another main advantage is that these methods can be

used in the presence of data irregularities, e.g. unbalanced panel data and measure-

ment error. The models typically considered in the earnings literature, e.g. ARIMA,

are a special case of state-space models but state-space methods include techniques

for initialization, filtering, and smoothing. If the goal is to uncover the evolution

of the state variables, state-space models are the most natural choice. Multivariate

extensions with common parameters and time-varying parameters are much more

easily handled in state-space modeling with respect to a pure ARIMA modeling

context.

State-space methods have been mainly used in the context of time series mod-

els or with macropanels (panel data with few units observed over many time pe-

riods), but the unique structure of micropanels requires the development of new

econometric tools for analysis. There is a lack of theoretical results on how to ex-

tend their use to micropanels for the analysis of heterogeneous dynamic structures.5

Therefore, I adapt state-space methods to the analysis of unobserved heterogene-

ity in micropanels and formally study identification and inference in the context of

these heterogeneous models. I show how to consistently estimate the cross-sectional

distributions of unobservables in the system and uncover how such heterogeneity

has changed over time.

A mild parametric assumption on the standardized error term offers substan-

tial advantages for identification and estimation, and delivers a flexible and general

approach. Following the literature on state-space methods, I propose an argument

for identification based on a large-T approach. In Appendix A.3, I also consider

a fixed-T identification approach to establish a comparison with the existing non-

parametric literature. I discuss the corresponding estimation procedures and further

analyze the asymptotic properties of these distribution estimators. In the existing

5Some notable exceptions are the Seemingly Unrelated Times Series Equations (SUTSE) by
Commandeur and Koopman (2007), and Dynamic Hierarchical Linear models by Gamerman and
Migon (1993) and by Petris and An (2010) but the focus of the analysis is rather different. I build
on these models, discuss the differences, and provide theoretical results on how to recover the cross-
sectional distribution of heterogeneous components.
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literature, properties of the distribution estimators for the individual parameter es-

timates obtained from state-space models are unknown. Moreover, it is computa-

tionally challenging to extend state-space analysis and filtering to heterogeneous

micropanels, which feature large N.

As a first step of the analysis, I consider a simple state-space model and treat

the history of each individual i as a separate time series. Identification of the param-

eters relies on a large T argument, while asymptotic properties of the distribution

estimators are established under some ratio between N and T . Building on the work

of Okui and Yanagi (2020) and Jochmans and Weidner (2018), I derive this ratio

and propose a bias correction for small T.

In a second step, I introduce time-varying parameters in the state-space model

and further consider extensions where these parameters are assumed to be com-

mon across groups of similar individuals. I discuss how the identification results

change in this setting. To devise a tractable estimation strategy, I use stratification

as a device to reduce the computational burden of a large cross-sectional dimension

on filtering and smoothing algorithms. Once I estimate the parameters and state

variables of interest, a larger cross-section is used to consistently estimate the dis-

tribution of heterogeneous unobservables.

Finally, in Appendix A.3, I consider a fixed-T approach to explore the relation-

ship to the current non-parametric approach, (see Almuzara, 2020, and Botosaru,

2020), which relies on a fixed-T argument for identification of the cross-sectional

distribution of unobservables in the model. The main limitation of fixed-T ap-

proaches is that the condition for identification may be difficult or even impossible

to verify and existing estimation techniques can be computationally expensive. I

show how the parametric assumption on the error term can permit achieving iden-

tification with a short number of time periods, making the analysis feasible when

richer heterogeneity is allowed in the model. I also discuss what the implications of

a parametric assumption on error terms are for regular identification of the distribu-

tion of unobservables, following the work of Escanciano (2020).6

6Regular identification of functionals of nonparametric unobserved heterogeneity means identi-
fication of these functionals with a finite efficiency bound.



2.1. Introduction 24

My second contribution is to provide new empirical evidence on the phe-

nomenon of job polarization using a novel UK micropanel, the NESPD, and to study

it within a dynamic framework. Analysis of job polarization in the literature is typ-

ically grounded on a static approach. The literature on job polarization, pioneered

by Autor et al. (2006), defines job polarization as a significant increase in employ-

ment shares in low-skill occupations and high-skill occupations, associated with a

simultaneous decrease in employment shares in middle-skill occupations, which is a

pattern that has been been observed and documented in the US and UK over the last

40 years.7 I use this novel dataset to test several hypotheses on the relation between

job polarization and income inequality. The NESPD is a survey directed to the

employer, running from 1975 to 2016, with large cross-sectional and time-series di-

mensions, which allow the earnings process to feature type dependence in a flexible

way. Stratification by observables is possible and replaces the first-stage regression

of earnings on covariates, which restricts the dependence of earnings on them. I

analyze how the distributions of unobservables in earnings processes have evolved

over time and across occupations, and separate the role that workers’ skills, labor

market instability, and other types of earnings shocks have played on inequality. I

use the proposed modeling framework to test whether the distribution of individu-

als’ skills among different occupations has evolved over time and by different age

groups. Moreover, I investigate how the corresponding skill prices have changed,

and how the distributions of permanent and transitory shocks have changed over

time and by occupation.

This chapter uses the answers to the above questions to reconcile the empirical

evidence that an increase in the 50/10 wage gap (inequality between the low and

median wages) has occurred despite the documented phenomenon of job polariza-

tion, which would predict the opposite if relative demand is rising in the low-skill

jobs relative to middle-skill jobs. The findings can provide key insights to inform

policy decisions based on the dynamics of earnings and of their distributions over

time, and are relevant to think about the evolution of labor markets and inequality,

7Following the literature, occupations are classified into the categories of low-, middle-, and
high-skill jobs based on 1976 wage density percentiles.
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also during and after the COVID-19 pandemic. Another interesting empirical ques-

tion is to uncover heterogeneity in firms’ productivity and document how this has

changed over time.

To conclude, I develop a state-space framework as a new tool for modelers,

with several advantages for identification and estimation, which can be used to ad-

dress questions on dynamic unobservable heterogeneity in many settings.

The outline of the chapter is as follows: Section 2.2 presents an overview of

the related literature. Section 2.3 provides the model setup and a sketch of the

methodology. In Section 2.4, I establish the argument for identification, while the

corresponding estimation procedure and the properties of the distribution estimators

are discussed in Section 2.5. Section 2.6 provides a discussion of the Gaussian

assumption and further extensions. In Section 2.7, I describe the dataset used for

the empirical analysis. In Section 2.8, I present the empirical application and report

empirical findings. Finally, Section 3.5 concludes and discusses directions for future

research.

2.2 Related literature

There is an extensive literature on state space methods for time series or macropan-

els, which are panel data with small N and large T (Durbin and Koopman (2012),

Hamilton (1994)). However, the unique nature of micropanels requires the develop-

ment of new econometric tools to make use of state space methods. I contribute to

this econometric literature on state-space by adapting existing methods to suit the

characteristics of administrative data, i.e. micropanel data, which feature large N.

In particular, I derive theoretical results on how to consistently estimate the cross-

sectional distribution of unobservables estimated with state space models.

In order to establish the asymptotic properties of (and make inference on) the

estimators of the cross-sectional distribution of unobservables, I rely on the liter-

ature on heterogeneous dynamic panel data (Okui and Yanagi (2020), Jochmans

and Weidner (2018), Mavroeidis et al. (2015)). Okui and Yanagi (2020) propose a

model-free approach, whereas Jochmans and Weidner (2018) consider a Gaussian



2.2. Related literature 26

assumption on error term but obtain similar results. Finally, Mavroeidis et al. (2015)

consider heterogeneous AR(1) models with a fixed-T setting. I extend these exist-

ing approaches to investigate the asymptotic properties of the estimator of the cross

sectional distribution of unobservables, which are estimated in a first-stage using a

state-space model.

Panel data factor models, e.g. Bai (2009), are related to the analysis of panel

data with state space methods since dynamic factor models are special cases of

state-space models where the econometrician specifies dynamic properties for la-

tent factors in the state equation. However, the state vector is small, and the goal

of the analysis is to find commonalities in the covariance structure of a high dimen-

sional dataset.

By developing the corresponding fixed-T approach in Appendix A.3, I explore

the relation of my methodology with a recent literature on estimation of the cross-

sectional distribution of unobservables with panel data for the analysis of earnings

processes. Almuzara (2020) and Botosaru (2020) adapt the identification argument

in Hu and Schennach (2008), with the aim of identifying the distribution of het-

erogeneous variance and permanent components in earning processes. I consider

a more general process but impose a (flexible) parametric assumption on the error

term: in particular, I focus on large dimensions of heterogeneity, with time-varying

parameters, and I impose a mild parametric assumption on the standardized error

term. Moreover, this approach lends itself to generalizations such as allowing for

unbalanced panel data and measurement errors.

This chapter also relates to the literature on earning dynamics. The litera-

ture on the analysis of earnings processes is large and can be distinguished into

several strands: one strand focuses on the permanent-transitory decomposition of

earnings residuals (Abowd and Card (1989), MaCurdy (1982), Lillard and Weiss

(1979)); another strand introduces growth-rate heterogeneity, e.g. Baker (1997),

Haider (2001), Guvenen (2009); a third strand considers income variance dynamics

allowing for conditional heteroskedasticity in permanent and transitory shocks, e.g.

Meghir and Pistaferri (2004), Hospido (2012), Botosaru and Sasaki (2018); finally,
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nonlinear models have recently been proposed by De Nardi et al. (2016), Arellano

et al. (2017). Guvenen et al. (2015) and Browning et al. (2010) introduce pervasive

heterogeneity and are the closest to the present chapter. However, Browning et al.

(2010) do not consider a transitory-persistent decomposition of earnings shocks and

both these chapters do not propose arguments for identification and estimation of

the cross-sectional distribution of unobservables.

Finally, I investigate the relationship between wage inequality and job polar-

ization, which has only been analyzed using static approaches in the literature. The

literature on job polarization, pioneered by Autor et al. (2006), defines job po-

larization as a significant increase in employment shares in low-skill occupations

and high-skill occupations, associated with a simultaneous decrease in employment

shares in middle-skill occupations, which is a pattern that has been been observed

and documented in the US and UK over the last 40 years. The phenomenon of

job polarization has been documented by Autor et al. (2006) for the US, and by

Goos and Manning (2007) for the UK. The literature that supports the hypothesis

of skill-biased technical change cannot explain the increase in employment in low-

and high-skill occupations alongside a simultaneous decrease in medium-skill oc-

cupations (U-shape in figure 1) because it would only predict change in demand

for unskilled vs skilled workers. The hypothesis of automation and routinization,

advanced by Autor et al. (2006), can explain this U-shape, but contradicts the fact

that wages in low-skill jobs have been falling relative to those in medium-skill jobs.

Indeed, one would think that the opposite occurs if relative demand is rising in the

low-skill jobs relative to middle-skill jobs. The modeling approach developed in my

chapter links the literature on earnings dynamics and wage inequality with the liter-

ature on job polarization and investigates this puzzle by testing different hypotheses

on the equality of distributions of unobservables over time and across occupations.
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Figure 2.1: Job Polarization in the UK

The graph is taken from Goos and Manning (2007). It shows the impact of job
polarization on employment growth by wage percentile. Data are taken from NES
using 3-digit SOC90 code. Employment changes are taken between 1976 and 1995.
Percentiles are the 1976 wage density percentiles.

2.3 Model Setup
I start by describing a general state-space model and how a model of earning process

can be written in terms of a state-space representation. I then discuss the object of

interest and sketch the proposed methodology.

2.3.1 State-Space Model

The state-space representation of a dynamic system is used to capture the dynamics

of an observable variable, yit , in terms of unobservables, known as the state variables

for the system, zit . Consider the following state-space representation to describe the

dynamic behavior of yit , for i = 1, ...,N, and t = 1, ...,T :

yit = Aitzit +Ditxit +σiεit (observation equation)

zit+1 = Bitzit +Ritηit (state equation)
(2.1)

where I name ε̃it ≡ σiεit the raw errors and εit the “standardized” errors;

εit ∼N (0,Ht), ηit ∼N (0,Sit); zit denotes the state variables; ε̃it and ηit are the
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errors. I further make an orthogonality assumption on the error terms: εit and ηit

are independent of each other and over time. A vector of exogenous observed vari-

ables xit can be added to the system. The state equation describes the dynamics

of the state vector, while the observation equation relates the observed variables to

the state vector. The unobservables of the model are the (potentially time-varying)

parameters, the state variables, and the error terms. To complete the system and

start the iteration via the Kalman filter I further make the assumption that for each

individual i, the initial value of the state vector, zi1 is drawn from a normal distri-

bution with mean denoted by ẑi1|0 and variance Pi1|0.8 Assuming the parameters are

known, the Kalman filter recursively calculates the sequences of states {ẑit+1|t}T
t=1

and {Pit+1|t}T
t=1 where ẑit+1|t is the optimal forecast of zit+1 given the set of all

past observations (yit , ...,yi1,xit , ...xi1), and its mean squared forecast error is Pit+1|t .

It does so by first getting the filtered values of the states {ẑit|t}T
t=1 and variances

{Pit|t}T
t=1. When the interest is in the state vector per se, it is possible to improve

inference on it by obtaining the smoothed estimates of the states, i.e. {ẑit|T}T
t=1

and {Pit|T}T
t=1, i.e. the expected value of the state when all information through

the end of the sample, up to time T , is used, and its corresponding mean square

error.9 When parameters are unknown, maximum likelihood estimation is possible

but presupposes the model to be identified.10

The model for earnings yit , of an individual i at time t, can be cast in the general

model 2.1 with the following state-space representation:

yit = [pt ]αi + zit +σiεit (observation equation)

zit+1 = ρizit +ηit (state equation)

with εit ∼ N(0,Ht) and ηit ∼ N(0,Sit), where Ait , zit , Bit , and Rit in model 2.1 are

respectively replaced by Ait = [pt1], zit = [αizit ]
′, Bit = [1,0;0,ρi], Rit = [0,1]. The

8If the vector process zi1 is stationary, i.e. if the eigenvalues of Bit are all inside the unit circle,
then ẑi1|0 and Pi1|0 would be the unconditional mean and variance of this process, respectively. If the
system is not stationary or time-varying then they represent the initial guess for zi1 and the associated
uncertainty.

9The general formulas used by the Kalman filter and smoother are provided in Appendix A.1.
10Details on the likelihood are provided in Appendix A.1.
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term Ditxit of the general model 2.1 is here omitted. In this specification, the indi-

vidual specific component αi enters the state vector, and the coefficient pt enters the

matrix of parameters Ait in the general model described in 2.1. The factor pt might

be included as a measure of skills price. Note that transitory shocks are assumed to

be i.i.d. in these models. However, more general moving average representations,

which are common in the earnings literature, can be accommodated by augment-

ing the state vector accordingly. In addition, note that the measurement error is not

separately modeled, hence the error term in the observation equation should be in-

terpreted as a mixture of transitory earnings shocks and measurement error.

An extension of this model to include a term βit can account for an individual’s

ith specific income growth rate with cross-sectional variance σ2
β

, see HIP model

in Guvenen (2009).11 A model for earnings could further include job-specific (or

firm-specific) effects γi, for job (or firm) k, with jik = 1(Ki = k).12

For the rest of the chapter, I focus on model 2.3.1 but the analysis could be

potentially extended to the more general model described in 2.1.

2.3.2 Object of interest

The objects of interest are the cross-sectional distributions of unobservables (state

variables and parameters in the model described above) and their dynamics over

time. I relax the strong assumption of a fully parametric approach to estimate un-

observed heterogeneity: I do not impose any restrictions on the cross-sectional dis-

tributions of unobservables. I impose a parametric assumption on the standardized

error term of the model, in particular I assume that this term is Gaussian, and further

discuss the validity and implications of this assumption in Section 2.4 and 2.6.

The approach of identifying and estimating the full cross-sectional distribution

of unobservables offers several advantages compared to an alternative approach that

only targets certain moments. First, once the full distribution is estimated, it is pos-

11Following Guvenen (2009), it would be possible to assume that individuals form their beliefs
about their heterogeneous intercept and slope and update their beliefs according to the observed
income realizations. In the following, I do not consider the worker’s optimal learning process.

12The New Earnings Survey Panel Data (NESPD) can be merged with the Business Structure
Database (BSD) to obtain a matched employer-employee dataset for the UK labour market and
include a firm component of pay in the earnings process.
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sible to estimate all moments (note that moments beyond the second-order may be

of interest), as well as the quantiles and other features of the distribution. Second,

this approach offers the possibility of analyzing the dynamics of the distribution,

while an approach that only targets moments would require further specifying their

evolution over time. An additional advantage is that it would be possible to investi-

gate ex-post which observables predict the estimated heterogeneity without loss of

statistical power, which could affect alternative approaches in existing studies, see

Lewis et al. (2019).13

The identification results are presented in the following section. First, I con-

sider a simpler model of earnings and treat the history of each individual i as a

separate time series. I provide the argument for identification of the parameters and

states, and of their cross-sectional distribution. The identification of the parameters

relies on a large T argument, while the asymptotic properties of the estimator of

the cross-sectional distribution of parameters and states are established under some

ratio of N and T . I derive this ratio and propose a bias correction method to use

when T is small. In the second step of the analysis, I introduce time-varying param-

eters in the state-space model. I discuss how the identification results change in this

setting. As an additional extension, I consider panel data factor models. Finally,

in Appendix A.3, I relate to the nonparametric existing approach, which relies on a

fixed-T argument for identification of the unobservables in the model and of their

cross-sectional distribution. I show how the parametric assumption on the error

term can permit to achieve identification with a shorter number of time periods and

discuss whether high-level assumptions for identification hold.

Note that the proposed methodology encompasses treatment of unobserved

heterogeneity as both fixed effects and random effects, with some differences in

the assumptions required to establish the properties of the distribution estimators in

the two cases.

13It might be an interesting empirical questions to see how much of this unobserved heterogene-
ity can be explained by observables such as education, marital status, health information. Ideally
by using a dataset with lots of observables, one could quantify their contributions to unobserved
heterogeneity.
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2.4 Identification
In the following Section, I discuss identification of the unobservables in state-space

models.

2.4.1 Benchmark Model

First, treat the earnings history of each individual i as a separate time series. In

particular, let’s consider the time-invariant version of model 2.3.1 and assume that

for each individual i, the time series is represented by the state-space model:

yit = αi + zit +σiεit (observation equation)

zi,t+1 = ρizit +ηit (state equation)
(2.2)

with εit ∼ N(0,1) and ηit ∼ N(0,σ2
i,η). I further make the assumption that the

innovations εit and ηit have zero mean, are independent of each other and over time,

and independent of αi. This model decomposes earnings into a deterministic fixed

effect, which captures heterogeneity in income profiles due to different unobserved

and time invariant characteristics, e.g. ability, and a stochastic term, which has

a transitory and a persistent component, which are idiosyncratic and unobserved

shocks to income such as health shocks, bonus, promotions. This decomposition

and the orthogonality assumption between transitory and persistent components are

widely used in the earnings literature.

I first discuss how the model’s parameters are identified and how it is possible

to identify the cross-sectional distribution of the parameters and state variables.

A state-space model is identified when a change in any of the parameters of

the state-space model would imply a different probability distribution for {yit}∞
t=1.

There exist several ways of checking for identification. Burmeister et al. (1986) pro-

vide a sufficient condition for identification: a state-space model is minimal if it is

completely controllable with respect to the error term (and external variable directly

affecting both the observed and the state variables) and completely observable. If

the state-space is minimal, then it is identified. The model considered above is

observable as the observation matrix has rank equal to the number of state variable
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where the observability matrix is defined as: O= [A′B′A′(B2)′A′(B3)′A′...(Bn−1)′A′]

where n is the number of state variables. Require ρ 6= 1 for observability. Under

this condition, the above model is also controllable with respect to the error term as

the controllability matrix C = [RBRB2RB3R...Bn−1R] has full rank.

An alternative way of checking identification of a state-space model is to rely

on the exact relationship between the reduced form parameters of an ARIMA pro-

cess and the structural parameters in the state-space model, and use the condition

for identification of parameters in ARIMA models. The literature on linear sys-

tems has also extensively investigated the question of identification, see Gevers and

Wertz (1984) and Wall (1987) for a survey of some of the approaches.

For the above state-space model, it is possible to verify that under stationarity

the following holds, ∀i:

ρi =
Cov(yit ,yit+2)

Cov(yit ,yit+1)

σ
2
i =Var(yit)−

Cov(yit ,yit+1)

ρi
=Var(yit)−

Cov(yit ,yit+1)
Cov(yit ,yit+2)
Cov(yit ,yit+1)

σ
2
i,η = (Var(yit)−σ

2
i )(1−ρ

2
i )

αi = E(yit)

where the mean, variance, and covariances are moments of the distribution of yit

taken over time, for each individual i.

Once I establish identification of the model’s parameters, which is based on

properties of each individual’s ith time series, I can exploit the cross-section of the

time series to identify the cross sectional distributions of the variables of interest

(parameters and states), and analyze the asymptotic properties of these distribution

estimators. In line with these results, I derive nonparametric bias correction via split
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panel Jackknife methods when T is small.

2.5 Estimation
In this Section, I present the main results on asymptotic properties of the distribution

estimators of unobserved estimated from state-space models. I discuss how the

parametric assumption on the error terms helps to establish these results. Finally,

I provide some details on the estimation procedure, which I adopt in the empirical

application. In the Appendix A.3, I consider the alternative fixed-T identification

argument and estimation procedure.

2.5.1 Asymptotic Properties of the Distribution Estimators

For the above time-invariant state-space model 2.2, I collect all unknown pa-

rameters in a vector θi = {αi,ρi,σ
2
i ,σ

2
η i}. Let θ̂i be the MLE estimator for

the vector of parameters θi, obtained as: θ̂i = argmaxθi
QT (θi), where QT (θi) =

T−1
∑

T
t=1 log f (yit ;θi) := m(wit ,θi) and f (yit ;θi) is the likelihood from the state-

space model as derived in Appendix A.1. Following a similar notation and argu-

ment as in Okui and Yanagi (2020), define Pθ̂
N := N−1

∑
N
i=1 δ

θ̂i
, as the empirical

measure of θ̂i, where δ
θ̂i

is the probability distribution degenerated at θ̂i. Also, let

Pθ
0 be the probability measure of θi. Denote as Fθ̂

N the empirical distribution func-

tion, so Fθ̂
N(a) = Pθ̂

N f for f = 1(−∞,a], where 1(−∞,a](x) := 1(x≤ a) and the class of

indicator functions is denoted as F := {1(−∞,a] : a ∈ R}. Similarly, Fθ
0 (a) = Pθ

0 f .

Finally, denote as Pθ̂
T the probability measure of θ̂i. In the following, for simplicity

of notation, I omit superscripts θ̂ and θ , so PN = Pθ̂
N , FN = Fθ̂

N , P0 = Pθ
0 , F0 = Fθ

0 ,

PT = Pθ̂
T , FT = Fθ̂

T .

Assumption 1 Assume that {{εit}T
t=1,{ηit}T

t=1}N
i=1 is i.i.d. across i and yit is a

scalar random variable.

Assumption 2 The true parameters θi must be continuously distributed.

Assumption 3 Further, assume that: |ρi| < 1; θi identified, and not on the

boundary of parameter space.

Assumptions 2 and 3 state standard and sufficient conditions that are required

for the ML estimators of the unknown parameters in the time-invariant Gaussian
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state-space model to be consistent and asymptotically normal. In particular, As-

sumption 3 is required to establish convergence in probability of θ̂i to θi0, as T →∞.

Note that even without normal distributions the quasi maximum likelihood esti-

mates θ̂i, obtained assuming Gaussian errors, is consistent and asymptotically nor-

mal under certain conditions, see White (1982).

Indeed, the above model is a Gaussian time-invariant state space model, which

has a stationary underlying state process (ρi is assumed to be less than 1 in absolute

value), and which has the smallest possible dimension, see Hannan and Deistler

(2012). Under these general and sufficient conditions, then the MLE estimator is

consistent and asymptotically normal if the true parameters are identified and not at

the boundary of the parameter space, see Douc et al. (2014).

These assumptions are not restrictive and are likely to hold within the context of

earnings dynamics. The assumption that ρi is in absolute value smaller than 1 is

reasonable when allowing for lots of unobservable heterogeneity in the earnings

process. In the empirical application, I find that estimates of the persistence param-

eter are smaller than 1. This empirical evidence is consistent with existing findings

in the earnings literature: Browning et al. (2010) reject the hypothesis that any

worker has a unit root when allowing for pervasive heterogeneity.

Assumption 4 The CDFs of θi is thrice boundedly differentiable. The CDFs

of θ̂i is thrice boundedly differentiable uniformly over T.

Under these assumptions, it is possible to establish uniform consistency and

asymptotic normality of the distribution estimator. In the following theorem, I

show that the estimator for the distribution of the true individual parameters and

states uniformly converges to their true population distribution and it converges in

distribution at the rate N3+ε/T 4, where ε ∈ (0,1/3), if the above assumptions hold.

Theorem 1 Under Assumption 1-4, when N,T → ∞: (i) sup |PN f − P0 f | as−→ 0,

where as−→ signifies almost sure convergence. Moreover, (ii) when N,T → ∞, with

N3+ε/T 4 → 0 and ε ∈ (0,1/3):
√

N(PN −P0) GP0 in l∞(F ), where  means

weak convergence and GP0 is a Gaussian process with zero mean and covariance
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function F0(ai ∧ a j)− F0(ai)F0(a j) with fi = 1(−∞,ai] and f j = 1(−∞,a j] for

ai,a j ∈ R and ai∧a j is the minimum of ai and a j and where l∞(F ) is the collection

of all bounded real functions on F .

The key idea behind Theorem 1 is that the asymptotic properties of the ML

estimator θ̂i for each individual’s i parameters guarantee that it is possible to bound

the norm of the difference between the cross-sectional distribution of the ML esti-

mators and the true distribution of the true parameters, i.e. the term sup |PT f −P0 f |.

See Appendix A.2 for the proof. This result combines the existing results in the

state-space literature with the results of the model free approach in Okui and Yanagi

(2020): more specifically, I rely on the results in the existing state-space literature

to establish under which assumptions the ML estimator θ̂i is consistent and asymp-

totically normal; I then build on the proof in Okui and Yanagi (2020) to bound the

difference between the distribution estimator and the true distribution of the param-

eters.

Following Okui and Yanagi (2020) and Jochmans and Weidner (2018), when T

is small I propose a nonparametric bias correction method via split-panel jackknife

(HPJ). I divide the panel along the time series dimensions into two parts and obtain

F̂HPJ = 2F̂ − F̄ , where F̂ is the estimator obtained using the whole sample, while

F̄ = (F̂1 + F̂2)/2 with F̂ j for j = 1,2 being the estimators obtained when using

each half of the panel.

2.5.2 Time-varying Model

When adding time-varying parameters in the state-space model for each i, the

derivation of the Kalman filter and smoother is essentially the same as for the case

of time-invariant model. Note that if the matrices Ait ,Dit ,Bit ,Rit ,Hit ,Sit , in equation

2.1, are generic functions of the stochastic variable xt , then, even if the error terms

are normal, the unconditional distribution of the state variable and of the observa-

tion yit is no longer normal, while normality can be established conditionally on the

past observations and xt .
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Assumption 3 in Theorem 1 can be modified by using existing results that

provide conditions on asymptotic properties of the ML estimator for time-varying

state-space models. Indeed, assumption 3 can be relaxed along several dimensions:

it is possible to rely on results in Chapter 7 of Jazwinski (1969) for a departure of

the time-invariance assumption, and it is further possible to weaken the assumption

that ρ < 1 for stability of the filter, as in Harvey (1990).

For time-varying parameters that are common across (groups of) individuals,

I consider a multivariate version of the state-space model above. I consider stratifi-

cation by observables and, within each group, I impose common time-varying pa-

rameters (e.g. price of skills) and individual-specific parameters. A general model

for earnings yit is:

yit = pt(xi)αi + zit +σiεit

zit+1 = ρ(xi)zit +ηit

(2.3)

with time-varying variances for error terms: εit ∼N(0,Ht(xi)) and ηit ∼N(0,St(xi))

and where xi are observable covariates (e.g. gender). This is the same model as

2.3.1. The main challenge is that the Kalman filter and smoother can be computa-

tionally intense or even infeasible when the cross-sectional dimension N is large. I

give proposals on how to deal with these issues in the estimation section.

I leave for future research to derive the identification results and the changes

to Assumption 3 in Theorem 1 to establish the asymptotic properties of the ML

estimator for the time-varying state-space model in 2.3.

2.5.3 Implementation

State-space estimation and filtering with heterogeneous dynamic panel data pose

econometric challenges. Estimation of the distribution of unobservables is per-

formed in 2 stages: a first step of estimation is performed via state-space methods;

then, in a second step, I obtain the empirical cross-sectional distribution of unob-

servables estimated in the first step.

In the first step, estimation of model’ s parameters is based on maximum likeli-
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hood.14 I employ the kalman filtering and smoothing algorithm to get smoothed

estimates of state variables and error terms.

The econometric challenge in this first step of estimation is on how to deal

with state-space models for a dataset featuring a large cross-section N: given

recursive nature of filter, at each period inversion of Ft = Var(vt |yt−1), where

vt = yt −AtE[zt |Yt−1] is the innovation, can be problematic, see Durbin and Koop-

man (2012) (Ft has size N x N, computationally costly with large N). In the models

I consider, Ht is diagonal, hence, it is possible to adopt matrix identity for inverse

of Ft . Moreover, I perform stratification as a way to avoid intractability while also

addressing the issue of not restricting the dependence of earnings on covariates.

When introducing time-varying parameters, I impose that within each group some

parameters are common and time-varying parameters (e.g. price of skills), while

others are individual-specific (e.g. the standard deviation of the shocks as reported

in the matrix Rit in model 2.1).

For starting the recursions, I implement diffuse initialization as in De Jong et al.

(1991), i.e. the uncertainty around initial states is represented in the model with an

arbitrarily large covariance matrix for the initial state distribution.15

Once (smoothed) estimates of unobservables are obtained, I obtain the em-

pirical cross-sectional distribution of the unobserved components estimated from

the state-space models in the second step of the estimation strategy. Note that di-

mensionality of vector yt can vary over time. Thus, the methodology can be easily

extended to deal with unbalanced panel data.

2.6 Discussion on Gaussian Error and Extension
One might be worried that the parametric assumption about the innovations εit and

ηit in models 2.2 and 2.3 is quite restrictive. Horowitz and Markatou (1996) provide

empirical evidence that the normal distribution can approximate well the distribu-

tion of the permanent component of the income process. However, there might be

14Details on the likelihood are provided in Appendix A.1.
15Durbin and Koopman (2012) show that initialization of the Kalman filter is not affected the

choice of representing the initial state as a random variable with infinite variance as opposed to
assuming that it is fixed, unknown and estimated from observations at t=1.
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concerns that the parametric assumption is restrictive for the transitory component

of earnings shocks. Indeed, there is empirical evidence that the cross-sectional dis-

tribution of transitory shocks features negative skewness and high kurtosis. These

stylized facts have been documented, among others, by Arellano et al. (2017) as

relevant features of the earnings process.

First and importantly, note that when errors are not normally distributed, re-

sults from Gaussian state-space analysis are still valid in terms of Minimum Vari-

ance Linear Unbiased Estimation (MVLUE): Kalman Filter estimates are not nec-

essarily optimal, but they will have the smallest mean squared errors with re-

spect to all other estimates based on a linear function of the observed variables

(yit ,yit−1, ...,yi1,xit ,xit−1, ...,xi1), see Anderson and Moore (1989).

Second, the homogeneity assumptions may explain some of these stylized

facts: once allowing for rich heterogeneity, it is unclear whether the residuals will

still display the same features. One interesting empirical question is to test to

what extent these features are still present when allowing for rich heterogeneity

and time-varying parameters. Assuming individual Gaussian shocks with heteroge-

neous variances allows obtaining flexible cross-sectional distributions and, depend-

ing on the cross-sectional distributions of the heterogeneous variances, the resulting

cross-sectional distribution might display the above key features.

Finally, extensions to different distributions are feasible within a state-space

framework. Alternative assumptions on error terms can be considered by non-

Gaussian state-space models; for instance, the error term can be assumed to follow

a Mixture of Normals distribution. It would be interesting to see how much the

goodness of fit improves when the assumption on Gaussian shocks is relaxed.

2.7 Data

The dataset used for the empirical application is a novel confidential dataset for the

UK, the New Earnings Survey Panel Data (NESPD). It is an annual panel, running

from 1975 to 2016. All individuals whose National Insurance Number ends in a

given pair of digits are included in the survey, making it representative of the UK



2.7. Data 40

Figure 2.2: Simulated Distribution of Raw Errors

Monte Carlo simulation showing that, despite the assumption of Gaussian errors at
individual level, the cross sectional distribution of raw errors can display very high
kurtosis (and potentially also skewness) depending on the cross-sectional distribu-
tion of heterogeneous variances, σ2

i .

workforce.16 It surveys around 1% of the UK workforce.

The questionnaire is directed to the employer, who completes it based on pay-

roll records for the employee; the survey contains information on earnings, hours of

work, occupation, industry, gender, age, working area, firms’ number of employers,

and unionization. This information relates to a specified week in April of each year:

the data sample is taken on the 1st of April of each calendar year and concerns com-

plete employee records only. As a result of being directed to the employer, NESPD

has a low non-classical measurement error and attrition rate.

For both Standard Industry Classification (SIC) and Standard Occupation Clas-

sification (SOC) codes, different classifications have been used over time. I report

SIC and SOC codes to the same classification using conversion documents provided

by ONS on their website: I map all SIC codes into the SIC07 Division (2-digit); for

16It might under-sample part-time workers if their weekly earnings falls below the threshold for
paying National Insurance and those that moved jobs recently. Thus, the following categories are
likely to be under-sampled: self-employed, some groups of seasonal workers, and those working
only few hours irregularly. To address these concerns, one could perform robustness checks using
the Labour Force Survey data, which, however, has a much smaller sample size.
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those divisions where there are multiple correspondences, I use the information on

whether the individual has stayed in the same job in the last twelve months to iden-

tify the mapping; I proceed in an analogous way for SOC codes.

I rank occupations by percentiles of the median wage distribution in the starting

year and separate them accordingly into three groups: low-skill, medium-skill, and

high-skill occupations.17

Given large dimensions, this dataset is particularly suited to obtain a flexible

treatment of covariates by stratification. I stratify by observables instead of running

a first-stage regression on covariates which restricts the dependence of earnings on

them. Stratification allows considering a specification for the earning process that

features type dependence in a flexible way. In particular, I perform stratification

by occupations: high-skill occupations, medium-skill occupations, and low-skill

occupations; by age groups; and by gender.

Two time-series dimensions are taken into account. One is the time-series of

earnings history for each worker; I keep individuals in the panel only if they have

a continuous earning history of at least twelve time periods.18 The second time-

series dimension I think of is the time-series of cross-sections, which can be much

longer and is exploited to analyze how unobserved heterogeneity has evolved over

time.19 Therefore, I only consider continuous earning histories for each worker, but

the panel is unbalanced because of changes in the composition of the workforce.

Note that attrition is not a concern for this dataset as it is the employer who reports

information on the employee based on her payroll records.20

17Another classification might be based on routine task intensity of occupations since one of the
main hypotheses put forward to explain job polarization is the bias of recent technological change
towards replacing labor in routine tasks (this is called routine-biased technological change, RBTC,
by Goos et al. (2014)).

18I use the techniques for small bias correction methods described in Section 2.4.
19This dimension allows answering several interesting empirical questions, for instance to address

questions on the evolution of life cycle inequality over time.
20By considering continuous earnings history only, I do not account for transitions into and out

of employment. In order to account for the choice of workers, one would probably need a structural
model.
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2.8 Empirical Application
Over the last 40 years, in the US and UK, there has been a significant increase

in employment shares in low-skill occupations and high-skill occupations, and a

simultaneous decrease in employment shares in middle-skill occupations. Goos

and Manning (2007) document that this phenomenon, known as job polarization,

has occurred in the UK since 1975. A likely explanation for it is the automation of

some types of jobs only, the middle-skill jobs, which require precision and are easy

to be replaced by machines.

In the following figures, the phenomenon of job polarization results in the char-

acteristic U-shape with much a negative change in employment share for middle-

skill occupations. Note that this pattern is observed over the whole period, and is

not driven by a change in the gender composition of the workforce.21

As a result of job polarization, one would expect an increase in wages for both

low-skill and high-skill occupations, while a decrease in wages for medium-skill

occupations. Indeed, job polarization would predict a rising relative demand in the

low-skill relative to middle-skill jobs. However, this has not been the case: on the

contrary, earnings inequality also between low and median wages has increased over

time. Part of the increase in wage inequality might be justified by the fact that wage

growth is monotonically positively related to the quality of jobs. If one includes

more controls, the within job inequality significantly reduces. Once one controls

for job-specific effects, there should only be between job inequality, not within.

However, as suggested by Goos and Manning (2007) the findings that wages in

low-skill jobs are falling relative to those in middle-skill jobs presents something

of a problem for the routinization hypothesis, as one might expect the opposite if

relative demand is rising in the low-skill jobs relative to middle-skill jobs.

The methodology proposed in the chapter is used to shed light on the relation

between job polarization and earnings inequality, which is relevant to think about

the evolution of labor markets and inequality, also during and after the COVID-

19 pandemic. The goal of the empirical analysis is to relate the components and

21Results are robust to the chosen level of disaggregation by occupation.
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dynamics of the earnings process to the phenomenon of job polarization, which is

usually investigated only with a static approach. To this aim, I am going to test

different hypotheses on the degree of heterogeneity of the distributions of unob-

servables, by observables and over time, to shed light on this puzzling empirical

evidence.

More specifically, first I am going to consider the time-invariant model used

as benchmark model in the analysis. In a second step of the analysis, I am go-

ing to introduce time varying parameters, in the form of a time-varying price of

skills (pt) in the model above, and by allowing the variances of the shocks to be

time-varying. For both models, for each group obtained by stratification by observ-

ables, I use state-space analysis to obtain (smoothed) estimates of unobservables.

Finally, I estimate the cross-sectional distribution of the unobservables, potentially

for aggregated strata in order to recover a larger cross-sectional dimension needed

for inference on distributions. I compare these distributions via tests of the null

hypothesis of equal distributions by Kolmogorov-Smirnov test to test for different

degrees of heterogeneity.22

2.8.1 Toy Model

The following toy model is used to motivate things and illustrate some of the under-

lying mechanisms that I would like to test.

Consider a model with two types of individuals, i ∈ {LG,HG}, where LG

stands for low growth type and HG for high growth type. Further, assume that

there are 3 types of occupations, k ∈ {LS,MS,HS}, i.e. low-skill, medium-sill, and

high-skill occupations. The price of the skills in occupation k, at time t, is πk,t , and

πLS,t ≤ πMS,t ≤ πHS,t . The individual i’s earnings at time t from occupation k is:

yi,k,t = πk,t(αi,k)

where αik is the heterogeneous level, which is time-invariant. The individual’s prob-

22There might be a problem of independence if aggregate time effects are taken into account.
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lem at time s is:

maxk

T

∑
t=s

E(yi,k,t)β
t
d

where βd is the discount factor. In this scenario one moves from MS to LS occupa-

tion if either displaced with probability δi or if πMS,t(αi,MS) < πLS,t(αi,LS). Analo-

gously from HS to MS.

I model routinization as a negative demand shock in MS occupation, i.e. πMS,t

decreases. After this shock, all HG type move from MS occupations to HS occupa-

tions, or stay in MS occupations. Vice versa all LG type move from MS occupations

to LS occupations, or stay in MS occupations. Assume that, after the shock, for

i = HG, πMS,t(αHG,MS) ≤ πHS,t(αHG,HS) and πLS,t(αLG,LS) ≥ πMS,t(αLG,MS). As-

suming that there is a nonzero outflow of people from MS occupation, the overall

effect would be an increase in inequality.

Now, let’s consider a more realistic earnings process by adding the stochastic

persistent and transitory components zi,t + εi,t :

yi,k,t = πk,t(αi,k)+ zi,t + εi,t

An increase in inequality might occur also if the variances of the stochastic com-

ponents significantly changed over time and by different type of occupation. This

might happen as a result of changes in institutions that have lead to a decline in

wages at the bottom of the distribution. In UK there has been a marked decline of

both unionization and minimum wage over time.

Several hypotheses can be tested to investigate this phenomenon:

H1: Change in prices of skills by occupation and over time.

H2: Distribution of skills changed by occupation and over time.

H3: Distribution of variance of transitory shocks more concentrated depending on

the evolution of unionization and minimum wage by occupation and over time. I

investigate this channel given that a possible explanation for increase in inequality

might be that change in institutions have been in such a way to lead to a fall in
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wages at the bottom of the distribution.

In practice, I consider the time-varying model 2.3:

yit = pt(xi)αi + zit +σiεit

zit+1 = ρ(xi)zit +ηit

(2.4)

where xi is individual’s i category of occupation: LS, MS, or HS occupation. I

test H1 by comparing the evolution of the prices pt for workers in LS, MS, and

HS occupations. I test H2 and H3 by comparing the distributions of respectively

skills, i.e. of the αi, and variance of shocks εit and ηit , in the different categories

of occupation by Kolmogorov Smirnov test of equality of distributions and further

compare these distributions over time.

2.8.2 Empirical Findings

The empirical findings provide evidence that earnings dynamics feature consider-

able unobservable heterogeneity. This is an interesting result in its own right. First,

I uncover the amount of unobservable heterogeneity using the simple time-invariant

model considered as benchmark model in the theoretical section. I document that

workers in middle-skill occupations display significantly different earnings dynam-

ics with respect to workers in other occupations. In particular, as shown in table

2.1, persistence to earnings shocks for workers in middle-skill jobs is on average

smaller, over the entire time period. The distribution of persistence has the largest

dispersion for workers in low-skill occupations. Moreover, empirical evidence sug-

gests a relatively higher correlation between the skills of workers in middle-skill

occupations and the dispersion of earnings shocks they face.

To test the hypotheses presented in the above section, I introduce time-varying

parameters in the state-space model. Figure 2.3 displays a pattern of increase in the

prices of skills for workers in low- and high-skill occupations, while it shows that

the change over time of the skill prices for workers in middle-skill occupations has

been unstable.

These preliminary findings can be interpreted as suggestive of a pattern of
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αi ρi σ2
i αi ρi σ2

i

1975-1999 2000-2005
Mean -0.1909 0.5424 0.0442 -0.3085 0.5028 0.0671

LS St. Dev. 0.3112 0.5391 0.0639 0.3534 0.5607 0.1278
IQR 0.3993 0.7996 0.0422 0.4107 0.8280 0.0724
Mean -0.1140 0.4620 0.0354 -0.1054 0.4731 0.0368

MS St. Dev. 0.2909 0.5526 0.0408 0.3342 0.5440 0.0626
IQR 0.3719 0.7686 0.0354 0.4760 0.8267 0.0329
Mean 0.1527 0.5095 0.0278 0.2507 0.5926 0.0340

HS St. Dev. 0.2873 0.5260 0.0416 0.3879 0.5366 0.0750
IQR 0.3718 0.7501 0.0259 0.4536 0.7926 0.0293

Table 2.1: Empirical Results for time-invariant model

The table reports the means, standard deviation, and interquartile range (IQR) of the
cross-sectional distributions of αi, ρi, and σ2

i , for workers in LS occupations, MS-
occupations, and HS-occupations, for two time windows: 1975-1999, 2000-2005.
Split-panel jackknife (HPJ) is used for bias correction.

negative demand shocks in MS occupations over the considered time period. More-

over, there has been a positive shift in the distribution of skills for individual in

MS-occupations due to a compositional change in the UK workforce as shown in

table 2.2.

Figure 2.3: Changes in Skill Prices by Occupation

Finally, the dispersion of the variance of transitory shocks has increased over

time, comparatively more for workers in LS-occupations, while the variances have

not significantly changed over time for workers in MS-occupations. One likely

explanation might be that institutions have changed in such a way to lead to a fall
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αi
1975 1985 1995

Mean -0.0600 -0.0578 -0.0252
MS St. Dev. 0.1815 0.1693 0.1271

IQR 0.1550 0.1438 0.1038

Table 2.2: Empirical Results on the Distribution of Skills for Middle-Skill Occupations

in wages at the bottom of the distribution.
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2.9 Conclusions
In this chapter, I propose a formal econometric framework for studying identifi-

cation and estimation of unobservable heterogeneity and its dynamics. I adapt

state-space methods to the analysis of heterogeneous dynamic structures with micro

panels. The framework proposed in this chapter allows for rich heterogeneity and

dynamics in models, while a mild parametric yet flexible assumption on the distri-

bution of the shocks provides several advantages for identification and estimation.

The framework in this chapter will enable empirical researchers to answer a

variety of new empirical questions using administrative data. Moreover, it naturally

lends itself to important and useful generalizations such as allowing for common

unobservable macro shocks, trends, seasonality, and nonlinearities.

In the empirical application, I use a novel dataset on UK workers, the NESPD,

to uncover unobserved heterogeneity in earnings processes and investigate how this

is related to the phenomenon of job polarization.

A natural next step in the analysis is to combine the information on UK work-

ers provided by the NESPD with information about the supply side as reported in

another novel UK dataset, the Business Structure Database (BSD), which can be

merged with NESPD to get a matched employee-employer dataset for UK.



Chapter 3

Individual Forecast Selection

3.1 Introduction

Forecasting individual outcomes (microforecasting) is a key component of eco-

nomic, policy and business decisions and is becoming increasingly prominent in

empirical economics. For example, the literature on long-term treatment effects

relies on forecasting the effects of treatments such as early-childhood interventions

(Garcı́a et al., 2020) or job-training programs (Athey et al., 2019). Chamberlain and

Hirano (1999) forecast individual incomes for consumption/savings decisions and

Liu et al. (2020) forecast revenues of banks after a regulatory change. The literature

on teacher value-added (e.g., Kane and Staiger, 2008; Chetty et al., 2014a,b) can be

viewed as predicting teacher performance by estimating the unobservable teacher

quality.

Micro panel data make it possible to forecast individual outcomes, but present

econometric challenges due to the short time series dimension and the few observ-

able characteristics that are typical of these datasets. As a result, existing methods

rely on simple models and estimation methods that are based on either the time-

series dimension, the cross-sectional dimension (“pooling”) or on intermediate ap-

proaches such as empirical Bayes (“shrinking towards the mean”). The tradeoffs

between these estimators are intuitive. The individual time series is informative

about time-invariant unobserved characteristics but provides noisy estimates when

it is short. Pooling and empirical Bayes reduce the noise by “borrowing strength
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from the majority”, but can turn into the “tyranny of the majority” by hiding the un-

observed heterogeneity. While the existing literature appears to favour pooling or

empirical Bayes methods, this paper shows that using the same forecasting method

for all individuals could lead to bad decisions, from loss of accuracy to unfairly

penalizing high-performers or rewarding low-performers.

This paper proposes an alternative approach to microforecasting that, instead of

using the same forecasting method for all individuals, performs individual forecast

selection (henceforth IFS) out of a class of competing forecasting methods. The

competing methods could be based on different estimators within the same model,

such as a time series estimator versus a pooled (empirical Bayes) estimator, in which

case IFS can be viewed as deciding who to pool (who to shrink towards the mean).

If the competing forecasts are based on different models, IFS can be viewed as

delivering a form of model-based clustering.

The selection of the best forecasting method is based on out-of-sample accu-

racy over one past time period. For example, suppose we want to forecast at time

T the individual outcomes at time T +1 and the competing forecasts are the cross-

sectional mean or past behaviour. For each individual, we can first establish which

of the two forecasts made at time T − 1 would have been more accurate for the

outcome at time T , and then use the same method to forecast the outcome at time

T +1. Intuitively, the approach suggests using past behaviour for “outliers” - indi-

viduals whose unobserved heterogeneity is far from the mean - and for “creatures

of habit” - individuals whose behaviour is consistent over time - while it pools (or

shrinks towards the mean) everybody else.

We illustrate the theoretical motivation of IFS when outcomes are the sum

of time-invariant unobserved heterogeneity and an idiosyncratic shock, which is

similar to the setting considered in the teacher valued-added literature mentioned

above. Since we use only one time period to choose the best forecast, the forecast

selection cannot be consistent. Instead, we investigate the advantages of IFS from

a minimax regret perspective. We analyze two cases: IFS for selecting between a

time-series (TS) and a cross-sectional (CS) forecast and IFS for selecting between
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TS and empirical Bayes. In both cases, we show that IFS can be minimax-regret

optimal relative to using the same forecast method (that is, either TS or CS) for all

individuals. For example, the relative accuracy of CS, TS and IFS depends on the

state-space spanned by the ratio of variances of the individual heterogeneity and of

the idiosyncratic shock. No forecast uniformly dominates the others when the state-

space is sufficiently large to reflect the uncertainty about the relative magnitudes

of these two variances. However, IFS can guard against making large errors over

regions of the state-space where the accuracies of CS and TS are very different,

while IFS does well even if it makes a mistake when selecting between almost

equally accurate TS and CS. Perhaps surprisingly, we show that the presence of

outliers in the distribution of unobserved heterogeneity means that there can be an

advantage to forecast selection even when TS and CS are indistinguishable in terms

of accuracy.

There is a relatively recent literature on microforecasting with panel data. See,

e.g., Chamberlain and Hirano (1999) for an earlier reference and Baltagi (2008) for

a brief survey. Gu and Koenker (2015) and Liu et al. (2020) show the optimality

of empirical Bayes methods for microforecasting in context different from ours.1

Our findings show that it is possible to further improve on empirical Bayes by se-

lecting which individuals to shrink towards the mean, as long as empirical Bayes

does not uniformly dominate the competing method over the state-space. Our work

is broadly related to Giannone et al. (2021), who emphasize the role of predictive

model uncertainty and show that a single sparse model is limited in economic ap-

plications.

This paper can be related to the literature on statistical decision theory for

decision making. For example, Manski (2019) emphasizes evaluation of decision

rules by its performance across the state-space and advocates the minimax regret

criterion. There are only a couple of papers that apply the minimax regret crite-

rion to panel data: handling missing data in sample design (Dominitz and Manski,

1Specifically, Gu and Koenker (2015) and Liu et al. (2020) consider a linear dynamic panel data
model, whereas we consider a simple static model of the sum of time-invariant unobserved hetero-
geneity and an idiosyncratic shock with both terms having individual-specific variances. Strictly
speaking, the two models are non-nested.
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2021) and forecasting discrete outcomes under partial identification or other con-

cerns (Christensen et al., 2020). Their focuses are distinct from ours.

IFS delivers a clustering of individuals according to which forecasting method

is more accurate out-of-sample. In contrast, the literature on model-based clustering

(e.g., Fröhwirth-Schnatter and Kaufmann, 2008) postulates the existence of a finite

number of clusters for the parameters of a given model, and then assigns individuals

to different clusters based on a measure of in-sample fit.

In the empirical application, we extend IFS to a richer class of models and

estimators for predicting earnings in the Panel Study of Income Dynamics (PSID).

Different models of earnings have been proposed in the literature, including models

with persistent and transitory income shocks, with possibly time-varying volatil-

ity. Understanding which model performs best has potentially useful implications:

In macroeconomics (Guvenen (2007), Guvenen (2009), Heathcote et al. (2010),

Arellano et al. (2015)), the process for earnings is a key element of models with

incomplete markets and, hence, the chosen specification affects the patterns of con-

sumption and labour supply over the life cycle. The earnings process also plays a

crucial role for the determination of wealth inequality and for the design of opti-

mal taxation and optimal social insurance. In labour economics (MaCurdy (1982),

Lillard and Weiss (1979), Meghir and Pistaferri (2004)), the distinction between

persistent and transitory shocks and the trade-off between heterogeneity and persis-

tence can help explain how individual earnings evolve over time and is relevant for

studying income mobility and for testing models of human capital accumulation.

The literature has used in-sample methods to evaluate some of the proposed mod-

els but no general agreement has yet been reached. Our empirical results could be

viewed as providing a comparative evaluation of the alternative models considered

in the literature, through the different lens of their forecasting performance.

The chapter is organized as follows. Section 3.2 describes the proposed ap-

proach. In Section 3.3 we derive the properties of IFS: we analytically show that

IFS can be optimal according to a minimax regret criterion under general assump-

tions. Section 3.4 describes the data used in the empirical applications and reports
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the empirical findings. Finally, Section 3.5 concludes.

3.2 Individual Forecast Selection (IFS)
Our goal is microforecasting, that is, for individual i, we aim to forecast the outcome

Yi,T+1 at time T using panel data YN,T := {Yi,t : i = 1, . . . ,N, t = 1, . . . ,T}.2 We

consider a short panel setup so that we have a large N and short T .

At time T , we have a class of K possible forecasting methods to choose from

for each i:

F = { fk(YN,T ), k = 1, ...,K}.

A forecast method is generically defined as a function of the panel data available at

time T . This allows for forecasts based on models with individual-specific param-

eters, which are estimated using the individual’s time series as well as models with

parameters that are common across individuals, which are estimated using pooling

techniques. It also allows for the use of Bayesian methods. Forecasts that are based

on the same model but rely on different estimators are also viewed as different fore-

casting methods.

For each individual i, IFS chooses the method that would have given the most

accurate forecast at time T − 1 for the outcome at time T , for example based on a

quadratic loss:

k̂i = arg min
k=1,...,K

(Yi,T − fk(YN,T−1))
2.

The one-step-ahead forecast for individual i at time T is then based on the k̂i-th

method:

Ŷ IFS
i,T = fk̂i

(YN,T ).

The procedure induces a clustering of individuals based on out-of-sample forecast

2For simplicity of notation we focus on a balanced panel, but the method extends to unbalanced
panels in a straightforward manner.
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accuracy, with the number of clusters determined endogenously. Note that we base

selection on the out-of-sample accuracy in one time period. This can be viewed as

a worst-case scenario that allows for panels with a very short time dimension (e.g.,

T = 2,3 observations). For longer time-series dimensions, one could instead base

the selection on average accuracy computed over a larger out-of-sample window,

for example comprising observations at times T − `, ...,T , for some integer ` > 0.

3.3 Minimax regret optimality of IFS
We consider two cases where the competing forecasts from which IFS chooses are

in one case a time-series (TS) and a cross-sectional (CS) forecast and in the other

case TS and an empirical Bayes (EB) forecast. For each case, we show that IFS can

be minimax regret optimal among the three models (TS, CS, IFS in the one case or

TS, EB, IFS in the other case) in the context of a simple data-generating process.

3.3.1 Setup

Throughout the paper, we let roman capital letters denote random variables and

greek lowercase letters denote parameters or other non-random quantities, respec-

tively. The usual indicator function is denoted by I{A} for an event A. That is,

I{A}= 1 if A is true and I{A}= 0 otherwise.

Assume that for each individual i,

Yi,t = Ai +Ui,t , i = 1, ...,N; t = 1, ...,T, (3.1)

where Ai ∼ (0,λ 2
i ) and Ui,t ∼ (0,σ2

i ). Suppose that Ai,Ui,1, . . . ,Ui,T are mutually

independent. Furthermore, Yi,t are independent across individuals. However, we do

not assume that Yi,t are identically distributed over i. Instead, the variances λ 2
i and

σ2
i are heterogenous across individuals. Here, Ai,Ui,1, . . . ,Ui,T are random vari-

ables, whereas λ 2
i and σ2

i are individual-specific parameters. In other words, we

take the frequentist approach.

3.3.2 IFS: time-series vs. cross-section

In this section we consider IFS based on the following forecasting methods:
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• Time series forecast (TS) Ŷ T S
i,T := Yi,T ,

• Cross sectional forecast (CS) ŶCS
i,T := 1

N ∑
N
j=1Yj,T .

In words, TS predicts Yi,T+1 using the most recent individual time-series observa-

tion, whereas CS uses the most recent cross-sectional average.

In this section we base IFS on the out-of-sample performance at time T − 1,

instead of time T as described in Section 2. This simplifies the analytical results

as it introduces independence between the forecast and the forecast selection rule.

Assuming T ≥ 3, we thus define IFS for predicting Yi,T+1 as

Ŷ IFS
i,T := Ŷ T S

i,T I
{
(Yi,T−1− Ŷ T S

i,T−2)
2 ≤ (Yi,T−1− ŶCS

i,T−2)
2
}

+ ŶCS
i,T I
{
(Yi,T−1− Ŷ T S

i,T−2)
2 > (Yi,T−1− ŶCS

i,T−2)
2
}
,

(3.2)

In words, we make use of the observations at time T −1 and T −2 to select between

TS and CS and employ the observations at time T to forecast Yi,T+1, depending on

the forecast selection outcome.

3.3.2.1 Minimax Regret

Consider the mean squared forecast error of forecast m under the data-generating

process θi,

MSFE(m,θi) = E
[(

Yi,T+1− Ŷ m
i,T

)2
]
.

Here m ∈M , where M includes TS, CS, and IFS. We focus on θi = (λi,σi)

regarding the unknown status θi of the data-generating process. That is, we are

uncertain about individual heterogeneity in terms of the individual-specific variance

λ 2
i of Ai as well as the individual-specific variance σ2

i of Ui,t . Define regret as

R(m,θi) := MSFE(m,θi)− min
h∈M

MSFE(h,θi).

The minimax-regret (MMR) criterion selects the forecast m that minimizes the max-

imum regret maxθi∈Θ R(m,θi), where Θ is the set of possible states.
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Note that

MSFE(TS,θi) = E
[
(Yi,T+1−YiT )

2
]
= 2σ

2
i

and

MSFE(CS,θi) = E

(Yi,T+1−
1
N

N

∑
j=1

Yj,T

)2
=: λ

2
i +σ

2
i +RN ,

where RN is the remainder term.

For the IFS rule, note that

Yi,T+1− Ŷ IFS
i,T =

(
Yi,T+1− Ŷ T S

i,T

)
I
{
(Yi,T−1− Ŷ T S

i,T−2)
2 ≤ (Yi,T−1− ŶCS

i,T−2)
2
}

+
(

Yi,T+1− ŶCS
i,T

)
I
{
(Yi,T−1− Ŷ T S

i,T−2)
2 > (Yi,T−1− ŶCS

i,T−2)
2
}
.

Thus, the mean squared forecast error for IFS is given by

MSFE(IFS,θi) = E
[(

Yi,T+1− Ŷ IFS
i,T

)2
]
,

where

(
Yi,T+1− Ŷ IFS

i,T

)2
=
(

Yi,T+1− Ŷ T S
i,T

)2
I
{
(Yi,T−1− Ŷ T S

i,T−2)
2 ≤ (Yi,T−1− ŶCS

i,T−2)
2
}

+
(

Yi,T+1− ŶCS
i,T

)2
I
{
(Yi,T−1− Ŷ T S

i,T−2)
2 > (Yi,T−1− ŶCS

i,T−2)
2
}
.

It seems tedious to analyze this general case directly. We thus consider an

important leading case where T = 3 and N is large. The TS forecast is thus Yi,3.

Since N is large, we assume that the CS forecast is 0 as a first-order approximation

to simplify the analysis. For IFS, we employ the first two period observations to

choose between TS and CS. Namely, we choose TS if (Yi,2−Yi,1)
2 ≤ Y 2

i,2 and CS if

(Yi,2−Yi,1)
2 > Y 2

i,2. Thus, the IFS forecast is

Ŷ IFS
i,3 := Yi,3I

{
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
}
, (3.3)
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using Ŷ T S
i,3 = Yi,3 and ŶCS

i,3 = 0.

Lemma 1 Assume that T = 3, the TS forecast is Yi,3, the CS forecast is 0, and the

IFS forecast is given by (3.3). Then, the mean squared forecast errors are given by

MSFE(TS,θi) = 2σ
2
i ,

MSFE(CS,θi) = λ
2
i +σ

2
i ,

MSFE(IFS,θi) =
(
λ

2
i +σ

2
i
)
+σ

2
i Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]

−E
[
A2

i Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai

]]
.

3.3.2.2 Analytical results

To derive analytical results for IFS, we impose the following condition.

Assumption 1 For each t = 1,2, the distribution of Ui,t is absolutely continuous

with respect to the Lebesgue measure. In addition, Ai, Ui,1 and Ui,2 are mutually

independent and satisfy

Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai

]
≥ Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
]

a.s. (3.4)

Condition (3.4) in Assumption 1 is the key condition in the paper. It can be

rewritten as

Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai

]
≥ Pr

[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2|Ai = 0

]
a.s.

Thus, condition (3.4) seems plausible because it should be easier to satisfy

(Ui,2−Ui,1)
2 ≤ (Ai +Ui,2)

2,

when Ai deviates from zero. Figure 3.1 demonstrates that this condition is satis-

fied when Ui,1 and Ui,1 are generated independently from N(0,1). In the figure,

the blue curve corresponds to Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2
∣∣Ai = α

]
, which is the

probability of selecting TS in IFS, and the red dotted horizontal line is the value
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of Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2|Ai = 0

]
, which is the probability of selecting TS

when Ai equals zero.
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Figure 3.1: Graphical Demonstration of Assumption 1

Note that

Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai

]
= E

[
Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai,Ui,2

]∣∣Ai
]

= E
[
F
(
|Ai +Ui,2|

∣∣Ui,2
)
−F

(
−|Ai +Ui,2|

∣∣Ui,2
)∣∣Ai

]
,

where F(·|Ui,2) is the CDF of Ui,2−Ui,1 conditional on Ui,2. Thus, a sufficient con-

dition for (3.7) can be obtained if we assume some shape restrictions on F(·|Ui,2).

Namely, for each a ∈ R,

F
(
|a+Ui,2|

∣∣Ui,2
)
−F

(
−|a+Ui,2|

∣∣Ui,2
)
≥ F

(
|Ui,2|

∣∣Ui,2
)
−F

(
−|Ui,2|

∣∣Ui,2
)

a.s.

(3.5)

We now move to the next set of regularity conditions. Intuitively, we expect
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that

MSFE(TS,θi) = 2σ
2
i ≥MSFE(IFS,θi) if λ

2
i is sufficiently small,

MSFE(CS,θi) = λ
2
i +σ

2
i ≥MSFE(IFS,θi) if λ

2
i is sufficiently large.

We formalize this intuition in the following two assumptions.

Assumption 2 The individual-specific variance λ 2
i of Ai is small with respect to the

individual-specific variance σ2
i of Ui,t in the sense that

λ 2
i

σ2
i
≤

1−Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
1−Pr

[
(Ui,2−Ui,1)2 ≤U2

i,2

] . (3.6)

Assumption 3 The individual-specific variance λ 2
i of Ai is large with respect to the

individual-specific variance σ2
i of Ui,t in the sense that

λ 2
i

σ2
i
≥

Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

] . (3.7)

A sufficient condition for (3.7) is simply

λ
2
i ≥

σ2
i

Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

] . (3.8)

The right-hand side of the inequality above is solely a property of the distribution of

idiosyncratic terms Ui,t’s, independent of the fixed effect Ai. Thus, (3.8) is satisfied

if λ 2
i is sufficiently large.

We now turn to (3.6). Let us further assume that there exists a constant η < 1

such that Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
≤ η . This is reasonable since it mainly excludes

the case that one can detect the regime for TS perfectly. Then, a sufficient condition

for (3.6) is simply

λ
2
i ≤

σ2
i (1−η)

Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

] , (3.9)
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which holds if λ 2
i is sufficiently small.

The following theorem establishes that IFS performs better than TS if λ 2
i /σ2

i

is sufficiently small and it performs better than CS if λ 2
i /σ2

i is sufficiently large.

Theorem 1 Let Assumption 1 hold.

(i) If Assumption 2 holds, MSFE(IFS,θi)≤MSFE(TS,θi).

(ii) If Assumption 3 holds, MSFE(IFS,θi)≤MSFE(CS,θi).

We now consider the minimax-regret analysis. Suppose that M includes TS,

CS and IFS. Then

min
h∈M

MSFE(h,θi)≤ min
h∈{TS,CS}

MSFE(h,θi) = σ
2
i +min{σ2

i ,λ
2
i }.

Furthermore, the regrets for TS and CS are

R(TS,θi)≥ σ
2
i −min{σ2

i ,λ
2
i },

R(CS,θi)≥ λ
2
i −min{σ2

i ,λ
2
i }.

Since the ratio between λ 2
i and σ2

i matters, we restrict our attention to the following

state space:

Θ = Θ(µ) := {(σ2
i ,λ

2
i ) ∈ R2

+ : 1−µ ≤ λ
2
i /σ

2
i ≤ 1+µ and σ

2
i = σ

2} (3.10)

for some constant 0 < µ < 1. In other words, the only relevant quantity is λ 2
i /σ2

i

and so, without loss of generality, we set σ2
i to be common across i to simplify

representation of the state space. Here, the ratio λ 2
i /σ2

i ranges from 1−µ to 1+µ

to avoid the degenerate cases where TS uniformly dominates CS or the other way

around.

Note that

max
θi∈Θ

R(TS,θi)≥max
θi∈Θ

[
(σ2

i −λ
2
i )I{σ2

i > λ
2
i }
]
= σ

2
µ,

max
θi∈Θ

R(CS,θi)≥max
θi∈Θ

[
(λ 2

i −σ
2
i )I{σ2

i < λ
2
i }
]
= σ

2
µ.

(3.11)
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It follows from Theorem 1 that IFS will do better than CS when λ 2
i /σ2

i is suf-

ficiently large and will perform better than TS when λ 2
i /σ2

i is sufficiently small.

When λ 2
i /σ2

i is around 1, the choice between TS and CS is unimportant; as a result,

it is expected that IFS will do well even if it makes a mistake in selecting the better

model between almost equivalent TS and CS. To formalize this intuition, we impose

the following regularity condition.

Assumption 4 Each pair of (σ2
i ,λ

2
i ) ∈Θ satisfies that

max
{

Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]
,1−Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
]}

×

 Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

] − 1−Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
1−Pr

[
(Ui,2−Ui,1)2 ≤U2

i,2

]
≤ µ.

Under Assumption 1, we have that

Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
≥ Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
]
,

which implies that the left-hand side of the inequality in Assumption 4 is always

nonnegative. The term Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
is the probability of selecting TS

over CS, while Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2

]
is the probability of selecting TS in the

absence of the fixed effect Ai. Assumption 4 requires that Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
cannot be too large compared to Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2

]
.

Figure 3.2 shows under what conditions Assumption 4 is satisfied when (i) Ui,1

and Ui,2 are generated independently from N(0,1) and (ii) Ai is randomly drawn

from N(0,λ 2). In the figure, the x-axis shows possible values of λ 2
i /σ2

i = λ 2.

The blue curve corresponds to the left-hand side of the inequality in Assumption 4.

Suppose that the state space Θ(µ) is given by Θ(µ) = {1}× [1− µ,1+ µ] with

µ = 0.999. It can be seen that the maximum value of the blue curve on Θ is less than

µ . Thus, Assumption 4 is satisfied. However, if we shrink Θ to be too small (e.g.,

Θ(µ) = {1}× [0.9,1.1]), it will not be satisfied. One way to interpret Assumption 4

is that it requires that there be a sufficient degree of uncertainty about the value of

λ 2
i /σ2

i .
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Figure 3.2: Graphical Demonstration of Assumption 4

Before presenting one of the main results in the paper, we strengthen (3.4) in

Assumption 1.

Assumption 5 There exist a set Ai ⊂R\{0} and a constant 0 < cAi < ∞ such that

Pr(Ai ∈Ai)> 0 and for Ai ∈Ai,

Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai

]
−Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
]
≥ cAi a.s. (3.12)

In words, (3.12) requires that there is a subset of the support of Ai such that

the probability of selecting TS in IFS with nonzero Ai is, almost surely, higher (by

constant cAi) than the probability of selecting TS when Ai equals zero. We may

term the requirement in (3.4) the weak separability condition and (3.4) and (3.12)

jointly together the strong separability condition. Intuitively, Assumption 5 holds if

there are individuals whose Ai’s are sufficiently different from zero.

We will show that IFS minimizes maximum regret under Assumptions 1, 4

and 5. We first establish the following result.
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Theorem 2 Let M = {TS,CS, IFS}. Let Assumptions 1 and 4 hold. Then,

R(IFS,θi)≤ σ
2
µ

for each θi ∈ Θ, which is defined in (3.10). Furthermore, the inequality above is

strict if Assumption 5 holds additionally.

Theorem 2 and the inequalities (3.11) together imply the following corollary.

Corollary 1 Let Assumptions 1 and 4 hold. Then,

max
θi∈Θ

R(IFS,θi)≤min
{

max
θi∈Θ

R(TS,θi),max
θi∈Θ

R(CS,θi)

}
,

where Θ is defined in (3.10). Furthermore, the inequality above is strict if Assump-

tion 5 holds additionally.
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Figure 3.3: Mean Squared Forecast Errors

Corollary 1 implies that IFS minimizes maximum regret. Figures 3.3 and 3.4

show the mean squared forecast error (MSFE) and regret for each of the prediction
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Figure 3.4: IFS is Minimax-Regret Optimal

models when (i) Ui,1 and Ui,2 are generated independently from N(0,1) and (ii) Ai

is randomly drawn from N(0,λ 2), as in Figure 3.2. Note that the MSFE for CS is

the smallest when λ 2 is sufficiently small; the MSFE for TS is the smallest when λ 2

is sufficiently large. No prediction model is uniformly superior in terms of MSFE;

however, it can be seen in Figure 3.4 that IFS is minimax-regret optimal when the

state space is e.g., Θ(µ) = {1}× [0.001,1.999].

3.3.2.3 IFS with equally accurate forecasts

One might ask whether there could be any value of implementing IFS when both

TS and CS perform equally well in terms of MSFE. We answer this question in this

section by limiting our attention to discrete heterogeneity for Ai.

By Lemma 1, we have that if λ 2
i = σ2

i = 1, the mean squared forecast errors

are MSFE(TS,θi) = MSFE(CS,θi) = 2 and

MSFE(IFS,θi) = 2+Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
−E

[
A2

i Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai

]]
.
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To analyze MSFE(IFS,θi) further, we assume discrete heterogeneity for Ai:

Ai =


−(2δi)

−1/2 with prob. δi

0 with prob. 1−2δi

(2δi)
−1/2 with prob. δi

(3.13)

and assume that δi ∈ (0,0.5]. The discrete distribution of Ai is symmetric around

zero with three probability mass points and has a constant variance of one, regard-

less of the value of δi. When δi = 0.5, Ai is a Rademacher random variable that

takes values ±1 with equal probability. As δi→ 0, Ai is mostly zero but can have

a very large positive or negative value with very small probability. We interpret

individuals with small δi’s as those whose realized values of individual fixed effects

can be outliers.

Theorem 3 Let Assumption 1 hold and assume that λ 2
i = σ2

i = 1 and Ai follows

the discrete distribution given in (3.13). Then,

MSFE(IFS,θi)≤MSFE(TS,θi) = MSFE(CS,θi) = 2

for any value in δi ∈ (0,0.5] in (3.13). Furthermore, the inequality above holds

strictly if 0< δi < 0.5 and Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2

]
<Pr

[
(Ui,2−Ui,1)

2 ≤ {(2δi)
−1/2 +Ui,2}2

]
.

The theorem shows that (i) IFS is weakly more accurate than TS and CS, even

when the two forecasts are equally accurate for any value of δi ∈ (0,0.5]; (ii) IFS is

strictly more accurate than TS and CS if outliers in the distribution of unobserved

heterogeneity delivers strict improvement in selecting TS over CS in IFS.

3.3.3 IFS: time series vs. empirical Bayes

We now consider the case where IFS selects between TS and an empirical Bayes

forecast. In this section we assume T = 4 and that N is large.

For the TS forecast, we assume that the forecast is the mean of the previous



3.3. Minimax regret optimality of IFS 66

two time-periods: Ŷ T S
i,4 := (Yi,4 +Yi,3)/2. Then, the MSFE for TS is

MSFE(TS,θi) = E
[{

Yi,5− (Yi,4 +Yi,3)/2
}2
]
= 1.5σ

2
i .

For the forecast based on cross-sectional information, we go beyond the simple

cross-sectional average and consider the following infeasible version of empirical

Bayes (EB):

Ŷ EB
i,4 :=

1
N

N

∑
j=1

Y j,4 +
λ 2

i

λ 2
i +σ2

i

(
Yi,4−

1
N

N

∑
j=1

Yj,4

)
. (3.14)

Since N is large, we again assume that the cross-sectional average is zero in order

to simplify the analysis. The EB forecast is thus

Ŷ EB
i,4 = ωiYi,4,

with ωi ≡ λ 2
i /(λ

2
i +σ2

i ). The MSFE for EB is

MSFE(EB,θi) = E
[(

Yi,5−ωiYi,4
)2
]

= (1+ωi)σ
2
i .

There are three cases: (i) λ 2
i > σ2

i , (ii) λ 2
i < σ2

i , and (iii) λ 2
i = σ2

i . In case (iii), we

have that ωi = 0.5 and MSFE(EB,θi) = MSFE(TS,θi) = 1.5σ2
i . If λ 2

i > σ2
i , then

ωi > 0.5 and

MSFE(EB,θi)> 1.5σ
2
i .

Therefore, in case (i), TS dominates EB. On the other hand, in case (ii) we have

ωi < 0.5 and

MSFE(EB,θi)< 1.5σ
2
i ,

which implies that EB dominates TS.
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We now define a modified version of the IFS rule based on the out-of-sample

performance at time T − 2, which induces independence between the forecast and

the selection rule in order to simplify the analytical results:

Ŷ IFS
i,4 := 0.5(Yi,4 +Yi,3)I

{
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
}
+ωiYj,4I

{
(Yi,2−Yi,1)

2 > Y 2
i,2
}
.

(3.15)

Note that the indicator functions (that is, the forecast selection rule) are the same as

those in (3.3). This is because in the current setup, it is still crucial whether λ 2
i ≥ σ2

i

or not in order to decide which one to choose between TS and EB.

Lemma 2 Assume that T = 4, the TS forecast is (Yi,4 +Yi,3)/2, the EB forecast is

ωiYi,4 with ωi = λ 2
i /(λ

2
i +σ2

i ), and the IFS forecast is given by (3.15). Then, the

mean squared forecast errors are given by

MSFE(TS,θi) = 1.5σ
2
i ,

MSFE(EB,θi) = (1+ωi)σ
2
i ,

MSFE(IFS,θi) = (1+ωi)σ
2
i +(0.5−ω

2
i )σ

2
i Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]

−E
[
(1−ωi)

2A2
i Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai

]]
.

We now show minimax regret optimality for IFS when selecting between TS

and EB.

3.3.3.1 Analytical results

We make the following assumptions.

Assumption 6 Suppose that 0 ≤ ωi ≤ 0.5. Then, the individual-specific variance

λ 2
i of Ai is small with respect to the individual-specific variance σ2

i of Ui,t in the

sense that

2ωi ≤
1−Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
1−Pr

[
(Ui,2−Ui,1)2 ≤U2

i,2

] . (3.16)
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Define

ν(ω) :=
ω(1−ω)

0.5−ω2 .

Assumption 7 Suppose that 0.5 < ωi <
√

0.5. Then, the individual-specific vari-

ance λ 2
i of Ai is large with respect to the individual-specific variance σ2

i of Ui,t in

the sense that

ν(ωi)≥
Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

] . (3.17)

The following theorem establishes that IFS performs better than TS if ωi is

sufficiently small and performs better than EB if ωi is sufficiently large.

Theorem 4 Let Assumption 1 hold.

(i) If Assumption 6 holds, MSFE(IFS,θi)≤MSFE(TS,θi).

(ii) If Assumption 7 holds or ωi ≥
√

0.5, MSFE(IFS,θi)≤MSFE(EB,θi).

For the minimax regret analysis, let M include TS, EB and IFS. Then

min
h∈M

MSFE(h,θi)≤ min
h∈{TS,EB}

MSFE(h,θi) = σ
2
i +min{0.5,ωi}σ2

i .

Furthermore, the regrets for TS and EB are

R(TS,θi)≥ 0.5σ
2
i −min{0.5,ωi}σ2

i ,

R(EB,θi)≥ ωiσ
2
i −min{0.5,ωi}σ2

i .

Since it is crucial whether ωi ≥ 0.5 or not, in this section, we consider the following

state space:

Ω = Ω(κ) :=
{
(σ2

i ,λ
2
i ) ∈ R2

+ :
1−κ

2
≤ ωi ≤

1+κ

2
and σ

2
i = σ

2
}

(3.18)
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for some constant 0 < κ < 1. In view of the state space given in (3.18),

max
θi∈Ω

R(TS,θi)≥ σ
2 κ

2
,

max
θi∈Ω

R(EB,θi)≥ σ
2 κ

2
.

(3.19)

To establish that IFS minimizes maximum regret, we consider the partition of Ω =

Ωa∪Ωb∪Ωc∪Ωd ∪Ωe:

Ωa :=
{
(σ2

i ,λ
2
i ) ∈Ω :

√
0.5 < ωi ≤ 1

}
,

Ωb :=

(σ2
i ,λ

2
i ) ∈Ω : 0.5 < ωi <

√
0.5 and ν(ωi)≥

Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

]
 ,

Ωc :=

(σ2
i ,λ

2
i ) ∈Ω : 0.5 < ωi <

√
0.5 and ν(ωi)<

Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

]
 ,

Ωd :=

(σ2
i ,λ

2
i ) ∈Ω : 0≤ ωi < 0.5 and 2ωi ≤

1−Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
1−Pr

[
(Ui,2−Ui,1)2 ≤U2

i,2

]
 ,

Ωe :=

(σ2
i ,λ

2
i ) ∈Ω : 0≤ ωi < 0.5 and 2ωi >

1−Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
1−Pr

[
(Ui,2−Ui,1)2 ≤U2

i,2

]
 .

In view of Theorem 4, IFS will perform well if (σ2
i ,λ

2
i ) ∈ Ωa∪Ωb∪Ωd . For

other cases, we now make an assumption comparable to Assumption 4.

Assumption 8 (i) If (σ2
i ,λ

2
i ) ∈Ωc, we have that

2ωi
(
1−Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
])
−
(
1−Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
])
≤ κ.

(ii) If (σ2
i ,λ

2
i ) ∈Ωe, we have that

Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
−2ωiPr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
]
≤ κ.

Figure 3.5 shows under what conditions Assumption 8 is satisfied again when

(i) Ui,1 and Ui,2 are generated independently from N(0,1) and (ii) Ai is ran-
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Figure 3.5: Graphical Demonstration of Assumption 8

domly drawn from N(0,λ 2). In the figure, the x-axis shows possible values of

ω = λ 2/(λ 2 +1). The blue solid line segment corresponds to the left-hand side of

the inequality in Assumption 8 (1) when (σ2
i ,λ

2
i ) ∈ Ωc. On Ωc, it is required that

0.5 < ωi <
√

0.5 and

ν(ωi)<
Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

] .
It turns out that with normally generated Ui,1, Ui,2, and Ai do not satisfy the latter

condition once ωi is greater than 0.6. This is why the blue solid line does now show

for values of ωi larger than 0.6. The blue dotted line segment corresponds to the left-

hand side of the inequality in Assumption 8 (2) when (σ2
i ,λ

2
i ) ∈Ωe. It can be seen

from Figure 3.5 that the maximum of the left-hand side of the inequalities in As-

sumption 8 is less than 0.4, which implies that Assumption 8 is satisfied, provided

that κ ≥ 0.4 for Ω(κ) =
{
(σ2

i ,λ
2
i ) ∈ R2

+ : 1−κ ≤ 2ωi ≤ 1+κ and σ2
i = σ2} .

Thus, as in Assumption 4, Assumption 8 requires that there be a sufficient degree

of uncertainty about the value of λ 2
i /σ2

i .
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We first establish the following result.

Theorem 5 Let M = {TS,EB, IFS}. Let Assumptions 1 and 8 hold. Then,

R(IFS,θi)≤ σ
2 κ

2

for each θi ∈Ω(κ), which is defined in (3.18). Furthermore, the inequality above is

strict if Assumption 5 holds additionally.

Theorem 5 and the inequalities in (3.19) together imply that IFS minimizes

maximum regret under Assumptions 1 and 8.

Corollary 2 Let Assumptions 1 and 8 hold. Then,

max
θi∈Ω

R(IFS,θi)≤min
{

max
θi∈Ω

R(TS,θi),max
θi∈Ω

R(EB,θi)

}
,

where Ω is defined in (3.18). Furthermore, the inequality above is strict if Assump-

tion 5 holds additionally.
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Figure 3.7: IFS is Minimax-Regret Optimal

Corollary 2 implies that IFS again minimizes maximum regret in the current

setting. Figures 3.6 and 3.7 show the mean squared forecast error (MSFE) and

the regret for each of the prediction models when (i) Ui,1 and Ui,2 are generated

independently from N(0,1) and (ii) Ai is randomly drawn from N(0,λ 2), as in the

previous figures. Note that the MSFE for EB is the smallest when ω = λ 2/(λ 2+1)

is sufficiently small; the MSFE for TS is the smallest when ω is sufficiently large.

As in the previous section, no forecast is uniformly superior in terms of MSFE;

however, it can be seen in Figure 3.7 that the forecast based on IFS is minimax-

regret optimal when the state space is Θ(κ) with a sufficiently large κ , for instance

κ = 0.4.

3.3.4 Extending to a model with nonzero individual-specific

means

Recall that our model (3.1) is written as

Yi,t = Ai +Ui,t ,
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where Ai∼ (0,λ 2
i ) and Ui,t ∼ (0,σ2

i ) and Ai,Ui,1, . . . ,Ui,T are mutually independent.

Alternatively, we may assume that Ai ∼ (αi,λ
2
i −α2

i ) and Ui,t ∼ (0,σ2
i ), where

αi is individual-specific mean of Ai and λ 2
i > α2

i . Suppose that N−1
∑

N
j=1 α j = 0.

Then, all the results presented in the previous subsections remain intact because

E(A2
i ) = λ 2

i . Hence, we can focus on (3.1) without loss of generality. In other

words, λ 2
i should be interpreted as the uncentered second moment of Ai. λ 2

i can be

different across different individuals because they have different individual means

or different individual variances (or both).

3.4 Empirical application

3.4.1 Data

We consider microforecasting of earnings using data from the Panel Study of In-

come Dynamics (PSID) for 1968-1993.3

We follow the literature on income dynamics (e.g., Meghir and Pistaferri

(2004) and Hospido (2012)) and select a sample of male workers, heads of house-

hold, aged between 24 and 55 (inclusive). We drop individuals identifying as

Latino, with a spell of self-employment, with zero or top-coded wages and with

missing records on race and education. We also require that the change in log earn-

ings is not greater than +5 or less than −3.

Following the literature, we work with earnings residuals obtained from a first

stage regression of log labor income of an individual i at time t, Yi,t , on a set of

demographic variables: education, a quadratic polynomial in age, race and year

dummies. We denote by yi,t the residuals from this regression. Forecasting earnings

residuals is of interest in its own right since earnings residuals measure individ-

ual income risk. For instance, accurate forecasting of individual earnings residuals

might be of key importance for prospective lenders when reviewing loan applica-

tions to decide among a pool of potential loan applicants. Note that the methodology

we propose could be used to forecast earnings as well. We do not do it here to avoid

3We are using data only up to 1993 because, from 1994, a major revision of the survey disrupted
the continuity of PSID files, see Hospido (2015) and Kim et al. (2000). Moreover, after 1997 the
PSID switched from an annual to a biannual data collection.
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specifying how to model time trend and macro-shocks.

In the following, the goal is to obtain individual one-year-ahead forecasts of

the individual outcomes yi,t .

3.4.2 Out-of-sample performance of IFS

In this subsection we compare the out-of-sample accuracy of IFS versus using the

same forecast method for all individuals. We report results for the balanced samples

of N = 164 individuals with continuous earnings in all consecutive years for 1968-

1993. We first consider forecasts based on a simple static model as in section 3.3.2:

yi,t = αi + εi,t . (3.20)

For each T = 1972, ...,1992, we produce individual one-step-ahead forecasts

by the following methods: Time Series (TS), which forecasts the outcome at time

T +1 by the average of individual outcomes from time 1 up to time T ; Cross Section

(CS), which uses the cross-sectional average at time T ; a feasible version of the

empirical Bayes (EB) forecast in equation (3.14):

Ŷ EB
i,t :=

1
N

N

∑
j=1

Y j,t +
λ̂ 2

i

λ̂ 2
i + σ̂2

i

(
Yi,t−

1
N

N

∑
j=1

Yj,t

)
., (3.21)

where λ̂ 2
i + σ̂2

i = 1
T−1 ∑

T
t=1(Yi,t − ( 1

T ∑
T
s=1Yi,s))

2, σ̂2
i = 1

2T ∑
T−1
t=1 (Yi,t −Yi,t+1)

2, and

λ̂ 2
i is calculated as the difference between these two estimators. Finally, we con-

sider Individual Forecast Selection (IFS) between TS or CS or between CS and EB

depending on which of the two methods had the smaller squared error in forecasting

the T -outcome at time T −1.

We then compare the individual out-of-sample forecasts from each method k,

{ŷk
i,T} to the actual realizations {yi,T+1}, for T = 1972, ...,1992, i = 1, ...,N.

We evaluate the out-of-sample accuracy by the average Mean Squared Fore-

cast Error. For each forecasting method k and each individual i, the mean squared
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forecast error over the out-of-sample period is

MSFE(k, i) =
1

23

1992

∑
T=1970

(yi,T+1− ŷk
i,T )

2.

Table 3.1 reports the average of MSFE(k, i) over i for each forecasting method

k.

Table 3.1: Out-of-sample Accuracy - Static Model

Method TS CS EB IFS
TS CS TS EB

Avg. MSFE 0.102 0.210 0.175 0.094 0.098

Table 1 shows that, while TS outperforms CS and EB in terms of average

MSFE, IFS further improves accuracy by deciding which individuals to pool or

shrink towards the mean.

To gain some insight into which individuals are pooled by IFS, in Figure 3.8

we divide the individuals into ten quantiles according to their lagged earnings (the

vertical axis) for each year (the horizontal axis). Within each quantile we compute

the most frequently selected forecast by IFS: a triangle indicates that for the majority

of the individuals in that year and in that quantile IFS selected TS, while a dot

indicates that IFS selected CS. Figure 3.8 shows that it is only individuals in the

center of the earnings distribution who benefit from pooling.

One possible interpretation of our findings is that in the PSID there is enough

unobserved heterogeneity and a long enough time-series dimension to make the

time series forecast perform better than pooling everybody or shrinking everybody

towards the mean. However, an additional improvement in accuracy can be obtained

by IFS, which tends to pool (or shrink towards the mean) individuals with earnings

residuals near the center of the distribution.

Finally, we consider a dynamic panel data model for earnings residuals:

yi,t = αi +ρiyi,t−1 + εi,t . (3.22)
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Figure 3.8: Most frequently selected forecast by year and earnings quantiles

We focus again on one-step-ahead forecasts of yi,T+1 and consider four fore-

casting methods based on estimators of the parameters that make different use of

the time series and cross-sectional dimensions of the panel:

1. Time Series (TS): α̂i+ ρ̂iyiT . This method assumes individual-specific αi and

ρi and estimates them using the time series dimension.

2. Plug-In QMLE (PI): α̂i(ρ̂QMLE) + ρ̂QMLEyiT . This method assumes

individual-specific αi but common ρ and is based on quasi-maximum likeli-

hood estimation of common ρ , which integrates out αi under some random

effects distribution of αi given initial conditions Yi0. The αi are then estimated

for each unit i by maximum likelihood estimation conditional on ρ̂ . 4

3. Pooled OLS (Pooled): α̂P + ρ̂PyiT . This method assumes common α and ρ

and is based on a joint maximum likelihood estimation of the parameters α

4Estimation of ρ via QMLE is the same for both PI and EB. The difference between the two is
in estimation of the individual-specific αi, which are shrunk towards some common values in EB.
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and ρ:

(α̂P, ρ̂P) = argminα,ρ
1

NT

N

∑
i=1

T

∑
t=1

(Yit−ρYit−1−α)2

4. Empirical Bayes (EB). This method assumes common ρ and shrinks the

individual-specific αi towards some common values. See Appendix B.2 for

details on estimation.

We then consider IFS based on all four methods as well as IFS based on pairwise

combinations of each “time series” method (TS or PI) with each “cross-sectional”

method (Pooled or EB).

We again evaluate performance based on average MSFE across individuals.

The results are reported in Table 3.2.

Table 3.2: Out-of-sample Accuracy - Dynamic Model

Method TS PI Pooled EB IFS
All TS Pooled TS EB PI Pooled PI EB

Avg. MSFE 0.081 0.074 0.080 0.074 0.077 0.078 0.074 0.076 0.073

Table 3.2 shows that PI and EB are equally accurate and outperform the re-

maining forecasts, however performing IFS between these two methods further im-

proves the performance. This finding confirms the usefulness of IFS even when

choosing between methods that have very good and equal forecasting accuracy.

Performing IFS among all four methods however results in a slight deterioration of

the performance, suggesting caution about including poor-performing methods in

the class from which IFS chooses.

3.5 Conclusions
There may be no “one-size-fits all” model for forecasting with micro panel data.

Individual forecast selection improves forecast accuracy of individual forecasts and

is minimax-regret optimal under general assumptions. Theoretical and empirical

results using PSID data show that the proposed approach optimally trade-offs time
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series and cross-sectional information. They further show that it can deliver accu-

racy gains over state-of-the-art approaches such as Empirical Bayes methods. Sev-

eral extensions are of interest: 1) unbalanced panel data; 2) other models typically

considered in the earnings literature, e.g. persistent-transitory decomposition with

or without heterogeneous slope of earnings profiles (HIP vs RIP); 3) models with

heterogeneous persistence; 4) IFS based on in-sample rather than pseudo-out-of

sample accuracy for selection of the best forecasting methods; 5) comparison with

forecasts based on spike and slab prior.



Chapter 4

Regularized CUE: a

Quasi-Likelihood Approach

4.1 Introduction

Two-step generalized method of moments (GMM) is widely used in economics.

However, this estimator can suffer from severe biases in finite samples, see e.g.

Hansen et al. (1996), Hausman et al. (2011), Newey and Smith (2004). Hansen

et al. (1996) proposed the Continuous Updating Estimator (CUE) as a solution to

this bias problem and demonstrated through Monte Carlo simulations that CUE

indeed significantly reduces the bias problem; Newey and Smith (2004) provided

an analytical argument to support this evidence.

Unfortunately, the bias reduction comes at a price: The CUE in some applica-

tions exhibits large finite sample variances compared to the 2-step GMM. One pos-

sible explanation for this feature is that the CUE suffers from a no-moment problem.

There is not a formal proof of this hypothesis in general but Monte Carlo studies

have demonstrated that CUE is likely not to have any moments in finite samples.

Among others, Guggenberger et al. (2005), Guggenberger (2008), Hausman et al.

(2011) document a better performance of CUE in terms of median bias but fatter

tails with respect to 2-step GMM, suggesting that CUE might have no moments.

Moreover, in the case of linear IV models with homoskedastic errors, CUE is the

Limited Information Maximum Likelihood (LIML) estimator, which is known to
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have no moments; see Mariano and Sawa (1972), Fuller (1977), and Kinal (1980)).

The no-moments problem does not appear to be particular to the CUE. It be-

longs to the class of Generalized Empirical Likelihood (GEL) estimators, as shown

by Newey and Smith (2004), which also include the Empirical Likelihood (EL) of

Owen (1988) and the Exponential Tilting (ET) estimator of Kitamura and Stutzer

(1997). Newey and Smith (2004) prove that all GEL estimators eliminate important

sources of bias for GMM but Guggenberger (2008), among others, provide Monte

Carlo evidence that all GEL estimators are likely not to have moments.

In this chapter, we propose a regularized version of the CUE which we refer

to as the quasi-likelihood GMM (QL-GMM) estimator. The estimator is obtained

by adding the log-determinant of the optimal weighting matrix to the usual GMM

objective function that defines the CUE. The motivation for this term is asymptotic:

Assuming that the sample moments satisfy a CLT, the QL-GMM objective function

is simply the large-sample log-likelihood of the sample moments. The additional

variance term works as a finite-sample penalization that implicitly imposes further

restrictions on the resulting estimator.

We show, through simulations, that the regularization reduces finite-sample

variances while only adding moderate finite-sample biases. At the same time, since

the penalization term vanishes with 1/n-rate, the QL-GMM is first-order asymptoti-

cally equivalent to the corresponding CUE and efficient 2-step GMM. In the special

case of linear IV, we analytically demonstrate that the QL-GMM indeed has finite

moments.

We conduct extensive Monte Carlo simulations to provide evidence that the

new estimator is an attractive alternative to 2-step GMM and CUE. We find that in

general QL-GMM has tighter tails than CUE, restoring its finite sample moments,

and that this comes with a small price in terms of slightly bigger biases compared

to the CUE in some settings. In addition to this, QL-GMM is computationally

easier to implement since the penalization term implicitly reduces the parameter

space to be searched over. In particular, in contrast to the CUE, we find that the

QL-GMM objective function is more regular with a well-defined unique optimizer.



4.1. Introduction 81

Thus, standard numerical solvers can be used to compute the estimator while the

CUE estimator generally requires fine tuning and choosing multiple initial values in

order to compute the estimator.

Our proposal is related to Holcblat (2015) and Holcblat and Sowell (2019),

who propose the Empirical Saddle Point (ESP) approximation as an alternative to

GMM estimators. The ESP estimator corresponds to an MM estimator (or, equiv-

alently, any Generalize Empirical Likelihood (GEL) estimator) shrunk toward pa-

rameter values with lower estimated variance. This estimator is however computa-

tionally more demanding to implement.

QL-GMM is also related to the Regularized CUE (RCUE) proposed by Haus-

man et al. (2011), which is meant as a Fuller analogue of the CUE estimator. The

authors take as starting point the FOCs of the CUE and then add to these two pe-

nalization terms which are meant to regularize the estimator. Hausman et al. (2011)

show that the RCUE reduces the dispersion of the CUE in their Monte Carlo simula-

tions and analytically prove that the proposed estimator have finite sample moments

in a linear IV setting. However, implementations of RCUE’s require the econome-

trician to specify the penalization terms that enter the RCUE. The performance of

RCUE is very sensitive to the chosen penalizations, but Hausman et al. (2011) pro-

vide very little guidance for how to choose these. Thus, it is unclear how to achieve

good performance of their estimator in practice. In contrast, our penalization term

comes out as a natural implication of a given model and sample.

Finally, there is a literature on ridge- and lasso-type modifications of CUE but

the focus is on selection of relevant moments and potential weak identification; see,

e.g., Caner (2009), Carrasco and Tchuente (2016), Farbmacher (2016). Thus, the

motivation and goal of the proposed penalized GMM-type estimators are different

from ours. We conjecture that one could potentially combine our proposal with

these to obtain a double-penalized version, but we do not pursue this idea here.

The remaining part of the chapter is organized as follows: Section 4.2 sets

the stage and develops the proposed estimator, QL-GMM. In Section 4.3, we an-

alyze the asymptotic and finite sample properties of QL-GMM. This section also
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discusses some optimization issues and comments about the implementation of our

estimator. In Section 4.4, we investigate the finite sample properties of QL-GMM

in many settings via Monte Carlo simulations. Finally, Section 4.5 concludes.

4.2 A Modified CUE Estimator

Let zi, i = 1, ...,n, be i.i.d. observations from a model specified in terms of a set

of m≥ 1 moment conditions, g(z,θ) ∈ Rm, that identifies the true parameter value,

θ0 ∈ Θ⊆ Rp by E[g(z,θ0)] = 0, where E[·] denotes expectation taken with respect

to the distribution of zi. Let ĝ(θ) = ∑
n
i=1 g(zi,θ)/n be the sample moments and

Ω̂(θ) ≡ n−1
∑

n
i=1 g(zi,θ)g(zi,θ)

′ be the sample covariance of the moments. Given

a first-step estimator θ̃ , the 2-step GMM estimator is defined as

θ̂GMM = argmin θ∈Θĝ(θ)′Ω̂−1(θ̃)ĝ(θ),

while the CUE proposed by Hansen et al. (1996) solves

θ̂CUE = argmin θ∈Θĝ(θ)′Ω̂−1(θ)ĝ(θ), (4.1)

where we assume that the inverse Ω̂−1(θ̃) exists (is positive definite). Under stan-

dard regularity conditions, the two estimators are first-order asymptotically equiva-

lent but their finite sample performances can be quite different. In particular, θ̂CUE

tends to have smaller biases but larger variances compared to θ̂GMM.

To remove the excess variability of θ̂CUE, we propose to regularize the objec-

tive function defining it by adding a term that penalizes “large values” of Ω̂(θ).

This is motivated by the following asymptotic argument: by the Central Limit The-

orem, the set of sample moments ĝ(θ) satisfies
√

nĝ(θ)→d N(0,Ω(θ)) assuming

that θ is the true data-generating value. Thus, its unknown likelihood function is

well-approximated by

fn (ĝ(θ)|θ) =
n

(2π)k/2
∣∣Ω̂(θ)

∣∣ 1
2

exp

{
− n

2
ĝ(θ)′Ω̂−1(θ)ĝ(θ)

}
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in large samples, where
∣∣Ω̂(θ)

∣∣ > 0 denotes the determinant of Ω̂(θ). Our QL-

GMM estimator is then defined as the corresponding quasi-maximum-likelihood

estimator, θ̂QL = argmax θ∈Θ log fn (ĝ(θ)|θ). Observe here that

log fn (ĝ(θ)|θ) ∝−1
2

log
∣∣Ω̂(θ)

∣∣− n
2

ĝ(θ)′Ω̂−1(θ)ĝ(θ),

and so we can rewrite the estimator as

θ̂QL = argmin θ∈Θĝ(θ)′Ω̂−1(θ)ĝ(θ)+
1
n

log
∣∣Ω̂(θ)

∣∣. (4.2)

Compared to the CUE objective function, the one of the QL-GMM estimator comes

with an added penalization term in the form of 1
n log

∣∣Ω̂(θ)
∣∣. This term penalizes

parameter values that generate “large values” of
∣∣Ω̂(θ)

∣∣. As we shall see, this re-

moves certain undesirable features of the CUE estimator in finite samples. At the

same time, the penalization term vanishes with rate 1/n and so θ̂QL is asymptoti-

cally first-order equivalent to θ̂CUE and θ̂GMM.

QL-GMM is related to the Regularized CUE (RCUE) proposed by Hausman

et al. (2011). The Regularized CUE (RCUE) is meant as the CUE analogue of the

Fuller adjustment of linear IV estimators. The class of RCUE’s solves a modified

version of the FOCs of the CUE where two penalization terms are added. The two

penalization terms are not specified and have to be chosen by the econometrician.

This has the advantage of giving more flexibility in terms of implementation but

the downside is that RCUE requires a careful selection of the tuning parameters

and penalty term to achieve good performance. Very little guidance in this regard

is offered by the existing literature. Our estimator has a similar structure to that of

RCUE and can also be seen as the CUE analogue of the Fuller adjustment of lin-

ear IV estimators, with a particular choice of the penalization terms. The particular

choice of 1
n log

∣∣Ω̂(θ)
∣∣ is well-motivated and requires no input from the econome-

trician; it is fully data-driven.
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4.3 Properties of QL-GMM

In this section, we analyze the asymptotic and finite sample properties of the pro-

posed estimator. We provide some intuitions on the behavior of QL-GMM in finite

sample and prove existence of moments of its finite sample distribution.

4.3.1 Asymptotic Properties

QL-GMM is first-order asymptotically equivalent to CUE: since the additional term

in the objective function of QL-GMM is a finite sample correction, to first order

there is no large sample efficiency loss:

Theorem 6 Let zi, i = 1, ...,n, be i.i.d. observations and θ be a p-dimensional

parameter vector. Assume that θ0 is the unique solution to E[g(z,θ0)] = 0, and

is situated in the interior of the compact parameter space Θ ⊂ Rp. Assume that

the m× 1 vector of moment functions g(z,θ), with m ≥ p, is continuously differ-

entiable in a neighborhood of θ0 with E[supθ∈Θ ‖g(z,θ)‖
α ] < ∞, for some α > 2,

E
[

supθ∈Θ

∥∥∥∂gi(θ)
∂θ ′

∥∥∥] < ∞ and E
[

∂gi(θ0)
∂θ ′

]
∈ Rm×p having rank p. Finally, assume

that Ω(θ)≡ E[g(z,θ)g(z,θ)′] is nonsingular for all θ . Then

√
n(θ̂QL−θ0)

d→ N(0,E
[

∂g(z,θ0)

∂θ ′

]−1
Ω(θ0)E

[
∂g(z,θ0)

′

∂θ

]−1
)

Proof. The stated assumptions are standard regularity conditions on the mo-

ment functions and their derivatives, which are required for the validity of asymp-

totic approximation for the GMM-type estimators. As n→∞ and under the assump-

tion that, for all θ ∈ Θ, Ω(θ) > 0 the additional term in the objective function of

QL-GMM vanishes sufficiently fast asymptotically: 1
n log |Ω̂(θ)| p→ 0. As a result,

θ̂QL
p→ argminθ∈ΘE[g(z,θ)]′Ω(θ)−1E[g(z,θ)] and

√
n(θ̂ −θ0)→ N(0,Σ(θ0)).

We have shown that the proposed estimator and CUE share the same behavior

asymptotically. Differences only arise in finite samples.
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4.3.2 Tail Behavior of QL-GMM and Properties of its Objective

Function

A first inspection of the objective functions that CUE and QL-GMM minimize can

shed light on how QL-GMM achieves a smaller dispersion in the estimates.

One main caveat to using CUE is that a large variance covariance matrix, Ω̂(θ),

makes the criterion function, equation (4.1), small for any value of the sample mo-

ment condition ĝ(θ). In Hansen et al. (1996) the authors argue that very large esti-

mates for the CUE estimator can be justified by the shape of its objective function.

Assume that the moment conditions are linear in the parameters to be estimated.

Then, for the 2-step GMM estimator the criterion function is quadratic in the pa-

rameter, while the criterion function for CUE is not. In particular, the objective

function of CUE converges for large values of the parameter estimates, leading to

extreme outliers for the minimizing value of the parameter.

The objective function of QL-GMM is instead quasi-convex. The regulariza-

tion term of QL-GMM, 1
n log |Ω̂(θ)|, increases as the value of the parameter esti-

mate increases when the objective function of CUE converges. This should make

the criterion function for QL-GMM, equation (4.2), large enough to potentially

eliminate the cases of extreme values in the estimates.

To see this in the context of the IV setting, consider the following setup:

E[ρ(Y,X ;θ)|Z] = 0 ⇐⇒ θ = θ0

for some generalized residual ρ(·) ∈ R. Choose as moment conditions

gi(θ) = ρ(Yi,Xi;θ) f (Zi)

for some function f (·). Let σ̂2
ε (θ) ≡ Ê[ρ(Y,X ;θ)2], where Ê[ρ(Y,X ;θ)2] is the

sample analogue estimator of E[ρ(Y,X ;θ)2]. With a homoskedasticity consistent

variance estimator Ω̂(θ) = σ̂2
ε (θ)

1
n ∑ f (Zi) f (Zi)

′,

θ̂QL = argmin θ∈Θ

1
n

log |σ̂2
ε (θ)|+ ĝ(θ)′Ω̂−1(θ)ĝ(θ).
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Assuming now that, for all values of Yi,Xi, ρ(Yi,Xi;θ) diverges to infinity as ||θ ||

diverges. It should follow that the sample variance estimator Ω̂(θ) will also diverge

since σ̂2
ε (θ) will diverge. Under this assumption, ĝ(θ)′(Ω̂(θ))−1ĝ(θ) converges to

some constant for this θ 6= θ0. But since σ̂2
ε (θ) will diverge, the term 1

n log |σ̂2
ε (θ)|

will diverge making sure that the diverging ||θ || is not selected as minimizer.

This argument can be extended to any parameter-dependent weighting matrix

in equation 4.2: Suppose that there exists a θ1 (far away from θ0, the true value) such

that Ŵ (θ1) is a singular matrix. We may potentially have that ĝ(θ1)
′Ŵ (θ1)ĝ(θ1)= 0

even if ĝ(θ1) 6= 0. But at the same time, for finite n, −1
n log(|Ŵ (θ1)|) will converge

to +∞ and thereby θ1 cannot be the minimiser.

The figure below further illustrates this point. It shows the criterion functions

for CUE and for QL-GMM in two of the Monte Carlo draws where CUE took

extreme values, in the IV setting of Hausman et al. (2011), 4.1a and 4.1b. A de-

scription of the Monte Carlo settings is in section 4.4.

(a) (b)

Figure 4.1: Criterion Functions of CUE and QL-GMM

These graphs show the criterion functions of CUE and QL-GMM for 2 Monte Carlo
draws, in the IV setting of Hausman et al. (2011).

Thus, our estimator shrinks CUE estimates toward parameter values with lower

estimated variance.

In particular, the CUE estimator suffers from convergence problems and mul-

timodality. As reported in Imbens et al. (1998), inspection reveals that typically the

objective function for the CUE estimator has multiple modes with occasionally the
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mode far away from the population value of theta higher than the mode close to

the population value. This multimodality justifies the bad performance of CUE in

Imbens et al. (1998). Hansen et al. (1996) suggest using the Matlab optimization

routine fminu.m that implements a quasi Newton algorithm, which is dependent

on an initial setting for the parameters. When this gradient method failed to con-

verge or resulted in unusual estimates, the authors also used the routine fmins.m,

which is a simplex search method. As a further check on the obtained numerical re-

sults, when extreme parameter estimates were obtained, the authors also examined

the continuous updating criterion over a grid of the parameters to obtain additional

assurance that the estimated parameters were indeed minimizers of the criterion

function. Even with a restricted parameter space, Guggenberger et al. (2005) found

that the finite sample criterion function of CUE frequently has global minimum on

the boundaries of the parameter space. Therefore, CUE is computationally prob-

lematic. Moreover, the CUE optimization procedures are sensitive to the choice of

initial conditions. Finally, Peñaranda and Sentana (2015) and Peñaranda and Sen-

tana (2012) propose some alternative intuitive methods that simplify the computa-

tion of continuously updated GMM estimators: the optimal CUE can be computed

as a minmax criterion based on a certain R2, optimally computed by means of a

sequence of OLS regressions. Also, a careful choice of simple, intuitive consis-

tent parameter estimators that can be used to obtain good initial values can help in

estimation of CUE.

Unlike CUE, QL-GMM is not sensitive to the choice of starting values.

Finally, to avoid numerical instabilities in the implementation of our estimator,

which may be due to difficulties to calculate the determinant, we consider an equiv-

alent expression for our estimator that replaces log(det(Ω(β ))) with the principal

matrix logarithm tr(logm(Ω(β ))). Given a matrix A, the principal matrix logarithm

of A, denoted as logm(A), is defined as the unique logarithm for which every eigen-

value has imaginary part lying strictly between −π and π .1

1The principal matrix logarithm of A is defined as the inverse of the matrix exponential of A,
expm(A)) ≡ V ∗ diag(exp(diag(D)))/V , if A has a full set of eigenvectors V with corresponding
eigenvalues D.
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4.3.3 Finite Samples Properties and Existence of Moments

4.3.3.1 Proof of existence of moments in the linear IV setting

Consider a linear model, y = Xθ +u, the moment function gi(θ) = z′i(yi−xiθ), and

Ω̂(θ) ≡ n−1
∑

n
i=1 gi(θ)gi(θ)

′, where y is a n×1 vector, X is a n× p matrix, θ is a

p-dimensional unknown parameter vector, and Z is a n×m matrix. n is sample size,

and m is number of instruments (number of moment conditions).

Consider a homoskedasticity consistent variance estimate:

Ω̂(θ̂) = (y−X θ̂)′(y−X θ̂)Z′Zn−2 =
1
n

n

∑
i=1

(yi−Xiθ̂)
′(yi−Xiθ̂)

1
n

n

∑
i=1

z′izi

and define:

Ḡ(θ̂CUE) :=

[
−X ′Z +

X ′(y−X θ̂CUE)

(y−X θ̂CUE)′(y−X θ̂CUE)
ĝ(θ̂CUE)

′

]
/n2.

We can write the expression for CUE as follows:

θ̂CUE = (Ḡ(θ̂CUE)
′[Ω̂(θ̂CUE)]

−1Ḡ(θ̂CUE))
−1(Ḡ(θ̂CUE)

′[Ω̂(θ̂CUE)]
−1ĝ(0)).

With analogous steps, the proposed estimator can be rewritten as:

θ̂QL =−

(
Ḡ(θ̂QL)

′[Ω̂(θ̂QL)]
−1Ḡ(θ̂QL)+

m
n

X ′X
σ̂2

ε (θ̂QL)

)−1

(
Ḡ(θ̂QL)

′[Ω̂(θ̂QL)]
−1g̃(0)− m

n
X ′y

σ̂2
ε (θ̂QL)

)
(4.3)

where σ̂2
ε (θ̂QL) = (y−X θ̂QL)

′(y−X θ̂QL).

The proof to show the existence of moments in the linear IV case is based

on the proof that Hausman et al. (2011) use to show that RCUE has finite sample

moments. However, their proof is restricted to a specific value for the function they

add to the FOC of CUE; more specifically, they derive the proof for the special case

that J(θ) = θ . We need to modify several steps of their proof to adapt it to our case.

We can establish the following theorem:
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Theorem 7 Assume linearity of the moment functions in θ and consider the ho-

moskedasticity consistent variance estimate Ω̂(θ̂) = (y− X θ̂)′(y− X θ̂)Z′Zn−2.

Then, the QL-GMM estimator in equation (4.3) is bounded as follows:

||θ̂QL|| ≤ (α̃nγ̃n)
−1

(
||gi(0)||||Gi(θ)||

)
− (α̃n)

−1

(
m
n
||X ′y||

)
,

where α̃n = m
n λ̂min(X ′X) and γ̃n = λ̂min(Z′Z)n−2, where λ̂min(A) is the minimum

eigenvalue of a generic matrix A.

To use the same argument in Hausman et al. (2011), we analyze equation

(4.3). First, consider the denominator. The minimum eigenvalue of X’X,

λ̂min(X ′X), is strictly positive under the assumption that X ′X is invertible. Un-

der this assumption, m
n

λ̂min(X ′X)

σ̂2
ε (θ̂QL)

> 0. We impose m
n

λ̂min(X ′X)

σ̂2
ε (θ̂QL)

as a lower bound to(
Ḡ(θ̂QL)

′[Ω̂(θ̂QL)]
−1Ḡ(θ̂QL)+

m
n

X ′X
σ̂2

ε (θ̂QL)

)
. In addition to the assumption of invert-

ibility of X ′X , we need Ḡ(θ̂QL)
′[Ω̂(θ̂QL)]

−1Ḡ(θ̂QL) to be positive semidefinite with

probability 1, as in the proof of Hausman et al. (2011). This requires invertibility

of Ω̂(θ̂QL), which is also needed to find bounds to the numerator of equation [eq:4]

and conclude the proof. We use γn = σ̂2
ε (θ̂QL)λ̂min(Z′Z)n−2 as a lower bound to

Ω̂(θ̂) = (y−X θ̂)′(y−X θ̂)Z′Zn−2.

Given the expression for our estimator:

θ̂QL =−

(
Ḡ(θ̂QL)

′[Ω̂(θ̂QL)]
−1Ḡ(θ̂QL)+

m
n

X ′X
σ̂2

ε (θ̂QL)

)−1

(
Ḡ(θ̂QL)

′[Ω̂(θ̂QL)]
−1g̃(0)− m

n
X ′y

σ̂2
ε (θ̂QL)

)

by Cauchy-Schwarz inequality and since ||v+w|| ≤ ||v||+ ||w|| for all v and w:

||θ̂QL|| ≤ (αnγn)
−1

(
||gi(0)||||Gi(θ)||− γn

m
n

∣∣∣∣∣
∣∣∣∣∣ X ′y
σ̂2

ε (θ̂QL)

∣∣∣∣∣
∣∣∣∣∣
)

, where αn = m
n

λ̂min(X ′X)

σ̂2
ε (θ̂QL)

and γn = σ̂2
ε (θ̂QL)λ̂min(Z′Z)n−2. The above can be re-
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written as:

||θ̂QL|| ≤ (α̃nγ̃n)
−1

(
||gi(0)||||Gi(θ)||

)
− (α̃n)

−1

(
m
n
||X ′y||

)

with probability 1, where α̃n =
m
n λ̂min(X ′X) and γ̃n = λ̂min(Z′Z)n−2. Note that the

bounds are conditional on X and Z, as they depend on λ̂min(Z′Z) and λ̂min(X ′X). In

order for QL-GMM to have finite moments a necessary and sufficient condition is

that the eigenvalues λ̂min(Z′Z) and λ̂min(X ′X) are strictly greater than 0. In prac-

tice, given the sample quantities Z′Z and X ′X , it is possible to check whether this

condition holds for any given sample. We have derived conditional bounds (alterna-

tively, one can think about taking the limits of the above expressions and establish

asymptotic bounds). Importantly, σ̂2
ε (θ̂QL) gets cancelled out, it drops from αn and

γn to get α̃n = m
n λ̂min(X ′X) and γ̃n = λ̂min(Z′Z)n−2, which depend on observable

quantities only and can be examined before proceeding with estimation. The fact

that σ̂2
ε (θ̂QL) drops in the derivation and does not appear in the bounds is of key

relevance. An inspection of the simulation results for the IV setting reveals that the

extreme values of CUE are indeed obtained when σ̂2
ε (θ̂CUE) takes its largest values.

Finally, consider how our bounds relate to those obtained by Hausman et al.

(2011):

||θ̂RCUE || ≤ (αγ)−1||gi(0)||||Gi(θ)||

with probability 1, where α and γ are two (strictly positive) tuning parameters to be

chosen by the econometrician. Unlike these bounds, the bounds on our estimator do

not depend on tuning parameters and σ̂2
ε (θ̂QL) gets cancelled out. However, unlike

the bounds in Hausman et al. (2011), our bounds are conditional on the eigenvalues

λ̂min(Z′Z) and λ̂min(X ′X) being away from 0.

4.3.4 Extensions

An interesting setting in empirical applications is when the estimated covariance

matrix of the moments is close to singular in some parts of the parameter space. This

possibility might lead to the regularisation log-term in equation (4.2) to dominate
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the first term. We leave it to future research to investigate whether this could lead

to poor performance of the QL-GMM estimator.

4.4 Simulations

We consider several Monte Carlo environments to assess the properties of the new

estimator, the QL-GMM, and of 2-stepGMM, iterativeGMM, CUE, and EL esti-

mators, in finite samples. The criteria used to compare estimators are mean and

median bias, Root Mean Squared Errors (RMSE), variance of estimators, probabil-

ity of deviations of the estimator from the parameter value, differences between the

0.95 and the 0.05 quantiles (in absolute value), interquartile range, average com-

putation time, number of failures (or non-convergence fraction). One should be

cautious in interpreting the results from the RMSE because, although this measure

is potentially highly informative, it might be misleading since the estimators might

not have finite moments. The settings for the Monte Carlo simulations are chosen in

order to assess the behavior of the estimators in various scenarios, especially when

the Gaussian asymptotic theory might provide a poor approximation to the finite

sample distribution for GMM.

We assess the finite sample properties of the estimators with both linear and

nonlinear models, and check whether these properties are robust to the number of

moments, the number of instrument, the dimension of the parameter vector, and

when there is weak identification.

4.4.1 Dynamic Panel Data

This simulation design is taken from Blundell and Bond (1998), Bond et al. (2001),

Imbens (2002), and Kitamura (2006). Consider the dynamic panel data model:

yi,t = θ0yi,t−1 +ηi +ui,t i = 1, ...,n t = 2, ...,T (4.4)

where ηi ∼iid N(0,1), ui,t ∼iid N(0,1), the initial value is drawn according to yi,1 =

ηi/(1−θ0)+ ei with ei ∼iid N(0,1/(1−θ 2
0 )).
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We use both System (SYS) and Difference (DIF) moment conditions:

E[yi,t−2(∆yi,t−θ0∆yi,t−1)] = 0 t = 3, ...,T (4.5)

E[∆yi,t−1(yi,t−θ0yi,t−1)] = 0 t = 3, ...,T (4.6)

These imply a total of (T −1)(T −2)/2+(T −2) moments.

Following Kitamura (2006), the panel dimensions are n = 100 and T = 6, and

the number of Monte Carlo replications is 1000 for each design. Note that the

derivatives of these moments are stochastic and potentially correlated with the mo-

ments.

For the first step of the 2-step GMM estimation, we use the efficient weight-

ing matrix as described in Blundell and Bond (1998) when having DIF moments

only; otherwise, we employ the weighting matrix in Bond et al. (2001) for SYS

moments.2 We also report results for the case when an identity matrix is used

as weighting matrix in the first step of the 2-step GMM procedure (the estimator

should be consistent as the sample size increases, but it might require much larger

finite sample sizes to be well behaved). We analyze the following scenarios:

1) Homoskedastic case: First, note that, in the homoskedastic case, with DIF

moments only, the 1-step GMM, the 2-step GMM, the CUE, and the new estimator

should all be equivalent since the one step efficient weight matrix does not depend

on the models’ parameters.

Table 4.1 shows the performance of 2-step GMM, CUE, QL-GMM, and EL, when

the true parameter value is .9 and both SYS and DIF moments are used. For com-

parison, it also displays the simulation results for the same setting reported in Ki-

tamura (2006). The proposed estimator, the QL-GMM, has the best performance

with respect to all criteria, apart from the mean bias, which, however, is still smaller

2Imbens, Spady, Johnson (pag.343) use as initial weight matrix in the first step of the GMM
estimation procedure an average of the outer products of the moments evaluated at the true parameter.
Although this approach is not feasible in practice, it will lead to overestimate the performance of the
GMM estimator.
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than that of the 2-step GMM estimator, and the average calculation time, which is

slightly larger than that of the CUE.

For the homoskedastic case, we further investigate the performance of the pro-

posed estimator also for the slightly different frameworks considered in Blundell

and Bond (1998), and in Imbens (2002). 3 Blundell and Bond (1998) consider 4

and 11 time periods, DIF moments only or both DIF and SYS moments, true pa-

rameter value equal to 0, .5, or .9, and 100 or 500 individuals. Results for the 2-step

GMM in our simulations are very similar to those in Blundell and Bond (1998).

With all moments and small T (T = 4), QL-GMM is the best performing for true

values equal to 0 or 0.9 when n = 100,500; while for θ = 0.5 the best performing

estimators are 2-step GMM when n = 100, and 2-step GMM and EL when n = 500;

QL-GMM is always performing better than CUE. With large T (T = 11), QL-GMM

always performs better than CUE when n = 100, while the two estimators have very

similar performances when n = 500. 4 Imbens (2002) considers 1434 individuals,

10000 replications, values of the parameter equal to .5, or .9, time periods from 3 to

11. With all moments, for large n (1434) and large T , when the true value is θ = .5

EL has the best performance, CUE and QL-GMM have very similar performances,

but when the true value is .9 QL-GMM is the best performing always apart from

T = 11, when again EL has a better performance. 5

To summarize, QL-GMM is performing well always for small T no matter what the

sample size n, the true value, the initial guess, and the moment conditions are; it has

a superior performance when the true value is close to unity apart from the case of

large T and (sufficiently) large n where, as predicted by theory, the performance is

comparable to that of CUE and EL.

2a) Heteroskedastic case, conditioning on lagged values of y: The het-

eroskedastic case is taken from Bond et al. (2001) and Kitamura (2006). In the

setting above, the ui,t are replaced by a conditionally heteroskedastic process of the

3However, neither paper documents the performance of CUE and EL; Blundell and Bond (1998)
report the values of the 2-step GMM only, while Imbens (2002) compares the performance of the
2-step GMM, iterated GMM, and ET.

4Results for these simulations are available upon requests.
5Results for these simulations are available upon requests.
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form ui,t |yi,t−1 ∼iid N(0,0.4+0.3y2
i,t−1), and the initial condition is generated using

fifty pre-sample draws.

2b) Heteroskedastic case, conditioning on lagged values of u: Finally, consider

the same setting as above where the error terms ui,t are replaced by a conditionally

heteroskedastic process of the form ui,t |ui,t−1 ∼iid N(0,0.4+0.3u2
i,t−1).

Table 4.1 shows the performance of 2-step GMM, CUE, QL-GMM, and EL also for

these heteroskedastic cases and compares these results to those in Kitamura (2006).

Results for the heteroskedastic cases confirm the superior performance of QL-GMM

with respect to CUE in terms of MAE and RMSE. The mean bias of QL-GMM is

slightly larger than that of CUE, but, as in the homoskedastic case, smaller when

compared to that of the 2-step GMM. These simulations results accord well with

our theoretical findings.

4.4.2 IV

In the following, we compare the performance of 2-step GMM, CUE, and QL-

GMM using the IV setting described in Hausman et al. (2011). The baseline design

is the following:

yi = xiβ + εi (4.7)

xi = zi1π + vi (4.8)

εi = ρvi +
√

1−ρ2(φθ1i +
√

1−φ 2θ2i) (4.9)

with θ1i ∼N(0,z2
1i) and vi,θ2i ∼N(0,1). 6 We use the same performance criteria as

those in Hausman et al. (2011): MSE, median bias, interquartile range, nine decile

range, mean bias, variance of estimates. The results comparing the performance of

2-step GMM, CUE, and QL-GMM, according to the above criteria are reported in

the tables below (4.2-7). The results show that CUE in this setting obtain extreme

6For other details about the setting, see the design in Hausman et al. (2007).
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Simulations Kitamura
Hom. Heter. condit. on Hom. Heter. condit. on

u y y

GMM2
Mean Bias .042 .062 -.200 .014 -.253

MAE .074 .082 .259 .071 .261
RMSE .091 .097 .317 .096 .364

Pr(AE > 0.1) .245 .245 .769 .296 .815
AvgT .0814 .0877 .1023

CUE
Mean Bias .001 -.003 -.080 .001 -.080

MAE .087 .101 .175 .084 .148
RMSE .111 .128 .260 .113 .264

Pr(AE > 0.1) .305 .305 .564 .390 .643
AvgT .0379 .0420 .0456

QL-GMM
Mean Bias .024 .038 -.112

MAE .072 .082 .168
RMSE .087 .128 .224

Pr(AE > 0.1) .202 .243 .586
AvgT .0389 .0449 .0465

EL
Mean Bias -.005 -.009 -.075 -.005 -.059

MAE .086 .101 .144 .080 .119
RMSE .110 .127 .189 .113 .189

Pr(AE > 0.1) .314 .381 .539 .370 .570
AvgT .0668 .0757 .0898

Table 4.1: Simulations - Dynamic Panel Data Model

Comparison with Kitamura, 1000 replications, 100 individuals, 6 time periods,
θ = .9 (using Matlab algorithm fminsims). We report the performance of the
GMM2, CUE, QL-GMM, and EL estimators, evaluated according to the follow-
ing criteria: Mean Bias, MAE (Mean Absolute Error), RMSE (Root Mean Square
Error), Pr(AE > 0.1) (Probability that the Absolute Error is greater than .1), AvgT
(Average Computing Time), for the homoskedastic and heteroskedastic cases.

values in several simulations. This large dispersion reflects the no-moment problem

that affects the estimator. On the contrary, QL-GMM achieves the objective of

restoring the finite sample moments of the CUE: QL-GMM is the best performing

estimator among all in terms of dispersion, as measured by the variance of estimates,

the nine decile range, and the interquartile range. In terms of MSE, QL-GMM has

also a superior performance compared to that of CUE and 2-step GMM, for all

values of the concentration parameter (CP), and target R2, when the number of
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instruments (M) is 5-10, while the 2-step GMM outperforms QL-GMM in terms

of MSE as M increases (M ≥ 30). Finally, the price of the reduced dispersion of

QL-GMM is the larger median bias compared to that of CUE and, in this setting,

also to that of the 2-step GMM estimator. We plan to assess the sensitivity of these

results to a different choice of the sample sizes.

rsqTarget CP M 2-step GMM CUE QL-GMM
0 8 5 0.0918 -0.0013 0.1200
0 8 10 0.1600 0.0056 0.1762
0 8 30 0.2323 0.0043 0.2410
0 8 50 0.2577 0.0163 0.2647
0 16 5 0.0529 0.0043 0.0746
0 16 10 0.1019 -0.0005 0.1176
0 16 30 0.1949 0.0118 0.2065
0 16 50 0.2254 0.0126 0.2388
0 32 5 0.0262 0.0000 0.0384
0 32 10 0.0629 0.0016 0.0732
0 32 30 0.1389 -0.0047 0.1516
0 32 50 0.1800 -0.0044 0.1961

0.2 8 5 0.0866 -0.0051 0.1159
0.2 8 10 0.1556 0.0025 0.1701
0.2 8 30 0.2339 -0.0002 0.2404
0.2 8 50 0.2557 -0.0047 0.2616
0.2 16 5 0.0531 0.0019 0.0722
0.2 16 10 0.1003 -0.0065 0.1165
0.2 16 30 0.1929 -0.0035 0.2053
0.2 16 50 0.2279 0.0151 0.2403
0.2 32 5 0.0217 -0.0036 0.0362
0.2 32 10 0.0595 0.0000 0.0732
0.2 32 30 0.1425 0.0021 0.1547
0.2 32 50 0.1819 0.0120 0.1969

Table 4.2: Simulations - IV Setting, Median Bias
Median bias, ρ = 0.3, T = 400, 6250 replications.

4.4.3 Modified asset pricing model

Finally, we consider the design in Kitamura et al. (2013) and in Ragusa (2011),

which is based on the model of Hall and Horowitz (1996): the modified asset pricing
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rsqTarget CP M 2-step GMM CUE QL-GMM
0 8 5 0.1215 2.8E+28 0.0750
0 8 10 0.0716 6.9E+27 0.0552
0 8 30 0.0291 1.2E+28 0.0258
0 8 50 0.0191 7.4E+27 0.0178
0 16 5 0.0625 2.5E+27 0.0476
0 16 10 0.0452 6.5E+26 0.0375
0 16 30 0.0251 2.2E+27 0.0230
0 16 50 0.0169 6.8E+27 0.0161
0 32 5 0.0323 1.4E+25 0.0278
0 32 10 0.0272 6.7E+25 0.0242
0 32 30 0.0182 1.7E+25 0.0171
0 32 50 0.0137 1.7E+26 0.0139

0.2 8 5 0.1209 6.1E+27 0.0714
0.2 8 10 0.0708 1.3E+28 0.0538
0.2 8 30 0.0301 7.5E+27 0.0263
0.2 8 50 0.0199 8.8E+27 0.0180
0.2 16 5 0.0652 1.0E+27 0.0487
0.2 16 10 0.0456 2.2E+27 0.0384
0.2 16 30 0.0237 1.3E+27 0.0223
0.2 16 50 0.0167 3.0E+27 0.0165
0.2 32 5 0.0313 4.1E-02 0.0270
0.2 32 10 0.0262 4.2E+25 0.0236
0.2 32 30 0.0179 7.0E+25 0.0169
0.2 32 50 0.0137 1.6E+26 0.0135

Table 4.3: Simulations - IV Setting, Variance
Variance of estimates, ρ = 0.3, T = 400, 6250 replications.

model. Let x = (x1,x2)
′ ∼ N(0,0.42I) and consider the moment function:

g(x,θ) = (exp[−0.72−θ(x1 + x2)+3x2]−1)

 1

x2

 (4.10)

The true parameter value is θ0 = .3 and x∼ (0,Σx), where Σx = diag(.16, .16).

We consider the perturbed case as in Kitamura et al. (2013) and the focus in

this comparison is rather different: we assess the robustness of the estimators to 64

perturbations to the variance-covariance matrix of the variables as in Kitamura et al.

(2013), i.e. perturbations to the DGP (measurement errors, ...). Thus, x∼ (0,Σδ ,ρ)
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rsqTarget CP M 2-step GMM CUE QL-GMM
0 8 5 1.1157 2.2134 0.8828
0 8 10 0.8684 3.2612 0.7638
0 8 30 0.5594 7.9174 0.5303
0 8 50 0.4569 7.6525 0.4375
0 16 5 0.8124 1.0919 0.7179
0 16 10 0.6881 1.3528 0.6329
0 16 30 0.5181 2.3578 0.4983
0 16 50 0.4230 2.9509 0.4115
0 32 5 0.5835 0.6627 0.5462
0 32 10 0.5353 0.7314 0.5036
0 32 30 0.4477 1.0838 0.4319
0 32 50 0.3871 1.4661 0.3865

0.2 8 5 1.0574 2.1229 0.8658
0.2 8 10 0.8657 3.1881 0.7581
0.2 8 30 0.5726 6.3375 0.5372
0.2 8 50 0.4604 6.9555 0.4374
0.2 16 5 0.8066 1.0786 0.7139
0.2 16 10 0.7038 1.3138 0.6467
0.2 16 30 0.5071 2.3302 0.4861
0.2 16 50 0.4230 3.0055 0.4215
0.2 32 5 0.5849 0.6556 0.5446
0.2 32 10 0.5289 0.7211 0.5014
0.2 32 30 0.4402 1.1341 0.4280
0.2 32 50 0.3835 1.4051 0.3755

Table 4.4: Simulations - IV Setting, Nine Decile Range
Nine decile range 0.05 to 0.95, ρ = 0.3, T = 400, 6250 replications.

where Σδ ,ρ = .16

(1+δ )2 ρ(1+δ )

ρ(1+δ ) 1

where the unperturbed case is obtained for

δ = ρ = 0. In the simulation, Kitamura et al. (2013) set ρ = .1
√

2cos(2πω) and

δ = .25sin(2πω) and let ω vary over ω j = j/64 for j = 0, ...,63. For calculation of

the 2-step GMM, the identity matrix is used in the first step of estimation. QL-GMM

has the best performance among all estimators in terms of deviation probabilities

(Pr) for a specific range of value (a significant number of perturbations). It shows

a significant improvement over the performance of the CUE (even when truncated

values are considered), as can be seen from the Figure 4.2. Note that in Kitamura

et al. (2013) the main finding from simulation results is that GMM-type estimators

(2-step GMM and CUE) tend to be highly sensitive to data perturbations. Poor per-
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rsqTarget CP M 2-step GMM CUE QL-GMM
0 8 5 0.0759 -8.4E+12 0.1205
0 8 10 0.1546 -6.8E+12 0.1759
0 8 30 0.2336 -9.7E+12 0.2429
0 8 50 0.2563 -8.3E+12 0.2641
0 16 5 0.0429 -9.1E+11 0.0715
0 16 10 0.0978 -1.0E+12 0.1182
0 16 30 0.1951 -1.4E+12 0.2087
0 16 50 0.2272 -4.9E+12 0.2406
0 32 5 0.0208 -4.7E+10 0.0374
0 32 10 0.0575 -1.0E+11 0.0723
0 32 30 0.1379 -1.1E+11 0.1519
0 32 50 0.1804 -5.0E+11 0.1976

0.2 8 5 0.0686 -3.8E+12 0.1162
0.2 8 10 0.1510 -7.9E+12 0.1722
0.2 8 30 0.2329 -9.0E+12 0.2433
0.2 8 50 0.2568 -8.0E+12 0.2631
0.2 16 5 0.0404 -1.1E+11 0.0703
0.2 16 10 0.0953 -8.5E+11 0.1159
0.2 16 30 0.1920 -2.3E+12 0.2066
0.2 16 50 0.2253 -3.5E+12 0.2388
0.2 32 5 0.0161 -1.5E-02 0.0327
0.2 32 10 0.0585 -1.3E+11 0.0724
0.2 32 30 0.1411 -1.4E+11 0.1550
0.2 32 50 0.1820 -5.2E+11 0.1983

Table 4.5: Simulations - IV Setting, Mean Bias
Mean Bias, ρ = 0.3, T = 400, 6250 replications.

formance might be partly explained by the shape of the criterion function (quadratic

form, high sensitivity to noises). The additional term in the objective function of

QL-GMM leads desirable properties in terms of robustness to perturbations of the

DGP.

4.5 Conclusions
In this chapter, we propose a new estimator, the QL-GMM estimator, as a solution

to the “no moments” problem of CUE. QL-GMM significantly reduces the wide

dispersion of the estimates of CUE in finite samples, while only adding moderate

finite-sample biases.

Our theoretical findings show that, in the linear IV setting, the proposed modifi-
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rsqTarget CP M 2-step GMM CUE QL-GMM
0 8 5 0.1272 2.8E+28 0.0895
0 8 10 0.0955 7.0E+27 0.0862
0 8 30 0.0836 1.2E+28 0.0848
0 8 50 0.0848 7.5E+27 0.0875
0 16 5 0.0643 2.5E+27 0.0527
0 16 10 0.0548 6.5E+26 0.0515
0 16 30 0.0632 2.2E+27 0.0666
0 16 50 0.0686 6.9E+27 0.0740
0 32 5 0.0327 1.4E+25 0.0292
0 32 10 0.0305 6.7E+25 0.0294
0 32 30 0.0372 1.7E+25 0.0402
0 32 50 0.0462 1.7E+26 0.0530

0.2 8 5 0.1256 6.1E+27 0.0849
0.2 8 10 0.0936 1.3E+28 0.0835
0.2 8 30 0.0843 7.6E+27 0.0855
0.2 8 50 0.0858 8.8E+27 0.0872
0.2 16 5 0.0668 1.0E+27 0.0536
0.2 16 10 0.0547 2.2E+27 0.0518
0.2 16 30 0.0606 1.3E+27 0.0649
0.2 16 50 0.0675 3.0E+27 0.0735
0.2 32 5 0.0316 4.2E-02 0.0281
0.2 32 10 0.0297 4.2E+25 0.0288
0.2 32 30 0.0378 7.0E+25 0.0410
0.2 32 50 0.0469 1.6E+26 0.0528

Table 4.6: Simulations - IV Setting, Mean Square Error
Mean Square error, ρ = 0.3, T = 400, 6250 replications.

cation restores the finite sample moments of CUE. In future research, we plan to

derive these desirable properties also in the nonlinear setting.

With respect to the regularized CUE proposed in the recent literature, QL-GMM

has a more regular objective function and does not require fine tuning and choosing

multiple initial values in order to compute the estimator.

Monte Carlo simulations in this chapter confirm our theoretical findings and show

that the new estimator provides an attractive alternative to 2-step GMM and CUE

in empirical work.
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rsqTarget CP M 2-step GMM CUE QL-GMM
0 8 5 0.3930 0.5766 0.3297
0 8 10 0.3406 0.7309 0.3054
0 8 30 0.2235 0.9371 0.2130
0 8 50 0.1834 0.9702 0.1785
0 16 5 0.3094 0.3802 0.2757
0 16 10 0.2679 0.4250 0.2475
0 16 30 0.2074 0.6127 0.1999
0 16 50 0.1767 0.7362 0.1705
0 32 5 0.2325 0.2585 0.2159
0 32 10 0.2119 0.2715 0.2000
0 32 30 0.1771 0.3740 0.1724
0 32 50 0.1557 0.4683 0.1578

0.2 8 5 0.4011 0.5847 0.3358
0.2 8 10 0.3291 0.7038 0.2994
0.2 8 30 0.2261 0.9297 0.2119
0.2 8 50 0.1894 1.0069 0.1781
0.2 16 5 0.3123 0.3837 0.2784
0.2 16 10 0.2682 0.4316 0.2490
0.2 16 30 0.2017 0.6154 0.1974
0.2 16 50 0.1715 0.7215 0.1690
0.2 32 5 0.2270 0.2519 0.2106
0.2 32 10 0.2120 0.2750 0.1993
0.2 32 30 0.1757 0.3787 0.1720
0.2 32 50 0.1571 0.4599 0.1551

Table 4.7: Simulations - IV Setting, Interquartile Range
Interquartile range 0.25 to 0.75, ρ = 0.3, T = 400, 6250 replications.
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Figure 4.2: Simulations - Modified Asset Pricing Model

The graph shows the performance of QL-GMM in terms of deviation probabilities
and RMSE.



Appendix A

Appendix - Chapter 2

A.1 Kalman Filter and Smoother

The Kalman filter is an algorithm that recursively calculates {ẑit+1|t}T
t=1 and

{Pit+1|t}T
t=1 and given the initial ẑi1|0 and Pi1|0, it is implemented by iterating on

the following two equations:

ẑit+1|t = Bit ẑit|t−1 +BitPit|t−1At(AtPit|t−1At +σiHt)
−1(yit−At ẑit|t−1−Dtxit)

Pit+1|t = BitPit|t−1B′it−BitPit|t−1At(AtPit|t−1At +σiHt)
−1A′tPit|t−1B′it +Sit

given that:

ẑit|t = ẑit|t−1 +Pit|t−1At(AtPit|t−1At +σiHt)
−1(yit−At ẑit|t−1−Dtxit)

Pit|t = Pit|t−1−Pit|t−1At(AtPit|t−1At +σiHt)
−1A′tPit|t−1

and

ẑit+1|t = Bit ẑit|t

Pit+1|t = BitPit|tB
′
it +Sit

Once I run the Kalman filter and get the sequences {ẑit+1|t}T
t=1 and {Pit+1|t}T

t=1,

and {ẑit|t}T
t=1 and {Pit|t}T

t=1, it is possible to proceed in reverse order in order to

calculate the sequence of smoothed estimates {ẑit|T}T
t=1 and their corresponding
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mean squared errors {Pit|T}T
t=1, as follows:

ẑit|T = ẑit|t +Pit|tB
′
itP
−1
it+1|t(ẑit+1|T − ẑit+1|t)

Pit|T = Pit|t +Pit|tB
′
itP
−1
it+1|t(Pit+1|T −Pit+1|t)P

−1
it+1|tBitPit|t

for t = T −1,T −2, ...,1, while ẑiT |T and PiT |T are set equal to the terminal state of

the sequence obtained with the Kalman filter and associated variance.

The above recursions are made assuming that the matrices of parameters are

known. However, typically parameters are unknown. Denote by θi the vector con-

taining all the unknown elements in these matrices for individual i. When one needs

to estimate the parameter vector θi, one builds the likelihood for the observations yit

given its past values and the observables xit ,xit−1, ...,xi1, for an initial arbitrary guess

on θi, θi0. In particular, yit |xit , ...,xi1,yit−1, ...,yi1;θi0∼N (µit(θi0),Σit(θi0)), where

µit(θi0 =Dit(θi0)xit +Ait(θi0)ẑit|t−1(θi0) and Σit(θi0)=Ait(θi0)Pt|t−1(θi0)Ait(θi0)
′+

σi(θi0)Ht(θi0). Based on this, the value of the log-likelihood is:

T

∑
t=1

log f (yit |xit , ...,xi1,yit−1, ...,yi1;θi0) =

k− 1
2

T

∑
t=1

log|Σit(θi0)|−
1
2

T

∑
t=1

[yit−µit(θi0)]
′
Σ(θi0)

−1[yit−µit(θi0)]

where k is a constant, and the likelihood is evaluated at the initial guess for the

unknown parameters. For alternative guesses one proceed to maximize the value

of the log-likelihood by numerical method and find the Maximum Likelihood esti-

mates of θi0. Many alternative optimization techniques exist, one attractive option

is the EM algorithm of Watson and Engle (1983).

A.2 Proof of Theorem 1
The proof of Theorem 1 has two parts, one for uniform convergence (i) and the other

for convergence in distribution (ii): (i) As in Okui and Yanagi (2020), the proof for

uniform convergence starts from the following triangle inequality:

sup f∈F |PN f −P0 f | ≤ sup f∈F |PN f −PT f |+ sup f∈F |PT f −P0 f |. The goal is to
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show that the term on the left-hand side is bounded by 0. This proof is composed

of two steps: in a first step, I bound the second term on the right-hand side by using

the convergence in distribution of the MLE estimator. In a second step, I follow

Okui and Yanagi (2020) and bound the first term using a modification of the steps

in the Glivenko-Cantelli theorem that accounts for the fact that the true distribution

of θ̂i changes as T increases. In particular, in the first step, I use Assumption 3 to

ensure that θ̂i converges to θi in distribution. Moreover, given that θi is continuously

distributed by Assumption 2, then Lemma 2.11 in van der Vaart (1998) implies

that sup f∈F |PT f −P0 f | → 0. The second part of the proof is exactly as in Okui

and Yanagi (2020) to show that the first term almost surely converges to 0. The

assumptions required for this step are assumption 1, condition 1.5 in Hu et al. (1989)

and Condition 1.6 in Hu et al. (1989) when I set X = 2 in Condition 1.6, which are

both satisfied here.

(ii) The proof for convergence in distribution follows a similar logic. �

A.3 Relation to Non-Parametric Literature

Finally, I consider a fixed-T approach to establish a comparison with nonparametric

estimation (Almuzara, 2020) and analyze how the results differ when I impose a

parametric assumption on the error term. Consider the following simple process for

log labor income of individual i at time t:

yit = zit +σiεi,t (A.1)

zit = zit−1 +ηit (A.2)

where zit and εi,t are unobserved components; E(σ2
i ) = 1, and the initial level of

the random walk is zi1 = zi. But impose εi,t ∼ N(0,σ2
ε ); the distribution of the raw

errors ε̃i,t = σiεi,t is quite flexible, depending on the distribution of heterogeneous

variance. It is a special case of the general state-space model above. In the follow-

ing, I show first identification of the moments of the cross-sectional distribution of

(σ2
i ,zi), and then identification of their joint distribution.
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With stationarity only, I need T ≥ 3 for identification of Cov(zi,σ
2
i ) and T ≥ 4

for Var(σ2
i ) (Almuzara, 2020).

Cov(yit ,yit+k) =



σ2
z +σ2

ε if k = 0, t = 1

σ2
z +∑

k
s=2 σ2

η +σ2
ε if k = 0, t > 1

σ2
z if k > 0, t = 1

σ2
z +∑

k
s=2 σ2

η if k > 0, t > 1

Cov(zi,σ
2
i ) =

Cov(yit ,(∆yiτ+1)
2)

2σ2
ε

τ > t +1

Var(σ2
i ) =

Cov((∆yit)
2,(∆yiτ+2)

2)

4σ4
ε

τ > t +1

It is possible to reduce the minimum number of time periods required for iden-

tification, T, when assuming Gaussian shocks: under this assumption, I need T ≥ 2

for identification.

Cov(yit ,yit+k) =



σ2
z +σ2

ε if k = 0, t = 1

σ2
z +∑

k
s=2 σ2

η +σ2
ε if k = 0, t > 1

σ2
z if k > 0, t = 1

σ2
z +∑

k
s=2 σ2

η if k > 0, t > 1

Cov(zi,σ
2
i ) =

Cov(yit ,(∆yit+1)
2)

2σ2
ε

Var(σ2
i ) =

Var((∆yit)
2)−4(1−σ4

ε )+σ2
η(σ

2
η −8σ2

ε )

8+6σ4
ε
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For the latter use Gaussian nature of η but can relax this assumption using the

moments E[y4
it+1]−E[y4

it ].

As for identification of the cross sectional distribution of the unobservables

(σ2
i ,zi) under Gaussian error, the argument in Hu and Schennach (2008) would

simplify here as there is no need for instruments. Let’s denote by y earnings, by x

lagged earnings, and by x∗ the unobservables of interest (σ2
i ,zi).

f (y,x) =
∫

f (y|x∗) f (x|x∗) f (x∗)dx∗

Note that f (y|x∗) and f (x|x∗) are known up to parameters. Then, it is possible

to identify the unobserved distribution of interest f (x∗) with just (y,x), no need for

additional z, by solving the above for f (x∗) in terms of known objects. Identifiability

requires the integral operator to be invertible, this is a completeness condition. If I

define y to be two-dimensional I do not need x and identification of f (x∗) is obtained

as follows:

f (y) =
∫

f (y|x∗) f (x∗)dx∗

Without the parametric assumption on the error term, I need to introduce the vari-

able z, which is further lags or leads of y, i.e. more time periods are required (5 time

periods for this simple model, see argument in Almuzara (2020)). Note the analogy

with the logic of Mavroeidis et al. (2015), which is based on a fixed-T setting and

require a parametric assumption on the distribution of error term. Consider again

the simple state-space model:

yit = zit +σiεi,t (A.3)

zit = zit−1 +ηit (A.4)
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Identification relies on the equality:

fYT ,...,Y2|Y1(yT , ...,y2|y1) =
∫ ∫ ∫

fζ ,σε ,ση |Y1
(z,sε ,sη |y1)

fYT ,...,Y2|ζ ,σε ,ση ,Y1
(yT , ...,y2|z,sε ,sη ,y1)dzdsεdsη

Provided that the solution exists, one can recover the unknown primitive fζ ,σ |Y1=y1

by solving the linear equation:

fζ ,σε ,ση |Y1
(z,sε ,sη |Y1 = y1) = L−1 fYT ,...,Y2|Y1=y1

where L is the linear integral operator:

L(ξ )(YT , ...,Y2)

=
∫ ∫ ∫

ξ (z,sε ,sη)

fYT ,...,Y2|ζ ,σε ,ση
(yT , ...,y2|z,s)dzdsεdsη

For identification, need the linear operator L : L 2(Fζ ,σ |Y 1=y1)→L 2(FYT ,...,Y2|Y 1=y1)

to be complete, i.e. L f = 0 in L 2(FYT ,...,Y2|Y 1=y1) implies f = 0 in L 2(Fζ ,σε ,ση |Y 1=y1).

[On the conditions for identification, the L2-completeness conditions can be

very difficult or impossible to test.1 The paper of Andrews (2011) proposes a class

of distributions satisfying this conditions but it doesn’t extend to multivariate case.

Characterization of completeness via characteristic function as in D’Haultfoeuille

(2011) may extend to multivariate cases. See also paper of Seely on Completeness

for a Family of Multivariate Normal Distributions, given that both ε and η are nor-

mally distributed.] It is possible to use the argument in Newey and Powell (2003) to

this case given the assumption of normality in the univariate case. Extension to the

multivariate case can be established using the results in Lemma 7 of Hu and Schen-

nach, which reduce a multivariate completeness problem to a single variate one,

under some independence assumptions on the endogenous variables. On the other

1Canay et al. (2013) conclude that no nontrivial tests for testing completeness conditions in
nonparametric models with endogeneity involving mean independence restrictions exist.
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hand, the Gaussian likelihood might introduce an irregular identification problem

(Escanciano, 2020), which results in instability in the estimates; one way of deal-

ing with this issue would be to employ sieve methods with incomplete sieve basis.

Estimation details will be discussed in the following section.

For the fixed-T approach, the corresponding estimation approach is based on

sieve nonparametric maximum likelihood, see Mavroeidis et al. (2015):

maxθ∈Θk(N)

N

∑
i=1

log
∫ ∫ ∫

fζ ,σε ,ση ,Y1:θ (z,sε ,sη ,yi1)

fYT ,...,Y2|ζ ,σε ,ση ,Y1
(yT , ...,y2|z,sε ,sη ,y1)dzdsεdsη

where Θk(N) denotes a sieve space whose dimension k(N) increases with the sample

size N; and Θ⊂L 1(Fζ ,σε ,ση ,Y 1=y1).
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Appendix - Chapter 3

B.1 Proofs

Proof. [Proof of Lemma 1] The MSFEs for the TS and the CS are immediate. To

obtain the MSFE for the IFS, first, write

Yi,4− Ŷi,3 = (Yi,4−Yi,3)I
{
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
}
+Yi,4I

{
(Yi,2−Yi,1)

2 > Y 2
i,2
}
.

Then,

(
Yi,4− Ŷi,3

)2
= (Yi,4−Yi,3)

2 I
{
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
}
+Y 2

i,4I
{
(Yi,2−Yi,1)

2 > Y 2
i,2
}
.

Thus,

MSFE(IFS,θi) = E
[(

Yi,4− Ŷi,3

)2
]

= E
[
(Yi,4−Yi,3)

2
]

Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
+E

[
Y 2

i,4I
{
(Yi,2−Yi,1)

2 > Y 2
i,2
}]

= 2σ
2
i Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
+
(
λ

2
i +σ

2
i
)
−E

[
Y 2

i,4I
{
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
}]

.
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Note that

E
[
Y 2

i,4I
{
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
}]

= E
[
E
[
Y 2

i,4
∣∣Ai
]

Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
∣∣Ai
]]

= E
[
E
[
(Ai +Ui,4)

2∣∣Ai
]

Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai

]]
= E

[(
A2

i +σ
2
i
)

Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai

]]
= E

[
A2

i Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai

]]
+σ

2
i Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
.

Therefore, we have that

MSFE(IFS,θi)

= σ
2
i Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
+
(
λ

2
i +σ

2
i
)
−E

[
A2

i Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai

]]
,

which proves the lemma.

Proof. [Proof of Theorem 1] By Lemma 1, we have that

MSFE(IFS,θi)

= σ
2
i Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
+
(
λ

2
i +σ

2
i
)
−E

[
A2

i Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai

]]
.

Under (3.4),

MSFE(IFS,θi)

≤ σ
2
i
{

1+Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]}

+λ
2
i
{

1−Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]}

.

Therefore, MSFE(IFS,θi)≤MSFE(TS,θi), provided that

σ
2
i
{

1+Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]}

+λ
2
i
{

1−Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]}
≤ 2σ

2
i ,

which is equivalent to (3.6). This proves the first conclusion of the theorem.
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Similarly, MSFE(IFS,θi)≤MSFE(CS,θi), provided that

σ
2
i
{

1+Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]}

+λ
2
i
{

1−Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]}
≤ σ

2
i +λ

2
i ,

which is equivalent to (3.7). This proves the second conclusion of the theorem.

Proof. [Proof of Theorem 2] Note that

R(IFS,θi) = max
{

0,MSFE(IFS,θi)−σ
2
i −min{σ2

i ,λ
2
i }
}
.

If MSFE(IFS,θi) < σ2
i + min{σ2

i ,λ
2
i }, then R(IFS,θi) = 0. In this case, there

is nothing left to prove. Hence, it suffices to assume that MSFE(IFS,θi) ≥

σ2
i +min{σ2

i ,λ
2
i }.

In the proof of Theorem 1, we have that under (3.4),

MSFE(IFS,θi)

≤ σ
2
i
{

1+Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]}

+λ
2
i
{

1−Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]}

.
(B.1)

Therefore,

MSFE(IFS,θi)−σ
2
i −min{σ2

i ,λ
2
i }

≤ λ
2
i −min{σ2

i ,λ
2
i }+σ

2
i Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
−λ

2
i Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]

= σ
2
i

(
λ 2

i

σ2
i
−min

{
1,

λ 2
i

σ2
i

}
+Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
− λ 2

i

σ2
i

Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
])

= σ
2
i

(
λ 2

i

σ2
i
−min

{
1,

λ 2
i

σ2
i

}
+Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
− λ 2

i

σ2
i

Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
])

I(λ 2
i ≤ σ

2
i )

+σ
2
i

(
λ 2

i

σ2
i
−min

{
1,

λ 2
i

σ2
i

}
+Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
− λ 2

i

σ2
i

Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
])

I(λ 2
i > σ

2
i )

= σ
2
i

(
Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
− λ 2

i

σ2
i

Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
])

I(λ 2
i ≤ σ

2
i )

+σ
2
i

(
λ 2

i

σ2
i
−1+Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
− λ 2

i

σ2
i

Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
])

I(λ 2
i > σ

2
i ).
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Consider the following three subsets of Θ.

Θ1 :=

(σ2
i ,λ

2
i ) ∈Θ :

λ 2
i

σ2
i
>

Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

]
 ,

Θ2 :=

(σ2
i ,λ

2
i ) ∈Θ :

λ 2
i

σ2
i
<

1−Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
1−Pr

[
(Ui,2−Ui,1)2 ≤U2

i,2

]
 ,

Θ3 :=

(σ2
i ,λ

2
i ) ∈Θ :

1−Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
1−Pr

[
(Ui,2−Ui,1)2 ≤U2

i,2

] ≤ λ 2
i

σ2
i
≤

Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

]
 .

Under Assumption 1, we have that

Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
≥ Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
]
,

which implies that

Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

] ≥ 1−Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
1−Pr

[
(Ui,2−Ui,1)2 ≤U2

i,2

] . (B.2)

Thus, Θ can be partitioned into Θ = Θ1∪Θ2∪Θ3.

Note that (σ2
i ,λ

2
i ) ∈Θ1 iff

σ
2
i
{
−1+Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]}

+λ
2
i
{

1−Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]}

< λ
2
i −σ

2
i .

Therefore, on Θ1, we have that

MSFE(IFS,θi)−σ
2
i −min{σ2

i ,λ
2
i }< (λ 2

i −σ
2
i )I(λ 2

i > σ
2
i )≤ σ

2
µ.

Turing to the second case, note that (σ2
i ,λ

2
i ) ∈Θ2 iff

σ
2
i Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
−λ

2
i Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]
< σ

2
i −λ

2
i .
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Therefore, on Θ2, we have that

MSFE(IFS,θi)−σ
2
i −min{σ2

i ,λ
2
i }< (σ2

i −λ
2
i )I(λ 2

i ≤ σ
2
i )≤ σ

2
µ.

We now move to Θ3. On Θ3, we have that

Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
− λ 2

i

σ2
i

Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]

≤ Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
−

1−Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
1−Pr

[
(Ui,2−Ui,1)2 ≤U2

i,2

]Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]

= Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
] Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

] − 1−Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
1−Pr

[
(Ui,2−Ui,1)2 ≤U2

i,2

]


≤ µ,

where the last inequality follows from Assumption 4. Furthermore, on Θ3,

λ 2
i

σ2
i
−1+Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
− λ 2

i

σ2
i

Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]

≤
Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

] (1−Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
])
−
(
1−Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
])

=
(
1−Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
]) Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

] − 1−Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
1−Pr

[
(Ui,2−Ui,1)2 ≤U2

i,2

]


≤ µ,

again using Assumption 4. Therefore,

MSFE(IFS,θi)−σ
2
i −min{σ2

i ,λ
2
i }

≤ σ
2
i

(
Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
− λ 2
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Pr
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2 ≤U2
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I(λ 2
i ≤ σ

2
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+σ
2
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(
λ 2

i

σ2
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−1+Pr
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(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
− λ 2
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σ2
i

Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
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I(λ 2
i > σ

2
i )

≤ σ
2
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In conclusion, we have shown that R(IFS,θi) ≤ σ2µ for each θi ∈ Θ. This proves

the first conclusion of the theorem. The second conclusion follows from the fact

that the inequality in (B.1) will be strict if Assumption 5 holds additionally.

Proof. [Proof of Corollary 1] It follows directly from Theorem 2 and the in-

equalities in (3.11).

Proof. [Proof of Lemma 2] The MSFEs for the TS and the CS are given in the

main text. For the IFS, note that

Yi,5− Ŷi,4

=
(
Yi,5−0.5(Yi,4 +Yi,3)

)
I
{
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
}
+
(
Yi,5−ωiYi,4

)
I
{
(Yi,2−Yi,1)

2 > Y 2
i,2
}
.

Thus,

MSFE(IFS,θi)

= 1.5σ
2
i Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
+(1+ωi)σ

2
i −E

[(
Yi,5−ωiYi,4

)2 I
{
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
}]

.

Then, repeating the arguments identical to those in the proof of Lemma 1, we have

that

MSFE(IFS,θi)

= (0.5−ω
2
i )σ

2
i Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
+(1+ωi)σ

2
i

−E
[
(1−ωi)

2A2
i Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai

]]
,

which proves the lemma.

Proof. [Proof of Theorem 3] Define

ζi(a) := Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai = a

]
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Using this notation, write

Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
= E

[
Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai

]]
=
{

ζi[(2δi)
−1/2]+ζi[−(2δi)

−1/2]
}

δi +ζi(0)(1−2δi)

and

E
[
A2

i Pr
[
(Ui,2−Ui,1)

2 ≤ (Ai +Ui,2)
2∣∣Ai

]]
= 0.5

{
ζi[(2δi)

−1/2]+ζi[−(2δi)
−1/2]

}
.

Thus,

MSFE(IFS,θi)−MSFE(TS,θi)

= MSFE(IFS,θi)−MSFE(CS,θi)

=
{

ζi[(2δi)
−1/2]+ζi[−(2δi)

−1/2]
}
(δi−0.5)+ζi(0)(1−2δi)

=
1−2δi

2

[{
ζi(0)−ζi[(2δi)

−1/2]
}
+
{

ζi(0)−ζi[−(2δi)
−1/2]

}]
≤ 0,

where the last inequality follows from Assumption 1, because Assumption 1 implies

that ζi(a)− ζi(0) ≥ 0 almost surely for any a. This proves the first conclusion

of the theorem. The second conclusion follows from the strengthened condition,

namely, the individual heterogeneity parameter δi ∈ (0,0.5) is restricted to satisfy

ζi(0)−ζi[(2δi)
−1/2]< 0.

Proof. [Proof of Theorem 4] It follows from (3.4) in Assumption 1 that

MSFE(IFS,θi)≤ (1+ωi)σ
2
i +(0.5−ω

2
i )σ

2
i Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]

−(1−ωi)
2
λ

2
i Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]
.

(B.3)
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Therefore, MSFE(IFS,θi)≤MSFE(CS,θi), provided that

(0.5−ω
2
i )σ

2
i Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
− (1−ωi)

2
λ

2
i Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]
≤ 0.

(B.4)

If ω2
i ≥ 0.5, (B.4) holds trivially. If ω2

i < 0.5, (B.4) is equivalent to

Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

] ≤ ν(ωi)

where

ν(ω) :=
ω(1−ω)

0.5−ω2 .

Note that ν(ω) is strictly increasing and ν(0.5) = 1. Hence, ν(ωi)> 1 if ωi > 0.5.

In conclusion, we have proved the second conclusion of the theorem.

Analogously, MSFE(IFS,θi)≤MSFE(TS,θi), provided that

ωiσ
2
i +(0.5−ω

2
i )σ

2
i Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
− (1−ωi)

2
λ

2
i Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]
≤ 0.5σ

2
i ,

which is equivalent to

(0.5−ω
2
i )Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
+ωi−ωi(1−ωi)Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
]
≤ 0.5,

or

2ωi
(
1−Pr
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2 ≤U2
i,2
])
−
(
1−Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
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−2ω
2
i
(
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[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
−Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
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Recall that (3.4) implies that

Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
≥ Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
]
.
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Thus, it suffices to assume that

2ωi ≤

(
1−Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

])
(

1−Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

]) .
Here, it is necessary to assume that ωi ≤ 0.5 since the term on the right-hand side of

the inequality above is less than or equal to 1. Therefore, we have proved the first

conclusion of the theorem.

Proof. [Proof of Theorem 5]

As in the proof of Theorem 2, it suffices to consider the case that

MSFE(IFS,θi)≥ σ
2
i +min{0.5,ωi}σ2

i .

Recall that Ω is partitioned into Ωa∪Ωb∪Ωc∪Ωd ∪Ωe:

Ωa :=
{
(σ2

i ,λ
2
i ) ∈Ω :

√
0.5 < ωi ≤ 1

}
,

Ωb :=

(σ2
i ,λ

2
i ) ∈Ω : 0.5 < ωi <

√
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Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

]
 ,

Ωc :=

(σ2
i ,λ

2
i ) ∈Ω : 0.5 < ωi <

√
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Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
Pr
[
(Ui,2−Ui,1)2 ≤U2

i,2

]
 ,

Ωd :=

(σ2
i ,λ

2
i ) ∈Ω : 0≤ ωi < 0.5 and 2ωi ≤

1−Pr
[
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2 ≤ Y 2
i,2

]
1−Pr

[
(Ui,2−Ui,1)2 ≤U2

i,2

]
 ,

Ωe :=

(σ2
i ,λ

2
i ) ∈Ω : 0≤ ωi < 0.5 and 2ωi >

1−Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2

]
1−Pr

[
(Ui,2−Ui,1)2 ≤U2

i,2

]
 .

Define

∆(θi) := MSFE(IFS,θi)−σ
2
i −min{0.5,ωi}σ2

i .
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On Ωa∪Ωb, we have that by (B.3) and the definitions of Ωa and Ωb,

∆(θi) = MSFE(IFS,θi)−1.5σ
2
i

≤ (ωi−0.5)σ2
i +(0.5−ω

2
i )σ

2
i Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
− (1−ωi)

2
λ

2
i Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]

≤ (ωi−0.5)σ2
i

≤ σ
2 κ

2
.

On Ωc, we have that

∆(θi)≤ σ
2
i
{
(ωi−0.5)+(0.5−ω

2
i )Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
−ωi(1−ωi)Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
]}

≤ σ2
i

2

{
2ωi
(
1−Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
])
−
(
1−Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
])

−2ω
2
i
(
Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
−Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
])}

≤ σ2
i

2

{
2ωi
(
1−Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
])
−
(
1−Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
])}

≤ σ
2 κ

2
,

where the last inequality follows from Assumption 8. On Ωd , we have that by (B.3)

and the definition of Ωd ,

∆(θi) = MSFE(IFS,θi)− (1+ωi)σ
2
i

≤ (0.5−ω
2
i )σ

2
i Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
− (1−ωi)

2
λ

2
i Pr
[
(Ui,2−Ui,1)

2 ≤U2
i,2
]

≤ (0.5−ωi)σ
2
i

≤ σ
2 κ

2
.
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On Ωe, we have that

∆(θi)≤
σ2

i
2

{
(1−2ω

2
i )Pr

[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
−2ωi(1−ωi)Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
]}

≤ σ2
i

2

{
Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
−2ωiPr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
]

−2ω
2
i
(
Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
−Pr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
])}

≤ σ2
i

2

{
Pr
[
(Yi,2−Yi,1)

2 ≤ Y 2
i,2
]
−2ωiPr

[
(Ui,2−Ui,1)

2 ≤U2
i,2
]}

≤ σ
2 κ

2
,

where again the last inequality follows from Assumption 8. Therefore, we have

proved the weak inequality version of the theorem. A strict inequality version of the

theorem can be established as in the proof of Theorem 2 by making the inequality

in (B.3) strict under (3.12).

Proof. [Proof of Corollary 2] Theorem 5 and the inequalities in (3.19) directly

imply the corollary.

B.2 Empirical Bayes
Using the same notation as in LMS, consider the dynamic panel data model

Yit = λi +ρYit−1 +Uit Uit ∼ N(0,σ2)

The oracle forecast is

Ŷ opt
iT+1 = Eθ ,π,Yi[λi]+ρYiT

where θ = (ρ,σ) and Yi is the observed trajectory.

Use Tweedie’s formula for the posterior mean

Eθ ,π,Yi = λ̂i(ρ)+
σ2

T
∂

∂ λ̂i(ρ)
ln p(λ̂i(ρ),yi0)

LMS approximate the oracle forecast using an empirical Bayes approach. They

replace the unknown objects θ and p(λ̂i(ρ),yi0) by estimates that exploit the cross-
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sectional information. Need consistency of the homogenous parameter θ as a key

condition. In the code, use a QMLE estimator of θ that integrates out the hetero-

geneous intercepts λi under the misspecified correlated random effects distribution

λi|Yi0∼N(φ0+φ1Yi0,Ω). Then, for estimation of the density p(λ̂i(ρ),yi0) use either

kernel methods, a mixture approximation, or nonparametric maximum likelihood.

In the code of LMS, two EB forecasts are proposed: both use QMLE estimators of θ

and then estimate the density using either kernel methods or mixture approximation.

I am using the EB forecast based on kernel methods, i.e., the one that employs

the QMLE estimator of θ and then kernel methods for estimation of the density

p(λ̂i(ρ),yi0). Note that the estimator for common θ is the same as that used for the

plug-in QMLE estimator.



Appendix C

Appendix - Chapter 4

C.1 Invariance

Consider 3 types of invariance as in the literature (see e.g. Schennach (2007), Hillier

(1990)): 1) Consider general parameter dependent (nonsingular) linear transforma-

tion A(β ) of the vector of moment conditions gi(β ). 2) Same as in 1) but assume

that the linear transformation does not depend on β , i.e. with A(β ) = A. 3) Finally,

consider a general/arbitrary one-to-one differentiable reparameterization β = T (θ)

of the moment conditions (invariance in this case means that θ̂ obtained from the

reparameterized moment conditions satisfies β̂ = T (θ̂)).

Let’s consider 1) first.

Define hi(β ) ≡ A(β )gi(β ), ĥ(β ) ≡ 1/n∑
n
i=1 A(β )gi(β ), and Ω̂h(β ) ≡

1/n∑
n
i=1 hi(β )hi(β )

′ = A(β )[1/n∑
n
i=1 hi(β )hi(β )

′]−1A(β )′ = A(β )Ω̂(β )A(β )′.

Then, define the objective function for the CUE as:

Q̃(β ) = ĥ(β )′Ω̂h(β )
−1ĥ(β )
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It is possible to see that:

Q̃(β ) = ĥ(β )′Ω̂h(β )
−1ĥ(β )

= ĝ(β )′A(β )′[A(β )Ω̂(β )A(β )′]−1A(β )ĝ(β )

= ĝ(β )′Ω̂(β )−1ĝ(β ) = Q(β )

i.e. the CUE is invariant to parameter dependent nonsingular linear transformation

A(β ) of the vector of moment conditions.

In the case of the proposed estimator:

Q̃(β )QL =
1
n

log|Ω̂h(β )|+ ĥ(β )′Ω̂h(β )
−1ĥ(β )

The first term is:

1
n

log|Ω̂h(β )|=
2
n

log|A(β )|+ 1
n

log|Ω̂(β )|

Hence:

Q̃(β )QL =
2
n

log|A(β )|+Q(β )QL

Let’s consider 2).

Now for the proposed estimator:

Q̃(β )QL =
1
n

log|Ω̂h(β )|+ ĥ(β )′Ω̂h(β )
−1ĥ(β )

The first term is:

1
n

log|Ω̂h(β )|=
2
n

log|A|+ 1
n

log|Ω̂(β )|
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Hence:

Q̃(β )QL = k+Q(β )QL

In this case, QL-GMM is invariant.

We can conclude that QL-GMM is invariant only to linear transformation of

the moment function that are not parameter dependent, of the form hi(β )≡ Agi(β )

for a nonsingular, fixed, mxm matrix A, while it is not invariant to linear trans-

formation of this type if the matrix A(β ) is a function of the unknown parameter

β . Note that the standard 2step GMM estimator is not invariant to 1) and 2); the

IGMM (iterated GMM) estimator shares the same behavior as QL-GMM, being in-

variant to 2), but not to 1); CUE, instead, is invariant to both type of transformations.

Now consider 3).

This case is probably the most puzzling because MLE estimators are invariant

to this type of transformations. In general, it holds for any estimator where β is the

extremum of a differentiable objective function:

δ

δθ
logL̂(T (θ)) =

δ

δθ
T (θ)′

δ

δβ
logL̂(T (β )) = 0

iff

δ

δβ
logL̂(T (β )) = 0

since δ

δθ
T (θ)′ has full rank (T (θ) being one-to-one).

Take the definition and example in Hayashi textbook (ch.7 on invariance of

MLE): an extremum estimator is invariant iff Q̃n(λ ) = Qn(τ
−1(λ )) ∀λ ∈ Λ, where

Q̃n(λ ) is the objective function associated with the reparameterized model.

Prove that in the linear case model, yt = θ0zt + εt with scalar θ0 and zt , the

2-step GMM estimator is not invariant, while CUE is so. E[xt(yt −θ0zt)] = 0 with
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xt that can be a vector. For 2-step GMM estimator the objective function is:

Qn(θ) =

(
1
T

T

∑
t=1

xt(yt−θzt)

)′
Ŵ

(
1
T

T

∑
t=1

xt(yt−θzt)

)

Assume that Θ = R++ (i.e. θ0 > 0) and consider the reparameterization λ = 1/θ .

The linear equation can be rewritten as zt = λ0yt − λ0εt and E[xt(zt − λ0yt)] = 0.

Now the objective function is:

Q̃n(λ ) =

(
1
T

T

∑
t=1

xt(zt−λyt)

)′
Ŵ

(
1
T

T

∑
t=1

xt(zt−λyt)

)

We can see that Qn(θ) 6= Q̃n(1/θ) or, equivalently, Qn(1/λ ) 6= Q̃n(λ ). The 2-

step GMM estimator is not invariant to this reparameterization. Let’s now prove

invariance of CUE in the same setting:

Qn(θ) =

(
1
T

T

∑
t=1

xt(yt−θzt)

)′[ T

∑
t=1

xt(yt−θzt)(yt−θzt)
′x′t

](
1
T

T

∑
t=1

xt(yt−θzt)

)

=

(
1
T

T

∑
t=1

xt(yt−θzt)

)′[ T

∑
t=1

xtx′t(yt−θzt)
2

](
1
T

T

∑
t=1

xt(yt−θzt)

)

and

Q̃n(λ ) =

(
1
T

T

∑
t=1

xt(zt−λyt)

)′[ T

∑
t=1

xtx′t(zt−λyt)
2

](
1
T

T

∑
t=1

xt(zt−λyt)

)

For invariance need to prove Qn(θ) = Q̃n(1/θ).

Q̃n(1/θ) =

(
1
T

T

∑
t=1

xt(zt−1/θyt)

)′[ T

∑
t=1

xtx′t(zt−1/θyt)
2

](
1
T

T

∑
t=1

xt(zt−1/θyt)

)

By multiplying and dividing by θ > 0 and by −1 we get:

Q̃n(1/θ) =

(
1
T

T

∑
t=1

xt(yt−θzt)

)′[ T

∑
t=1

xtx′t(yt−θzt)
2

](
1
T

T

∑
t=1

xt(yt−θzt)

)
= Qn(θ)
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Finally, check the behavior of the proposed estimator in the same setting. Add to

the objective function Qn(θ) the term:

1
T

log|Ω̂h(θ)|=
1
T

log

∣∣∣∣∣ T

∑
t=1

xtx′t(yt−θzt)
2

∣∣∣∣∣
After reparametrization, add to Q̃n(λ ) the term:

1
T

log

∣∣∣∣∣ T

∑
t=1

xtx′t(zt−λyt)
2

∣∣∣∣∣
For invariance need to prove QM

n (θ) 6= Q̃M
n (1/θ). As for the additional term, we

will have:

1
T

log

∣∣∣∣∣ T

∑
t=1

xtx′t(yt−θzt)
2 1

θ 2

∣∣∣∣∣= 1
T

log

∣∣∣∣∣ T

∑
t=1

xtx′t(yt−θzt)
2

∣∣∣∣∣
∣∣∣∣∣ 1
θ 2

∣∣∣∣∣
=

1
T

log

∣∣∣∣∣ T

∑
t=1

xtx′t(yt−θzt)
2

∣∣∣∣∣+ 1
T

log
1

θ 2

The second term is what makes the proposed estimator not invariant to this repa-

rameterization. Note that for linear transformation, i.e for transformation of the

type γ = αθ , with α being a constant 6= 0, the estimator satisfies invariance. 2-step

GMM estimator would not be invariant even to linear transformation.

C.2 Extensions
We consider also a slight modification of the proposed estimator, which adds the

Jacobian of the transformation of the parameter θ into g(θ) when writing the pdf

from the distribution of the moment function. This modification is inspired by the

the NLFI maximum likelihood estimator, see e.g. Amemiya, 1977, on asymptotic

theory of nonlinear estimation and non linear simultaneous equation systems. There

the argument is the following. Assume uit ∼N(0,Σ), we can write the log likelihood

function of the system of nonlinear equations:

fit(yt ,xt ,αi) = uit
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as:

L∗ = k− T
2

log|Σ|+
T

∑
t=1

log

∣∣∣∣∣
∣∣∣∣∣δ ft
δy′t

∣∣∣∣∣
∣∣∣∣∣− 1

2

T

∑
t=1

f ′t Σ
−1 ft

where yt is an N- vector of endogenous variables, xt is a vector of exogenous vari-

ables, and αi is a Ki-vector of unknown parameters.

In this case, one would get the same expression for the objective function we have

plus an additional term containing the Jacobian of the moment with respect to the

parameter. The additional term should look like: −2
n log

∣∣∣∣∣∣ δ

δθ
ĝ(θ)

∣∣∣∣∣∣. But the prob-

lem is on inversion of ĝ(θ), given that we are in the overidentified case.

ĥ≡ ĝ(θ)∼ N

(
0,

Ω̂(θ)

n

)

The pdf of this distribution will be:

1
2π|Ω̂(θ)/n|1/2

exp

{
− 1

2
ĥ′(Ω̂(θ)/n)−1ĥ

}

Use the transformation ĥ≡ ĝ(θ) and the fact that:

FΘ(θ) = Pr{Θ≤ θ}= Pr{ĝ−1(ĥ)≤ θ}= Pr{ĥ≤ ĝ(θ)}= Fh(ĝ(θ))

fΘ(θ) = F ′Θ(θ) =
δ

δθ
Fh(ĝ(θ)) = fh(ĝ(θ))

∣∣∣∣∣
∣∣∣∣∣ δ

δθ
ĝ(θ)

∣∣∣∣∣
∣∣∣∣∣

Hence:

1
2π|Ω̂/n|1/2

exp

{
− 1

2
ĝ(θ)′(Ω̂/n)−1ĝ(θ)

}∣∣∣∣∣
∣∣∣∣∣ δ

δθ
ĝ(θ)

∣∣∣∣∣
∣∣∣∣∣
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In log terms:

k− 1
2

log|Ω̂|− 1
2

ĝ(θ)′(Ω̂/n)−1ĝ(θ)+ log

∣∣∣∣∣
∣∣∣∣∣ δ

δθ
ĝ(θ)

∣∣∣∣∣
∣∣∣∣∣

−log|Ω̂|− ĝ(θ)′(Ω̂/n)−1ĝ(θ)+2log

∣∣∣∣∣
∣∣∣∣∣ δ

δθ
ĝ(θ)

∣∣∣∣∣
∣∣∣∣∣

the estimator would be obtained as:

β̂ = arg min
β∈B

1
n

log|Ω̂|+ ĝ(θ)′(Ω̂)−1ĝ(θ)− 2
n

log

∣∣∣∣∣
∣∣∣∣∣ δ

δθ
g(θ)

∣∣∣∣∣
∣∣∣∣∣

One would need to impose at least local monotonicity, at the true parameter value.

An investigation of the properties of this modification is left for future research.
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