
Logical Gates by Code Deformation
in Topological Quantum Codes

Thomas Rowan Scruby

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Physics

University College London

September 21, 2021

2

I, Thomas Rowan Scruby, confirm that the work presented in this thesis is my

own. Where information has been derived from other sources, I confirm that this has

been indicated in the work.

Abstract

Quantum error correcting codes (QECCs) allow us to protect qubits from noise and

are expected to be essential features of any kind of scalable, fault-tolerant quantum

computer. By encoding information in a QECC we make unintentional modification

of that information less likely, but also make intentional modification more difficult.

Operations that perform such modifications are referred to as “logical operations” or

“logical gates” and a common, fault-tolerant approach to performing these operations

is the use of “transversal” logical gates. However, a fundamental theorem of quantum

error correction is that no QECC can possess a universal set of transversal gates.

An alternate approach to performing logical gates is the technique of code

deformation, which involves a sequence of modifications (deformations) of the code

which transform the encoded information. In the class of QECCs called topological

codes these deformations have natural mathematical interpretations in terms of

transformations of a manifold, and physical interpretations in terms of the motions

of quasiparticles in certain condensed matter systems.

Here we examine two different code deformation techniques. The first is the

braiding of a certain type of defect (a twist defect) in multiple copies of the two-

dimensional surface code. We classify the set of logical operations which can be

performed in this fashion by drawing a connection to the braiding relations of a

hierarchy of anyon models. The second example involves switching between two-

and three-dimensional versions of a code and an unorthodox method of decoding

called just-in-time (JIT) decoding. We numerically demonstrate the existence of a

threshold for this decoding strategy in surface codes and then proceed to examine

the errors that occur if partial transversal gates are interleaved with this procedure.

Impact Statement

Quantum computers promise to outperform their classical counterparts in a number

of areas, including factorisation of prime numbers (and therefore breaking of RSA

encryption), database searches and simulation of condensed matter and chemical

systems. However, because of the high levels of noise inherent to most qubit

implementations it is expected that some kind of error correction scheme will be

a necessary part of any practical quantum computer. The choice of such an error

correction scheme will impose restrictions on the architecture of the computer as

many error correcting codes require specific qubit connectivities and geometries,

and additional resources are often required in order to perform computation with the

encoded information. As such, the identification of codes with low resource costs

but high error tolerances is an important research direction.

The results in this thesis contribute towards an understanding of how logical

operations in error correcting codes may be implemented and which implementations

are most resource efficient. This may inform the planning and design of quantum

computing architectures in future experimental work, and in particular the numerical

results obtained for the just-in-time decoding procedure in chapter 3 suggest that

further optimisation of this scheme may make it experimentally viable in the future.

Additionally, these results may be useful for future theoretical work on this

topic. For instance, the investigation of Clifford errors in the three-dimensional

surface code presented in chapter 4 may be relevant to future analytic and numerical

work in this code, and the techniques used in that chapter may also be generalised to

give similar results in other codes where this phenomenon has not yet been studied.

Acknowledgements

Thanks go to my supervisor, Dan Browne, for providing invaluable support, insight

and advice throughout my PhD. Thanks also to the current and former members

of Dan’s group (in particular to Mike Vasmer and Simon Burton) for many useful

discussions. In the wider academic community, I would like to thank Paul Webster

and Ben Brown for many valuable conversations and ideas, as well as Jiannis Pachos

for the opportunity to visit his research group in Leeds.

Thanks to all the members of my CDT cohort (+ honourary member Fariha),

my pre-covid officemates (Mike, Alex, Fagin, Zack and Andrea), my post-covid

office/flatmates (Livia and Donald) and all my other friends in and out of London.

Thanks to my family for not asking me to explain my research to them (mostly).

Contents

1 Introduction 12

1.1 Qubits and Errors . 15

1.2 Error Correcting Codes . 18

1.2.1 Simple Codes . 18

1.2.2 Stabiliser Codes . 21

1.2.3 CSS Codes . 22

1.2.4 Surface Codes . 22

1.2.5 Colour Codes . 29

1.2.6 Fault Tolerance . 31

1.3 Fault-Tolerant Logic and Code Deformation 33

1.3.1 Defect Encodings and Braiding 35

1.3.2 Lattice Surgery . 39

1.3.3 Dimension Jumping . 40

1.4 Summary . 42

2 Fusion and Braiding of Twists in Stacked Surface Codes 43

2.1 Anyons and Twists . 44

2.1.1 Fusion and Braiding . 44

2.1.2 Examples . 47

2.1.3 Twists in Topological Codes 49

2.2 A Hierarchy of Models . 52

2.3 F Matrices . 54

2.4 R Matrices . 64

Contents 7

2.5 Logical Gates . 69

2.6 Stacked Surface Codes . 70

3 Numerical Implementation of Just-In-Time Decoding in the 3D Surface

Code 74

3.1 Introduction and Overview . 74

3.2 The 3D Surface Code . 78

3.3 Dimension Jumping in Surface Codes 81

3.3.1 2D to 3D expansion . 81

3.3.2 3D to 2D collapse . 83

3.4 Constructing Slices . 86

3.4.1 Criteria for Valid Slices . 86

3.4.2 Proposed Layers and Slices 87

3.4.3 Overlap of the Three Codes 91

3.4.4 Practical Implementation 92

3.5 Linear-Time CCZ . 92

3.6 The Delayed Matching Decoder 94

3.6.1 Description . 94

3.6.2 Numerical Implementation 98

3.7 Discussion . 99

4 Clifford Errors in 3D Topological Codes 103

4.1 Clifford Errors in the Colour Code 104

4.1.1 The 2D Colour Code . 104

4.1.2 The 3D Colour Code . 106

4.2 Clifford Errors in the 3D Surface Code 108

4.2.1 Single Error Membrane in Cleanable Code Regions 108

4.2.2 Linked Error Membranes in Cleanable Code Regions 112

4.2.3 Error Membranes in Non-Cleanable Regions 113

4.3 The 3D Colour Code Revisited . 114

4.3.1 Single Error Membranes in Cleanable Code Regions 114

Contents 8

4.3.2 Linked Error Membranes in Cleanable Code Regions 118

4.3.3 Error Membranes in Non-Cleanable Regions 120

4.4 Discussion . 121

5 General Conclusions 123

List of Figures

1.1 The Bloch sphere . 16

1.2 The action of the (a) bit-flip, (b) phase-flip and (c) depolarising

channels on the Bloch sphere . 17

1.3 The distance-5 toric code . 23

1.4 Homological cells and chains on a 2D square lattice 24

1.5 The distance-5 planar code . 26

1.6 The distance-5 rotated surface code 28

1.7 The distance-5 triangular colour code 29

1.8 The 2D and 3D colour codes . 30

1.9 Surface code threshold (from [Fowler et al., 2012]) 32

1.10 Puncture encodings in the 2D surface code 36

1.11 A domain wall and pair of twists in the 2D surface code 37

1.12 A logical S gate via twist braiding in the 2D surface code 38

1.13 Lattice surgery in the 2D surface code 40

2.1 Diagrammatic representation of the pentagon equation 46

2.2 Diagrammatic representation of the hexagon equation 48

2.3 Braiding anyons and twists . 50

3.1 The 3D surface code . 78

3.2 Rectification of the 3D surface code lattice 80

3.3 Error correction in 3D surface code expansion 82

3.4 Minimal 2D and 3D surface codes 84

3.5 Spacetime overlap of three 2D surface codes 88

List of Figures 10

3.6 A three layer thick slice through code A 88

3.7 A three layer thick slice through code B 89

3.8 A three layer thick slice through code C 89

3.9 Spatial overlap of three 2D surface codes 91

3.10 Simple example of the operation of the delayed matching decoder . 97

3.11 Error threshold for the delayed matching decoder 99

4.1 A region of S errors in the 2D colour code 105

4.2 An X error membrane in the 3D colour code 107

4.3 Linked syndromes in the 3D colour code 108

4.4 An X error membrane in three copies of the 3D surface code 109

List of Tables

2.1 Bosons of the colour code . 51

2.2 The diagonal elements of Rββ . 68

Chapter 1

Introduction

Quantum computers promise to outperform their classical counterparts in a num-

ber of areas, including factorisation of prime numbers [Shor, 1994], database

searches [Grover, 1996] and simulation of condensed matter and chemical sys-

tems [O’Malley et al., 2016, Hempel et al., 2018]. Numerous hardware developments

in recent years have lead to an increase in both the quantity and quality of qubits

in prototype quantum devices, with recent experimental results showing modern

quantum devices outperforming their classical counterparts at certain tasks [Arute

et al., 2019]. However, these qubits are still too noisy to be of much practical use.

Further developments may improve this, but noise rates low enough that large-scale

algorithms such as those described above can be performed without error are not

generally considered achievable. Instead, we expect that quantum error correcting

codes will allow us to counteract the effects of noise [Shor, 1995, Steane, 1996a,

Campbell et al., 2017]. These codes work by encoding the state of a single “logical”

qubit in the state of multiple physical qubits such that errors on a small number of

these physical qubits can be detected and corrected without damaging the encoded

logical information. As long as the noise rate in the physical qubits is below a certain

value, called a threshold, the logical error rate can be reduced by increasing the

number of physical qubits in the code [Dennis et al., 2002], allowing us to achieve

arbitrarily low logical error rates at the cost of additional hardware. A quantum

computer that protects its logical information in this way is called fault-tolerant.

Recent experimental results have demonstrated fault-tolerance in an error correcting

13

code encoding a single qubit [Egan et al., 2021].

However, an increased qubit cost is not the only price we must pay for fault-

tolerance. By protecting our logical information from unintentional modification by

noise but also make it more difficult for us to intentionally modify this information

with logical operations. There exist a number of no-go theorems resticting the range

of logical operations which are possible in various types of codes, and in general it

is believed that no code possesses a computationally universal set of gates which

can be implemented both unitarily and fault-tolerantly [Eastin and Knill, 2009, Zeng

et al., 2011, Bravyi and König, 2013, Jochym-O’Connor et al., 2018, Burton and

Browne, 2020, Webster et al., 2021, Webster and Bartlett, 2020]. As such, much

attention has been given to finding non-unitary methods of implementing logical

gates which may be combined with existing unitary ones to yield a universal gate set.

The most popular proposal is known as magic state distillation and uses fault-tolerant

operations to prepare a small number of high-fidelity resource states from a larger

number of low-fidelity ones [Bravyi and Kitaev, 2005]. The overheads for this

procedure can be very high [Fowler et al., 2012] (although a large amount of recent

work has aimed at reducing this cost [Litinski, 2019, Campbell and Howard, 2017,

Haah et al., 2017]) and so other methods of achieving universality have also been

investigated. Among these are a number of techniques collectively referred to as

“code deformations” which will be the focus of this thesis.

There is no precise definition of code deformation, but in general it refers to

the idea of transforming one error correcting code into another (or a sequence of

such transformations) in a way that is fault-tolerant. It is most commonly used when

discussing a class of codes called topological codes, since these transformations

can sometimes (but not always) resemble topology-preserving deformations of a

manifold. This transformation may alter the encoded logical information directly

or may allow access to new unitarily implementable gates which are available in

the final code but not the initial one. Examples of code deformation include defect

braiding [Fowler et al., 2012, Bombı́n, 2010, Brown et al., 2017, Webster and Bartlett,

2019, Scruby and Browne, 2020], lattice surgery [Horsman et al., 2012, Vuillot et al.,

14

2019] and dimension jumping [Bombı́n, 2016, Beverland et al., 2021, Brown, 2020,

Scruby et al., 2021]. In this work we study two methods for implementing logical

gates via code deformation techniques.

The first of these is the braiding of twist defects in topological codes. For each

topological code there is a corresponding topological phase and errors affecting

physical qubits of the code can be viewed as creation operators for excitations in this

phase. Twist defects are the end-points of lattice dislocations and are associated with

symmetries of the anyon model of the topological phase. In some circumstances

they can reproduce the exchange statistics of non-Abelian anyons and allow us to

perform gates by braiding. In chapter 2 we examine the logical gates which can

be implemented by braiding twists in many copies of the most commonly studied

topological code: the surface code.

The second method we will discuss is based on the process of dimension

jumping, which provides a way of switching between two- and three-dimensional

versions of a topological code [Bombı́n, 2016]. The unitary gates which can be

implemented in a given topological code depend in part on the dimension of that

code [Bravyi and König, 2013] and while neither the 2D or 3D code can have a

universal unitary gate set individually, the combination of their gate sets can be

universal. In this case arbitrary computations can be performed by using dimension

jumping to switch between the two codes but this requires significantly more physical

qubits than using only two-dimensional codes. In chapter 3 we discuss an example

of a decoding strategy called just-in-time (JIT) decoding [Bombı́n, 2018a, Brown,

2020] which allows us to exchange a spatial dimension for a temporal one so that

this increased qubit cost is exchanged for an increased runtime. We give an explicit

description of this procedure and provide numerical evidence of a threshold for this

decoding strategy. JIT decoding does not correct all errors that can occur in the code

and so a threshold for JIT decoding is necessary but not sufficient to guarantee a

threshold for the entire procedure. In chapter 4 we examine the effects of Clifford

errors in the 3D surface code. These errors can occur when uncorrected Pauli errors

(e.g. due to mistakes in the JIT decoding process) are mapped to Clifford operators

1.1. Qubits and Errors 15

by the code’s non-Clifford gate. These types of errors have previously been studied

in the colour code, and we generalise these results to the surface code and show that

certain features of these errors are much more easily understood in this setting.

In the remainder of this chapter we will provide an overview of the techniques

that are used to model errors affecting qubits and the basic formalisms of quantum

error correction. We will then introduce topological codes (with special attention

given to the surface code) and finally we will discuss in more detail the various types

of logical operations summarised above.

1.1 Qubits and Errors
A qubit is a two-state quantum system, with these states usually written |0〉 and |1〉.

A general state of a qubit can be written

|ψ〉= α |0〉+β |1〉 (1.1)

and corresponds to a normalised vector in a two-dimensional Hilbert space spanned

by basis {|0〉 , |1〉}. If we do not know the exact state of a qubit then this uncertainty

can be represented using a density matrix ρ =∑i pi |ψi〉〈ψi|where |ψi〉 are as defined

in (1.1) and pi is the probability that the qubit is in state |ψi〉. We say that a state is

pure if ρ can be written as the sum of only a single |ψi〉, otherwise we say that it is

mixed. A general density matrix state can also be written

ρ =
I + xX + yY + zZ

2
(1.2)

where

I =

1 0

0 1

 X =

0 1

1 0

 Y =

0 −i

i 0

 Z =

1 0

0 −1

 (1.3)

are the 2×2 identity matrix and the three Pauli matrices and x2 + y2 + z2 ≤ 1. The

vector kkk = (x,y,z) therefore defines a point in a sphere of radius 1. This sphere is

1.1. Qubits and Errors 16

Figure 1.1: The Bloch sphere and the positions of the states |0〉, |+〉= 1/
√

2(|0〉+ |1〉) and
|+i〉= 1/

√
2(|0〉+ i |1〉). These three states are the +1 eigenstates of Z, X and

Y respectively.

called the Bloch sphere (fig. 1.1) and every mixed state can be associated with a

point inside of it, while every pure state can be associated with a point on its surface.

The state at the centre of the sphere where x = y = z = 0 is called the maximally

mixed state.

The state of n qubits can be written as a density matrix of size 2n× 2n. If

this matrix cannot be factored into a tensor product of n 2×2 single-qubit density

matrices then we say that the qubits are entangled.

The effects of noise on a qubit can be modelled using quantum channels. These

are superoperators,

E(ρ) = ∑
i

EiρE†
i , (1.4)

where Ei are called Kraus operators and satisfy ∑i E†
i Ei = I. Accordingly, we say

that a channel is unitary if it can be written using only a single Kraus operator. We

will be particularly concerned with the following three channels: The bit-flip channel

EX(ρ) = (1− p)ρ + pXρX (1.5)

the phase-flip channel

1.1. Qubits and Errors 17

(a) (b) (c)

Figure 1.2: The action of the bit-flip, phase-flip and depolarising channels on the Bloch
sphere. We can see that the state |+〉 (|0〉) is invariant under the action of the
bit-flip (phase-flip) channel as this state is an eigenstate of X (Z). Only the
maximally mixed state is invariant under the action of the depolarising channel.

EZ(ρ) = (1− p)ρ + pZρZ (1.6)

and the depolarising channel

ED(ρ) = (1− p)ρ +
p
3
(XρX +Y ρY +ZρZ). (1.7)

The bit-flip (phase-flip) channel applies a Pauli X (Z) error to the qubit with

probability p and otherwise does nothing. The depolarising channel applies a random

Pauli error to the qubit with probability p and otherwise does nothing. The action of

these channels can also be visualised using the Bloch sphere, as shown in fig. 1.2.

The bit-flip (phase-flip) channel compresses the sphere in the y and z (x and y)

directions while preserving the x (z) direction. The depolarising channel shrinks the

entire sphere uniformly.

These three channels do not describe all possible errors that can affect a single

qubit, and in fact there are infinitely many such errors. However, it is possible to

consider only errors of this type because measurement of a Pauli operator will project

general errors to Pauli errors since X , Y and Z (with complex coefficients) form

a basis for the algebra of 2×2 unitary matrices. For example, consider a general

rotation of the Bloch sphere about the z axis by angle θ . This can be written

1.2. Error Correcting Codes 18

1 0

0 eiθ

 |ψ〉= (1+ eiθ

2
I +

1− eiθ

2
Z
)
|ψ〉 . (1.8)

X and Z anticommute so if we measure X for this qubit we will collapse this

superposition and project to either a Z error or no error.

Errors which affect multiple qubits can be written as multi-qubit error channels

affecting a multi-qubit density matrix. If a multi-qubit error can be written as a

sequence of independent single-qubit error channels then we say that the error is

uncorrelated. Correlated errors, which do not have this form, can be more difficult to

deal with and will be discussed later.

1.2 Error Correcting Codes

1.2.1 Simple Codes

In classical computers errors on individual bits can be detected and corrected using

error correcting codes. A very simple example is the three bit repetition code which

encodes the state of a single bit in three bits. A state 000 corresponds to an encoded

0, while 111 corresponds to an encoded 1. If we measure these three bits and find

they are in a state 010 then we know that either the second bit or the first and third

bits have been flipped. If bit flips occur independently with probability p then one

error is more likely than two, so we assume that the second bit has been flipped. We

can then flip the state of this bit to return to the state 000. In general we can use a

majority-vote strategy to find a correction, so that if we have two 0s and a 1 we flip

the 1 and vice versa. The following terminology will be used throughout the rest of

this thesis

• States such as 000 and 111 which correspond to states of the encoded bit are

called logical states or codewords of the code.

• An error is detectable if it does not map codewords to codewords. For example,

any single bit flip or pair of bit flips is a detectable error in the three bit

repetition code. undetectable errors (e.g. flipping all bits of the three bit

1.2. Error Correcting Codes 19

repetition code) are also called logical errors as they correspond to logical

operations on the encoded bit.

• A decoder is an algorithm which provides a correction that maps a non-

codeword to a codeword. The majority-vote strategy described above is an

example of a decoder for the three bit repetition code.

• An error is correctable with respect to a specific decoder if the combined

action of the error and the correction provided by the decoder is equivalent

to the identity operation on the encoded bit. Errors can be detectable but not

correctable (e.g. two bit flips in the three bit repetition code with majority-vote

decoder).

• The distance of a code is the smallest number of single-bit operations needed

to map one codeword to another (equivalently the number of bits affected by

the smallest possible undetectable error). The three bit repetition code has a

distance of three.

We can define a version of the three bit repetition code for qubits with logical

states
∣∣0〉= |000〉 and

∣∣1〉= |111〉 (in general, barred states |ψ〉 will be used to refer

to logical states, while barred operators U will be used to refer to logical operators).

We refer to the subspace spanned by the codewords as the codespace. We cannot

measure the individual qubits directly to check for errors as this could damage the

encoded information so instead we can make two-qubit measurements which tell us

about the parity of a pair of qubits rather than the state of an individual qubit. For

instance, the measurements Z1Z2 and Z2Z3 both have outcome +1 for |ψ〉=
∣∣0〉 and

|ψ〉=
∣∣1〉 and so cannot be used to distinguish between these states. However, the

outcome of Z1Z2 will be−1 if there was an X error on the first or second qubit, while

Z2Z3 will be −1 for an X error on the second or third qubit. Therefore, analagously

to the classical case, this code can detect up to two X errors and correct a single X

error.

However, unlike in the classical case, bit flip errors are not the only type of error

we need to protect against. A single Z error on any of the three qubits maps the state

1.2. Error Correcting Codes 20∣∣1〉 to −
∣∣1〉 while acting as identity on

∣∣0〉. In other words, a single physical Z error

also implements Z on the logical qubit so this code offers no protection against Z

errors and has distance 1. We can create a version of the repetition code which can

correct Z errors by instead choosing codewords
∣∣0〉= |+++〉 and

∣∣1〉= |−−−〉
(where |+〉 = 1/

√
2(|0〉+ |1〉) and |−〉 = 1/

√
2(|0〉+ |1〉)) and making two qubit

measurements X1X2 and X2X3. This allows us to detect any two-qubit Z error and

correct any single-qubit Z error, but we can no longer detect single-qubit X errors

and so this code is also distance 1.

Fortunately, it is possible to find quantum error correcting codes which can

protect against both X and Z errors. This is sufficient to protect against all errors

since, as discussed above, Pauli measurements can collapse general errors to Pauli

errors and Y errors are the product of an X and a Z error (up to global phase). Perhaps

the most straightforward example of this is achieved by combining the two codes

discussed above (sometimes referred to as the bit-flip and phase-flip codes). We

begin with the codestates of the phase-flip code

∣∣0〉= |+++〉 (1.9)∣∣1〉= |−−−〉 (1.10)

and then encode each of the three qubits of this code in the bit-flip code to obtain

codewords

∣∣0〉= 1√
2
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉) (1.11)

∣∣1〉= 1√
2
(|000〉− |111〉)(|000〉− |111〉)(|000〉− |111〉). (1.12)

This method of combining codes is called code concatenation and this code

is called the Shor code [Shor, 1995]. It combines the X and Z error correcting

properties of the bit-flip and phase-flip codes in order to correct arbitrary single-qubit

errors. The parity measurements we make to detect errors in this code are Z1Z2,

Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9, X1X2X3X4X5X6 and X4X5X6X7X8X9.

1.2. Error Correcting Codes 21

1.2.2 Stabiliser Codes

All of the codes we have looked at so far are examples of a more general class of

codes called stabiliser codes [Gottesman, 1997]. A stabiliser code is defined by

a stabiliser group S, which is a group of commuting Pauli operators acting on the

physical qubits of the code. The elements of S are called stabilisers and have the

property that

s |ψ〉= |ψ〉 ∀s ∈ S (1.13)

for any codestate |ψ〉. By measuring a generating set of operators of the stabiliser

group we can detect any errors which anticommute with these stabilisers. The

outcome of this set of measurements is called a syndrome. A generating set of

stabilisers for the bit flip code is Z1Z2 and Z2Z3, while a generating set for the phase

flip code is X1X2 and X2X3. Any non-stabiliser operator which commutes which all

stabilisers must be a logical operator of the code because

U |ψ〉=Us |ψ〉= sU |ψ〉 ∀s ∈ S (1.14)

so U |ψ〉 must be a codestate. General stabiliser codes can be described by the

triple of integers [[n,k,d]] where n is the number of physical qubits in the code, k is

the number of encoded logical qubits and d is the code distance. In any stabiliser

code n− k is equal to the rank (number of independent generators) of the stabiliser

group. For example, the bit flip and phase flip codes each have n = 3, two stabiliser

generators and each encode one qubit (k = 1). The Shor code has n = 9 and eight

stabiliser generators so once again encodes a single qubit.

As one final piece of terminology, we define the weight of a stabiliser, logical

operator or error to be the number of qubits of the code on which it acts nontrivially.

These qubits are also referred to as the support of this operator. In general, it is

desirable to find codes with low-weight stabilisers as this reduces requirements on

qubit connectivity and can also prevent/reduce some kinds of errors which will be

discussed later.

1.2. Error Correcting Codes 22

1.2.3 CSS Codes

An important subclass of stabiliser codes are the Calderbank-Shor-Steane (CSS)

codes. These are quantum codes defined using a pair of classical codes, with X

stabilisers derived from the parity checks of one of these codes and Z stabilisers

derived from parity checks of the other. One advantage of this type of code is that

we can consider decoding of X and Z errors separately, although recent results have

shown that in some settings the use of mixed X and Z stabilisers can lead to improved

performance [Bonilla Ataides et al., 2021]. Another useful feature of CSS codes is

that there is a simple description of their codewords in terms of thier stabilisers. For

a CSS code which enocodes a single qubit, the logical |0〉 state can be written as

∣∣0〉= 1√
n

n

∑
i=1

Xi |000〉 (1.15)

where Xi are the X stabiliser generators of the code and |000〉 is the all-zeros vector.

The logical |1〉 state can be written

∣∣1〉= 1√
n

n

∑
i=1

XXi |000〉 (1.16)

for any logical operator implementation X [Calderbank and Shor, 1996, Steane,

1996b].

1.2.4 Surface Codes

In this thesis we will focus on a subset of stabiliser codes called topological codes.

These are codes with geometrically local stabilisers and logical qubits encoded in

non-local degrees of freedom. The most well known and widely studied topological

codes are surface codes such as the toric code [Kitaev, 2003] and the closely related

planar code. These codes are perhaps most naturally defined and understood through

the lens of homology, but an alternative perspective on these codes is as topological

phases of matter. In what follows we will explain both of these interpretations and

finally describe a more qubit-efficient version of the planar code called the rotated

code.

1.2. Error Correcting Codes 23

Figure 1.3: The distance-5 toric code. The lattice is defined with periodic boundary condi-
tions so the dotted edge on the top (right) is associated with the solid edge on
the bottom (left). Qubits are shown as black circles on edges. Weight-4 X and Z
stabiliser generators are shown, as well as weight-5 X and Z logical operators
for both encoded qubits (logical operators are shown as solid (dotted) lines for
the first (second) encoded qubit).

Homological Perspective

In their original formulation these codes were defined using a square lattice with

each edge of the lattice corresponding to a qubit, each vertex corresponding to a

weight-4 X stabiliser and each face corresponding to a weight-4 Z stabiliser as shown

in fig. 1.3.

The number of logical qubits encoded by a surface code is dependent on the

topology of the manifold tessellated by the lattice. Figure 1.3 shows the toric code1

(surface code defined on a torus) which encodes two qubits. The logical X and Z

operators of these qubits are loops of X or Z operators passing around the handle of

1Specifically it shows the distance-5 toric code. The distance of the code can straightforwardly be
increased by increasing the size of the lattice, so we will refer to a toric code defined on any lattice
size as “the toric code” and specify the distance when relevant.

1.2. Error Correcting Codes 24

(a) (b)

Figure 1.4: (a) A 0-cell (yellow), 1-cell (blue) and 2-cell (red). (b) A 1-chain defined by
the assignment of 0 or 1 to every 1-cell of a lattice. This can equivalently be
thought of as a subset of the edges of the lattice containing only edges assigned
1. This 1-chain corresponds to the boundary of the red 2-cell in (a).

the torus. These loops are called homologically non-trivial cycles, but in order to

understand this we must first understand some more basic concepts of homology.

In a cellulation of a 2D manifold we have three types of object: 0-cells (vertices),

1-cells (edges), and 2-cells (plaquettes) (fig. 1.4a). The assignment of an element of a

group to each n-cell is called an n-chain, cn. Z2 homology is most relevant to qubits,

so we will only consider the assignment of 0 or 1 (fig. 1.4b). The boundary of an

n-chain is the (n−1)-chain that completely encloses it. For example, the boundary

of a plaquette is the edges at its border, while the boundary of an edge is the two

vertices at its ends. The boundary map δn is a map from an n-chain to its boundary.

An n-cycle, zn,is an n-chain with no boundary, δn(zn) = 0n−1. An n-boundary, bn,

is an n-chain that forms the boundary of an (n+1)-chain, δn+1(cn+1) = bn. Every

n-boundary is also an n-cycle and so applying the boundary map twice always gives

a null chain, δn−1(δn(cn)) = 0n−2. More formally, we can define a chain complex

C2
δ2→C1

δ1→C0
δ0→ /0 (1.17)

where Cn is the group of n-chains.

1.2. Error Correcting Codes 25

If two n-chains an and cn satisfy an +bn = cn for some n-boundary bn then we

say that an and cn are homologically equivalent. Any two homologically equivalent

n-chains have the same boundary because

δn(an +bn) = δn(an)+δ (bn) = δn(an) = δn(cn) (1.18)

because the boundary map is linear and δ (bn) = 0n−1 for any n-boundary bn. How-

ever, not all chains with the same boundary are homologically equivalent. For cycles

this difference is captured by the nth homology group, defined as the kernel of δn

modulo the image of δn+1, or equivalently as the quotient group

Hn =
Zn

Bn
(1.19)

where Zn is the group of all n-cycles and Bn is the group of all n-boundaries. For

example, the homology groups of the torus are the following:

• The boundary map δ0 is defined such that δ0(c0) = 0−1 for all chains c0,

meaning every 0-chain is a 0-cycle. Every 0-chain containing an even number

of vertices is the boundary of a 1-chain (a string) so there are two homological

equivalence classes: 0-chains with even numbers of vertices and 0-chains with

odd numbers of vertices. H0 then has two elements and is isomorphic to Z2.

• There are four equivalence classes of 1-cycles on a torus: homologically

trivial cycles which are the boundaries of plaquettes/set of plaquettes, the two

inequivalent cycles passing around the handle of the torus and the product of

these two cycles. Elements of the fourth one are products of elements of the

second and third so H1 is isomorphic to Z2×Z2.

• There are no 3-chains on the torus and so there are no 2-boundaries and B2 = 02.

The elements of Z2 are boundaryless subregions of the torus, of which there

are only two: the trivial membrane (assignment of 0 to all plaquettes) and the

entire torus (assignment of 1 to all plaquettes). Therefore Z2 = H2 as B2 is

trivial and so H2 is also isomorphic to Z2.

1.2. Error Correcting Codes 26

(a) (b)

Figure 1.5: (a) The distance-5 planar code. This code encodes a single qubit. There are
two different types of boundary, “rough” boundaries (top and bottom) which
can serve as endpoints for Z strings and “smooth” boundaries (left and right)
which can serve as endpoints for X strings. Stabilisers in the bulk are identical
to those of the toric code, but there are also weight-3 Z (X) stabilisers on the
rough (smooth) boundaries as shown in the lower left. The logical operators of
the encoded qubit are strings with their endpoints on different boundaries of the
same type. (b) Errors in the surface code. Strings of errors only anticommute
with stabilisers at their ends (marked with circles). Y errors anticommute with
both X and Z stabilisers and can be viewed as crossings of X and Z error strings.

To see the relevance of these objects we can return to fig. 1.3. Each of the three

Z operators in this figure is an example of a 1-cycle: the Z stabiliser in the lower

left is a homologically trivial cycle equivalent to the boundary of a 2-cell, while

the two logical Z operators are both homologically non-trivial cycles. The same

thing is true on the dual lattice for X stabilisers and logical operators. In general the

number of logical qubits encoded by a surface code on a two-dimensional manifold

is equal to the rank of the first homology group, with each generator of this group

corresponding to a logical operator on one of the encoded qubits.

Closed manifolds such as the torus are easy to deal with from a theoretical

perspective but a planar arrangement of qubits is more practically realistic, so we

also wish to consider surface codes on manifolds with boundaries. In a cellulation of

an open manifold there are two types of boundary which are interchangably referred

1.2. Error Correcting Codes 27

to as rough and smooth, primal and dual or X and Z boundaries. Both boundary

types are shown in fig. 1.5a. The qubits on one type of boundary are part of only

one X stabiliser, allowing Z strings to terminate at this boundary, while for the other

boundary type the reverse is true. Strings with both of their endpoints on the same

boundary are homologically trivial whereas strings with their endpoints on different

boundaries are not. Therefore a plane with an entirely rough or smooth boundary

contains no homologically non-trivial cycles and encodes no qubits, but a plane with

alternating boundaries (as in fig. 1.5a) can encode a finite number of qubits (one

qubit in the case of fig. 1.5a).

Errors in these codes also have a homological interpretation, as shown in

fig. 1.5b. These errors can be viewed as strings on the lattice (or dual lattice for

X errors) and the syndrome of an error is given by the boundary of this string.

Since stabilisers and logical operators are always cycles they have no boundary, and

therefore commute with all stabilisers as expected. Syndromes in these codes do

not uniquely identify errors since by definition any two homologically equivalent

error strings will have the same boundary and thus the same syndrome. In order to

decode these errors we only need to find a string with the correct boundary. We do

not require that this string is identical to the original error, only that the product of

error and correction operator is a homologically trivial cycle as this corresponds to

the application of a stabiliser to the code.

Condensed Matter Perspective

Surface codes can also be interpreted as topological phases of matter. The degenerate

ground state of this phase is the +1 eigenstate of all the stabilisers, meaning that

errors can be understood as creation operators for quasiparticle excititions in this

phase. As we will see in the next section, this perspective on topological codes can

be very useful for classifying possible logical operations.

More formally, the Hamiltonian of this phase is

H =−∑
v∈V

Xv− ∑
p∈P

Zp (1.20)

1.2. Error Correcting Codes 28

Figure 1.6: The distance-5 unrotated (Kitaev picture) and rotated surface codes. X stabilis-
ers in the rotated code are on dark plaquettes while Z stabilisers are on light
plaquettes. The two different boundary types in this code are created by the
addition of weight-2 X or Z stabilisers to the relevant boundary. The unrotated
code uses 41 qubits, while the rotated code only uses 25.

where V (P) is the set of all vertices (plaquettes) and Xv (Zp) means X applied to all

edges which contain vertex v (Z applied to all edges contained in face p). The ground

space of this Hamiltonian corresponds to the +1 eigenstate of all stabilisers, i.e. the

ground state of this phase is the same as the codespace of the code. A string of X (Z)

operators in the bulk of the code creates a quasiparticle pair on the faces (vertices) at

the ends of the string. A string of Y operators creates two X +Z quasiparticle pairs,

each of which can itself be thought of as a single quasiparticle excitation. If we also

consider the trivial excitation 111 then these four types of quasiparticle form an anyon

model called the quantum double of Z2. The specifics of this model, and of anyon

models in general, are discussed in more detail in the next chapter.

The Rotated Surface Code

The original surface codes introduced by Kitaev associate qubits with edges of a

lattice (this construction is sometimes referred to as the “Kitaev picture”). There also

exists a more qubit-efficient version of the surface code called the rotated surface

code [Horsman et al., 2012] where qubits are associated with vertices while X and Z

stabilisers are associated with alternating faces of the lattice. A comparison between

rotated and Kitaev surface codes of the same distance is shown in fig. 1.6. The

1.2. Error Correcting Codes 29

(a) (b)

Figure 1.7: The distance-5 triangular colour code. (a) Qubits are associated with vertices
and each plaquette supports an X and a Z stabiliser. Logical operators for both
X and Z are supported on the boundaries of the code (an example of logical Z
is shown on the blue-red boundary). (b) Error syndromes in the colour code.
Single errors anticommute with one stabiliser generator of each colour, while
pairs of errors on the same edge anticommute with two stabiliser generators of
the same colour. Syndromes can be described using quasiparticle excitations of
the corresponding topological phase.

rotated version of the code uses only 25 qubits, compared to the 41 used by the

Kitaev version. Most modern work involving the surface code uses the rotated

version, and so we will focus on this version of the code in subsequent chapters.

1.2.5 Colour Codes

Colour codes are another family of topological codes which will be relevant in later

chapters. Colour codes can be defined for lattices of any dimension ≥ 2 but in this

section we will focus on the 2D and 3D cases [Bombı́n and Martin-Delgado, 2006,

2007, Kubica, 2018]. This code is defined on a trivalent lattice with faces which

are 3-colourable and have even numbers of vertices. A qubit is associated with

each vertex of this lattice and an X and a Z stabiliser are associated with each face

(fig. 1.7). The fact that faces have even numbers of vertices ensures that X and Z

stabilisers from the same face commute, while the trivalency/3-colourability of the

lattice ensures that neighbouring faces always meet at an edge, so X and Z stabilisers

from different faces also commute.

Error syndromes in the colour code can also be understood as an anyon model

1.2. Error Correcting Codes 30

(a)
(b)

Figure 1.8: (a) A 7-qubit 2D colour code. (b) A 15-qubit 3D colour code. A Z stabiliser is
supported on each face and an X stabiliser is supported on each cell. The bottom
boundary of this code matches the 2D colour code shown in (a).

of a topological phase. This model contain nine non-trivial bosonic anyons which

can be indexed by the colour of plaquette they exist on and the Pauli that created

them, e.g. an X error that anticommutes with a stabiliser on a red plaquette creates

an rx anyon on that plaquette. There are also six fermionic anyons which can be

formed from fusions of the bosonic anyons. This anyon model will be discussed in

more detail in the next chapter.

The colour code can be defined on a planar lattice as in fig. 1.7. Each of the

three boundaries of this lattice is associated with a particular colour pair and supports

both a logical X and Z operator of the code. It can be shown that (up to local unitary

operations) this code is equivalent to two copies of the planar surface code [Kubica

et al., 2015].

We can also define a three-dimensional version of the colour code. This code

can be defined on a lattice with four-colourable cells and qubits on vertices. If an

edge connects two κ coloured cells then we can colour that edge κ , meaning that κ

colour cells will be formed from three colours of edge (the three colours which are

not κ). Each face of the code supports a Z stabiliser and each cell of the code supports

an X stabiliser. The 15-qubit code shown in fig. 1.8b has 18 faces and 4 cells, but 4

faces of a given cell can generate the remaining 2 so there are (18−2×4)+4 = 14

1.2. Error Correcting Codes 31

stabiliser generators and this code encodes a single qubit. An implementation of

logical X in this codes is supported on any facet (boundary) of the tetrahedron while

an implementation of Z is supported on any edge of the tetrahedron. There also

exists a version of the 2D colour code on each one of these facets.

1.2.6 Fault Tolerance

In order for reliable quantum computation in the presence of noise we require more

than the ability to correct errors on the physical qubits of our code. We must also be

able to account for errors in the stabiliser measurements themselves. To understand

these errors we must first consider the stabiliser measurement process in more detail.

Measurement of stabilisers of arbitrary weight can be acheived with only two-body

operations via the use of an ancilla. For example, the following circuits allow

measurement of the weight-4 Z and X stabilisers of the surface code.

Z
|0〉

Z
|0〉 H H

The term “measurement error” usually refers to an error in the actual measure-

ment operation in these circuits (such that the measurement outcome is 1 when it

should be −1 or vice versa). These errors cause problems during decoding since

the decoder will be passed an incorrect syndrome and thus could return an incorrect

“correction” operator which may actually introduce more errors into the code. The

standard approach to dealing with these errors in codes such as the surface and colour

code is to repeat the stabiliser measurements many times before applying a correction.

Usually the measurements are repeated d times (where d is the code distance) and we

say that the resulting error correction process has distance d against both data qubit

errors and measurement errors. More complex codes such as the three-dimensional

surface and colour codes are capable of single-shot error correction [Bombı́n, 2015,

Quintavalle et al., 2021] which allows for the correction of measurement errors after

1.2. Error Correcting Codes 32

Figure 1.9: Numerical demonstration of a threshold for the 2D surface code with noisy data
qubits and noisy measurement circuits (from Fowler et al [Fowler et al., 2012]).
The simulations show a threshold of ∼ 0.57% for a minimum-weight perfect
matching decoder in this setting. The x-axis of the plot shows the “per-step error
rate”, which gives the probability of an error occuring following each operation
at each timestep of the measurement circuit.

only a single round of stabiliser measurements. This process will be discussed in

more detail in chapter 3.

There are also other kinds of errors which can occur in the measurement circuits

shown above. For example, an X error on the ancilla in the second circuit can spread

through the CNOT gates and cause multiple X errors on the data qubits of the code.

If this error occurs between the second and third CNOT gates then it will spread

to a two-qubit X error on the third and fourth qubits. These errors are sometimes

called “hook errors” Dennis et al. [2002]. Errors occuring earlier in the circuit can

cause three or four-qubit errors but these are equivalent to one or zero-qubit error

up to composition with the X stabiliser that the circuit is measuring, so the two

qubit hook error is the worst case in the surface code. In the colour code we have

weight-6 stabilisers and so weight-3 hook errors can occur. In general codes with

low stabiliser weights are desirable as this minimises the possible impact of hook

errors.

It has been shown that, provided error rates are low enough, the surface code can

operate reliably even in the presence of measurement errors. Figure 1.9 (taken from

work by Fowler et al [Fowler et al., 2012]) shows the results of numerical simulations

of the performance of the surface code when subject to all of the previously described

error types, as well as more general gate errors in the measurement circuits and

1.3. Fault-Tolerant Logic and Code Deformation 33

errors in the preparation of the state of the ancilla qubit. These simulations use a

minimum-weight perfect matching (MWPM) decoder to pair up the endpoints of

error strings and find correction operators, and show the existence of a threshold

error probability of around ∼ 0.57%. Below this threshold the logical error rate can

be arbitrarily suppressed by increasing the size of the code.

Thresholds for more complicated codes and decoding processes will be dis-

cussed in more detail in chapter 3.

1.3 Fault-Tolerant Logic and Code Deformation
In the previous section we discussed the ability of quantum error correcting codes

to protect qubits from noise. However, in order to perform computation with the

encoded qubits we also require the ability to manipulate the stored information. This

is more challenging than performing computational operations on unencoded qubits

since these operations must be performed in a way which does not compromise the

fault-tolerance of the code. The most straightforward method of achieving this is

via the use of transversal gates, which do not entangle physical qubits belonging to

the same code. For example, the application of a single-qubit gate to each of the

n qubits of a code constitutes a transversal operation, as does the application of n

two-qubit gates between pairs of qubits from different codes. However, applying

n/2 two-qubit gates between pairs of qubits in the same code is not a transversal

operation. Transversal operations are inherently fault-tolerant since they cannot

increase the weight of errors within a code, but the computational power of these

operations is limited.

The Eastin-Knill theorem tells us that no error correcting code which can detect

arbitrary errors on individual qubits has a universal set of transversal gates2[Eastin

and Knill, 2009]. Beyond this there are a number of no-go theorems restricting the

power of transversal gates in more specific code families, as well as restrictions on

the power of various generalisations of transversal gates such as locality-preserving

logical operators and general unitary operators [Eastin and Knill, 2009, Zeng et al.,

2A set of gates is considered to be universal for quantum computation if any unitary operation can
be approximated arbitrarily well using only gates from the set

1.3. Fault-Tolerant Logic and Code Deformation 34

2011, Bravyi and König, 2013, Jochym-O’Connor et al., 2018, Burton and Browne,

2020, Webster et al., 2021, Webster and Bartlett, 2020].

Logical gate implementations which are not subject to to these restrictions

have been the subject of a significant amount of research. Perhaps the most pop-

ular approach uses so-called “magic states” and was first proposed by Bravyi and

Kitaev [Bravyi and Kitaev, 2005]. This approach to fault tolerant logic consists of

two steps: state distillation and state injection.

• State Injection: Consider the following circuit

Z

|ψ〉 S T |ψ〉

T |+〉

where T is the rotation diag(1,eiπ/4). This circuit takes in an arbitrary state

|ψ〉 and a state T |+〉 (a T -state) and uses the latter to apply the gate T to the

former. This means that if we have access to a supply of high-fidelity T -states

and can implement the operations in this circuit fault-tolerantly then we can

also implement T gates fault-tolerantly. This is significant for two reasons.

Firstly, the only operations in this circuit are Pauli measurements and Clifford

gates (gates which map Paulis to Paulis). Both of these classes of operations

can be performed fault-tolerantly in 2D topological stabiliser codes such as

the surface and colour codes. Secondly, the T gate is a non-Clifford gate and

any generating set of the Clifford group plus a single non-Clifford gate is

known to constitute a universal gate set [Nebe et al., 2006]. Therefore, given a

method of preparing high-fidelity T -states that requires only fault-tolerance

of Clifford operations we can fault-tolerantly implement a universal gate set.

This is exactly what state distillation gives us.

• State Distillation: This is a process which takes as input a large number of

low-fidelity copies of a state and outputs a smaller number of higher fidelity

copies. Importantly, this distillation process requires only Clifford operations.

There exist a wide variety of state distillation schemes with various advantages

1.3. Fault-Tolerant Logic and Code Deformation 35

and disadvantages in terms of thresholds, efficiency and so on, but these

schemes can be fairly complex and reviewing them is not the aim of this thesis

so we refer interested readers to the following sources [Bravyi and Kitaev,

2005, Litinski, 2019, Campbell and Howard, 2017, Haah et al., 2017].

Magic state distillation requires a large amount of additional hardware in or-

der to produce the many copies of states needed for the distillation procedure and

so other methods of achieving universal logic have also been investigated. These

include the code deformation techniques described previously, although not all of

these techniques provide universality and some instead provide more convenient im-

plementations of gates that also have transversal implementations. In the remainder

of this section we discuss some simple examples of code deformation techniques

and explain their usefulness.

1.3.1 Defect Encodings and Braiding

In section 1.2.4 we saw that logical qubits in the surface code could be defined

using lattice patches with mixed boundary types. Another method of defining logical

qubits is through the use of lattice defects. One type of defect is a puncture, which

corresponds to a region of removed stabilisers in the interior of the code (i.e. we

choose to no longer measure these stabilisers). Figure 1.10 a) shows two puncture

encoded qubits in a surface code, one corresponding to a removed X stabiliser and

one to a removed Z stabiliser. As discussed previously, the number of encoded qubits

in a stabiliser code is equal to the number of physical qubits minus the rank of the

stabiliser group. Each of the punctures in fig. 1.10 a) is created by the removal

of a single stabiliser generator while the number of physical qubits in the code is

unchanged, so each increases the number of encoded physical qubits by 1. The

logical operators for these new qubits are also shown, and can be seen to correspond

to cycles which are homologically equivalent to the removed stabiliser or to strings

which would previously have been detected by the removed stabiliser, thus creating

two new logical Pauli operators for each removed qubits as we would expect. Notice

that the distance of these new logical qubits depends on two things, the size of the

puncture and its distance from the code boundary (or from another puncture of the

1.3. Fault-Tolerant Logic and Code Deformation 36

Figure 1.10: Puncture encodings in the 2D surface code. a) shows X-type and Z-type punc-
tures corresponding the removal of X and Z stabiliser generators respectively.
Each puncture encodes a single qubit and pairs of associated logical operators
are shown for each. b) Growing, shrinking and moving punctures in a subre-
gion of the code. Physical qubits completely contained within the puncture are
measured and removed from the code. When a puncture moves, its associated
logical operators move with it. c) Braiding a Z-type puncture around an X-type
puncture to perform a logical CNOT gate. Pre-braid logical operators are
shown by solid lines and changes caused by the braid are shown by dashed
lines.

same type, since strings connecting the two also correspond to logical operators).

Both of these properties can be modified as shown in fig. 1.10 b), where we show

how punctures can be grown and shrunk, and how this process can be used to move

them around the lattice. Notice that if we grow the puncture to be large enough that

there are qubits within it which are not part of any stabilisers then we must measure

out these qubits to remove them from the code. In the figure we grow an existing

puncture by removing one stabiliser generator and one physical qubit, meaning the

number of encoded logical qubits remains the same. When we shrink the puncture

we add a generator and a physical qubit. Notice also that as we move this puncture

through the code the connected logical operator moves with it. This can be used to

perform braiding operations with punctures, as in fig. 1.10 c). This figure shows a

case where we have braided a Z-type puncture (i.e. corresponding to the removal

of a Z stabiliser generator) around an X-type puncture. This causes the logical X

1.3. Fault-Tolerant Logic and Code Deformation 37

Figure 1.11: A domain wall and pair of twists in the 2D surface code. Qubits are on vertices.
Dark plaquettes correspond to X stabilisers and light plaquettes to Z stabilisers.
Each twist corresponds to a weight five stabiliser which includes one Y . X and
Z stabilisers and excitations are exchanged by the domain wall. The domain
wall can be created in a regular surface code by measuring out the three circled
qubits and measuring the new stabilisers.

operator of the Z-type puncture to become wrapped around the X-type puncture, and

this string is homologically equivalent to a product of the logical X operators of the

two punctures. Similarly, the logical Z of the X-type puncture gets “caught” on the

Z-type puncture during the braid and the resulting string is homologically equivalent

to a product of logical Z operators for the two punctures. In this way we can see that

the braiding operation maps X ⊗ I→ X ⊗X and I⊗Z→ Z⊗Z. It does not affect

I⊗X or Z⊗ I, and this is consistent with the logical action of the CNOT gate on a

pair of qubits.

Puncture encodings and braidings can also be understood in terms of the toric

code anyon model. We can think of the Z-type puncture as a box that can hold X-type

quasiparticles. The logical X for this puncture transfers a quasiparticle into/out of this

box and the logical Z operator detects the presence or absence of these quasiparticles

(corresponding to logical |1〉 or |0〉). The same is true for the X-type punctures,

although the roles played by X and Z are reversed in this case, so the presence of

a Z-type quasiparticle corresponds to |−〉 while the absence corresponds to |+〉.

Strings of X and Z operators anticommute, meaning that if we exchange an X-type

quasiparticle with a Z-type quasiparticle we acquire a phase of −1. CNOT acts

1.3. Fault-Tolerant Logic and Code Deformation 38

Figure 1.12: A twist braiding operation that can be used to implement a logical S gate in
a planar surface code [Brown et al., 2017]. Code deformation operations are
used to bring a pair of twists and a domain wall from the boundary into the
bulk and then these twists are exchanged and merged back into the boundary.
In the middle sequence of images we see how to untangle the logical operators
from around the twist by composing them with stabilisers such as the shaded
red region in the fourth image. Step 6→ 7 uses the fact that a string that loops
twice around a twist is also a stabiliser of the code.

as identity on the states |0+〉, |0−〉 and |1+〉 (i.e. the states where we have 0 or 1

quasiparticles) while CNOT|1−〉=−|1−〉 and so CNOT can be implemented by

this exchange.

Another type of defect which can encode logical qubits is referred to as a

“twist”. These are endpoints of domain walls or lattice dislocations in the code, and

braids using twists can give access to gates not accessible via braiding punctures. An

example of a domain wall and two twists in the 2D surface code is shown in fig. 1.11.

X and Z are exchanged by the domain wall, meaning stabilisers which straddle it

consist of two X and two Z operators and error strings which cross it can create

one Z and one X quasiparticle instead of a pair of identical quasiparticles [Bombı́n,

2010].

X (Z) boundaries in the 2D surface code can be thought of as combinations of

Z (X) boundaries and one of these X-Z exchanging domain walls, meaning that the

corners of this code (where X and Z boundaries meet) correspond to twists [Brown

et al., 2017]. Code deformation operations can be used to move these twists into the

bulk of the code where they can be used in braiding operations to modify the encoded

1.3. Fault-Tolerant Logic and Code Deformation 39

logical information. An example of such a braiding operation is shown in fig. 1.12.

Here we can see how the exchange of two twists maps the logical X operator of the

code to a product of X and Z but has no effect on the logical Z operator. This is

consistent with the action of a logical S gate on the encoded qubit. Note that the 2D

surface code does not admit a transversal implementation of S, and nor can this gate

be implemented via braiding of punctures.

1.3.2 Lattice Surgery

Lattice surgery [Horsman et al., 2012] is another method for implementing a logical

CNOT gate, although it uses surface code patches with mixed boundaries (as dis-

cussed above) rather than puncture-encoded qubits. Such patches admit a transversal

CNOT gate but this gate cannot be applied without either non-local couplings or

a 3D architecture as a CNOT gate must be performed between each qubit in the

first code and the corresponding qubit in the second code. In contrast, the lattice

surgery CNOT requires only edge-to-edge contact of code patches. It consists of two

basic operations, referred to as a merge and a split, which can be performed between

pairs of X or Z boundaries. Figure 1.13a shows examples of these operations for a

Z boundary. In the first image we have two distance-3 surface code patches with

adjacent Z boundaries. In the second image we have measured two new X stabilisers,

resulting in these two codes being merged into a single code encoding only a single

logical qubit. Two of the Z boundary stabilisers have been merged into a single

plaquette stabiliser and so we have a net increase of one stabiliser generator, consis-

tent with the loss of one encoded qubit. The product of the two new X stabilisers is

a weight-6 operator equivalent to the product of two logical X operators from the

original (separate) codes, and so measurement of these stabiliers can be interpreted

as a logical XX measurement. The third image shows a split operation, where we can

divide the code in the second image back into two separate codes via measurement

of the original Z boundary stabilisers. Note that the two encoded qubits will still be

entangled after this split.

Figure 1.13b shows an arrangement of three code patches which can be used

for a lattice surgery CNOT. The states of the three qubits are labelled C, A, and

1.3. Fault-Tolerant Logic and Code Deformation 40

(a)

(b)

Figure 1.13: Lattice surgery in the 2D surface code. (a) Merge and split operations trans-
forming a pair of surface codes into a single code and then back again. These
operations are performed entirely via measurement, with new stabilisers mea-
sured at each step shown with thick coloured outlines. (b) An arrangement of
three surface codes allowing for the implementation of a logical CNOT via
lattice surgery. The gate is implemented by merging and then splitting the
control and ancilla codes, then merging the ancilla and target codes.

T for control, ancilla and target. It can be shown that performing an X boundary

merge and split between the control and ancilla, and then a Z boundary merge

between the ancilla and target implements a logical CNOT between the control and

target qubits. The work in this thesis does not deal directly with lattice surgery

and so we do not show the full calculation here and instead refer interested readers

to [Horsman et al., 2012]. Lattice surgery between 2D and 3D surface codes has also

been proposed [Vasmer and Browne, 2019].

1.3.3 Dimension Jumping

The final technique we will discuss is termed “dimension jumping” and provides

a way of fault-tolerantly switching between 2D and 3D versions of a topological

code. It was first proposed for the 2D and 3D colour codes [Bombı́n, 2016] and

that is the setting in which we will discuss it here, although the surface code case

1.3. Fault-Tolerant Logic and Code Deformation 41

will be discussed in chapter 3. Additionally, the original formulation of dimension

jumping uses a more complex version of the 3D colour code called the gauge colour

code, but for simplicity we describe an alternate version of this process using the

regular (stabiliser) colour code. To understand this procedure we must first observe

that each boundary of the 3D colour code supports a 2D colour code, as shown

in fig. 1.8. Notice also that all X stabilisers of the 3D code commute with all Z

stabilisers of the 2D code and there are implementations of the logical operators of

the 3D code supported entirely in the 2D code. The dimension jump is a transfer of

logical information from this boundary into the bulk, or vice versa.

The 2D→ 3D expansion is fairly simple. We begin with a 2D code in state |ψ〉

and all other qubits of the 3D code prepared in the state |+〉. We then measure all

of the Z stabilisers of the 3D code (some of which are stabilisers of the 2D code).

Assuming we had no errors in the 2D code we will get +1 outcomes from all of the

Z stabilisers which are part of the 2D code and random outcomes from the others.

We can then find a correction operator (which will be supported only on qubits which

are not part of the 2D code) which maps us to the state |ψ〉 in the codespace of the

3D code.

To collapse back from 3D to 2D we first make single-qubit X measurements of

all qubits which are not part of the 2D code and then apply a correction to the 2D

code based on the outcome of these measurements. The calculation of this correction

is discussed in depth for the 3D surface code in chapter 3 and a similar process can

be applied to the colour code, but in short it involves finding a Z stabiliser of the

3D code which is supported on all the qubits where our X measurements returned

−1 and then applying the restriction of this stabiliser to the 2D code. This differs

from the process discussed in the original proposal of this technique [Bombı́n, 2016]

which uses the 3D gauge colour code instead of the stabiliser code discussed here.

Unlike braiding and lattice surgery, dimension jumping by itself does not

perform a logical operation. Its utility comes from the fact that the 2D colour

code admits transversal implementations of the full Clifford group, while the 3D

colour code admits a transversal implementation of the non-Clifford gate T . We can

1.4. Summary 42

therefore acquire a universal gate set by switching between the two codes as needed.

1.4 Summary
We have discussed various approaches to fault-tolerant logic in stabiliser codes

including a number of code deformation techniques. In what follows we will

investigate applications of these techniques in more detail. In chapter 2 we discuss

in detail an alternate type of defect encoding scheme that uses twist defects rather

than punctures. We review existing work using these defects and then generalise

some of these results, obtaining braiding relations for a large class of these defects.

In chapter 3 we discuss a recently proposed decoding technique called just-in-time

decoding which is designed to be used in conjunction with version of the dimension

jumping process discussed above. We explain this procedure in detail and then

obtain numerical evidence for a threshold. Chapter 4 is not directly concerned

with code deformation techniques, and instead focuses on analysis of a particularly

complex type of error that can occur during the procedure discussed in chapter 3.

A related type of error has previously been studied in the 3D colour code and we

generalise these results to the 3D surface code and show that they have a more natural

interpretation in this setting.

Chapter 2

Fusion and Braiding of Twists in

Stacked Surface Codes

As discussed in the previous chapter, logical information in topological codes can be

encoded in lattice defects and logical operations can be performed by braiding these

defects. Examples of defects include punctures and twists, with the latter being of

particular interest as they can be used to reproduce the braiding relations of anyons

not in the anyon model of the code and so can allow access to additional logical

gates. For example, the S gate cannot be implemented transversally in the 2D surface

code (outside of folded surface code constructions such as [Moussa, 2016]) but can

be implemented via braiding of twist defects [Brown et al., 2017].

A recent paper by M. Kesselring et al [Kesselring et al., 2018] fully categorises

the twists of the 2D colour code, sorting them into nine conjugacy classes. In light

of this result it seems natural to ask what gates we can implement via the braiding of

these twists. In this chapter we answer this question for at least some of the colour

code twists. In [Brown et al., 2017] the fact that braiding twists produces an S gate

is shown by considering the action of this braid on the logical operators of the code

(this same proof is shown in fig. 1.12). However, the same result can be obtained

by considering the twists as (Ising) anyons and analysing their braiding relations,

as in [Bombı́n, 2010]. Formally the twists in a topological code are described by

G-crossed braided tensor categories [Barkeshli et al., 2014] and cannot in general

be considered as anyons. We will discuss below the cases in which neglecting the

2.1. Anyons and Twists 44

full G-crossed category treatment of these defects is permissable and we will see

that three of the nine conjugacy classes of colour code twist are examples of cases

where twists can be analysed using anyonic models. These models are members of a

hierarchy of anyonic models generalising the standard Ising anyon model used to

study twists in the surface code.

This chapter is organised as follows: in section 2.1 we present a short overview

of anyon fusion and braiding relations and twists in topological codes, touching

briefly on the G-crossed braided tensor category formalism and the occasions when

it is acceptable to disregard it. This first section is not original work, but serves as

a chapter-specific literature review. We then define a hierarchy of “extended Ising

models” in section 2.2 and discuss the general fusion and braiding relations for

these models in section 2.3 and section 2.4 respectively. In section 2.5 we clarify

the correspondence between these relations and the possible logical operations that

can be performed using these anyons. Finally, in section section 2.6 we discuss

how general models in this hierarchy can be realised in stacks of 2D surface codes

with special attention given to the case of the 2D colour code. The original work

described in this chapter was presented previously in [Scruby and Browne, 2020].

2.1 Anyons and Twists
In this section we briefly review the theoretical background necessary for the rest of

the chapter. In section 2.1.1 and section 2.1.2 we provide an overview of anyon fusion

and braiding relations and in section 2.1.3 we present a similar discussion regarding

twists in topological codes and briefly touch on the category theory formalism that

describes these objects.

2.1.1 Fusion and Braiding

There exist a wide variety of ways to describe anyon models. They can be described

in terms of topological charges [Bombı́n, 2010], unitary braided tensor categories

[Barkeshli et al., 2014] and through the lens of conformal field theory [Bais and

Slingerland, 2009, Francesco et al., 1997]. For our purposes the topological charge

description is largely sufficient, although we will very briefly use the category-

2.1. Anyons and Twists 45

theoretic approach when discussing twists in section 2.1.3. This means that we

have some finite number of anyonic species, each possessing a unique label and

topological charge. The anyons obey a set of fusion and braiding relations. Fusion

relations are generally written in the form [Pachos, 2012]

a×b = ∑
c

Nc
abc (2.1)

where Nc
ab is an integer counting the number of ways anyons a and b can fuse into c.

For a given charge a, if, for every choice of b, Nc
ab is non-zero for at most a single

charge c (i.e. the fusion of a with any other anyon has only one possible result)

then we say that a is Abelian. Otherwise it is non-Abelian. All anyon models must

contain a unique vacuum charge 1 such that a×1 = a. Additionally, each charge a

in the model must have a unique inverse ā with which it can fuse to the vacuum in a

unique way (N1
aā = 1).

The total anyonic charge within a given region is a topological invariant and

so cannot be altered by operations within this region. However, through alterations

to anyon fusion order and intermediate fusion outcomes we can arrive at this same

total charge via different paths, called fusion channels. This gives rise to the notion

of an anyonic fusion space with dimension equal to the number of possible fusion

channels. The quantum dimension of an anyon is defined to be

d2
a = ∑

b
Nb

aādb (2.2)

meaning that da = 1 for all Abelian anyons and da > 1 for non-Abelian anyons. The

dimension of the fusion space of N anyons a grows asymptotically as (da)
N in the

limit of large N. Clearly if we wish to use anyons in quantum computation then only

those models which contain non-Abelian anyons are of interest to us.

Changes of basis in the fusion space can be described using F-moves,

2.1. Anyons and Twists 46

1 2

a

3

b

4

5

(F5
a34)

c
b

(Fb
123)

e
a

1 2

a

3

c

4

5

(F5
12c)

d
a

1 2

e

3

b

4

5

(F5
1e4)

d
b

1 2

d

e

3 4

5

(F5
234)

c
e

1 2

d

c

3 4

5

Figure 2.1: Diagrammatic representation of the pentagon equation [Pachos, 2012]. Different
sequences of F-moves that have the same start and end point must be equivalent.

a b

u

c

d

= ∑v(Fd
abc)

v
u

a b

v

c

d , (2.3)

where u (v) can be any of the fusion outcomes of a and b (b and c). More generally

we should include additional indices describing the precise fusion channel by which

a and b (b and c) fuse to u (v) but in what follows we will only consider fusion rules

with Nc
ab equal to either 1 or 0 and so such generality is unnecessary. The F-matrices

associated with an anyon model can be found from the fusion rules by solving the

pentagon equation [Pachos, 2012]

(F5
12c)

d
a(F

5
a34)

c
b = ∑

e
(Fd

234)
c
e(F

5
1e4)

d
b(F

b
123)

e
a (2.4)

which can be understood diagramatically in fig. 2.1.

Logical operations on the fusion space can be performed via the braiding of

2.1. Anyons and Twists 47

anyon pairs. This is an operation

Rc
ab

a b

c

=

a b

c , (2.5)

which exchanges the positions of anyons a and b which fuse to c. Rc
ab will be a

phase if a and b have only a single possible fusion outcome, and a diagonal matrix

indexed by c if there are multiple possible outcomes. The charges a and b and the

outcome of their fusion c are left unchanged by the braiding in accordance with the

fact that anyonic charges cannot be modified through local operations. However, the

fusion outcome of a or b with a third anyon may be modified by this braid. If the

F-matrices for a model are known then we can find the R-matrices for that model

using the hexagon equation

Rc
13(F

4
213)

c
aRa

12 = ∑
b
(F4

231)
c
bR4

1b(F
4
123)

b
a. (2.6)

As with the pentagon equation, the hexagon equation can more easily be under-

stood when presented diagramatically as in fig. 2.2.

2.1.2 Examples

Two anyon models of central importance in our work are the quantum double of

Z2 [Bombı́n, 2010] and the Ising anyons [Pachos, 2012]. The former is an Abelian

model with charges 1,e,m and ε , fusion rules

e× e = m×m = ε× ε = 1,

e×m = ε, e× ε = m, m× ε = e
(2.7)

2.1. Anyons and Twists 48

2 3 1

a

4

Ra
12

(F4
123)

b
a

2 3 1

a

4

(F4
213)

c
a

2 3 1

c

4

Rc
13

2 3 1

b

4

R4
1b

2 3 1

b

4

(F4
231)

c
b

2 3 1

c

4

Figure 2.2: Diagrammatic representation of the hexagon equation. As with the pentagon
equation, different sequences of F and R-moves with the same start and end
points must be equivalent

and braiding relations

Ree = Rmm = 1, Rεε =−1,

RemRme = ReεRεe = RmεRεm =−1.
(2.8)

This model describes the excitations that arise in the toric code, with e and m

anyons corresponding to X and Z errors and ε corresponding to a combination of

the two (i.e. a Y error). It also possesses a symmetry: we can exchange the e and m

charge labels without affecting any of the fusion or braiding relations.

In contrast, the Ising anyon model is non-Abelian. It contains three charges:

1,ψ and σ . The Ising anyon fusion rules are

ψ×ψ = 1, ψ×σ = σ , σ ×σ = 1+ψ (2.9)

2.1. Anyons and Twists 49

and the F matrix for the fusion of three σs is

Fσ
σσσ =

1√
2

1 1

1 −1

 (2.10)

and all other Fd
abc are arbitrary phases. The braiding relations are

Rσσ = e−iπ/8

1 0

0 i


Rψψ =−1, Rψσ Rσψ =−1.

(2.11)

2.1.3 Twists in Topological Codes

We noted above that the quantum double of Z2 is symmetric under exchange of e and

m charges. We can consider a domain wall which applies precisely this symmetry,

achievable in the toric code via a line of modified stabilisers each containing two Z

and two X operators as shown in fig. 1.11 [Brown et al., 2017, Bombı́n, 2010]. An

X error moved across such a domain wall will be transformed to a Z error and vice

versa. The end points of domain walls such as this are called twists and are formally

described by G-crossed braided tensor categories [Barkeshli et al., 2014]. We now

give a very brief outline of some of the basic ideas of this formalism. This will be

limited to the minimum details required for drawing a connection between twists

and anyons and readers interested in a rigourous mathematical description of this

formalism should refer to the sources cited.

An anyon model can be described by a unitary braided tensor category C0

which has charges a0 and a (possibly trivial) symmetry group G. The elements of G

are labelled g and correspond to the symmetries of the anyon model. The identity

element of this group is labelled 0. The action of g on C0 is an invertible map from

C0 to itself. In a physical realisation of this anyon model each g will correspond to

a twist and braiding an anyon around this twist will apply the symmetry g to that

anyon, with this action denoted as ga0. The topological charge of a twist can be

measured by braiding it with an anyon a0 which is invariant under the symmetry g

2.1. Anyons and Twists 50

a)

ga0

b)

ga0

b0

Figure 2.3: Braiding an anyon in a loop around a twist to measure the enclosed topological
charge. a0 is invariant under the symmetry g. cases a) and b) are distinguishable
only if a0 braids non-trivially with b0.

as in fig. 2.3 a). For each symmetry g we have a new category Cg which has charges

ag. The number of distinct ag is equal to the number of g-invariant charges in C0.

When fusing charges ag and bh we must have that ag×bh = cg·h where g ·h is the

composition of elements of G. This is called G-graded fusion.

Since g · 0 = g we have that ag× b0 = a′g. If the g-invariant charge(s) in C0

cannot distinguish b0 from the vacuum then a′g = ag and we say that anyon b0 is

“localised” by twist ag. Such charges and twists have fusion/splitting rules such that

Nag
agb0

= Nag

agb̄0
= Nb0

agāg
= N āg

āgb0
= Nag

gb0ag
6= 0 (2.12)

In other words if ag localises b0:

• āg also localises b0.

• b0 is one of the possible fusion outcomes of ag× āg.

• All charges in the orbit of b0 under the action of g are also localised by ag and

āg.

Additionally we note that the set of localisable charges for a particular twist

must be closed under fusion since if a0 and b0 both braid trivially with the g-invariant

charges in C0 then so must the result of their fusion.

Braiding of charges ag and bh involves the action of the relevant symmetries

such that charges can be modified by these braids (this is the G-crossed braiding part

of the formalism). However, we will not require this part of the theory for reasons

that will become clear below.

2.1. Anyons and Twists 51

rx gx bx
ry gy by
rz gz bz

Table 2.1: The nine non-trivial bosonic anyons of the 2D colour code arranged as in [Kessel-
ring et al., 2018]. rx implies an X error on a red plaquette and so on.

Finally, we note that fusion rules in this formalism must still satisfy the pentagon

equation. Braiding rules are generalised to follow a “heptagon equation” which

accounts for the fact that braiding with twists can alter charge labels.

We return now to the previously discussed case of twists in the toric code. C0 in

this case is the quantum double of Z2 which has only one symmetry so G has only

two elements, 0 and g, where 0 is the identity. C0 contains two g-invariant charges (1

and ε) so Cg has two charges which can be distinguished by braiding with ε . More

specifically there is one charge corresponding to the fusion of the twist with either 1

or ε and one charge corresponding to fusion with e or m. This twist possesses two

significant features: (1) it is self-inverse and (2) its associated invariant charges are

also its localisable charges. This means that the subset of charges consisting of this

twist and its localisable charges is closed under fusion. Furthermore, none of the

charges in this subset can be altered by braiding with any of the others. In other

words this subset functions as an anyon model - specifically the Ising anyon model.

This is precisely what was noticed by H. Bombı́n in [Bombı́n, 2010], although the

argument in that paper was formulated in terms of topological string operators.

In the 2D colour code the situation is not quite so simple. In [Kesselring et al.,

2018] the 72 twists of the colour code are identified and arranged into nine conjugacy

classes. The authors of [Kesselring et al., 2018] point out that the action of these

twists can best be understood by considering the nine (non-trivial) bosonic anyons

of the colour code arranged as in table 2.1. These anyons are all self-inverse and

Abelian. Two anyons in a row or column fuse to the third and braid trivially with

each other. Two anyons which do not share a row or column fuse to a fermion and

aquire a phase of -1 under full exchange (monodromy).

2.2. A Hierarchy of Models 52

The symmetries of the colour code anyon model are the permutations of this

table which preserve the rows and columns. These permutations are the column

permutations (6 options), row permutations (6 options) and the transpose (2 options)

giving 6× 6× 2 = 72 possible symmetries. Twists belonging to three of the nine

conjugacy classes possess the same properties as the surface code twist described

above: they are self-inverse and their associated sets of invariant and localisable

charges are equivalent. One of the other six classes is trivial (it contains only the

identity twist) and twists in the other five classes possess neither of these properties.

In what follows we consider the general case of the anyon model associated

with these self-inverse twists and their localisable charges. In section 2.6 we will

show that twists in any number of stacked surface codes can only have an invariant

set of localisable charges if they are self-inverse.

2.2 A Hierarchy of Models
Recall the standard Ising model in which we have a single non-Abelian anyon σ and

two Abelian anyons 1 and ψ such that σ ×σ = 1+ψ . We can extend this model by

including additional Abelian anyons and modifying the outcome of σ ×σ to include

these anyons. Such extended models already exist in the literature in the form of

parafermions, for example in [Hutter et al., 2015], but the Abelian anyons in these

models are not generally self-inverse and so cannot be the natural anyons of the

colour code. If we write the Abelian anyons of an extended Ising model as αi (where

α0 = 1) and the non-Abelian anyon as β and require that each αi must be its own

antiparticle then we obtain the following fusion relations

αi×α j = αk, αi×β = β , β ×β =
n

∑
i=0

αi (2.13)

where k = 0 only if i = j and k = i (k = j) only if j = 0 (i = 0). These are

exactly the fusion relations we observe for self-inverse twists and their localisable

anyons in the colour code. For example, the colour code twist B is self-inverse and

can localise the anyons bx,by,bz from table 2.1 (as well as the vacuum anyon). The

set {111,bx,by,bz} is closed under fusion and so if we write 111 = α0, bx = α1, by = α2,

2.2. A Hierarchy of Models 53

bz = α3 and B = β then fusion relations of these five charges exactly match (2.13).

Only specific values of n yield valid extended Ising models. For example, the

model {α0,α1,α2,β} is not valid because it is not closed under fusion (α1×α2

must have a fusion outcome αk where k 6= 0,1,2). Given a valid extended Ising

model containing m αs we can find the next valid model with n > m by adding a

single new charge αm+1 to the model, fusing αm+1 with all existing charges, and

adding all fusion outcomes to the model. If we write these fusion outcomes as

αi×αm+1 = αi+m+1 then we can see that the resulting model must be closed under

fusion since

• Fusion of any αi,α j with i, j ≤ m results in another αk with k ≤ m since the

initial model was closed under fusion.

• Fusion of αm+1 with any anyon in the model results in another anyon in the

model due to the above procedure.

• Fusion of any αi,α j with i ≤ m and j ≥ m+ 2 can be written as αi≤m×

α j≥m+2 = αi≤m×αk≤m×αm+1 by definition of α j≥m+2, and this is in the

model due to the above two points.

• Fusion of any αi,α j with i, j ≥ m+2 can be written as αi≥m+2×α j≥m+2 =

αk≤m×αm+1×αl≤m×αm+1 which is in the model since the two αm+1s cancel.

Thus we can inductively define all extended Ising models beginning from the

standard Ising model: {α0,α1,β}. We can label these models by Ik where k = 1 is

the standard Ising model. The number of αi in a given Ik is nk = 2nk−1 = 2k−1n1 and

n1 = 2 so nk = 2k. The β anyon for each Ik can be written as βk, and it has quantum

dimension
√

2k.

Note that we can equivalently define these models from multiple copies of Z2.

The Abelian charges of the standard Ising anyon model form a group (with composi-

tion of group elements described by the model’s fusion rules) that is isomorphic to Z2.

Similarly the Abelian charges of I2 form a group that is isomorphic to Z2×Z2 and

so on. In general the group of Abelian charges of Ik will be isomorphic to k copies

2.3. F Matrices 54

of Z2. A set consisting of a finite group A and a single additional element β with

composition of these elements defined as in (2.13) is called a Tambara-Yamagami

(TY) category [Tambara and Yamagami, 1998]. Thus our “extended Ising hierarchy”

can be described more formally as a hierarchy of TY categories with categories in

the kth level of the hierarchy having base group (Z2)
k.

2.3 F Matrices
We now derive the possible F matrices Fβ

βββ
for general βk. These matrices (up to

symmetry-preserving row and column permutations) are found to be a subset of the

Hadamard matrices called Sylvester or Walsh matrices [Sylvester, 1867] multiplied

by a constant. We then examine the trace of these matrices, as this will be relevant in

the next section.

A general F-matrix for extended Ising anyons can be found from the pentagon

equation (2.4). We will be using this equation extensively, so we restate it here for

convenience.

(F5
12c)

d
a(F

5
a34)

c
b = ∑

e
(Fd

234)
c
e(F

5
1e4)

d
b(F

b
123)

e
a (2.14)

Recall that (Fs
pqr)

j
i describes a reordering of the fusion of three anyons p, q and

r. Prior to reordering we first fuse p and q to get i, then fuse i with r to get s. After

reordering we fuse q and r to get j, then fuse j with p to get s. (Fs
pqr)

j
i is equal to

zero if it describes a reordering that is disallowed by the fusion rules and equal to a

phase or a matrix otherwise. Fβ

βββ
is a matrix which we will henceforth refer to as

FFF . We let 111 = α0 and write the elements of FFF as Fi j = (Fβ

βββ
)

α j
αi . All other (Fs

pqr)
j
i

are phases. We note some important properties of these phases and their inverses:

1. Every phase (Fs
pqr)

j
i has an inverse (Fs

rqp)
i
j since changes of fusion order are

always reversible.

2. (Fs
pqr)

j
i where p,q or r = 111 are trivial reorderings and correspond to a phase of

1.

3. Phases of the type (Fs
pqp)

i
i are self-inverse and so have value either 1 or −1.

2.3. F Matrices 55

We begin with the case where 1,2,3,4 = β , 5 = 111, b = d = β , a = αi and

c = α j. We obtain constraints

(F111
ββα j

)
β

αi(F
111
αiββ

)
α j
β

=
2k−1

∑
x=0

Fx j(F111
βαxβ

)
β

β
Fix (2.15)

In the case that i = j the LHS of this equation is equal to 1 by property 1 as

listed above. If i 6= j the LHS is equal to 0 since αi×α j = 111 is only possible when

i = j. If we write (F111
βαxβ

)
β

β
= θx and sum over repeated indices then we can rewrite

(2.15) as

FixF ′x j = δi j (2.16)

where each element F ′i j = θi ·Fi j (we do not sum over the repeated index here). The

LHS of (2.16) is the matrix FFF and its inverse. FFF is unitary so we must have that

Fi j = (F ′i j)
†. (2.17)

By property 3 θi =±1 and by property 2 θ0 = 1. Thus

Fi0 = (F ′0i)
∗ = (θ0 ·F0i)

∗ = (F0i)
∗ (2.18)

and

F0 j = (F ′j0)
∗ = (θ j ·Fj0)

∗ = (±Fj0)
∗ (2.19)

and we can combine these to show

F0x = (±Fx0)
∗ = (±(F0x)

∗)∗ =±F0x. (2.20)

Thus if θx =−1 we must have F0x = Fx0 = 0 for all x≥ 0.

The next configurations of the pentagon equation that we consider are 1 = αx,

2,3,4 = β and 2 = αx, 1,3,4 = β . The first of these yields constraints

Fi j =
(Fβ

αx(αi×αx)β
)

β

αi(F
αi
αxββ)

)αi×αx
β

(Fβ

αxβα j
)

β

β

F(i×x) j (2.21)

2.3. F Matrices 56

where F(i×x) j = (Fβ

βββ
)

α j
αi×αx

. The second configuration yields

Fi j =
(Fα j×αx

αxββ
)

α j
β
(Fαi

βαxβ
)

β

β

(Fβ

βαxα j
)

α j×αx
β

Fi(j×x) (2.22)

From (2.21) we have that

F00 = (Fβ

αxαxβ
)

β

111 (F
111
αxββ

)αx
β

Fx0 (2.23)

and from (2.22)

Fi0 = (Fαx′
αx′ββ

)111
β
(Fαi

βαx′β
)

β

β
Fix′ (2.24)

Setting x = i and x′ = j we can combine these equations to obtain

Fi j = (Fβ

α jα jβ
)

β

111 (F
111
α jββ

)
α j
β
(Fαi

αiββ
)111

β
(Fα j

βαiβ
)

β

β
F00 (2.25)

Thus all elements Fi j have magnitude equivalent to that of F00 and so the only

way for θx =−1 is to have F00 = 0 but this contradicts the constraint that FixF ′xi = 1

since all the terms in this sum would be 0. Thus all θx = 1 and FFF must be Hermitian.

Additionally, the magnitude of all elements in the matrix must be 1/
√

2k and since

the diagonal elements must be real F00 =±1/
√

2k.

Setting

φi j = (Fα j
βαiβ

)
β

β
,

fi0 = (Fαi
αiββ

)111
β
,

f0 j = (Fβ

α jα jβ
)

β

111 (F
111
α jββ

)
α j
β

(2.26)

we can rewrite (2.25) as

Fi j =±
φi j fi0 f0 j√

2k
. (2.27)

By property 3 all φi j =±1 (with φi0 = φ0 j = 1 by property 2) while fi0 can be

any phase. We also have that f0 j = (f j0)
∗ which can be verified by considering the

five-anyon fusion tree

2.3. F Matrices 57

αi β β β β

αi 111

111

111

and observing that the F-move sequences (Fβ

αiαiβ
)

β

111 (F
111
ββ111)

β

111 and (F111
ββαi

)
β

αi(F
αi
ββαi

)
β

111 (F
111
αiαi111)

αi
111

both map this tree to

αi β β β β

αi

β

β

111 .

Equating these and eliminating trivial terms using property 2 we get

(Fβ

αiαiβ
)

β

111 = (F111
ββαi

)
β

αi(F
αi
ββαi

)
β

111 (2.28)

which can be rewritten as

(Fβ

αiαiβ
)

β

111 (F
111
αiββ

)αi
β
= ((Fαi

αiββ
)111

β
)−1 (2.29)

using property 1.

We can then write FFF as the Hadamard product of a matrix of f s (fff) and a matrix

2.3. F Matrices 58

of φs (φφφ) multiplied by 1/
√

2k

FFF =± 1√
2k
(φφφ ◦ fff). (2.30)

fff is Hermitian and so φφφ must also be Hermitian. The multiplication of FFF by itself

gives

FixFx j =
φix fi0 f0x√

2k

φx j fx0 f0 j√
2k

=
1
2k ·φixφx j · fi0 f0 j

= δi j

(2.31)

where we have used the fact that f0x fx0 = 1. The final equivalence implies

1
2k φφφ

2 ◦ fff = III (2.32)

where III is the 2k×2k identity matrix. The diagonal elements of fff are all 1 (since

f0i = (fi0)
∗) so we must have that φφφ

2 = 2kIII. Thus φφφ is a symmetric Hadamard

matrix (Hadamard matrices are n×n matrices where all entries are ±1 and MMMMMMT =

nIII [Hedayat and Wallis, 1978]). Additionally, φφφ as we have defined it has the

property that all entries in the first row and column are +1 (such Hadamard matrices

are called “normalised” but we will avoid using this term to prevent confusion with

its more common usage in quantum physics).

φφφ has only a finite number of solutions while fff has an infinite number. We

infer from this that different φφφ correspond to different anyon models (with the

discreteness of these solutions consistent with Ocneanu rigidity [Kitaev, 2006]),

while the different fff correspond to a choice of gauge. We can see that we cannot

transform between solutions of φφφ by changes to fff by observing that fff is completely

characterised by the values of fi0, whereas φi0 are always 1, so changes to fff are

always reflected in the first row of Fβ

βββ
while changes to φφφ are not. We also show

in the next section that the braiding matrices of the models depend only on φφφ and

2.3. F Matrices 59

not on fff . Thus we can make the gauge choice that all fff = 1 so

FFF =± 1√
2k

φφφ . (2.33)

Note that instead of (2.23) and (2.24) we could have obtained

F0 j = (Fβ

αxαxβ
)

β

111 (F
111
αxββ

)αx
β
(Fβ

α jβαx
)

β

β
Fx j (2.34)

from (2.21) and

F00 = (Fα ′x
α ′xββ

)111
β

F0x′ (2.35)

from (2.22). Setting x = i and x′ = j and combining these as before gives

Fi j = (F111
ββαi

)
β

αi(F
β

βαiαi
)111

β
(Fα j

ββα j
)

β

111 (F
β

αiβα j
)

β

β
F00. (2.36)

Using property 1 we can see that the first three terms are equal to (f j0 f0i)
−1

which is equal to 1 due to our choice of gauge. Thus we have that

1√
2k

φi j =
1√
2k
(Fβ

αiβα j
)

β

β
(2.37)

so

φi j = (Fα j
βαiβ

)
β

β
= (Fβ

αiβα j
)

β

β
(2.38)

with this gauge choice.

We can further restrict φφφ to a subset of Hadamard matrices by using the group

theory and TY category connections discussed previously. The F matrices of TY

categories are related to symmetric non-degenerate bicharacters where “character”

refers to multiplicative character, i.e. a group homomorphism from a group A to

the multiplicative group of a field FFF× [Emil Artin, 1959]. A bicharacter is then a

2.3. F Matrices 60

function χ : A×A→ FFF× which satisfies [Rozanski, 1996]

χ(a1a2,a3) = χ(a1,a3)χ(a2,a3)

and

χ(a1,a2a3) = χ(a1,a2)χ(a1,a3).

(2.39)

We can see that φφφ satisfies this by considering the pentagon equation with

1 = 3 = β , 2 = αi, 4 = α j and 5 = αk which yields a constraint

(Fαk
βαiβ

)
β

β
= (Fβ

αiβα j
)

β

β
(F(α j×αk)

βαiβ
)

β

β
(2.40)

which can be rewritten as

φi(j×k) = φi jφik (2.41)

using (2.38) and the fact that (φi j)
−1 = φi j since φi j =±1. φφφ is symmetric and so

we also have that

φ(j×k)i = φ jiφki. (2.42)

Thus φφφ is a bicharacter on (Z2)
k. The above definition means that if we fix

one argument of a bicharacter on a group A then the bicharacter as a function of

the other argument defines a character on A. In other words, each row and column

of φφφ is a character on (Z2)
k. Because they are homomorphisms the action of these

characters on (Z2)
k is defined by their action on each of the k copies of Z2 which

make it up. There are two valid ±1 valued characters on Z2 which are given by the

rows/columns of the 2×2 Hadamard matrix

H1 =

1 1

1 −1

 (2.43)

and coincide with the irreducible representations of Z2. Thus for (Z2)
k there are 2k

possible characters corresponding to the rows/columns of H⊗k
1 . These matrices are

a subset of the Hadamard matrices called Sylvester or Walsh matrices [Sylvester,

1867]. The possible bicharacters for (Z2)
k are then the Sylvester matrix H⊗k

1 and

2.3. F Matrices 61

any other matrices which can be obtained from this matrix via symmetry-preserving

row/column permutations.

We now investigate the possible values of the trace of these matrices as this

will be important when we consider R matrices in the next section. H1 is the unique

bicharacter for k = 1 and has trace 0. For k = 2 there are four possible bicharacters

which we can write in matrix form as
1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1




1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

 .

(2.44)

One of these matrices has trace 4 while the other three have trace 0. These three

all correspond to the same anyon model up to relabelling of charges. Below, we

show that symmetry-preserving permutations of columns of a symmetric Hadamard

matrix must alter the trace of the matrix by either 0 or ±2k, with the latter only

being possible for even k. The Sylvester matrices all have trace 0 and since one

row/column contains only +1s we cannot have Tr(φφφ) = −2k so the only possible

traces are 0 for odd k and 0,2k for even k. In comparison general symmetric 2k×2k

Hadamard matrices must also have trace 0 for odd k but the trace can take any value

2k ≥ n2k/2+1 ≥ 0 for even k and integer n [Craigen, 1994].

Theorem 2.1 Column permutations that preserve the symmetry of a symmetric

2k×2k Hadamard matrix must alter the trace by either 0 or ±2k.

Consider swapping the second and third columns of the following matrix from

(2.44). This matrix corresponds to H1⊗H1 and this column swap will result in the

matrix from (2.44) with trace 4.

2.3. F Matrices 62

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




We have divided this pair of columns into three sections. Any changes to the

top or bottom (off-diagonal) sections will result in a non-symmetric matrix but the

central (diagonal) section can be modified while preserving symmetry. Because

these two columns are identical in the off-diagonal sections and the diagonal section

is symmetric both before and after the exchange the symmetry of the overall matrix

is preserved. However, for k > 2 such exchanges cannot be symmetry preserving

because the diagonal section will always contain 2 elements from each column while

the off-diagonal sections will contain the other 2k−4. In order for the columns of

the matrix to be orthogonal each pair of columns must match in exactly half their

entries so for matrices larger than 4×4 it is impossible to exchange two columns in

such a way that the off-diagonal sections are unchanged. Instead, we must exchange

sets of columns. Consider a general 2k×2k matrix broken into 2k−2×2k−2 blocks

as follows

E F
A B
C D
G H




where we have once again marked diagonal and off-diagonal sections.

Lemma 2.1.1 The exchange of EACG and FBDH can only preserve the symmetry

of the matrix if the trace of the diagonal section is negated by the exchange.

We can only exchange EACG and FBDH if E = F and G = H. Additionally

we must have that A =−B and C =−D or the columns of the matrix would not be

orthogonal. Thus the trace of the diagonal section is negated by this exchange. �

Lemma 2.1.2 The exchange of EACG and FBDH can only preserve the symmetry

of the matrix if A is a symmetric Hadamard matrix

2.3. F Matrices 63

For the overall matrix to be symmetric both before and after the exchange we

require that BT =C and AT = D and therefore A =−B =−CT = DT and the entire

diagonal section is determined by A.

A must be symmetric for the overall matrix to be symmetric. To show that the

columns of A are orthogonal (so that AAT = 2k−2III) we consider two columns, c1

and c2, of our full 2k×2k matrix such that both columns pass through A. We say that

two elements c1,i and c2,i “match” if c1,i = c2,i. If two elements do not match then

c1,i =−c2,i. We note that if this pair of columns have m matching elements within A

then they must have 2m matching elements within the diagonal section and 2k−1−2m

matching elements in the off-diagonal sections (since exactly half the elements of

each column must match). We now consider the pair c1 and −c2 where −c2 is the

column passing through B that is equal to −1× c2 within the diagonal section and

identical to c2 outside of this section (i.e. the column we wish to exchange with c2).

c1 and −c2 have 2k−1−2m matching elements within the diagonal section and so

must have 2m matching elements in the off-diagonal sections. Since c2 and −c2 are

identical in the off-diagonal sections we have that 2m = 2k−1−2m and m = 2k−3.

Thus for each pair of columns in A half of the elements match and the other half do

not and the columns of A are orthogonal. �

Since A is a symmetric Hadamard matrix of order 2k−2 it can be partitioned into

blocks such that A′ is a symmetric Hadamard matrix of order 2k−4. This process can

be repeated recursively, eventually terminating when we arrive at a matrix of order

1 (for odd k) or order 2 (for even k). The possible symmetric Hadamard matrices

with these orders are (up to a possible global phase of -1) (2.43) and (2.44). These

matrices are restricted to have trace=0 and trace=0 or 4 respectively, and going back

up the chain of recursion we see that Tr(A) = 0 for odd k and Tr(A) = 0,±2k−2

for even k. The trace of the central section is then 2Tr(A) and by lemma 2.1.1 a

symmetry preserving exchange of columns must negate this trace, changing the trace

of the overall matrix by either 0 for odd k or 0,2k for even k.

So far we have only considered swapping columns in a very specific arrange-

ment, but any desired set of column swaps can be rewritten in this form such that it

2.4. R Matrices 64

is apparent that the same constraints apply. This is achieved by applying column per-

mutations such that the columns we wish to swap are correctly arranged at the centre

of the matrix and then applying a matching set of row permutations (since matching

column and row permutations preserve the symmetry of the matrix). Following the

exchange of column blocks as described above we apply the same set of row and

column permutations again. If we write an exchange of the ith and jth columns as

Pi j and an exchange of rows as Qi j then, for the exchange of columns a and b, the

sequence of operations described above is

QbdQacPbdPacPcdQbdQacPbdPac = PbdPacPcdPacPbd. (2.45)

because row permutations commute with column permutations and row (column)

permutations commute with other row (column) permutations if they act on separate

pairs of columns. Also, Pi jPikPi j = Pjk and so

PbdPacPcdPacPbd = PbdPadPbd = Pab (2.46)

and so this operation is equivalent to exchanging the columns without first moving

them to the center. �

2.4 R Matrices
We now discuss the possible R matrices for extended Ising models which are found

from the hexagon equation (2.6). This equation was solved for the case of TY

categories in [Siehler, 2000]. Here we present a similar solution in the language of

section 2.1. As with the pentagon equation in the previous section we restate the

hexagon equation here for convenience.

Rc
13(F

4
213)

c
aRa

12 = ∑
b
(F4

231)
c
bR4

1b(F
4
123)

b
a (2.47)

We are concerned only with Rββ which are diagonal matrices with elements

Rαi
ββ

indexed by i.

2.4. R Matrices 65

Theorem 2.2 The elements of Rββ are given by

Rαi
ββ

=±
√

φiiR
α0
ββ

(2.48)

where Rα0
ββ

has possible values {±1,±i,±eiπ/4,±e−iπ/4} for even k or

{±eiπ/8,±e−iπ/8,±ieiπ/8,±ie−iπ/8} for odd k and the choices of± for each element

are consistent with table 2.2.

We begin by setting 1,2,3,4 = β , a = αi, c = α j which gives:

Rα j
ββ

Fi jR
αi
ββ

=
2k

∑
b=0

Fb jR
β

βαb
Fib (2.49)

and from (2.27)

±
φi j fi0 f0 j√

2k
Rαi

ββ
Rα j

ββ
=

2k

∑
b=0

φb j fb0 f0 jφib fi0 f0bRβ

βαb

2k (2.50)

±
φi jR

αi
ββ

Rα j
ββ√

2k
=

2k

∑
b=0

φibφb jR
β

βαb

2k (2.51)

Setting 1 = αi and 4 = α j we instead obtain

φi j(R
β

αiβ
)2 = Rα j

αi(αi×α j)
(2.52)

So we see that the braiding relations are dependent on φφφ but not on f as we

would expect.

Consider the case in (2.51) where i = j. We have that

φii(R
αi
ββ

)2

√
2k

=±∑
b

Rβ

βαb

2k . (2.53)

The RHS is independent of i so

(Rα0
ββ

)2 = φii(R
αi
ββ

)2. (2.54)

2.4. R Matrices 66

which we can rewrite as

Rαi
ββ

=±
√

φiiR
α0
ββ

. (2.55)

This proves the first part of theorem 2.2 and we now only need to fix the value

of Rα0
ββ

and the choice of ±.

Returning to (2.51), if we set i = 0 and sum over j

±∑
j

Rα0
ββ

Rα j
ββ√

2k
= ∑

j
∑
b

φb jR
β

βαb

2k (2.56)

all terms on the RHS cancel except for those where b = 0 which sum to 2kRβ

βα0

(since all rows/columns of φφφ except for the first contain an equal number of 1s and

−1s), so

±∑
j

Rα0
ββ

Rα j
ββ√

2k
= Rβ

βα0
= 1 (2.57)

since Rβ

βα0
just describes braiding with the vacuum and is therefore trivial. Using

(2.54) we can rewrite this as

±
(Rα0

ββ
)2(1±

√
φ11± ...±

√
φnknk)√

2k
= 1 (2.58)

The ± in the sum do not all need to be the same, but they must be chosen such

that |Rα0
ββ
|2 = 1 or the matrix Rββ would not be unitary.

The number of +1 (−1) terms in the diagonal of φφφ tells us the number of ±1

(±i) terms in the sum of (2.58) which we can rewrite as

±
(Rα0

ββ
)2(a+ ib)
√

2k
= 1. (2.59)

In order for |Rα0
ββ
|2 = 1 we require that a2+b2 = 2k. We can prove the following:

Lemma 2.2.1 The solutions to the equation a2 +b2 = 2k are a =±2k/2,b = 0 and

a = 0,b =±2k/2 for even k and a =±b =±2(k−1)/2 for odd k.

Proof: Consider a right-angled triangle with sides a≤ b < c opposed by angles

2.4. R Matrices 67

A,B,C.

• Even:
√

2k = 2k/2 is an integer so from a2 +b2 = 2k we assume the existence

of a Pythagorean triple (|a|, |b|,2k/2). a and b must have the same parity for

the sum of their squares to be even. If they are both odd then this triple is

primitive since |a| and |b| have no even factors and 2k/2 has no odd factors.

If they are both even then there must be some associated primitive triple

(|a|/2x, |b|/2x,2k/2−x) where the first two elements are both odd. All primitive

triples can be constructed using Euclid’s formula

a = m2−n2, b = 2mn, c = m2 +n2 (2.60)

where m and n are a pair of coprime integers, one of which is even. However,

this means that c is odd, giving a contradiction. Thus this primitive triple

does not exist and neither does the triple (|a|, |b|,2k/2). The only remaining

solutions to the equation a2 + b2 = 2k are a = ±2k/2,b = 0 and a = 0,b =

±2k/2

• Odd:
√

2k = 2k/2 = 2(k−1)/2
√

2 where 2(k−1)/2 is an integer power of

two. Given c = 2(k−1)/2
√

2 we have that a = 2(k−1)/2
√

2sin(A) and b =

2(k−1)/2
√

2sin(B). We require that both a and b are integers and thus sin(A)

and sin(B) must both be integer multiples of 1/
√

2. Thus sin(A) =±sin(B) =

±1/
√

2 and a =±b =±2(k−1)/2.

�

Substituting these solutions into (2.59) we have

± (Rα0
ββ

)2 = 1 and ± i(Rα0
ββ

)2 = 1 (2.61)

for even k and

±
(Rα0

ββ
)2(1± i)
√

2
= 1 (2.62)

for odd k. Rearranging these we find that Rα0
ββ

can take values {±1,±i,±eiπ/4,±e−iπ/4}

and {±eiπ/8,±e−iπ/8,±ieiπ/8,±ie−iπ/8} for even and odd k respectively.

2.4. R Matrices 68

k Tr(φφφ) Number of ±1 Number of ±i
Even 2k 2k−1±2k/2−1 0
Even 0 2k−2±2k/2−1 2k−2

Odd 0 2k−2±2(k−3)/2 2k−2±2(k−3)/2

Table 2.2: The possible numbers of ±1 and ±i on the diagonal of Rββ up to global phase.
The ± signs in a given column correspond to the ± in that column’s header such
that choosing the sign in the header to be + also fixes all ± in the column to +.

Finally we consider the possible choices of± in (2.55). We have actually solved

this problem already, because we know the possible values of Tr(φφφ) (which tell us

how many +1s and −1s are on the diagonal of φ and thus how many ±1s and ±is

are on the diagonal of Rββ) and we know the possible solutions to a2 + b2 = 2k

(which tell us how many +1s (+is) there should be relative to −1s (−is)). These

numbers are as listed in table 2.2. For instance, if Tr(φφφ) = 2k then all φii = 1 and if

we choose Rα0
ββ

= 1 then all diagonal elements of Rββ are ±1. We then must have

a =±2k/2 and b = 0, and if we choose a = 2k/2 then we have 2k−1+2k/2−1 positive

elements and 2k−1−2k/2−1 negative elements. Notice that there are several choices

of global phase involved here (choice of Rα0
ββ

, choice of sign of a etc) and so the

numbers in table 2.2 are correct only up to such global phases. �

The elements φii are also significant in another way. By setting i = j in (2.52)

we can show that

Rβk
αiβk

=±
√

φii

√
Rαi

αi1 =±
√

φii (2.63)

where Rαi
αi1 = 1 since braiding with the vacuum is trivial. Using this and instead

setting j = 0 we find

(Rβk
αiβk

)2 = φii = R1
αiαi

. (2.64)

In other words the elements φii tell us the self-exchange statistics of the charges

αi, with φii = 1 indicating that αi is bosonic and φii = −1 telling us that αi is

fermionic. Thus we expect that for both odd and even k we can obtain models

containing 2k−1 bosonic and 2k−1 fermionic Abelian charges and a single non-

Abelian charge. We additionally expect that for even k we can obtain models

containing 2k bosonic Abelian charges, no fermionic charges and a single non-

2.5. Logical Gates 69

Abelian charge. The models with 2k−1 bosonic and 2k−1 fermionic charges can be

viewed as “sub-models” of k copies of the standard Ising model (e.g. in some kind

of multi-layer system) containing all Abelian charges and only a single non-Abelian

charge (namely, the charge corresponding to σ1⊗σ2...⊗σk). We note also that this

“sub-model” simply corresponds to the case where we neglect some of the charges in

the original model and does not mean that these charges are no longer present. It is

therefore different from procedures such as that of Bais and Slingerland [Bais and

Slingerland, 2009] in which an actual change to the model is made.

The models containing 2k bosonic charges cannot be produced from copies of

the standard Ising model and instead correspond to copies of a different anyonic

model with four bosonic Abelian charges and a single non-Abelian charge.

2.5 Logical Gates

In this section we will rephrase the findings from the past two sections in terms of

the possible logical gates which we can perform using these anyons.

Consider a specific anyon model containing 2k Abelian charges and a single

non-Abelian charge. This model has an F matrix Fβ

βββ
associated with changing the

fusion order of three of the non-Abelian anyons and an R matrix Rββ associated with

braiding two of the non-Abelian anyons. A system containing four such anyons has

a 2k dimensional fusion space for which the 2k Abelian anyons of the model form a

canonical basis. The F and R matrices provide us with two logical operations which

can be performed on this space. The F matrix is a mapping between the canonical

basis and a basis of equal superpositions of the canonical basis vectors. The R

matrix selectively applies one of the phases {+1,−1,+i,−i} to each vector of the

canonical basis with the total number of +1s, −1s, +is and −is applied consistent

with table 2.2.

Both of these operations may be interpreted in terms of Clifford gates on k

qubits: the F matrix has the same rows and columns as a tensor product of k

Hadamard gates (up to a global phase) and the same is true for the R matrices and

tensor products of either k S gates or k/2 CZ gates. Notice that our canonical basis

2.6. Stacked Surface Codes 70

vectors are currently labelled only by anyonic charges and we have not yet defined an

encoding for qubits in this space. We can always choose this encoding such that the

ordering of the diagonal elements of R in the computational basis is consistent with

the respective tensor product of Clifford gates. The same is also true for the trace-0

F matrices but not for the trace-
√

2k F matrices since the trace is independent of our

choice of encoding. These matrices cannot be decomposed into a tensor product of

single qubit gates and instead correspond to tensor products of the trace-4 matrix in

(2.44) multiplied by 1/2. This matrix is equivalent to SWAP·(H⊗H) and so is also

Clifford. Thus, up to global phases and a choice of encoding, all F and R matrices

implement Clifford operations on our Hilbert space.

2.6 Stacked Surface Codes

Part of our motivation for obtaining the results presented in the previous sections

was to examine the braiding relations of twists in the 2D colour code. In this section

we will see that we can obtain twists belonging to the first and second levels of the

hierarchy in this code and in general we can obtain twists belonging to the kth level

of the hierarchy in a stack of k 2D surface codes. When visualising such a stack we

might imagine multiple copies of the surface code placed one above the other, but we

allow operations between any two layers regardless of how “far apart” in the stack

they are and thus there is no notion of distance in a third dimension and the stack is

still 2D. Equivalently, we can imagine a single 2D lattice with multiple qubits placed

at each site.

The fact that models from the second level of the hierarchy can be realised in

the 2D colour code is readily apparent from [Kesselring et al., 2018]. For example

the twist B which exchanges the r and g columns of table 2.1 has four nontrivial

localisable charges: 111, bx, by and bz. This set of four charges is closed under fusion

and all four are invariant under the action of B.

In general if we consider equivalence up to global phases and choose our qubit

2.6. Stacked Surface Codes 71

encoding as discussed in the previous section then there are two R-matrices for k = 2:
1

1

1

−1




1

i

i

−1

 (2.65)

Recall that the first of these matrices belongs to a model with four bosonic

Abelian charges while the second belongs to a model with two bosonic and two

fermionic charges. In the notation of Kesselring et al [Kesselring et al., 2018] the

models containing four bosons are those associated with a twist from conjugacy class

B while those containing two bosons and two fermions are associated with twists

from conjugacy class C. The twists in conjugacy class G have only two localisable

charges and correspond to models from the first level of the hierarchy.

So far we have seen that we can realise the k = 1 level of the extended Ising

hierarchy in the surface code, and the k = 2 level in the colour code, which is

equivalent to two copies of the surface code [Kubica et al., 2015]. We now consider

the general case of a stack of k copies of the surface code.

Consider the anyon model of k stacked surface codes (in the absence of twists).

The topological charges in this model are the elements of a finitely-generated free

group, whose generating set can be written {e1,m1,e2,m2, ...,ek,mk} where the

subscript shows the layer in the stack which the charge belongs to. Twists in the

code stack correspond to symmetries of the anyon model. These symmetries can

be formally defined as the elements of the automorphism group of the anyon model

which preserve braiding relations. The action of these symmetries can be described

via a set of orbits, each of which can be written as

a→ b→ c→ ...→ a (2.66)

with the “trivial orbit” defined as

a→ a. (2.67)

2.6. Stacked Surface Codes 72

We first show that only self-inverse symmetries g of this anyon model can have a

g-invariant set of localisable charges. Consider a twist tg and a charge b0 = a0× ga0.

b0 can be localised by tg because we can split it into a0 and ga0, then braid a0

around tg and fuse it to the vacuum with ga0. If we braid b0 around tg we obtain
gb0 =

ga0× g2
a0 and so in order for b0 to be g-invariant we must have g2

a0 = a0,

implying that g is self-inverse.

From this we can see that if a twist in a stack of surface codes (together with

its set of localisable charges) can be considered as an anyon model this model will

belong to the hierarchy of extended Ising models defined in section 2.2.

All non-trivial orbits associated with a self-inverse symmetry have the form

a→ b→ a which can also be written a↔ b.

The full automorphism group of a finitely generated free group with ordered

basis [x1, ...,xn] can be generated by the elementary Neilsen transformations[Magnus

et al., 2004]:

• Switch x1 and x2

• Replace x1 with x−1
1

• Replace x1 with x1 · x2

The second transformation is equal to the identity transformation in our case

because all charges in our model are their own inverse. We thus consider only the

first and third transformations, but not all applications of these transformations are

valid because we must also preserve braiding relations. In order to do this we require

that if we map xi → x j then we must also map x′i → x′j and if we map xi → xix j

then we must map x′j→ x′ix
′
j, where xi can be either ei or mi and xix′i = εi. We also

cannont map ei→ eimi within a layer because this exchanges a boson with a fermion.

In other words all symmetries of the model can be generated by the transformations

ei↔ mi (2.68)

ei↔ e j and mi↔ m j (2.69)

2.6. Stacked Surface Codes 73

ei↔ eie j and m j↔ mim j (2.70)

which are simply the generators of all colour code symmetries generalised to act on

a stack of more than two surface codes [Kesselring et al., 2018]. A simple way to

obtain a twist corresponding to a βk anyon is simply to combine twists associated

with symmetry (2.68) on k different levels. The domain walls produced by these

symmetries in the code correspond respectively to lines of H, SWAP and CNOT gates

applied in the code stack. Since SWAP can be generated from CNOTs the generating

set of symmetries can be reduced to just (2.68) and (2.70). This is consistent with

the set of generating symmetries identified in [Webster and Bartlett, 2018b] although

we arrive at this result by a different method. Any product of these symmetries

thus corresponds to a product of Clifford gates in the code stack and so the code

containing the twists will also be a 2D stabiliser code. Braiding operations are

performed using predefined sets of single-qubit Pauli measurements and additional

modifications to stabilisers by the Clifford gates listed above [Brown et al., 2017]

and such operations in a 2D stabiliser code should not result in a logical non-Clifford

gate. Thus all twists produced by composition of these symmetries should have

Clifford braiding relations.

This result is valid for more than just self-inverse twists since (2.68)-(2.70)

are the generators of all symmetries of the anyon model. Thus the restriction to

Clifford braiding operations is valid for all twists in stacked surface codes. This is in

agreement with recent results regarding the power of defect braiding in topological

codes [Webster and Bartlett, 2018a][Webster and Bartlett, 2019].

Finally we comment briefly on the fault-tolerance of such braiding procedures.

As mentioned above, braiding operations with twists can be performed using the

standard code deformation techniques of (1) measurement of modified stabilisers

and (2) single-qubit Pauli measurements to remove physical qubits from the code

and provide information for decoding [Brown et al., 2017]. In a code with local

stabilisers these operations will also be local so we expect that braids with these

generalised twists should remain fault-tolerant under existing decoding procedures.

Chapter 3

Numerical Implementation of

Just-In-Time Decoding in the 3D

Surface Code

3.1 Introduction and Overview

In the previous chapter we discussed code deformations which implement logical

operations directly. In this chapter we will instead focus on a way of using code de-

formation to enable, but not directly apply, logical operations which would otherwise

not be possible. Additionally, we will be shifting our focus from a condensed matter

style perspective on two-dimensional topological codes to an more error correction

focused perspective on three-dimensional topological codes. In particular, we will be

more concerned with decoding processes and fault tolerance than with quasiparticle

excitations. We will discuss a dimension jumping process which, when combined

with a just-in-time (JIT) decoder, allows for the implementation of a linear-time (in

the code distance d) transversal CCZ gate between three copies of the 2D surface

code. These decoders were first proposed in [Bombı́n, 2018a] and adapted to the

surface code in [Brown, 2020]. Our contribution is the construction of a new set of

surface code lattices compatible with this procedure and the numerical demonstration

of a threshold for JIT decoding in these lattices.

As discussed in chapter 1, a decoding algorithm is a classical process in a

3.1. Introduction and Overview 75

quantum error correction scheme which takes as input a set of stabiliser measure-

ment outcomes (referred to as a syndrome) and returns a correction operator. A

correction is successful if the product of the correction operator and the original

error is equivalent to a stabiliser. Of particular interest are single-shot decoding

schemes where corrections can be inferred reliably from a single round of stabiliser

measurements even in the presence of measurement errors [Bombı́n, 2015, Campbell,

2019, Quintavalle et al., 2021]. It is believed that single-shot decoding is not possible

for 2D topological codes [Campbell, 2019] and so measurement errors must instead

be counteracted by repeated rounds of stabiliser measurement, with fault-tolerance in

a distance d code requiring O(d) repeats [Fowler et al., 2012]. As noted by Bombı́n

in [Bombı́n, 2018a] this need for repeated measurements results in a discrepancy

between constant-time circuits in 3D topological codes and linear-time circuits in

2D topological codes: in principle these both have spacetime cost O(d3), but in

practise the 2D code will also require O(d) measurement rounds between each set

of operations, resulting in a time cost of O(d2) and a spacetime cost of O(d4).

Obviously lower resource costs for quantum computation are desirable, but

the ability to use 2D rather than 3D topological codes is also desirable from an

engineering perspective. It would therefore be ideal if the spacetime cost of O(d3)

could be recovered in the 2D case. To this end, Bombı́n proposed the concept of

a just-in-time (JIT) decoder [Bombı́n, 2018a] which supplies, at each timestep of

the computational procedure, a best-guess correction based not only on the present

syndrome of the code but also on the entire syndrome history. By interpreting the

syndrome of a (2+1)-dimensional code as the syndrome of the corresponding (3+0)-

dimensional code such a decoder allows for a form of pseudo-single-shot decoding of

2D codes, where measurements are not repeated and mistakes in the correction due

to measurement errors are compensated for at later timesteps once the measurement

errors that caused them are identified. The price for using such a decoder is that

our 2D codes must be replaced with very thin slices of 3D code in which we can

detect (but not reliably correct) measurement errors. The thickness of these slices is

independent of d and so while they are not strictly 2D (in the sense that they cannot

3.1. Introduction and Overview 76

be embedded in a two-dimensional manifold) they still only require an architecture

which is scalable in just two dimensions. In what follows, we will use the term “layer”

to refer to a strictly 2D code and “slice” to refer to a bounded-thickness section of

3D code. We will also use bars over states and operators to refer to logical versions

of these.

In its original formulation, Bombı́n used the idea of JIT decoding to circumvent

causal restrictions encountered when attempting to translate a (3+0)-dimensional

measurement-based computing scheme to a (2+1)-dimensional one. This scheme

was based on the 3D colour code [Bombı́n and Martin-Delgado, 2006, 2007, Kubica

and Beverland, 2015] and the ideas presented there were translated to the 3D surface

code by Brown [Brown, 2020], who used JIT decoding to prove a threshold for a

linear-time CCZ between three 2D surface codes. When combined with the Clifford

group (which is also implementable in the 2D surface code [Fowler et al., 2012,

Brown et al., 2017]) this provides us with a way to obtain a universal gate set

which is potentially more efficient than competing techniques such as magic state

distillation [Fowler et al., 2012, Bravyi and Kitaev, 2005, Litinski, 2019].

In this work we present a full implementation of Brown’s procedure. In each of

the three codes, we construct a scalable slice which is compatible with the various

requirements of the procedure (discussed below). Having constructed these slices,

we then simulate the performance of a simple JIT decoder in this setting and observe

a threshold pc ∼ 0.1% in all three codes; see fig. 3.11. This is (to our knowledge)

the first numerical demonstration of a threshold for JIT decoding.

In what remains of this section we provide an overview of our implementation

of Brown’s procedure and then discuss each component in more detail in subsequent

sections.

The first such component is the 3D surface code (section 3.2). Unlike its 2D

counterpart, this code admits a transversal three-qubit non-Clifford gate (the CCZ

gate) between three overlapping copies of the code [Kubica et al., 2015, Vasmer and

Browne, 2019]. The aim of Brown’s procedure is to use the equivalence between the

3D surface code in (3+0) dimensions and the 2D surface code in (2+1) dimensions

3.1. Introduction and Overview 77

to implement a linear-time (in the code distance d) version of this gate between three

overlapping 2D codes.

To achieve this we require a division of the three overlapping 3D codes into

O(d) bounded height slices which satisfy various requirements, the most important

ones being that each slice must itself be a valid code with distance d, and that at

each timestep the three codes should agree on a common set of qubits on which

we should apply CCZ (section 3.4). We also require a method of moving from

one slice to the next, which cannot simply be “waiting” (despite the fact that we

are using time as a dimension) because the overlap of the three 2D codes must be

different at each timestep so they must move relative to each other. This is achieved

by dimension jumping [Bombı́n, 2016] between the slice and the 2D layers on its top

and bottom. Z errors which arise during the procedure are also dealt with as part of

this process (section 3.3). We must also ensure that all of these operations commute

with the logical action of the CCZ so that the entire procedure has the intended effect

(section 3.5).

If the above can be done successfully then we will have obtained a procedure

which, in the absence of errors, implements CCZ between three 2D surface codes

in linear-time. To make the procedure fault-tolerant in the presence of X and

measurement errors we must use a just-in-time decoder (section 3.6). A single

timestep of the full, fault-tolerant procedure then occurs as follows:

• Begin with three overlapping 2D codes/layers

• Expand to three overlapping slices of 3D code

• Apply JIT decoding operations to the three slices

• Apply CCZ gates between the overlapping qubits

• Collapse back to three 2D layers

The layers we collapse to are on the opposite side of the slice from those we

started in. It is possible to implement the entire procedure on an architecture which

is only one slice thick by redefining our time direction at the start of each timestep.

3.2. The 3D Surface Code 78

(a) (b)

Figure 3.1: (a) A 2D surface code. X stabilisers are on vertices of the dark lattice, Z
stabilisers are on faces and data qubits are on edges. Ancilla qubits used for
stabiliser measurement are shown in dark and light for X and Z stabilisers
respectively. Data qubits are shown in red. Weight three implementations of X
and Z are also shown. (b) A 3D surface code. Qubits are placed on edges as in
the 2D code, but to improve readability these qubits are only shown explicitly
on the bottom and back-right boundaries.

3.2 The 3D Surface Code

We start by considering the 2D surface code [Kitaev, 2003, Bravyi and Kitaev, 1998]

as in fig. 3.1. Here we are using the “Kitaev picture” where (with respect to the dark

lattice) data qubits (red) are associated with edges. To each vertex of this lattice we

associate a stabiliser generator X(v) = ∏{e|v∈e}Xe which acts with Pauli X on all

edges e that meet at vertex v. To each face of this lattice we associate a stabiliser

generator Z(f) = ∏e∈ f Ze which acts on all edges belonging to face f . Ancilla qubits

used in measurement of these operators are also shown in fig. 3.1 (dark for X and

light for Z). Also shown in fig. 3.1 (in light grey) is the dual lattice, obtained by

replacing the faces of the original lattice with vertices and the vertices with faces. In

this lattice the Z stabilisers are on vertices and the X stabilisers are on faces.

There are two types of boundary in this code which are commonly referred to as

rough (left and right) and smooth (top and bottom). Logical X operators are strings

of single-qubit X operators running between smooth boundaries while logical Z

operators are strings of single-qubit Zs running between rough boundaries. As such,

3.2. The 3D Surface Code 79

we will henceforth refer to smooth and rough boundaries as X and Z boundaries

respectively.

Figure 3.1 shows how to obtain a 3D surface code [Dennis et al., 2002] from a

2D one, simply by extending the lattice into the third dimension. The dark square

lattice has become a cubic one but we have retained the same assignment of parts of

the code to geometric features of the lattice, i.e. data qubits are on edges, X stabilisers

are on vertices and Z stabilisers are on faces. Four of the boundaries (top, bottom,

front-left and back-right) of the code are X boundaries and resemble 2D surface

codes. X in this code is a sheet of single-qubit X operators running between all four

of these boundaries. The other two boundaries are Z boundaries and Z is a string of

single-qubit Zs running between these boundaries.

To see why the dimension of X has changed but the dimension of Z has not we

can look at the structure of the stabiliser generators. In the 2D surface code each

qubit is part of at most two X and two Z stabiliser generators so single-qubit errors

of either type only violate a pair of generators. Longer strings of X or Z errors will

commute with all generators along their length and only anticommute with a single

generator at each end of the string. A logical operator corresponds to a string with

both of its endpoints connected to the relevant boundaries where they cannot be

detected. In 3D, as in 2D, every qubit is part of at most two X generators and so

logical Z operators are once again strings. However, in the bulk of the cubic lattice

four faces meet at every edge so qubits in the bulk are part of four Z generators.

This means that a string of X errors will be detected not just by the generators at its

endpoints but also by generators adjacent to the string along its entire length. In other

words, the Z stabiliser syndromes are loops around regions containing X errors. This

means that instead of X being a string with its endpoints connected to boundaries it

must be a membrane with its entire perimeter connected to boundaries.

These loop-like Z syndromes have another effect: they allow us to detect

measurement errors. We know that valid syndromes should form closed loops, so

syndromes not satisfying this property must have been produced (at least in part)

by measurement errors. This allows us to repair these syndromes (by joining the

3.2. The 3D Surface Code 80

(a) (b) (c)

Figure 3.2: (a) Original cubic lattice (dark edges) and cuboctahedral cell of rectified lattice
(light faces and edges). There will also be one octahedral cell around each vertex
of the original lattice. (b) Four cuboctahedral cells of the rectified lattice. Half
of an octahedral cell formed from the negative space of the cuboctahedra can
be seen at the centre. Square faces are coloured red and triangular faces are
coloured green or blue such that each cell only has two different colours of face.
(c) Correspondence between distance-3 surface codes in the Kitaev (as shown
in fig. 3.1) and rectified pictures. A correspondence can be seen between Z
stabilisers (faces of dark cubic lattice) in the Kitaev picture and red faces of the
rectified lattice. There is also a correspondence between X stabilisers (vertices)
of the cubic lattice and octahedra in the rectified lattice (which contain no red
faces).

endpoints of strings to form loops) and removes the need for repeated measurements

of these stabilisers in a process termed single-shot error correction [Bombı́n, 2015,

Campbell, 2019]. This stands in contrast to the 2D case where measurement errors

can only be detected by repetition of these measurements.

We will use the rectified lattice picture of 3D surface codes to construct our

slices since it allows us to describe all three codes using the same lattice [Vasmer

and Browne, 2019]. This lattice is obtained from the standard cubic lattice by adding

a new vertex at the middle of each edge, connecting these vertices if they belong to

the same face and then deleting the original lattice. This results in one cuboctahedral

cell per cubic cell of the original lattice (shown in fig. 3.2 (a)) and the negative

space between these cells produces additional octahedral cells (half of such a cell

can be seen at the centre of fig. 3.2 (b)). Figure 3.2 (b) also shows a colouring of

the rectified lattice where each cell has two colours of face (red-blue and red-green

cuboctahedra are visible and octahedral cells will be blue-green). It is then possible

to simultaneously define three 3D surface codes on this lattice: three qubits are

3.3. Dimension Jumping in Surface Codes 81

associated with each vertex and one colour is associated with each code. c-faces

(for c ∈ {r,g,b}) represent Z stabilisers in the c code and cells containing no c-faces

represent X stabilisers. An example is shown in fig. 3.2 (c).

3.3 Dimension Jumping in Surface Codes
The ability to swap between a thin slice of 3D surface code and a 2D surface code

(a process termed “dimension jumping [Bombı́n, 2016]”) is at the heart of Brown’s

procedure. Similarly to JIT decoding, this process was originally studied by Bombı́n

for use in the 3D tetrahedral colour code and was adapted for use in the surface code

by Brown [Brown, 2020], although a process equivalent to the 3D→ 2D collapse was

previously studied by Raussendorf, Bravyi and Harrington in a measurement-based

setting [Raussendorf et al., 2005]. Despite this, a comprehensive explanation of

dimension jumping in surface codes did not exist in the literature (to our knowledge)

prior to our work on this topic [Scruby et al., 2021].

3.3.1 2D to 3D expansion

As discussed in chapter 1, the expansion part of dimension jumping in the colour

code is extremely straightforward:

• Start with a 2D colour code supported on a boundary of a 3D colour code.

• Measure stabiliser generators of the 3D colour code.

• Apply error correction to the 3D code.

The simplicity of this process is due to the fact that the 3D colour code minus

this boundary encodes no qubits, so we do not need to worry about information

from that code getting mixed with information from the 2D code. On the other hand,

the 3D surface code minus a boundary still encodes a qubit and so we must take

extra steps to ensure that the final logical state of the 3D code is the same as the

initial logical state of the 2D code. Additionally, in the specific case where at each

timestep we are combining dimension jumping with the application of CCZ gates to

part of the code we want our dimension jump to involve only measurements of Z

3.3. Dimension Jumping in Surface Codes 82

(a) (b) (c)

Figure 3.3: (a) Two 2D surface codes (black) which we imagine are entangled by measure-
ment of intermediate stabilisers (not shown) to form a slice of 3D surface code.
We imagine that we have applied a logical X to the lower code (solid blue line)
but not to the upper code. This results in the red syndrome on the intermediate
stabilisers. To successfully transfer the state of the lower 2D code into the 3D
code we must apply a matching 2D logical X to the top code which completes
the logical X of the 3D code (dashed blue). We can equivalently think of this
as applying a correction which pushes the syndrome onto the top layer of the
code. (b) In this example the the top code contains some strings of X errors. The
red syndrome now consists of loops joined to the top and side boundaries and
“filling in” these loops to push them to the top boundary will once again correctly
transfer the state of the lower 2D code to the 3D one. (c) Two measurement
errors on a top code (dashed grey) and bottom code (solid grey) stabiliser cause
us to lose track of what is inside and outside of a loop, making it difficult to
reliably transfer the state of the 2D code into the bulk (the stabilisers are in the
plane of the 2D code but the corresponding syndromes are perpendicular).

stabilisers. This is because the X stabilisers do not all commute with this application

of CCZ gates and so the 2D codes at intermediate steps of the procedure will not be

in eigenstates of these X stabilisers. As such, measuring these stabilisers will change

the state of the code and the overall effect of the procedure will not be a logical CCZ.

A suitable dimension jump is implemented by

• Start with a 3D surface code C and its boundary ∂C, which is a 2D surface

code in a state |ψ〉. These codes must be chosen such that the Z stabilisers of

the 2D code commute with the X stabilisers of both the 2D and 3D codes.

• Prepare all qubits belonging to C \∂C in |+〉.

• Measure the Z stabiliser generators of the 3D code that are not Z stabilisers of

the 2D code.

3.3. Dimension Jumping in Surface Codes 83

• Apply a correction which returns the 3D code to its codespace. This correction

should not have support on any of the qubits of the original 2D code.

The preparation of new qubits in |+〉 combined with the commutivity require-

ment on the Z stabilisers in the 2D code ensures that measurement of the 3D Z

stabilisers will project the encoded state either to a state in the codespace of the 3D

code or to a state that can be returned to the codespace using a correction inferred

from the measurement outcomes of these stabilisers. The distribution of X errors that

this correction addresses are what is referred to by Bombı́n as a Pauli frame [Bombı́n,

2018a] and by Brown as a gauge of the 3D code [Brown, 2020].

To understand why is it important not to measure the Z stabilisers of the 2D

code during the dimension jump and why the correction should have no support on

this code it is easiest to consider an idealised example as in fig. 3.3. In (a) and (b) we

see how applying corrections to the top layer stretches the string-like logical X of

the lower 2D code into the sheetlike logical X of the 3D code and in (c) we see the

issues that can arise if we allow for measurement of stabilisers of the initial 2D code

during the jump (and thus allow for the possibility of measurement errors on these

stabilisers). Note that in fig. 3.3 we begin with two surface codes and then entangle

them via intermediate stabiliser measurements instead of initialising and entangling

the top code in a single step by measuring top and intermediate stabilisers simultane-

ously. These two cases are equivalent since stabiliser measurements commute by

definition. We do not need to do anything to ensure the correct transfer of Z from the

2D code into the 3D one because Z of either 2D code is a valid implementation of Z

in the 3D code. By preparing the top code in |+〉 (by preparing the physical qubits in

|+〉 and measuring Z stabilisers), we can ensure no logical Z is applied in this code,

so any implementation of Z applied to lower 2D code will be equivalently applied to

the 3D code.

3.3.2 3D to 2D collapse

The collapse part of dimensional jumping in colour codes can similarly be adapted

to surface codes. The steps of this process are

3.3. Dimension Jumping in Surface Codes 84

(a)

(b)

Figure 3.4: 2x2 and 2x2x2 minimal surface codes. Qubits
are on vertices. (a) has two X stabiliser gen-
erators (dark boundaries) and one Z stabiliser
(light face) so encodes one qubit. In (b) there is
a Z stabiliser on each face of the cube and an X
stabiliser on each of the dark boundaries. Only
three of these X and four of these Z stabilisers
are independent so this code also encodes a sin-
gle qubit. A version of (a) exists on the top and
bottom faces of (b). An implementation of X is
supported on either of the light faces of the 3D
code and on the top and bottom edges of the 2D
code while Z is supported on either of the other
two edges in the 2D code and on these same
edges in the 3D code.

• Measure all qubits in C \∂C in the X basis.

• Apply a Z correction to the qubits of ∂C based on the outcome of the X

measurements.

To understand how this correction is obtained it is easiest to consider a simple

example, namely the one given in fig. 3.4. Here we have minimal examples of (a) a

2x2 and (b) a 2x2x2 surface code. We can switch between these two codes using

dimension jumping since a version of (a) exists on the top and bottom faces of (b).

Consider the case where we begin in a logical state of the 3D code and measure

qubits 1-4 in the X basis. Since we were in a logical state the total parity of these

four measurements must be even so either all four qubits were measured to be in the

same state or two were in |+〉 and two were in |−〉. In the former case we will have

projected to a logical state of the top 2D code but in the latter case will need to apply

a correction. This is due to the fact that measuring the bottom face in X projects us

to a random configuration of the Z stabilisers on the side faces and these stabilisers

leave a “footprint” on the top code which may require a correction: for example,

the restriction of Z1Z2Z5Z6 to the top face results in an error while the restriction of

Z2Z4Z6Z8 is a logical Z of the 2D code. Fortunately this correction is easy to find

since the stabilisers leave an identical footprint on the bottom code, so we need only

apply Z to qubits in the top code wherever we measure |−〉 in the bottom code (in

3.3. Dimension Jumping in Surface Codes 85

more complicated geometries the correction is not quite so simple but can still be

inferred straightforwardly from the stabiliser structure). This process is important

not just for correcting errors but also for correctly transferring the logical state of the

code, since in cases where bottom-face qubits measure |−〉 not due to a stabiliser

footprint but due to an application of Z, the correction applied to the top code will

transfer this application of the operator from the bottom to the top. It is interesting to

contrast this with the state-transfer procedure in the expansion step: there the transfer

of Z from 2D to 3D was automatic and extra steps were required to properly transfer

X but here the roles of X and Z are reversed (since any application of X to the 3D

code is partially supported on a string corresponding to a representation of X in the

2D code).

In the case where there are Z errors in the bottom code it is no longer possible to

infer the necessary correction just from the measurement outcomes of the bottom face,

but we can combine these measurements with measurements of the X stabilisers of

the 2D code to identify these errors (by reconstructing the syndrome of the 3D code).

In our example, an odd parity of bottom face measurements tells us X1X2X3X4 would

be violated, the parity of qubits 1 and 3 (2 and 4) together with the measurement

outcome of X5X7 (X6X8) allows us to infer the measurement outcomes of the two

side-face X stabilisers and the product of X5X7 and X6X8 gives us the outcome of

the top-face stabiliser. Because this code is only distance-2 we cannot correct for an

error in this case, but in higher-distance codes we can.

An additional complication is introduced in the case where we apply CCZ

gates to a subsection of the 3D code during each timestep. In this case we cannot

measure the X stabilisers of the 2D code post-collapse (the state we project to in

the collapse will not be an eigenstate of these stabilisers), and so we cannot fault-

tolerantly infer corrections for the top face. Fortunately, this is not an issue because

Z errors commute with CCZ and so applying a single Z correction to the final code

is equivalent to applying error correction throughout. This correction is obtained in

two steps: firstly we must combine the X stabiliser measurements from the final 2D

code with single-qubit measurement outcomes from previous slices to obtain an X

3.4. Constructing Slices 86

stabiliser syndrome for a 3D surface code and decode this syndrome to identify the

locations of Z errors. Secondly, we combine these Z error locations with the single-

qubit measurement outcomes to obtain a corrected set of single-qubit measurement

outcomes, and from these we calculate a correction for the final 2D code. This

operator can be interpreted as the adaptive Z correction of a teleportation circuit, and

this perspective on the procedure is discussed further in [Webster et al., 2021].

3.4 Constructing Slices
In this section we present our proposed slices through the three 3D surface codes.

We begin with an examination of the criteria which these slices must satisfy, then

discuss each of our slices individually and finally demonstrate that they have the

correct overlap at each step of the procedure.

3.4.1 Criteria for Valid Slices

We now examine some necessary criteria which slices through 3D codes must meet in

order to be used in Brown’s procedure. This list is by no means exhaustive, but serves

to highlight some of the major issues which must be avoided when constructing

slices.

Firstly, we have the requirement that any representative of a logical operator in

the slice must have weight at least d in order to preserve the distance of the code. The

ability to construct slices satisfying this relies on a specific property of the 3D surface

code (the string-like logical operator of code is required to run between a particular

pair of boundaries) which is not present in general 3D codes. This restriction on the

string-like logical means that as long as we ensure that its associated boundaries are

on the sides of the slice and not on the top and bottom we are guaranteed logical

operators with weight at least d. It is this restriction that forces at least one of the

three codes to have a different time direction to the other two, since the string-like

logical operators of three 3D surface codes which admit a transversal CCZ are all

perpendicular [Vasmer and Browne, 2019] so there is no way to define a consistent

time direction for all three (in three dimensions) such that slices in all three codes

have this property.

3.4. Constructing Slices 87

Secondly, we require that all Z stabilisers in the layers commute with all X

stabilisers in the slices. This requirement is due to a combination of the dimension

jumping process and the CCZ gate as discussed in section 3.3. In addition, we

require that the support of a 3D X stabiliser on a layer corresponds exactly to a 2D X

stabiliser within that layer. This is what ensures that measurements of X stabilisers

in the final layer alongside the single-qubit measurement history throughout the

procedure can reproduce the full X stabiliser syndrome of a 3D surface code. This

rule prevents us from having things such as a 3D X stabiliser which is supported on

only a single qubit of a layer.

Finally, all three slices must agree on a common set of overlapping qubits at

every timestep. Stated differently, this means that qubits between which we intend

to apply CCZ must all be live simultaneously. This is essential for the procedure or

the three codes would disagree on which qubits CCZ should be applied to at each

timestep.

The structures originally proposed by Brown were “staircases” through the

cubic lattice in the Kitaev picture. In this section we present an alternate set of

lattice slices which we find easier to understand and simulate, although we believe

equivalent simulations could be performed using the staircase slices.

3.4.2 Proposed Layers and Slices

The layers we propose are shown at a macroscopic and microscopic level (for

distance 3) in fig. 3.5 (a) and (b) respectively. In Brown’s original proposal the time

direction was the same for two of the codes and different for the third, but here we

use a different time direction for each code. This is still implementable in 2D (also

shown in fig. 3.5 (b)). In the following subsections we show a distance-3 example of

the corresponding slice through each of the three 3D codes and then discuss their

overlap.

3.4.2.1 Code A

This is the simplest of the three codes and corresponds to the red code on the rectified

lattice. As illustrated in fig. 3.2 (c) this is the standard 3D surface code defined

3.4. Constructing Slices 88

(a) (b)

Figure 3.5: (a) 3D spacetime for all three surface codes. Each of the three 2D codes sweeps
out a 3D surface code over time and the cubic region where all three of these
codes intersect supports a transversal CCZ. (b) Microscopic details of three
distance-3 2D surface codes (light faces are Z stabilisers and dark faces are X
stabilisers, qubits are on vertices) and and their directions of motion during
the procedure. Logical Z operators for the 2D layers are shown in black for
each code in (a) and by comparing with (b) we can see that they run between Z
boundaries.

(a)

(b)

Figure 3.6: A three layer thick slice through code A.
X stabilisers are dark cells and Z stabilis-
ers are light faces. Cyan faces are 2D X
stabilisers on X boundaries. In (a) the
front-right and back-left boundaries are
Z boundaries and the rest are X bound-
aries. The hexagonal faces are not sta-
biliser generators but are each the product
of three weight-4 stabilisers, while the half-
hexagons are the product of two weight-3
stabilisers. A representative of logical Z/X
is shown in grey in (a)/(b).

3.4. Constructing Slices 89

(a)

(b)

Figure 3.7: A three layer thick slice through code B. X
stabilisers are dark cells and Z stabilisers
are light faces. In (a) the front-right and
back-left boundaries are Z boundaries and
the rest are X boundaries. Yellow faces are
2D X stabilisers. Unlike in code A they are
present on all 4 X boundaries and there are
also weight-2 Z stabilisers on the Z bound-
aries. The hexagonal faces are each the
product of four weight-3 stabiliser gener-
ators. A representative of logical Z/X is
shown in grey in (a)/(b).

(a)

(b)

Figure 3.8: A three layer thick slice through code C.
X stabilisers are dark cells and Z stabilis-
ers are light faces. In (a) the front-left and
back-right boundaries are Z boundaries and
the rest are X boundaries. As with code B
there are weight-2 Z stabilisers on the Z
boundaries but there are no 2D X stabilis-
ers on X boundaries. Unlike both previous
codes, the Z stabilisers on the top and bot-
tom boundaries are stabiliser generators of
the 3D code but those of the middle layer
are not. A representative of logical Z/X is
shown in grey in (a)/(b).

3.4. Constructing Slices 90

on a simple cubic lattice. Examples of the boundaries are shown in fig. 3.6 for a

distance-3 slice. This slice is three layers thick, but it is actually possible to define a

two-layer-thick slice in this code since the middle layer in fig. 3.6 is identical to the

top and bottom layers. This is not true for the other two codes, and so we must also

use a three-layer-thick slice here to ensure the correct overlap of the three slices.

3.4.2.2 Code B
Code B is the blue code on the rectified lattice and a slice through this code is shown

in fig. 3.7. The Z stabilisers of this code are weight-3 (in contrast to the weight-4

Z stabilisers of code A) while its X stabilisers are weight-12 (in code A they were

weight 6). Because the lattice constant for the blue code is twice that of the red code

we must use a slice that is three layers thick.

It is interesting to note that the top 2D code for this slice differs from that of

code A only by a half-hexagon translation on the kagome lattice and so one might

imagine that it would be possible to define a slice in code A with top and bottom 2D

codes matching those seen in code B. However, the weight-2 Z boundary stabilisers

present in these 2D codes do not commute with the 3D X stabilisers of code A and

so it is not possible to expand from the 2D code to the 3D one by only measuring Z

stabilisers.

3.4.2.3 Code C
Code C is the green code on the rectified lattice and a slice through this code is shown

in fig. 3.8. The top and bottom layers in this slice resemble the middle layer from the

slice for code B, with Z stabilisers on triangles and X stabilisers on hexagons. The

same is true for the middle layer of this slice and the top and bottom layers of the

slice through code B. Additionally, these 2D codes are translated by a half-hexagon

on the kagome lattice relative to those of code B and so have boundaries which

match those of the 2D codes from code A. The inversion of stabilisers in these 2D

codes relative to codes A and B mean that the weights of the logical operators are

also exchanged (2D codes A and B had weight 3 X and weight 5 Z whereas here it is

the opposite). Due to this, we observe better performance during JIT decoding in

this code than in codes A and B (fig. 3.11), since the JIT decoder only deals with X

3.4. Constructing Slices 91

Figure 3.9: The three distance-3 2D surface codes from fig. 3.5 (b) passing through each
other. The vertices (qubits) of a given code always coincide with the vertices of
the other two codes in the overlapping region. A single, global kagome lattice
can be consistently overlaid on all three codes at all points of the procedure, and
the three individual codes correspond to sections cuts from this lattice, parts of
which are shown in grey in the first image.

errors and Z errors are dealt with separately.

3.4.3 Overlap of the Three Codes

The full sequence of the distance-3 2D codes passing through each other can be

seen in fig. 3.9. Vertices of all three codes coincide in the overlapping region,

and in fact, these three codes can all be thought of as sections cut from the same

lattice. If our slices were two layers thick then our three 2D codes would follow this

sequence exactly, but because they are three layers thick we actually move two steps

in this sequence for every step of the procedure, i.e. if we start with the first code

configuration then after one cycle of expand→ correct→ CCZ → collapse we will

have the third configuration. While we do not observe the second configuration in

fig. 3.9 in a purely 2D setting it will correspond to the overlap of the three middle

layers of the slices during the aforementioned set of operations. All qubits in each

slice belong to one of the three layers and so all three layers agree on common sets

of overlapping qubits.

3.5. Linear-Time CCZ 92

3.4.4 Practical Implementation

This procedure would not be of much use if it were necessary to sweep through

a physical 3D code. In Brown’s proposal the time direction is changed at each

timestep so that the physical architecture only needs to be one slice thick and we can

move up and down between the top and bottom layers. Our slices are compatible

with this, although the architecture must accommodate three layers instead of two.

Additionally there must be room for two of the codes to move relative to the third (in

the original proposal only one code needed to move) and this will increase the qubit

cost of the procedure.

3.5 Linear-Time CCZ

Three 3D surface codes defined on a d× d× d cube in the rectified lattice with

boundaries as in fig. 3.2 admit a transversal CCZ gate [Vasmer and Browne, 2019].

Key to Brown’s procedure is the idea that this gate is also implementable (in time

linear in the code distance d) on three 2D surface codes whose overlap in spacetime is

equivalent to such a 3D surface code. More precisely, as the three codes move through

each other (via the dimension jumping process described in previous sections) CCZ

gates are applied between all overlapping triples of physical qubits that do not

belong to the top layer. The exclusion of top-layer qubits is necessary because

these will become the bottom-layer qubits of the next slice and we only want to

apply CCZ once to each qubit in the overlapping region. The intuition for why this

process should work is that JIT decoding allows us to fault-tolerantly exchange a

spatial dimension for a temporal one, so any process which gives a logical operation

in (3+ 0) dimensions should result in an equivalent logical operation in (2+ 1)

dimensions. However, some readers may not be satisfied with this argument and so

it is both interesting and worthwhile to examine the workings of this gate in more

detail.

To begin with, we neglect JIT decoding entirely and just consider the full 3D

spacetime as shown in fig. 3.5a. The first thing to note about the spacetime of

the three codes is that it is not a d× d× d cube; rather, it is three parallelepipeds

3.5. Linear-Time CCZ 93

whose intersection is a d×d×d cube. It is not immediately obvious, and nor is it

generally true, that applying CCZ transversally in this overlapping region should

implement a logical CCZ between the codes. Recall that CCZ maps X i to X iCZ jk

(where CZ = 1/2(II+ IZ+ZI−ZZ)) and thus the intersection of X in any code with

the region where we apply CCZs must be a region supporting valid implementations

of Z in the other two codes. In a version of fig. 3.5a where Z in each of the three

codes runs in the “long” direction, the transversal application of CCZ between the

overlapping qubits in the central cubic region will not implement CCZ because there

is no implementation of Z in any of the three codes which is fully supported inside

the cube. Fortunately this is not the case for the arrangement of codes described

in the previous section, where instead Z runs in one of the “short” directions in

each code (as shown by the dark lines in fig. 3.5a) and so each code possesses valid

implementations of this operator which are contained within the cube. In contrast,

there is no implementation of X contained within the cube in any of the codes, but

this is not a problem since nothing is mapped to X by CCZ. We require only that the

intersection of X i with the cube supports valid implementations of Z j and Zk and this

requirement is satisfied. This means that a constant-time version of the procedure

where we start with our initial set of 2D codes, use dimension jumping to expand

to the full 3D spacetime, apply CCZs to the overlapping region then collapse to the

final set of 2D codes will implement the desired logical operation.

Now that we are satisfied that a single-timestep version of the procedure imple-

ments CCZ we can convince ourselves of the same thing for the linear-time version

using induction. Consider the following two sets of operations, where “expand”

should be understood to mean “measure 3D Z stabilisers then apply JIT decod-

ing and X error correction” and we assume that these correction operations are

successful:

• A: Begin with a layer at position x, expand to a slice with thickness ∆x, apply

CCZs, collapse to a layer at position x+∆x, then repeat to end at a layer at

position x+2∆x.

• B: Begin with a layer at position x, expand to a slice with thickness 2∆x, apply

3.6. The Delayed Matching Decoder 94

CCZs and collapse to a layer at position x+2∆x.

Each qubit experiences the same set of operations in both cases: measurement

of associated Z stabilisers and an X correction if one is required (for qubits not in the

initial layer), application of CCZ (for qubits in the overlapping region and not in the

final layer) and measurement in the X basis (for qubits not in the final layer). The only

way for this sequence of operations to be inequivalent in A and B is if operations in

the first slice in A influence our choice of X correction for qubits in the second slice

in a way that does not occur in B. Incorrect choices of X error correction operator

in the first slice of A will have this effect but we are assuming that all correction

attempts are successful1. The only other operation applied to the qubits of the first

slice of A is CCZ, but this is not applied to qubits that are part of the second slice

and its only effect will be to change the outcomes of our single-qubit measurements.

As discussed in section 3.3, the correction inferred from these measurements is only

applied at the very end of the procedure so we conclude that none of the operations on

the first slice of A can influence the operations on the second and the logical effects

of A and B must be equivalent. This conclusion, combined with the knowledge

that performing the entire procedure in a single timestep correctly implements CCZ,

allows us to infer that the linear-time version of the gate also implements CCZ.

3.6 The Delayed Matching Decoder

3.6.1 Description

Now that we have constructed a set of slices we are ready to consider explicit error

correction operations within these slices. We imagine that we are at a point of the

procedure where we have prepared the new qubits and measured the new stabilisers

but have not yet applied any corrections. We have not remeasured the bottom-layer

stabilisers as we assume that our choice of correction in the previous timestep was

successful and all of these stabilisers are in the +1 eigenstate. The Z stabiliser

measurements result in a random distribution of X errors on the new qubits and in a

1This will not be true in reality so this argument does not guarantee a threshold for the procedure.
However, we are currently only asking if the gate has the correct logical action in principle and so
these assumptions are justified.

3.6. The Delayed Matching Decoder 95

syndrome for these errors consisting of a set of loops in the bulk or connected to the

top or side X boundaries. If there were errors on the bottom layer of qubits or if we

had errors in some of our stabiliser measurements we will also have broken strings

with endpoints which must be matched up to produce a valid syndrome. The delayed

matching decoder is a modified version of the minimum-weight perfect matching

(MWPM) decoder [Dennis et al., 2002, Edmonds, 1965, Fowler, 2014] and provides

a simple but fault-tolerant method of performing this matching. This decoder was

first proposed by Brown in [Brown, 2020] and its operation is is as follows:

Setting: In the slices presented in the previous section the qubits were on

vertices and Z stabilisers were on faces meaning the syndrome from these stabilisers

will be a set of (possibly broken) loops on edges dual to these faces2. Endpoints

of broken loops will be at the centres of cells and the distance between a pair of

endpoints is measured in terms of path length on the dual edges connecting them3

When we speak of joining pairs of endpoints to each other or to side boundaries

we mean that the stabiliser measurement outcomes are flipped (in software) along a

minimal path connecting this pair of objects.

Inputs:

• A vector e of endpoint locations within the current slice

• A map (i.e. a set of key-value pairs) M from pairs of endpoint locations (or an

endpoint location and a boundary) to a “pseudodistance” between the elements

of the pair (this pseudodistance will initially be equal to the true distance

between the endpoints but will get smaller each time the endpoint pair recurs).

• An integer c which specifies the pseudodistance below which it is permissible

to join pairs of endpoints.

• An integer r which specifies the amount by which we should reduce the

pseudodistance between a pair of endpoints if we do not choose to join them.

2We recall that the dual of a 3D lattice is obtained by placing new vertices at the centres of cells of
the original lattice, connecting these vertices if their cells share a face in the original lattice and then
deleting the original lattice. This transformation maps cells to vertices, faces to edges and vice versa.

3Some readers may prefer to think in terms of the qubits-on-faces picture where Z stabilisers are
on edges and endpoints are on vertices. For code A the relevant lattice is the simple cubic lattice,
whereas for codes B and C it is the rhombic dodecahedral lattice.

3.6. The Delayed Matching Decoder 96

Subroutines:

• A standard MWPM decoder MWPM which is allowed to match endpoints to

each other and to the side X boundaries but not the top or bottom X boundaries.

It takes a vector of endpoint locations as an argument and returns a vector of

endpoint location pairs (or endpoint locations and boundaries).

• A function d which takes as argument an endpoint location pair (or an endpoint

location and a boundary) and returns the (true) distance between them.

• A function t which takes as argument an endpoint location pair (or an endpoint

location and a boundary) and returns the corresponding pair of locations in the

slice for the next timestep.

Algorithm 1 DELAYED MATCHING DECODER

Input: e, M
Output: None

1: currentPairs←MWPM(e)
2: for pair ∈M do . M update step 1
3: if pair /∈ currentPairs then
4: Remove pair from M
5: end if
6: end for
7: for pair ∈ currentPairs do . M update step 2
8: if pair /∈M then
9: M[pair]← d(pair)

10: end if
11: end for
12: for pair ∈M do . Syndrome repair step
13: if M[pair]≤ c then
14: Join the elements of pair to each other
15: else
16: Join all endpoints in pair to the top boundary
17: M[t(pair)]←M[pair]− r
18: end if
19: Remove pair from M
20: end for

Once this algorithm is complete we should have a valid Z stabiliser syndrome

consisting entirely of unbroken loops. We then need to use this syndrome to infer a

correction on the data qubits which will push these loops to the top boundary as in

3.6. The Delayed Matching Decoder 97

(a) (b)

Figure 3.10: 1+1 dimensional cross-sections through (idealised) slices of a 3D surface code.
Qubits are on vertices, Z stabilisers are on edges (with syndromes on dual
edges) and endpoints are on faces. The past, present and future are shown in red,
green and blue respectively. (a) Issues caused by attempting to use a standard
decoder in a sliced surface code. Three measurement errors (yellow lines) in
the past caused two endpoints (yellow circles) and the decoder matched these
to the top layer (white lines). An X “correction” was then erroneously applied
to three data qubits (white circles) due to this incorrect matching of endpoints.
In the present, these X errors cause the red syndrome and because bottom-layer
stabilisers are not remeasured we get the two red endpoints. These will be
matched to the top layer as before and the cycle will repeat, causing an error
of unbounded size extending into the future. (b) The action of the delayed
matching decoder on the same error. Once again endpoints in the past are
matched to the top face, but in the present the decoder identifies that the same
two endpoints occurred in the previous step and chooses to match them to each
other instead of the the top.

fig. 3.3. We find that the sweep decoder [Kubica and Preskill, 2019, Vasmer et al.,

2021] is a natural fit for this problem as its action is to generate corrections which

push syndrome loops in a given direction, but in principle any valid decoder for

loop-like syndromes could be used (e.g. [Breuckmann et al., 2016, Breuckmann and

Ni, 2018, Duivenvoorden et al., 2019, Aloshious and Sarvepalli, 2021, Panteleev and

Kalachev, 2019, Roffe et al., 2020, Quintavalle et al., 2021]).

It may be helpful at this point to consider the simple example presented in

fig. 3.10. In this case we imagine that c = r = 2. At the start of the procedure (in

the red slice) e contains the two yellow endpoints and M is empty. MWPM will pair

the two endpoints to each other since it is not permitted to match them to the top or

bottom boundaries and the side boundaries are too far away to be favourable. In the

first update step nothing happens and in the second update step the pair of endpoints

are added to M with an associated value of 3 (the distance between them on dual

3.6. The Delayed Matching Decoder 98

edges). In the syndrome repair step we compare c to the cost of joining the pair to

each other (M[pair] = 3) and since the former is smaller we join the pair to the top.

A new pair of endpoints t(pair) which corresponds to the yellow pair translated into

the next slice (i.e. the two red endpoints) is added to M with an associated value of

M[pair]− r = 3−2 = 1 and pair is removed from M.

At the start of the next step (in the green slice) e contains the two red endpoints

and M contains this pair of endpoints with an associated pseudodistance of 1. MWPM

will once again match this pair to each other and nothing happens in either update

step because the pair of endpoints in M exactly matches the output of MWPM. In

the syndrome repair step we now have M[pair] = 1 which is less than c so we join

the two red endpoints to each other.

3.6.2 Numerical Implementation

We numerically investigate the performance of the delayed matching decoder for all

three surface codes, using the slices described in section 3.4. The MWPM part of the

simulation uses Kolmogorov’s Blossom V implementation [Kolmogorov, 2009]. The

numerical results presented here correspond to the case where we perform the expand

→ decode→ collapse parts of the procedure but do not apply CCZs between the

codes. As such, we include both measurement errors on Z stabilisers and physical

X errors in our simulation but not Z errors or the CZ errors, which arise due to

application of CCZ to qubits with X errors.

For each of the three codes simulate the procedure for different values of X and

measurement error rate, p, and code distance, L. We count the number of logical

errors f that occur in n trials and estimate the logical error rate pfail(p,L). The uncer-

tainty in this value is calculated using the Agresti-Coull confidence interval [Agresti

and Coull, 1998] which is more stable at low error rates than the standard confidence

interval based on the normal distribution. Our estimate of pfail(p,L) is then:

pfail(p,L) = p̃±2

√
p̃(1− p̃)

ñ
, (3.1)

where ñ = n+ 4 and p̃ = f̃/ñ (with f̃ = f + 2). This is approximately the 95%

3.7. Discussion 99

10−4 10−3 10−2
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p

p
fa
il
(p
,L

)

L = 14
L = 18
L = 24
L = 32

(a) Code A

10−4 10−3 10−2
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p

p
fa
il
(p
,L

)

L = 14
L = 18
L = 24
L = 32

(b) Code B

10−4 10−3 10−2
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p

p
fa
il
(p
,L

)

L = 14
L = 18
L = 24
L = 32

(c) Code C

Figure 3.11: Numerical evidence of an error threshold for the delayed matching decoder.
We ran Monte Carlo simulations for the three codes described in section 3.4.
For each code, we estimate the logical error rate pfail(p,L) as a function of the
X error and measurement error rate, p, for different code distances L. The error
threshold, pc, is the value of p where the curves for different L intersect. We
observe an error threshold of pc ∼ 0.1% in each of the three codes.

confidence interval.

In fig. 3.11 we plot pfail against p for different values of L for each code. The

error threshold, pc, is the point where the curves for different L intersect and we

observe evidence of an error threshold in the region of pc ∼ 0.1% for all three codes.

This threshold estimate is many orders of magnitude larger than the theoretical value

of ∼ 10−17 obtained by Brown in his proof [Brown, 2020]. In addition, our value is

only one order of magnitude smaller than the 2D surface code threshold [Raussendorf

and Harrington, 2007, Wang et al., 2011, Fowler et al., 2012, Stephens, 2014]. We

anticipate that the performance of the delayed matching decoder could be signifi-

cantly improved by using more of the syndrome history, so it is still possible that

the optimised JIT decoding threshold could be competitive with the 2D surface code

threshold. We observe improved suppression of pfail below threshold in code C when

compared to codes A and B. This is consistent with the fact that, for a given value of

L, X is higher weight in the layers for this code than in the other two.

3.7 Discussion

Now that we have covered each component of Brown’s procedure in detail, it is

helpful to once again provide an overview of the procedure so that we can see how

3.7. Discussion 100

each component fits together. A single timestep proceeds as follows:

1. Begin with three 2D surface codes. All Z stabilisers of these codes are assumed

to be in the +1 eigenstate.

2. Expand to three thin slices of 3D surface code by preparing new data qubits

in |+〉 and then measuring the new Z stabilisers. The previously existing 2D

codes will now be the bottom layers of these slices, and their stabilisers are

not remeasured.

3. If our assumption regarding the states of the initial Z stabilisers was correct

and there are no measurement errors on the newly measured ones then the

syndrome from these stabilisers will consist entirely of loops in the bulk or

connected to the top or side boundaries. A correction that pushes all these

loops to the top boundary will transfer the original state of the 2D code into

the slice. If there are measurement errors on the newly measured stabilisers

or X errors on the lower layer we will have an invalid syndrome containing

broken strings, the endpoints of which must be paired up to produce a valid

syndrome from which we can infer a correction. Incorrect pairings will result

in X errors in the slice. This is the JIT decoding step.

4. Apply CCZs between all triples of qubits in the region where the three slices

overlap except for those in the top layer. If there are X errors in this region

due to incorrect decoding in the previous step then these will cause CZ errors

on the other two codes.

5. Measure out all non-top layer qubits in the X basis. The output of these

measurements will be fed to a global Z error decoder once the procedure is

complete and used to find a Z error correction for the final code.

We have verified the integrity of the majority of the components involved in

this process. The only part which is missing is the simulation of the Clifford errors

arising from the non-Clifford gate and the numerical demonstration of a threshold for

Z errors. These errors will be the topic of the next chapter, but we wish to emphasize

3.7. Discussion 101

that while they may affect the overall threshold for the procedure, they will not affect

the JIT decoding thresholds shown here. This is because the JIT decoder only deals

with X errors and the errors arising from the CCZ gate are CZ errors which will

be projected to a distribution of Z errors by the single-qubit measurements which

collapse the slice.

In contrast, the locations of the CZ errors depend on the locations of X errors

post-JIT decoding, so while the distribution of Z and CZ errors will not affect

the performance of the JIT decoder the reverse is not true. For this reason the

development of more sophisticated and effective JIT decoders is also an important

direction for future research. The delayed matching decoder has the advantage of

being relatively simple, but it uses only a small amount of the information available

in the syndrome history and it is reasonable to expect that significant improvements

could be made to decoder performance by utilising more of the available information.

Another natural direction for future research would be the construction of

similar slices in other topological codes; for example, one might want to perform

an analogous procedure in the 2D/3D colour code in order to perform a linear-time

logical T gate. However, this is not quite as straightforward as one might hope

because, unlike in the 3D surface code, the string-like logical operator of the 3D

tetrahedral colour code is not required to run in any particular direction and any

edge of the tetrahedron supports a valid implementation of this operator. This means

that any slice of bounded height through the 3D code will contain edges of bounded

length which support low-weight logical operator implementations. Cubic colour

code constructions encoding multiple logical qubits as in [Kubica et al., 2015] can

avoid this problem for some but not all logical qubits. In these codes, as with three

surface codes admitting a transversal CCZ, the string-like logical operators are all

perpendicular, but unlike in the surface code case we cannot assign different time

directions to different logical qubits. This means that for any choice of slice the

string-like logical for one of the encoded qubits will run between the top and bottom

boundaries. Additionally, this logical qubit will be lost completely in the collapse

from 3D to 2D as the corresponding square 2D colour code only encodes two qubits.

3.7. Discussion 102

This does not completely rule out more exotic slices in these codes (e.g. with logical

qubits encoded in topological defects rather than code boundaries) but it seems

unlikely that slices similar to the ones presented here exist for 3D colour codes.

It is worth emphasising the significant difference between the JIT decoding

scheme we have examined in this work and Bombı́n’s original JIT decoding pro-

posal [Bombı́n, 2018a]. In particular, the above arguments regarding the difficulties

of constructing valid colour code slices do not apply to that scheme because it uses

an measurement-based formalism rather than a circuit-based one and so does not

involve dimension jumping operations. These operations are what would map low-

weight logicals in the slice to weight-d logicals in the 2D code post-collapse, but the

measurement-based formalism allows for a continuous “sliding” of the slice through

the 3D spacetime and so dimension jumps are not required and these short error

strings will be detected as we slide the slice past them. The JIT decoder proposed by

Bombı́n in [Bombı́n, 2018a] also differs significantly from the one discussed here.

In light of recent results regarding transversal CCCZ gates in the 4D surface

code [Kubica et al., 2015, Jochym-O’Connor and Yoder, 2021] it also seems natural

to ask if an equivalent process could be used to construct slices of 4D surface code

which allow for a linear-time CCCZ in the 3D surface code. We expect that such a

generalisation should be possible, but note that its spacetime overhead would scale as

d4. This compares unfavourably with the d3 scaling allowed by the constant-time set

of computationally universal operations in the 3D surface code [Vasmer and Browne,

2019], and so is unlikely to be advantageous.

Chapter 4

Clifford Errors in 3D Topological

Codes

The simulations of JIT decoding discussed in the previous chapter dealt only with X

errors and not with Z errors. This was because the JIT decoder itself only supplied

corrections for X errors, but to establish a threshold for the full procedure we must

also verify the performance of a decoder which addresses Z errors in the code. The

challenge of such a simulation is not the complexity of the decoder (which can

be any valid decoder for pointlike syndromes in the 3D surface code, e.g. a 3D

matching decoder) but of the Z error distribution produced in the JIT decoding

process. In addition to the random Z errors resulting from noise in our system this

distribution includes errors arising from the interaction of random X errors and the

non-Clifford CCZ gate. This interaction produces CZ errors which will be projected

to distributions of Z errors by our stabiliser measurements. These distributions are

not random, and instead have a structure that depends on the stabiliser structure of

the code.

More specifically, this interaction of a single-qubit X error with the transversal

CCZ is

(CCZ)(X⊗ I⊗ I)(CCZ) = X⊗CZ (4.1)

and so an X error in one code is mapped to a CZ error in the other two codes by the

application of the transversal CCZ. CZ can be decomposed as CZ = (I⊗ I + I⊗Z +

4.1. Clifford Errors in the Colour Code 104

Z⊗ I−Z⊗Z)/2 and so if a CZ error occurs on a pair of qubits and then we were to

make single-qubit measurements of the pair then we would expect to observe a Z

error on each with probability p = 0.5. It may therefore seem that to simulate these

errors we need only randomly apply Z errors to qubits in codes 2 and 3 whenever we

have an X error in code 1 (or any other combination) and for isolated single-qubit X

errors this is correct. However, for larger regions of X errors the structure of the code

introduces additional constraints on the kinds of error distributions we can obtain.

These distributions have been studied previously for the cases of Clifford errors in

the 2D and 3D colour codes [Yoshida, 2015, Bombı́n, 2018b] but (to our knowledge)

relatively little work has been done on these errors apart from this. In this chapter

we study the effects of these errors in 3D surface code, which differs from the colour

code case as the non-Clifford gate in this setting is a multi-qubit entangling gate

between several copies of the code, rather than a single-qubit gate that acts only

on one code. Despite this we obtain similar results to these previous works, and in

particular we show that the so-called “linking charge” phemonenon [Bombı́n, 2018b]

observed in the case of the 3D colour code is not only replicated in the 3D surface

code but has a much clearer origin in this setting.

We begin by reviewing the previous results on this topic and then discuss our

results for the 3D surface code. Finally we apply our proof techniques to the case of

the 3D colour code and show that they replicate the results of [Bombı́n, 2018b] while

also highlighting some differences between this case and that of the 3D surface code.

4.1 Clifford Errors in the Colour Code

4.1.1 The 2D Colour Code

The problem of Clifford errors in the 2D colour code was examined in [Yoshida,

2015], although the author does not refer to them as such and instead considers these

operators in the context of excitations in a symmetry-protected topological phase.

Specifically, the author examines the effect of applying a pattern of alternating S and

S† to all qubits within a particular region R defined by a subset of plaquettes of a

particular colour as in fig. 4.1. The 2D colour code possesses a transveral S gate

4.1. Clifford Errors in the Colour Code 105

(a)
(b)

Figure 4.1: A region of S errors in the 2D colour code. S is applied to all qubits marked
with a white circle and S† is applied to all qubits marked with a black circle.
The qubits in this region are those on the vertices of the four green plaquettes
inside the loop of white edges while the plaquettes which border this region are
either red or blue. (b) A closeup of part of the boundary region of (a) and two Z
errors on qubits marked with red circles which anticommute with X stabilisers
on the two red plaquettes.

which can be implemented via such an application of S and S† to all qubits in the code

and so this error can be thought of as a partial or incomplete logical operator. We can

define the boundary of R, ∂R, to be the set of all plaquettes/stabiliser generators

partially supported onR. An important observation in this and all subsequent cases

is that because logical operators must preserve the codespace (and therefore are not

detectable by stabilisers of the code) this region of Clifford errors should only be

detected by stabilisers in ∂R. If it could be detected by a stabiliser not in ∂R then

that stabiliser should also detect the logical S gate as these operators are not locally

distinguishable except on the boundary ofR.

The formally derived result of [Yoshida, 2015] agrees with this intuition. It says

that if we apply the Clifford error shown in fig. 4.1, for example, and then measure

the stabilisers of the code (specifically we only need to measure the X stabilisers as

Z and S commute) we will project the S and S† errors to a distribution of Z errors

4.1. Clifford Errors in the Colour Code 106

which anticommute only with the red and blue stabilisers in ∂R, with each such

stabiliser returning a −1 measurement outcome with probability p = 0.5. Recall

that error strings in the 2D colour code must either anticommute with stabilisers

of all three colours or anticommute with a pair of plaquettes of the same colour.

The former is not possible in this case as there are only two colours of plaquette

in ∂R and so the error distribution must be a collection of Z strings supported on

qubits ofR which run between same-coloured plaquettes in ∂R. Because each such

string anticommutes with a pair of plaquettes the total number of −1 outcomes from

plaquettes of each colour should be even. For example, fig. 4.1b shows a two-qubit

Z error which anticommutes with a pair of red plaquettes in ∂R.

4.1.2 The 3D Colour Code

A corresponding analysis of S errors in the 3D colour code can be found in [Bombı́n,

2018b]. This case is arguably of greater practical relevance as the 3D colour code ad-

mits a transversal T gate implemented by an application of T and T † to a bicolouring

of the vertices (qubits) of the lattice. This gate will create regions of S and S† errors

wherever we have regions of X errors as T XT † = e−iπ/4SX and T †XT = eiπ/4S†X .

We can initially consider an X error membrane defined on the vertices of a set

of faces of colour κ1κ2 (by which we mean they are formed from edges of colour

κ1 and κ2). This error will be detected by Z stabiliser generators on faces of colour

κ3κ4 at the boundary of the membrane. An example is shown in fig. 4.2b. When we

apply the T gate described previously we will create S errors wherever we apply T

and S† errors wherever we apply T †.

Like the 2D colour code, the 3D colour code admits a transversal S gate. This

gate can be implemented by a membrane of S and S† (using the same colouring as

the transversal T) with its edges at the boundaries of the code1. As with the 2D

case, an S error membrane such as the one in fig. 4.2b should only be detected by

stabilisers at its boundary (i.e. by X stabilisers on cells which the syndrome loop

passes through) because it is only locally distinguishable from the logical S operator

1This membrane of qubits also supports a logical X operator. We can see that this configuration
of S and S† should implement transversal S because it will be created by applying transversal T to a
code in the logical |1〉 state, and in the logical space we should have T XT †

= e−iπ/4SX

4.1. Clifford Errors in the Colour Code 107

(a)
(b)

Figure 4.2: (a) G (left) and Y (right) cells of a large 3D colour code. These cells meet at
an RB face. (b) A membrane of X errors in the 3D colour code. The error
is supported on qubits on the vertices of YG faces (grey) and detected by Z
stabilisers on RB faces on the membrane’s boundary. The resulting syndrome
is shown by the black loop which passes through the centres of the violated Z
stabilisers. The two colours of dots on this syndrome mark the places where it
passes through the centre of a G or Y cell. In order to improve visual clarity full
cells are not shown.

in this region.

The results of [Bombı́n, 2018b] agree with [Yoshida, 2015] for this case, i.e.

we expect measurement outcomes of +1 from all stabilisers except for X stabilisers

on the membrane boundary, which we expect to return random outcomes but with an

even parity of −1s for each colour. However, more complex errors are possible in

the 3D colour code and these are where the results diverge from the 2D case.

Consider a pair of intersecting membranes with linked syndromes as in fig. 4.3.

This error is the product of two X error membranes of the form discussed above,

and so one might expect that application of transversal T and measurement of

the X stabilisers on the boundaries of these membranes would once again give

random outcomes with an even parity of violated stabilisers of each colour. However,

what is shown in [Bombı́n, 2018b] is that we actually observe an odd number of

violated stabilisers of each colour. This is consistent with a distribution of Z errors

as described previously plus an additional Z error string running between the two

membrane boundaries (such an error string anticommutes with a G and Y cell on one

boundary and an R and a B cell on the other boundary). This is termed a “linking

charge” of the two membranes, since in the topological phase perspective on the 3D

colour code the charge distributions on the boundaries of the individual memrbranes

4.2. Clifford Errors in the 3D Surface Code 108

Figure 4.3: Two intersecting membranes of X errors with linked syndromes in the 3D colour
code. One is defined on YG faces and the other on RB faces. This error is the
product of the two individual membranes so errors on the intersection cancel.
One face of the YG membrane supports a Z stabiliser which detects the RB
membrane and vice versa. In order to improve visual clarity only relevant edges
are shown.

are no longer independent. Previously each boundary was charge-neutral overall,

whereas now the distribution for the pair of membranes is charge neutral but the

distributions on individual membrane boundaries are not.

So far we have simply stated these results without providing a more in-depth

explanation. We now provide a proof that these same phenomena occur in the 3D

surface code, after which we will return to the case of the 3D colour code and show

that our proof technique recovers these results in their original setting while also

highlighting an interesting contrast with the surface code case.

4.2 Clifford Errors in the 3D Surface Code

4.2.1 Single Error Membrane in Cleanable Code Regions

In this section we will consider three 3D surface codes defined on a rectified lattice

as in the previous chapter, and therefore admitting a transversal CCZ. We use

notation where Xc
α implies X operators on qubits from code c ∈ {1,2,3} at vertices

in the set α . We start with a single a membranelike operator X1
α detected by Z

4.2. Clifford Errors in the 3D Surface Code 109

Figure 4.4: An X error membrane in three copies of the 3D surface code using the rectified
lattice. The error is supported on the qubits of the blue code which exist on
vertices of the grey faces and is detected by Z stabilisers on the blue faces. These
faces are part of cells which support X stabilisers of the red and green codes
(two examples shown).

stabilisers of code 1 which are faces of cells in codes 2 and 3 as in fig. 4.4. We

assume that this membrane exists in a cleanable region of the code, i.e. for any given

logical Pauli operator of the code we can find an implementation of this operator

which has trivial intersection with the membrane. Using the commutation relations

(CCZ)(X ⊗ I⊗ I) = (X ⊗CZ)(CCZ) and (CZ)(X ⊗ I) = (X ⊗Z)(CZ) we see that

applying transversal CCZ in the presence of this error has the effect

CCZX1
α |ψ〉= X1

αCZ23
α |ψ ′〉 (4.2)

where |ψ〉 and |ψ ′〉 are states in the codespace of the three codes. CZ23
α is a Clifford

error analagous to the S error membrane we observed in the 3D colour code. As with

that error, this CZ error becomes a logical operator if applied to the full support of

a logical X operator (as CCZ should preserve the codespace if X1
α was a logical X

operator rather than an error). We therefore expect that, once again, this error should

only be detected by stabilisers on the boundaries of the error membrane.

In order to consider the effect of CZ23
α on the codestate |ψ ′〉 we can consider its

effect individually on basis states. The state |000〉 can be written as

4.2. Clifford Errors in the 3D Surface Code 110

|000〉= 1√
n ∑

i jk
X1

βi
X2

β j
X3

βk
|000〉 (4.3)

where Xm
β

are X stabilisers of code m and |000〉 is the all-zeros state of the qubits of all

three codes. Other basis states can be written in a similar way by replacing these X

stabilisers with products of X stabilisers and a logical X operator for a given code.

However, as we are currently considering an error membrane in a cleanable region

of the code we can always choose these logical operators such that they have trivial

intersection with the membrane and thus the analysis of any basis state is equivalent

to the analysis for |000〉 in this case. If we apply CZ23
α to this state we find

CZ23
α |000〉= 1√

n ∑
i jk

CZ23
α X1

βi
X2

β j
X3

βk
|000〉= 1√

n ∑
i jk

X1
βi

X2
β j

Z3
α∩β j

X3
βk

Z2
α∩βk
|000〉 (4.4)

where we have used that CZ23
α acts trivially on |000〉. We can then commute the Z

terms to the right and absorb them into |000〉 to obtain

|φ〉=CZ23
α |000〉= 1√

n ∑
i jk
(−1)|α∩β j∩βk|X1

βi
X2

β j
X3

βk
|000〉 . (4.5)

In order to investigate the possible measurement outcomes of a specific stabiliser

Xm
βq

we can split the state into |φ〉 = a |φ+
q 〉+ b |φ−q 〉 where Xm

βq
|φ+

q 〉 = |φ+
q 〉 and

Xm
βq
|φ−q 〉=−|φ−q 〉. We consider only stabilisers from codes 2 and 3 as the CZ error

only has support on qubits from these two codes. Note that |φ+
q 〉 must consist of

pairs X l
βp
|000〉+Xm

βq
X l

βp
|000〉 whereas |φ−i 〉 must consist of pairs X l

βp
|000〉−Xm

βq
X l

βp
|000〉

(up to multiplication of the whole pair by −1). The former correspond to cases

where |α ∩ β j ∩ βk| is even (so (−1)|α∩β j∩βk| = 1) while the latter correspond to

cases where |α ∩β j∩βk| is odd. We now consider three relevant types of stabiliser:

• Stabilisers not on membrane boundary: Recall that if X1
α was a logical X

operator of code 1 then CZ23
α should be a logical CZ of codes 2 and 3 and

so must preserve the stabiliser groups of these codes. This means that the

intersection of a cell of code 2 (3) with the CZ membrane must be the support

4.2. Clifford Errors in the 3D Surface Code 111

of a Z stabiliser of code 3 (2) or X stabilisers in one code would be mapped

to Z errors in the other. This means that α ∩β j is the support of a Z stabiliser

of code 3 and since βk is the support of an X stabiliser of code 3 |α ∩β j∩βk|

must be even for all such β j and βk. Therefore |φ〉= |φ+
j 〉= |φ

+
k 〉 and we are

in a +1 eigenstate of these stabilisers.

• Stabilisers generators (cells) on the membrane boundary: The error X1
α is

detected by Z stabilisers supported on the faces of these cells as in fig. 4.4.

Each such face is the intersection between a pair of generators X2
β j

and X3
βk

and

so |α ∩β j∩βk| must be odd or a Z stabiliser on this face would not detect the

error. There are two such faces for every generator on the membrane boundary

(because the syndrome is a loop) and so every X2
β j

has two X3
βk

neighbours for

which |α ∩β j∩βk| is odd. These neighbours are disjoint and so |α ∩β j∩βk|

where X3
βk

is the product of these neighbours is even. Thus, for any stabiliser

generator on the membrane boundary X2
β j

and any stabiliser X3
βk

, |ψ+
j 〉 contains

pairs (X3
βk
+X2

β j
X3

βk
) |000〉 where X3

βk
contains 0 or 2 neighbours of X2

β j
(on the

boundary) while |ψ−j 〉 contains pairs (X3
βk
−X2

β j
X3

βk
) |000〉 where X3

βk
contains

only one of these neighbours. These pairs can also contain any X1
βi

. There

are equal numbers of each type of pair so |ψ〉 = 1√
2
(|ψ+

j 〉+ |ψ
−
j 〉) and we

measure a random ±1 outcome from this stabiliser. An identical argument can

be applied to generators of code 3.

• All stabilisers from one code on the membrane boundary: For any generator

X2
β j

on the membrane boundary the intersection |α ∩β j∩βk| with a neighbour-

ing generator X3
βk

is odd (as discussed above). This means a Z operator Z3
α∩β j

anticommutes with these X3
βk

, and for each such X3
βk

there are two generators

X2
β j

which have this property, so if X2
β j

is instead the product of all generators

from code 2 on the membrane boundary then Z3
α∩β j

is a stabiliser. This means

that |α ∩β j∩βk| is even for all X3
βk

and so |ψ〉= |ψ+
j 〉 for this choice of X2

β j
.

Once again, an identical argument applies to X3
βk

.

In summary this gives us an analagous result to what was observed for an

4.2. Clifford Errors in the 3D Surface Code 112

isolated membrane in the colour code. Stabilisers not on the boundary always give

+1. Stabiliser generators on the boundary give±1 randomly but we must get an even

number of −1 stabilisers in any given code.

4.2.2 Linked Error Membranes in Cleanable Code Regions

Consider the case where we have X error membranes in codes 1 and 2

CCZX1
αX2

γ |ψ〉 (4.6)

such that α ∩ γ is nonemtpy. Then commuting the CCZ to the right we have

X1
αCZ23

α X2
γ CZ13

γ |ψ ′〉= X1
αX2

γ Z3
α∩γCZ23

α CZ13
γ |ψ〉 (4.7)

So we now have some CZ errors acting on a codestate as before, but we also

have a Z string Z3
α∩γ on the intersection of these membranes in code 3. This is the

surface code equivalent of the linking charge string described in [Bombı́n, 2018b].

Thus we expect that in code 1 we get random outcomes from stabilisers on the

boundary of CZ13
γ and +1 outcomes from all others, with the total number of −1s

even. In code 2 we expect the same thing on the boundary of CZ23
α . In code 3 we

expect random outcomes from stabilisers on the boundaries of both membranes,

and also expect an odd parity of −1 stabilisers on each boundary due to the linking

charge string.

The simplicity of this statement stands in stark contrast to the complexity of

the original proof of this phemonenon in the case of the colour code as presented in

[Bombı́n, 2018b], to the extent that it may seem unremarkable to readers who are

not familiar with that work. Additionally, it is not only the mathematical origin of

linking charge that is clearer in the surface code but also its physical significance. The

transversal CCZ in this code works because the intersection of logical X operators

from any pair of codes is the support of a logical Z operator in the third and so the

logical action CCZ123X1X2CCZ123 = X1X2Z3CZ23CZ13 is correctly implemented.

Linking charge in this case is just another example of this creation of Z strings on X

membrane intersections. This is consistent with claims made in [Bombı́n, 2018b]

4.2. Clifford Errors in the 3D Surface Code 113

that linking charge is important for the correct function of the transversal T gate in

the 3D colour code.

4.2.3 Error Membranes in Non-Cleanable Regions

Finally we address the case of error membranes which do not exist in cleanable

regions of the code. Consider

CCZX1
α |ψ〉= X1

αCZ23
α |ψ ′〉 (4.8)

where CZ23
α now contains the support of a logical Z operator in code 2 or 3. We

choose code 2 but this choice is not important. This means that any implementation

of logical X in code 2 must have nontrivial intersection with this membrane and this

changes our analysis for some codewords. For |010〉 we have

CZ23
α |010〉= 1√

n ∑
i jk

CZ23
α X1

βi
X2

LX2
β j

X3
βk
|000〉

=
1√
n ∑

i jk
X1

βi
X2

LZ3
α∩LX2

β j
Z3

α∩β j
X3

βk
Z2

α∩βk
|000〉

=
Z3

α∩L√
n ∑

i jk
(−1)α∩β j∩βkX1

βi
X2X2

β j
X3

βk
|000〉

(4.9)

Where X2
L is a logical X implementation for code 2. We therefore create a

global Z error on the stringlike intersection of the error membrane support α and the

logical operator support L. This does not affect observed syndromes (because Z3
α∩L

runs from one side of the membrane to the other and so anticommutes with a pair of

stabilisers on the membrane boundary) and also does not affect the encoded logical

information unless α ∩L is the support of a logical Z operator for code 3. Therefore

we only get a logical error from applying CZZ to Xα if α contains the support of

logical operators of both code 2 and code 3. Once again this contrasts with the case

of the 3D colour code as in [Bombı́n, 2018b], where any X error in a non-cleanable

region results in a logical error after the application of the transversal non-Clifford.

In the next section we will apply the techniques used in this section to recover

4.3. The 3D Colour Code Revisited 114

the results of [Bombı́n, 2018b], highlighting the additional complexity present in the

colour code in the process.

4.3 The 3D Colour Code Revisited

We now carry out the same analysis as above for the case of the 3D colour code. We

recover the result of linking charge in this setting, although it requires more effort

and is considerably less intuitive than the surface code case.

4.3.1 Single Error Membranes in Cleanable Code Regions

The colour code has a transversal T gate corresponding to an application of T and T †

to white and black vertices in a bicolouring of the lattice. Consider a membranelike

error Xα (Pauli X on all qubits in set α and identity otherwise) supported on a subset

of faces of colour κ1κ2 and detected by Z stabilisers on faces of colour κ3κ4 at the

boundary of the membrane. Using that T X = e−iπ/4SXT and T †X = eiπ/4S†XT †

we have that

T Xα |ψ〉= e−iπNα
w /4eiπNα

b /4AαXα |ψ ′〉 (4.10)

where Nα
w and Nα

b are the numbers of white and black vertices in α and Aα is a

tensor product of S on all white vertices of α and S† on all black vertices of α . |ψ〉

and |ψ ′〉 are states in the codespace. Using SX = Y S, S†X =−Y S† and Y = iXZ we

have

e−iπNα
w /4eiπNα

b /4AαXα |ψ ′〉= e−iπNα
w /4eiπNα

b /4(−1)Nα
b i|α|XαZαAα |ψ ′〉 . (4.11)

α is a product of faces of the code and faces are cycles in the lattice so must

contain an equal number of b and w vertices so e−iπNα
w /4eiπNα

b /4 = 1. If |α| = 0

mod 4 then i|α| = (−1)Nα
b = 1 and if |α|= 2 mod 4 then i|α| = (−1)Nα

b =−1. Zα

is a Z stabiliser of the code (since it is a Z operator supported on a set of faces) and

commutes with Aα as they are both diagonal in the computational basis. In summary

4.3. The 3D Colour Code Revisited 115

T Xα |ψ〉= XαAα |ψ ′〉 . (4.12)

We then want to know what effect Aα has on codestates. Since we are consid-

ering an error in a cleanable region of the code it is sufficient to consider only the

effect on |0〉 as the analysis for |1〉 will be identical. We have that

|0〉= 1√
n

n

∑
i=1

Xβi |000〉 (4.13)

where Xβi are stabilisers of the code (which are cells or products of cells of the lattice)

and |000〉 is the all-zeros state. We can then use the same commutation relations as

above to show

Aα

1√
n

n

∑
i=1

Xβi |000〉=
1√
n

n

∑
i=1

AαXβi |000〉=
1√
n

n

∑
i=1

(−1)Nα∩βi
b i|α∩βi|XβiZα∩βi |000〉 (4.14)

Zα∩βi acts trivially on the all-zeros state so we can rewrite this as

Aα |0〉=
1√
n

n

∑
i=1

ig(α∩βi)Xβi |000〉 (4.15)

where g(α ∩βi) = |α ∩βi|+2Nα∩βi
b . We can see that

(|α ∩βi|+2Nα∩βi
b) mod 4 = (Nα∩βi

w +3Nα∩βi
b) mod 4

= (Nα∩βi
w −Nα∩βi

b) mod 4
(4.16)

so g(α ∩βi) can be understood as the difference (mod 4) between the number of b

and w vertices in α ∩βi. α is a set of faces of the code and the intersection of any

face (or product of faces) with a cell (or product of cells) of the 3D colour code is

even so ig(α∩βi) =±1 and the effect of Aα on |0〉 is to flip the sign of some of the

terms in this superposition as in the surface code case. We can then once again write

our state as

4.3. The 3D Colour Code Revisited 116

Aα |0〉= a |φ+
i 〉+b |φ−i 〉 (4.17)

where Xi |φ+
i 〉= |φ

+
i 〉 and Xi |φ−i 〉=−|φ

−
i 〉. The following lemma will be useful in

finding values for a and b.

Lemma 4.0.1 ig(α∩(βi+β j)) 6= ig(α∩βi)ig(α∩β j) only if |α ∩βi∩β j| is odd (βi +β j is

pointwise addition modulo 2)

If βi and β j are disjoint then βi +β j = βi∪β j and so α ∩ (βi∪β j) = (α ∩βi)∪

(α ∩β j) = (α ∩βi)+(α ∩β j). This means

g(α ∩ (βi +β j)) = |α ∩ (βi +β j)|+2Nα∩(βi+β j)
b

= |(α ∩βi)+(α ∩β j)|+2N(α∩βi)+(α∩β j)
b

= |α ∩βi|+ |α ∩β j|+2Nα∩βi
b +2Nα∩β j

b

= g(α ∩βi)+g(α ∩β j)

(4.18)

where we have used that |a+b|= |a|+ |b| for disjoint a and b. Therefore we only

have ig(α∩(βi+β j)) 6= ig(α∩βi)ig(α∩β j) if βi∩β j is nonempty. In this case we can write

βi∪β j = β ′i +β ′j +βi∩β j where β ′i (β ′j) are the elements of βi (β j) not in βi∩β j.

βi +β j = β ′i +β ′j and β ′i , β ′j and βi∩β j are all disjoint, so by the same method as

above we can show

g(α ∩ (βi +β j)) = g(α ∩ (β ′i +β
′
j)) = g(α ∩β

′
i)+g(α ∩β

′
j) (4.19)

and

g(α ∩βi)+g(α ∩β j) = g(α ∩ (β ′i +βi∩β j))+g(α ∩ (β ′j +βi∩β j))

= g(α ∩β
′
i)+g(α ∩β

′
j)+2g(α ∩βi∩β j)

(4.20)

Thus for general βi and β j we have

4.3. The 3D Colour Code Revisited 117

ig(α∩βi)ig(α∩β j) = (−1)g(α∩βi∩β j)ig(α∩(βi+β j)) (4.21)

and so ig(α∩(βi+β j)) 6= ig(α∩βi)ig(α∩β j) only if g(α ∩ βi ∩ β j) is odd which means

|α ∩βi∩β j| is also odd. �

Corollary 1: If Zα∩βi is a stabiliser then ig(α∩(βi+β j)) = ig(α∩βi)ig(α∩β j) ∀ β j.

This is because the intersection of any X and Z stabiliser of the code must be even

and so α ∩βi∩β j must be even if α ∩βi is the support of a Z stabiliser.

Now let us reconsider the state

|φ〉= Aα |0〉=
1√
n

n

∑
i=1

ig(α∩βi)Xi |000〉= a |φ+
i 〉+b |φ−i 〉 (4.22)

Note that once again |φ+
i 〉 must consist of pairs Xβ j |000〉+XβiXβ j |000〉 whereas

|φ−i 〉 must consist of pairs Xβ j |000〉−XβiXβ j |000〉 (up to multiplication of the whole

pair by −1). These pairs are defined by β j and if ig(α∩βi) = 1 the pairs in |φ−i 〉 are

all those for which ig(α∩(βi+β j)) =−ig(α∩βi)ig(α∩β j), whereas if ig(α∩βi) =−1 then

these pairs are in |φ+
i 〉.

Now consider the same options for Xi as in the surface code:

• Stabilisers not supported on the membrane boundary: The fact that ig(α∩βi) = 1

in this case is part of the requirement for transversal T (see corollary 7 of

[Rengaswamy et al., 2020]). Additionally, the intersection of these X stabilisers

with the membrane is either nothing or the support of a Z stabiliser and so we

always have ig(α∩(βi+β j)) = ig(α∩βi)ig(α∩β j) for this choice of Xi by corollary 1.

This means that |φ〉= |φ+
i 〉 in this case, and so we are in a +1 eigenstate of

these stabilisers.

• Stabiliser generators on the membrane boundary: Our error membrane is

supported on faces of colour κ1κ2 and detected by faces of colour κ3κ4 which

are the interfaces of κ1 and κ2 cells on the membrane boundary. A κ1 cell

meets the membrane at κ2 coloured edges which each contain one w and one

4.3. The 3D Colour Code Revisited 118

b vertex and so the total numbers of each in α ∩βi are equal and ig(α∩βi) = 1

for these stabilisers. The intersection of a κ1κ2 face, a κ1 cell and a κ2 cell

is a single vertex (since the κ1 cell meets the face at a κ2 edge, the κ2 cell

meets the face at a κ1 edge and these edges meet at a vertex) and therefore

|α ∩βi∩β j| is odd for a pair of neighbouring cells on the membrane boundary.

Thus |φ+
i 〉 is formed from pairs (Xβ j +XβiXβ j) |000〉 where Xβ j contains either

0 or 2 such neighbours of Xβi while |φ−i 〉 contains all pairs (Xβ j −XβiXβ j) |000〉

where Xβ j contains only one of the neighbours of Xβi . There are equal numbers

of each type of pair so |φ〉= 1√
2
(|φ+

i 〉+ |φ
−
i 〉) and we expect a random ±1

outcome from a measurement of Xβi .

• All stabiliser generators of one colour on the membrane boundary: For any

κ1 cell Xβi and neighbouring κ2 cell Xβ j which are both on the membrane

boundary we have that |α ∩ βi ∩ β j| is odd, and so Zα∩βi is an error string

which anticommutes with the two κ2 coloured neighbours of Xβi . If Xβi is

instead the product of all κ1 coloured cells on the membrane boundary then

each κ2 cell anticommutes individually with the string from each of its two

κ1 coloured neighbours and so commutes with their product. Thus Zα∩βi is a

stabiliser for this choice of Xβi . Additionally, ig(α∩βi) = 1 since ig = 1 for each

cell individually and the cells are all disjoint. Therefore we have |φ〉= |φ+
i 〉

for this Xβi as well.

We have recoved the expected result for an isolated membrane: If we measure

all stabiliser generators of the code then stabilisers not on the membrane boundary

will return +1. Stabilisers on the membrane boundary return random ±1 outcomes,

but the total parity of −1 stabilisers of any colour will always be even.

4.3.2 Linked Error Membranes in Cleanable Code Regions

Now we consider a pair of membranes of X errors with one defined on κ1κ2 faces

and detected by κ3κ4 faces and one defined on κ3κ4 faces and detected by κ1κ2 faces

as in fig. 4.3. We will refer to these as ακ1κ2 and ακ3κ4 respectively. Following the

application of T we have a state

4.3. The 3D Colour Code Revisited 119

T Xακ1κ2
Xακ3κ4

|ψ〉= T Xακ1κ2+ακ3κ4
|ψ〉

= Xακ1κ2+ακ3κ4
Aακ1κ2+ακ3κ4

|ψ ′〉 .
(4.23)

by the same reasoning as (4.12) and using the fact that the membranes are individually

defined on the supports of Z stabilisers (sets of faces) and so their product is also the

support of a Z stabiliser. Notice that, unlike in the surface code, we do not observe

the emergence of a linking charge string at this point and in fact we observe no

errors on the intersection at all since ακ1κ2 +ακ3κ4 = ακ1κ2 ∪ακ3κ4−ακ1κ2 ∩ακ3κ4 .

The linking charge string in this case will come from the action of the Clifford

error on the codestate rather than directly from the commutation of the transversal

non-Clifford through the original X error.

Much of the analysis from above carries over to this case, and the only difference

will be for Xβi partially supported on the intersection of the two membranes. Note

that the same method used to prove (4.21) can equivalently be used to show

ig((ακ1κ2+ακ3κ4)∩βi) = (−1)g(ακ1κ2∩ακ3κ4∩βi)ig(ακ1κ2∩βi)ig(ακ3κ4∩βi) (4.24)

Then we have that

• X stabilisers at intersection endpoints: These stabilisers are on the boundary

of one membrane and in the interior of the other and contain a single qubit in

ακ1κ2 ∩ακ3κ4 . If this cell has colour κ1 then it must meet the κ1κ2 membrane

at a set of κ2 coloured edges and the κ3κ4 membrane at a κ3κ4 coloured face.

Sets of disjoint edges and individual faces both contain equal numbers of b

and w vertices so ig(ακ1κ2∩βi) = ig(ακ3κ4∩βi) = 1. ακ1κ2 ∩ακ3κ4 ∩βi is a single

qubit so ig(α∩βi) =−1 by (4.24).

• X stabilisers on the intersection (not endpoints). Zακ1κ2∩βi and Zακ3κ4∩βi are

both Z stabilisers so ig(ακ1κ2∩βi) = ig(ακ3κ4∩βi) = 1. The product of two Z

stabilisers is another Z stabiliser, and all Z stabilisers have even weight so

4.3. The 3D Colour Code Revisited 120

|(ακ1κ2 ∩βi)+(ακ3κ4 ∩βi)| is even and so |ακ1κ2 ∩ακ3κ4 ∩βi| is also even and

ig(α∩βi) = 1.

For non-endpoint stabilisers everything is as before. For endpoint stabiliser

generators we once again have |φ〉= 1√
2
(|φ+

i 〉+ |φ
−
i 〉) but we have swapped which

pairs of states are in |φ+
i 〉 and |φ−i 〉 since, e.g. |φ−i 〉 now contains the pair |000〉−

Xβi |000〉 whereas previously we had |000〉+Xβi |000〉 in |φ+
i 〉. If we consider all cells

of one colour on one of the membrane boundaries then as before the intersection

is a stabiliser and as before ig(α∩βi) is the product of ig for all individual cells in

the product as these cells are all disjoint. One of these cells sits at an intersection

endpoint and so has ig =−1 whereas the rest have ig = 1 and so ig(α∩βi) =−1. Thus

we now have |φ〉= |φ−i 〉 whereas before we had |φ〉= |φ+
i 〉. This implies that when

we measure all the stabiliser generators of the code we will once again get random

outcomes from the membrane boundary stabilisers, but instead of having an even

parity of each colour on each boundary we have an odd parity, and this is consistent

with a linking charge string running between the two membrane boundaries.

4.3.3 Error Membranes in Non-Cleanable Regions

Consider an X error membrane in the colour code which is supported on a subset of

faces of colour κ1κ2 and also on the support of a logical Z operator. As before we

have

T Xα |ψ〉= e−iπNα
w /4e−iπNα

b /4ig(α)XαZαAα |ψ ′〉 (4.25)

α is a product of the supports of Z stabilisers and a Z logical. For the former

Nw = Nb and for the latter Nw = Nb +1 so e−iπNα
w /4e−iπNα

b /4 = e−iπ/4. Also g(α) =

|α|+2Nα
b = Nα

w +Nα
b +2Nα

b = 4Nα
b +1 so ig(α) = i. This gives

T Xα |ψ〉= eiπ/4XαZαAα |ψ ′〉 (4.26)

Notice that Zα is a logical Z operator, whereas for cleanable α it was a stabiliser.

Now we want to consider the effect of Aα on codestates. For |0〉 the analysis is

the same as before, but for |1〉 we must now consider the interaction of logical X

4.4. Discussion 121

operators with Aα . |1〉 can be written

|1〉= 1√
n

n

∑
i=1

XXβi |000〉 (4.27)

where X is a logical X operator. It does not matter which implementation of X we

choose, so we choose it to be X on all qubits. We then have that

Aα |1〉=
1√
n

n

∑
i=1

ig(α)XZα ig(α∩βi)XβiZα∩βi |000〉=
i√
n

n

∑
i=1

ig(α∩βi)XXβi |000〉 (4.28)

where we have used that Zα is a logical Z operator and so commutes with Xβi which

is a stabiliser. Thus we see that the action of Aα on |1〉 is the same as in the cleanable

case except for a global factor of i. This is consistent with a logical S error and so

we conclude that in addition to creating distributions of Z errors Aα also applies a

logical S to the codestate. Notice that in addition to this, commuting T through Xα

created a logical Z error Zα in (4.26).

4.4 Discussion
We have generalised results regarding Clifford errors in the colour code to the

case of the 3D surface code and found that not only do these results translate

straightforwardly but they are much more easily understood in this setting. In the

surface code the determininstic linking charge error string and the random error

strings on the Clifford error boundary are separate processes, the former caused by

commuting the transversal non-Clifford gate through a pair of Pauli errors and the

latter caused by the action of a Clifford error on the codestate. In the colour code

this distinction is less clear and these two kinds of Z error have the same origin (the

action of the the Clifford error on the codestate). The colour code and the three

copies of the surface code are equivalent up to local unitary operations [Kubica,

2018] and so we propose that linking charge is best understood not as a colour code

phenomenon but as a surface code one whose origin is obscured by the mapping to

the colour code.

4.4. Discussion 122

Linking charge in the surface code is more approachable not only from an

analytic perspective but also from a numerical one. Simulating linking charge in

the colour code requires a non-local method of detecting linked syndromes and as

a result has been left out of previous numerical works [Beverland et al., 2021]. In

contrast, simulating linking charge in the 3D surface code only requires us to apply

Z to any qubits of code i where we have X errors on the corresponding qubits of

codes j and k. This is a straightforward local check with minimal computational

overhead and in fact the random sampling of error distributions on the membrane

boundary constitutes the majority of the computational cost of this problem, meaning

that a full simulation including linking charge in the surface code is as complex as a

simulation which ignores it in the colour code.

Finally, we note that this result also has a straightforward generalisation to the

case of the 4D surface code. This code admits a transversal CCCZ between four

copies of the code [Jochym-O’Connor and Yoder, 2021] and in the same way as (4.7)

we have

CCCZX1
αX2

β
X3

γ |ψ〉= X1
αCCZ234

α X2
β
CCZ134

β
X3

γ CCZ124
γ |ψ ′〉

= X1
αX2

β
CZ34

α∩β
X3

γ CZ24
α∩γCZ14

β∩γ
|ψ ′′〉

= X1
αX2

β
X3

γ Z4
α∩β∩γ

|ψ ′′′〉

(4.29)

and so we obtain a Z error string on the intersection of these three X errors in

addition to whatever effect the Clifford CZ and non-Clifford CCZ errors have on the

codestate.

Chapter 5

General Conclusions

Quantum error correcting codes allow us to protect quantum information from

environmental noise but reduce our ability to manipulate that information ourselves.

Finding ways of circumventing this restriction and implementing a universal set of

logical quantum gates is clearly essential for the development of a working quantum

computer, and it is desirable to find gate sets that are as error-resistent and resource-

efficient as possible. Transversal gates and magic state distillation are some of the

most well known examples of such logical operations and in this thesis we have

investigated several methods of performing quantum logic via the techniques of code

deformation.

In chapter 2 we focused on performing logic with qubits encoded in twist

defects. We generalised previous results for these defects in surface and colour

codes to arbitrarily many copies of the surface code and classified the braiding and

fusion relations for a subset of these general defects. We found that, as expected,

the corresponding logical operations were all restricted to the Clifford group and

that no new gates are obtained by generalising beyond the colour code (aside from

tensor products of previously obtained gates). In chapter 3 we examined a proposal

that uses a combination of code deformation and transversal gates, as well as an

unusual decoding strategy, to implement a CCZ gate in three copies of the 2D surface

code. We carried out numerical simulations of part of this process (decoding X

errors) and obtained a threshold value of ∼ 0.1% which represents both the first

numerical evidence of a threshold for JIT decoding and a significant improvement

124

over the value obtained via analytical techniques. Additionally, we expect that this

value could be improved via optimisation of the decoder. Finally, in chapter 4 we

examined the problem of Clifford errors in the 3D surface code. This is relevant to

the JIT decoding process discussed in chapter 3 and understanding of this problem is

necessary for simulations of the Z error decoding part of that procedure, but it also

has more general relevance as these errors will also arise during the application of

CCZ to the full 3D surface code. We show that phenomena arising from Clifford

errors in the 3D colour code are reproduced in the surface code case and also that

these phenomena are more naturally understood in this setting.

One might ask what advantages these approaches to performing quantum logic

have over techniques such as magic state distillation. For example, recent work has

shown that a universal gate set achieved via dimension jumping in the colour code

compares unfavourably with one achieved via state distillation and injection [Bever-

land et al., 2021] and so one might expect the same to be true for the JIT decoding

scheme discussed here. While this is certainly possible, we do not believe it is

guaranteed as the non-Clifford via JIT decoding requires fewer physical qubits and a

simpler architecture than the full 3D code. It will also have a lower threshold, but

we do not expect this threshold to be so low as to be experimentally unfeasable and

so JIT decoding may be competitive with magic state distillation in this lower-noise

regime.

Moving forward, we intend to continue this research and carry out simulations

of the full JIT decoding procedure (including both X and Z errors using the results

of chapter 4). We may wish to begin with simulations of Clifford errors in the full

3D surface code before adapting these simulations to the more complex JIT decoded

case. Simulations of Clifford errors in 3D codes have been carried out previously in

[Beverland et al., 2021] but these simulations did not include linking charge due to

the difficulty of simulating that phenomenon in the colour code. The authors state

that they do not expect linking charge to make a significant difference to the observed

results, but due to the relative ease of simulting linking charge in the surface code we

are now in a good position to investigate this claim and ascertain the exact impact

125

of linking charge error strings on the decoding process. As discussed in chapter 4,

improved JIT decoding algorithms that utilise more of the information available in

the syndrome history also present a promising avenue for future reasearch as this

would also make JIT decoding schemes more competitive with other approaches to

universal logic.

Bibliography

Alan Agresti and Brent A. Coull. Approximate Is Better than ”Exact” for Interval

Estimation of Binomial Proportions. The American Statistician, 52(2):119–126,

1998. ISSN 0003-1305. doi: 10.2307/2685469. Publisher: [American Statistical

Association, Taylor & Francis, Ltd.].

Arun B. Aloshious and Pradeep Kiran Sarvepalli. Decoding Toric Codes on Three Di-

mensional Simplical Complexes. IEEE Transactions on Information Theory, 67(2):

931–945, 2021. ISSN 1557-9654. doi: 10.1109/TIT.2020.3037042. Conference

Name: IEEE Transactions on Information Theory.

Frank Arute et al. Quantum supremacy using a programmable superconducting

processor. Nature, 574(7779):505–510, 2019. ISSN 1476-4687. doi: 10.1038/

s41586-019-1666-5. Number: 7779 Publisher: Nature Publishing Group.

F. A. Bais and J. K. Slingerland. Condensate induced transitions between topologi-

cally ordered phases. Physical Review B, 79(4):045316, 2009. ISSN 1098-0121,

1550-235X. doi: 10.1103/PhysRevB.79.045316. arXiv: 0808.0627.

Maissam Barkeshli, Parsa Bonderson, Meng Cheng, and Zhenghan Wang. Symme-

try, Defects, and Gauging of Topological Phases. arXiv:1410.4540 [cond-mat,

physics:hep-th, physics:math-ph, physics:quant-ph], 2014. arXiv: 1410.4540.

Michael E. Beverland, Aleksander Kubica, and Krysta M. Svore. The cost of univer-

sality: A comparative study of the overhead of state distillation and code switching

with color codes. arXiv:2101.02211 [quant-ph], 2021. arXiv: 2101.02211.

BIBLIOGRAPHY 127

H. Bombı́n. Topological Order with a Twist: Ising Anyons from an Abelian Model.

Physical Review Letters, 105(3):030403, 2010. doi: 10.1103/PhysRevLett.105.

030403.

H. Bombı́n and M. A. Martin-Delgado. Topological Quantum Distillation. Physical

Review Letters, 97(18):180501, 2006. ISSN 0031-9007, 1079-7114. doi: 10.1103/

PhysRevLett.97.180501. arXiv: quant-ph/0605138.

H. Bombı́n and M. A. Martin-Delgado. Topological Computation without Braiding.

Physical Review Letters, 98(16):160502, 2007. doi: 10.1103/PhysRevLett.98.

160502. Publisher: American Physical Society.

Hector Bombı́n. 2D quantum computation with 3D topological codes.

arXiv:1810.09571 [quant-ph], 2018a. arXiv: 1810.09571.

Hector Bombı́n. Transversal gates and error propagation in 3D topological codes.

arXiv:1810.09575 [quant-ph], 2018b. arXiv: 1810.09575.

Héctor Bombı́n. Single-Shot Fault-Tolerant Quantum Error Correction. Physical

Review X, 5(3):031043, 2015. doi: 10.1103/PhysRevX.5.031043. Publisher:

American Physical Society.

Héctor Bombı́n. Dimensional jump in quantum error correction. New Journal of

Physics, 18(4):043038, 2016. ISSN 1367-2630. doi: 10.1088/1367-2630/18/4/

043038. Publisher: IOP Publishing.

J. Pablo Bonilla Ataides, David K. Tuckett, Stephen D. Bartlett, Steven T. Flammia,

and Benjamin J. Brown. The XZZX surface code. Nature Communications, 12

(1):2172, 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-22274-1.

S. B. Bravyi and A. Yu Kitaev. Quantum codes on a lattice with boundary.

arXiv:quant-ph/9811052, 1998. arXiv: quant-ph/9811052.

Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal Clifford

gates and noisy ancillas. Physical Review A, 71(2):022316, 2005. doi: 10.1103/

PhysRevA.71.022316. Publisher: American Physical Society.

BIBLIOGRAPHY 128

Sergey Bravyi and Robert König. Classification of Topologically Protected Gates

for Local Stabilizer Codes. Physical Review Letters, 110(17):170503, 2013. doi:

10.1103/PhysRevLett.110.170503. Publisher: American Physical Society.

Nikolas P. Breuckmann and Xiaotong Ni. Scalable Neural Network Decoders for

Higher Dimensional Quantum Codes. Quantum, 2:68, 2018. doi: 10.22331/

q-2018-05-24-68. Publisher: Verein zur Förderung des Open Access Publizierens

in den Quantenwissenschaften.

Nikolas P. Breuckmann, Kasper Duivenvoorden, Dominik Michels, and Barbara M.

Terhal. Local Decoders for the 2D and 4D Toric Code. arXiv:1609.00510 [quant-

ph], 2016. arXiv: 1609.00510.

Benjamin J. Brown. A fault-tolerant non-Clifford gate for the surface code in two

dimensions. Science Advances, 6(21):eaay4929, 2020. ISSN 2375-2548. doi:

10.1126/sciadv.aay4929. Publisher: American Association for the Advancement

of Science Section: Research Article.

Benjamin J. Brown, Katharina Laubscher, Markus S. Kesselring, and James R.

Wootton. Poking Holes and Cutting Corners to Achieve Clifford Gates with the

Surface Code. Physical Review X, 7(2):021029, 2017. doi: 10.1103/PhysRevX.7.

021029.

Simon Burton and Dan Browne. Limitations on transversal gates for hypergraph

product codes. arXiv:2012.05842 [quant-ph], 2020. arXiv: 2012.05842.

A. R. Calderbank and Peter W. Shor. Good Quantum Error-Correcting Codes Exist.

Physical Review A, 54(2):1098–1105, 1996. ISSN 1050-2947, 1094-1622. doi:

10.1103/PhysRevA.54.1098. arXiv: quant-ph/9512032.

Earl T. Campbell. A theory of single-shot error correction for adversarial noise.

Quantum Science and Technology, 4(2):025006, 2019. ISSN 2058-9565. doi:

10.1088/2058-9565/aafc8f. Publisher: IOP Publishing.

BIBLIOGRAPHY 129

Earl T. Campbell and Mark Howard. Unified framework for magic state distillation

and multiqubit gate synthesis with reduced resource cost. Physical Review A,

95(2):022316, 2017. doi: 10.1103/PhysRevA.95.022316. Publisher: American

Physical Society.

Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. Roads towards

fault-tolerant universal quantum computation. Nature, 549(7671):172–179, 2017.

ISSN 1476-4687. doi: 10.1038/nature23460. Number: 7671 Publisher: Nature

Publishing Group.

R. Craigen. Trace, Symmetry and Orthogonality. Canadian Mathematical Bul-

letin, 37(4):461–467, 1994. ISSN 0008-4395, 1496-4287. doi: 10.4153/

CMB-1994-067-1.

Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological quantum

memory. Journal of Mathematical Physics, 43(9):4452–4505, 2002. ISSN 0022-

2488. doi: 10.1063/1.1499754. Publisher: American Institute of Physics.

K. Duivenvoorden, N. P. Breuckmann, and B. M. Terhal. Renormalization Group

Decoder for a Four-Dimensional Toric Code. IEEE Transactions on Information

Theory, 65(4):2545–2562, 2019. ISSN 1557-9654. doi: 10.1109/TIT.2018.

2879937. Conference Name: IEEE Transactions on Information Theory.

Bryan Eastin and Emanuel Knill. Restrictions on Transversal Encoded Quantum Gate

Sets. Physical Review Letters, 102(11):110502, 2009. doi: 10.1103/PhysRevLett.

102.110502. Publisher: American Physical Society.

Jack Edmonds. Paths, Trees, and Flowers. Canadian Journal of Mathematics, 17:

449–467, 1965. ISSN 0008-414X, 1496-4279. doi: 10.4153/CJM-1965-045-4.

Publisher: Cambridge University Press.

Laird Egan, Dripto M. Debroy, Crystal Noel, Andrew Risinger, Daiwei Zhu, Debo-

priyo Biswas, Michael Newman, Muyuan Li, Kenneth R. Brown, Marko Cetina,

and Christopher Monroe. Fault-Tolerant Operation of a Quantum Error-Correction

Code. arXiv:2009.11482 [quant-ph], 2021. arXiv: 2009.11482.

BIBLIOGRAPHY 130

Emil Artin. Galois theory: lectures delivered at the University of Notre Dame / by

Dr. Emil Artin ; edited and supplemented with a section on applications by Dr.

Arthur N. Milgram. Notre Dame mathematical lectures ; no. 2. University of Notre

Dame, University of Notre Dame Press, Notre Dame, Ind., Indiana, 2nd ed., with

additions and revisions. edition, 1959.

Austin G. Fowler. Minimum weight perfect matching of fault-tolerant topological

quantum error correction in average $O(1)$ parallel time. arXiv:1307.1740 [quant-

ph], 2014. arXiv: 1307.1740.

Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland.

Surface codes: Towards practical large-scale quantum computation. Physical

Review A, 86(3):032324, 2012. doi: 10.1103/PhysRevA.86.032324.

Philippe Francesco, Pierre Mathieu, and David Sénéchal. Conformal Field Theory.

Graduate Texts in Contemporary Physics. Springer-Verlag, New York, 1997. ISBN

978-0-387-94785-3.

Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. arXiv:quant-

ph/9705052, 1997. arXiv: quant-ph/9705052.

Lov K. Grover. A fast quantum mechanical algorithm for database search. In

Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing,

STOC ’96, pages 212–219, New York, NY, USA, 1996. Association for Computing

Machinery. ISBN 978-0-89791-785-8. doi: 10.1145/237814.237866.

Jeongwan Haah, Matthew B. Hastings, D. Poulin, and D. Wecker. Magic state

distillation with low space overhead and optimal asymptotic input count. Quantum,

1:31, 2017. doi: 10.22331/q-2017-10-03-31. Publisher: Verein zur Förderung des

Open Access Publizierens in den Quantenwissenschaften.

A. Hedayat and W. D. Wallis. Hadamard Matrices and Their Applications. The

Annals of Statistics, 6(6):1184–1238, 1978. ISSN 0090-5364, 2168-8966. doi:

10.1214/aos/1176344370.

BIBLIOGRAPHY 131

Cornelius Hempel et al. Quantum Chemistry Calculations on a Trapped-Ion Quantum

Simulator. Physical Review X, 8(3):031022, 2018. doi: 10.1103/PhysRevX.8.

031022. Publisher: American Physical Society.

Clare Horsman, Austin G. Fowler, Simon Devitt, and Rodney Van Meter. Surface

code quantum computing by lattice surgery. New Journal of Physics, 14(12):

123011, 2012. ISSN 1367-2630. doi: 10.1088/1367-2630/14/12/123011.

Adrian Hutter, James R. Wootton, and Daniel Loss. Parafermions in a Kagome

Lattice of Qubits for Topological Quantum Computation. Physical Review X, 5

(4):041040, 2015. doi: 10.1103/PhysRevX.5.041040.

Tomas Jochym-O’Connor and Theodore J. Yoder. A four-dimensional toric code

with non-Clifford transversal gates. Physical Review Research, 3(1):013118, 2021.

ISSN 2643-1564. doi: 10.1103/PhysRevResearch.3.013118. arXiv: 2010.02238.

Tomas Jochym-O’Connor, Aleksander Kubica, and Theodore J. Yoder. Disjointness

of Stabilizer Codes and Limitations on Fault-Tolerant Logical Gates. Physical

Review X, 8(2):021047, 2018. doi: 10.1103/PhysRevX.8.021047. Publisher:

American Physical Society.

Markus S. Kesselring, Fernando Pastawski, Jens Eisert, and Benjamin J. Brown. The

boundaries and twist defects of the color code and their applications to topological

quantum computation. Quantum, 2:101, 2018. doi: 10.22331/q-2018-10-19-101.

A. Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics,

303(1):2–30, 2003. ISSN 0003-4916. doi: 10.1016/S0003-4916(02)00018-0.

Alexei Kitaev. Anyons in an exactly solved model and beyond. Annals of Physics,

321(1):2–111, 2006. ISSN 0003-4916. doi: 10.1016/j.aop.2005.10.005.

Vladimir Kolmogorov. Blossom V: a new implementation of a minimum cost perfect

matching algorithm. Mathematical Programming Computation, 1(1):43–67, 2009.

ISSN 1867-2957. doi: 10.1007/s12532-009-0002-8.

BIBLIOGRAPHY 132

Aleksander Kubica and Michael E. Beverland. Universal transversal gates with

color codes: A simplified approach. Physical Review A, 91(3):032330, 2015. doi:

10.1103/PhysRevA.91.032330. Publisher: American Physical Society.

Aleksander Kubica and John Preskill. Cellular-Automaton Decoders with Provable

Thresholds for Topological Codes. Physical Review Letters, 123(2):020501, 2019.

doi: 10.1103/PhysRevLett.123.020501. Publisher: American Physical Society.

Aleksander Kubica, Beni Yoshida, and Fernando Pastawski. Unfolding the color

code. New Journal of Physics, 17(8):083026, 2015. ISSN 1367-2630. doi:

10.1088/1367-2630/17/8/083026. arXiv: 1503.02065.

Aleksander Marek Kubica. The ABCs of the Color Code: A Study of Topological

Quantum Codes as Toy Models for Fault-Tolerant Quantum Computation and

Quantum Phases Of Matter. phd, California Institute of Technology, 2018.

Daniel Litinski. Magic State Distillation: Not as Costly as You Think. Quantum, 3:

205, 2019. doi: 10.22331/q-2019-12-02-205. Publisher: Verein zur Förderung

des Open Access Publizierens in den Quantenwissenschaften.

Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial Group The-

ory: Presentations of Groups in Terms of Generators and Relations. Courier Cor-

poration, 2004. ISBN 978-0-486-43830-6. Google-Books-ID: 1LW4s1RDRHQC.

Jonathan E. Moussa. Transversal Clifford gates on folded surface codes. Physical

Review A, 94(4):042316, 2016. doi: 10.1103/PhysRevA.94.042316.

Gabriele Nebe, Eric M. Rains, and Neil J. A. Sloane. Self-Dual Codes and Invariant

Theory. Algorithms and Computation in Mathematics. Springer-Verlag, Berlin

Heidelberg, 2006. ISBN 978-3-540-30729-7. doi: 10.1007/3-540-30731-1.

P. J. J. O’Malley et al. Scalable Quantum Simulation of Molecular Energies. Physical

Review X, 6(3):031007, 2016. doi: 10.1103/PhysRevX.6.031007. Publisher:

American Physical Society.

BIBLIOGRAPHY 133

Jiannis K. Pachos. Introduction to Topological Quantum Computation by Jiannis K.

Pachos, 2012.

Pavel Panteleev and Gleb Kalachev. Degenerate Quantum LDPC Codes With

Good Finite Length Performance. arXiv:1904.02703 [quant-ph], 2019. arXiv:

1904.02703.

Armanda O. Quintavalle, Michael Vasmer, Joschka Roffe, and Earl T. Campbell.

Single-shot error correction of three-dimensional homological product codes. PRX

Quantum, 2(2):020340, 2021. ISSN 2691-3399. doi: 10.1103/PRXQuantum.2.

020340. arXiv: 2009.11790.

Robert Raussendorf and Jim Harrington. Fault-Tolerant Quantum Computation with

High Threshold in Two Dimensions. Physical Review Letters, 98(19):190504,

2007. doi: 10.1103/PhysRevLett.98.190504. Publisher: American Physical

Society.

Robert Raussendorf, Sergey Bravyi, and Jim Harrington. Long-range quantum

entanglement in noisy cluster states. Physical Review A, 71(6):062313, 2005. doi:

10.1103/PhysRevA.71.062313. Publisher: American Physical Society.

Narayanan Rengaswamy, Robert Calderbank, Michael Newman, and Henry D. Pfister.

On Optimality of CSS Codes for Transversal T. arXiv:1910.09333 [quant-ph],

2020. arXiv: 1910.09333.

Joschka Roffe, David R. White, Simon Burton, and Earl T. Campbell. Decoding

Across the Quantum LDPC Code Landscape. Physical Review Research, 2(4):

043423, 2020. ISSN 2643-1564. doi: 10.1103/PhysRevResearch.2.043423. arXiv:

2005.07016.

Jerzy Rozanski. Bicharacters, braids and Jacobi identity. arXiv:q-alg/9611029, 1996.

arXiv: q-alg/9611029.

T. R. Scruby and D. E. Browne. A Hierarchy of Anyon Models Realised by Twists in

Stacked Surface Codes. Quantum, 4:251, 2020. doi: 10.22331/q-2020-04-06-251.

BIBLIOGRAPHY 134

Publisher: Verein zur Förderung des Open Access Publizierens in den Quanten-

wissenschaften.

T. R. Scruby, D. E. Browne, P. Webster, and M. Vasmer. Numerical Implementation

of Just-In-Time Decoding in Novel Lattice Slices Through the Three-Dimensional

Surface Code. arXiv:2012.08536 [quant-ph], 2021. arXiv: 2012.08536.

Peter W. Shor. Scheme for reducing decoherence in quantum computer memory.

Physical Review A, 52(4):R2493–R2496, 1995. doi: 10.1103/PhysRevA.52.R2493.

Publisher: American Physical Society.

P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring.

In Proceedings 35th Annual Symposium on Foundations of Computer Science,

pages 124–134, 1994. doi: 10.1109/SFCS.1994.365700.

Jacob A. Siehler. Braided Near-group Categories. arXiv:math/0011037, 2000. arXiv:

math/0011037.

A. M. Steane. Error Correcting Codes in Quantum Theory. Physical Review Letters,

77(5):793–797, 1996a. doi: 10.1103/PhysRevLett.77.793. Publisher: American

Physical Society.

Andrew Steane. Multiple Particle Interference and Quantum Error Correction.

Proceedings of the Royal Society of London. Series A: Mathematical, Physical

and Engineering Sciences, 452(1954):2551–2577, 1996b. ISSN 1364-5021, 1471-

2946. doi: 10.1098/rspa.1996.0136. arXiv: quant-ph/9601029.

Ashley M. Stephens. Fault-tolerant thresholds for quantum error correction with the

surface code. Physical Review A, 89(2):022321, 2014. doi: 10.1103/PhysRevA.

89.022321. Publisher: American Physical Society.

J. J. Sylvester. LX. Thoughts on inverse orthogonal matrices, simultaneous sign-

successions, and tessellated pavements in two or more colours, with applications

to Newton’s rule, ornamental tile-work, and the theory of numbers. The London,

BIBLIOGRAPHY 135

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(232):

461–475, 1867. ISSN 1941-5982. doi: 10.1080/14786446708639914.

Daisuke Tambara and Shigeru Yamagami. Tensor Categories with Fusion Rules

of Self-Duality for Finite Abelian Groups. Journal of Algebra, 209(2):692–707,

1998. ISSN 0021-8693. doi: 10.1006/jabr.1998.7558.

Michael Vasmer and Dan E. Browne. Three-dimensional surface codes: Transversal

gates and fault-tolerant architectures. Physical Review A, 100(1):012312, 2019.

doi: 10.1103/PhysRevA.100.012312. Publisher: American Physical Society.

Michael Vasmer, Dan E. Browne, and Aleksander Kubica. Cellular automa-

ton decoders for topological quantum codes with noisy measurements and be-

yond. Scientific Reports, 11(1):2027, 2021. ISSN 2045-2322. doi: 10.1038/

s41598-021-81138-2. arXiv: 2004.07247.

Christophe Vuillot, Lingling Lao, Ben Criger, Carmen Garcı́a Almudéver, Koen

Bertels, and Barbara M. Terhal. Code deformation and lattice surgery are gauge

fixing. New Journal of Physics, 21(3):033028, 2019. ISSN 1367-2630. doi:

10.1088/1367-2630/ab0199. Publisher: IOP Publishing.

David S. Wang, Austin G. Fowler, and Lloyd C. L. Hollenberg. Surface code

quantum computing with error rates over 1%. Physical Review A, 83(2):020302,

2011. doi: 10.1103/PhysRevA.83.020302. Publisher: American Physical Society.

Paul Webster and Stephen D. Bartlett. Braiding defects in topological stabiliser

codes of any dimension cannot be universal. arXiv:1811.11789 [quant-ph], 2018a.

arXiv: 1811.11789.

Paul Webster and Stephen D. Bartlett. Locality-preserving logical operators in

topological stabilizer codes. Physical Review A, 97(1):012330, 2018b. doi:

10.1103/PhysRevA.97.012330.

Paul Webster and Stephen D. Bartlett. Fault-Tolerant Quantum Gates with Defects

BIBLIOGRAPHY 136

in Topological Stabiliser Codes. arXiv:1906.01045 [quant-ph], 2019. arXiv:

1906.01045.

Paul Webster and Stephen D. Bartlett. Fault-tolerant quantum gates with defects

in topological stabilizer codes. Physical Review A, 102(2):022403, 2020. doi:

10.1103/PhysRevA.102.022403. Publisher: American Physical Society.

Paul Webster, Michael Vasmer, Thomas R. Scruby, and Stephen D. Bartlett. Universal

Fault-Tolerant Quantum Computing with Stabiliser Codes. arXiv:2012.05260

[quant-ph], 2021. arXiv: 2012.05260.

Beni Yoshida. Topological color code and symmetry-protected topological phases.

Physical Review B, 91(24):245131, 2015. doi: 10.1103/PhysRevB.91.245131.

Publisher: American Physical Society.

Bei Zeng, Andrew Cross, and Isaac L. Chuang. Transversality Versus Universality

for Additive Quantum Codes. IEEE Transactions on Information Theory, 57(9):

6272–6284, 2011. ISSN 1557-9654. doi: 10.1109/TIT.2011.2161917. Conference

Name: IEEE Transactions on Information Theory.

	Introduction
	Qubits and Errors
	Error Correcting Codes
	Simple Codes
	Stabiliser Codes
	CSS Codes
	Surface Codes
	Colour Codes
	Fault Tolerance

	Fault-Tolerant Logic and Code Deformation
	Defect Encodings and Braiding
	Lattice Surgery
	Dimension Jumping

	Summary

	Fusion and Braiding of Twists in Stacked Surface Codes
	Anyons and Twists
	Fusion and Braiding
	Examples
	Twists in Topological Codes

	A Hierarchy of Models
	F Matrices
	R Matrices
	Logical Gates
	Stacked Surface Codes

	Numerical Implementation of Just-In-Time Decoding in the 3D Surface Code
	Introduction and Overview
	The 3D Surface Code
	Dimension Jumping in Surface Codes
	2D to 3D expansion
	3D to 2D collapse

	Constructing Slices
	Criteria for Valid Slices
	Proposed Layers and Slices
	Overlap of the Three Codes
	Practical Implementation

	Linear-Time CCZ
	The Delayed Matching Decoder
	Description
	Numerical Implementation

	Discussion

	Clifford Errors in 3D Topological Codes
	Clifford Errors in the Colour Code
	The 2D Colour Code
	The 3D Colour Code

	Clifford Errors in the 3D Surface Code
	Single Error Membrane in Cleanable Code Regions
	Linked Error Membranes in Cleanable Code Regions
	Error Membranes in Non-Cleanable Regions

	The 3D Colour Code Revisited
	Single Error Membranes in Cleanable Code Regions
	Linked Error Membranes in Cleanable Code Regions
	Error Membranes in Non-Cleanable Regions

	Discussion

	General Conclusions

