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Abstract

Time series data is ubiquitous in real-world applications. Such data gives rise to
distinct but closely related learning tasks (e.g. time series classification, regression
or forecasting). In contrast to the more traditional cross-sectional setting, these
tasks are often not fully formalized. As a result, different tasks can become
conflated under the same name, algorithms are often applied to the wrong task,
and performance estimates are are potentially unreliable. In practice, software
frameworks such as scikit-learn have become essential tools for data science.
However, most existing frameworks focus on cross-sectional data. To our know-
ledge, no comparable frameworks exist for temporal data. Moreover, despite
the importance of these framework, their design principles have never been fully
understood. Instead, discussions often concentrate on the usage and features,
while almost completely ignoring the design.

To address these issues, we develop in this thesis (i) a formal taxonomy of
learning tasks, (ii) novel design principles for ML toolboxes and (iii) a new unified
framework for ML with time series. The framework has been implemented in an
open-source Python package called sktime. The design principles are derived from
existing state-of-the-art toolboxes and classical software design practices, using a
domain-driven approach and a novel scientific type system. We show that these
principles cannot just explain key aspects of existing frameworks, but also guide
the development of new ones like sktime. Finally, we use sktime to reproduce and
extend the M4 competition, one of the major comparative benchmarking studies
for forecasting. Reproducing the competition allows us to verify the published

results and illustrate sktime’s effectiveness. Extending the competition enables



us to explore the potential of previously unstudied ML models. We find that, on
a subset of the M4 data, simple ML models implemented in sktime can match

the state-of-the-art performance of the hand-crafted M4 winner models.



Impact statement

Time series data is ubiquitous in scientific, commercial and industrial applications.
The analysis of such data is extremely important. It guides decision making in
applications and ultimately can improve outcomes in the real world.

The main output of the research presented in this thesis is sktime, a unified
software framework for time series analysis. sktime is available as an open-source
Python library on GitHub.! The impact of sktime has already been demonstrated.
Since its first release in 2019, sktime has become one of the most popular libraries
for time series analysis. It has grown from the initial academic collaboration into
a community-driven project with contributors from around the world. At the
time of writing, sktime has more than 90 contributors, 550 forks, 150 dependent
projects, and 4K stars on GitHub. sktime is being used in methodological and
applied research as well as commercial and industrial applications. But the impact
of this research goes beyond sktime.

The development of sktime has both required and facilitated broader research.
Developing sktime would not have been possible without prior work on ML
methodology and software design. We developed clear definitions of different
learning problems in the time series domain and novel principles for designing
ML toolboxes more generally. With this, we have laid the groundwork for future
research in time series methodology and ML software design.

sktime has also facilitated other research, primarily through its principled and
modular user interface which offers key benefits for ML research and applications.

For practitioners, sktime enables rapid prototyping and experimentation based

https://github.com/alan-turing-institute/sktime
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on pre-defined templates for common modeling and validation workflows, allowing
practitioners to easily evaluate and compare algorithms in a systematic and repro-
ducible way. In addition, sktime makes research code more readable, maintainable
and transparent, enabling practitioners to easily verify the scientific validity of
implemented workflows. For developers, sktime allows to implement new methods
as part of an existing open-source framework using available templates, thereby
ensuring that new methods are easily accessible and interoperable with exist-
ing functionality. Various research publications on algorithm development and
benchmarking have already made use of sktime. Moreover, sktime facilitates
the exchange of knowledge between developers and practitioners who work with
time series data by providing a platform for collaborative, open-source research
on time series analysis.

The research presented in this thesis has also had a direct impact on researchers,
practitioners and students through outreach activities. These included software
development sprints at The Alan Turing Institute in 2019 and the PyData Global
conference in 2020, an online tutorial at the PyData Amsterdam conference in
2020, which has been viewed over 60K times,? as well as mentorship programs
such as Major League Hacking,® Outreachy,* Google Summer of Code,” Nuffield

Future Researchers,® Open Life Science” and sktime’s own mentorship program.®

2https://www.youtube.com/watch?v=Wf2naBHRo8Q

3https://fellowship.mlh.io

‘https://outreachy.org

Shttps://summerofcode.withgoogle.com

Shttps://www.nuffieldfoundation.org/students-teachers/
nuffield-research-placements

"https://openlifesci.org

Shttps://www.sktime.org/en/latest/mentoring.html
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Chapter 1

Introduction

1.1 Time series analysis and machine learning

Time series data is ubiquitous in scientific, commercial and industrial applications.
A time series consists of an indexed sequence of values, typically from observing
some phenomenon under study repeatedly over time. Time series appear in many
applications. Examples include price movements on financial markets, sensor
readings in industrial processes (e.g. the temperature or pressure in a chemical
reactor), patients’ medical records (e.g. the blood pressure and heart rate), and

customers’ shopping histories.

An intrinsic characteristic of time series is that, typically, observations are
statistically dependent on previous observations. Intuitively, having observed
certain values in the past makes it more probable to observe certain values in
the future. Time series analysis is a set of techniques that is concerned with
the analysis of this dependence. Analyzing time series is extremely important
in real-world applications. It enables us to better understand the underlying
processes that give rise to the observed data and to make predictions about
them. Ultimately, time series analysis can guide our decision making and improve

outcomes in real-world applications.

Machine learning offers a closely related set of techniques for data analysis and
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CHAPTER 1. INTRODUCTION

prediction.? Although machine learning has traditionally focused on non-temporal,
cross-sectional data, in recent years many techniques have been developed for
making predictions for time series data. We will refer to these techniques through-
out the thesis as “machine learning”, or “ML” for short, and when applied to time
series as “ML with time series”.

ML with time series is a highly interdisciplinary field. Techniques are used
and developed in various, often overlapping, disciplines, including econometrics,
finance, medicine, engineering and the natural and social sciences, among others.
Because of this, similar problems and techniques are often presented in different
contexts. In contrast to the more traditional, cross-sectional ML setting, there
appear to be no established “consensus” definitions of common time series problems,
what we call “learning tasks”. At the same time, there are various closely related
but distinct tasks that can emerge in a temporal data context. For example,
forecasting, one of the most common tasks, refers, in general, to the problem of
making a temporal forward prediction based on past data. But, depending on
context, forecasting may take on different meanings: it may involve a single or
multiple time series, series may be related or independent, and data may or may
not be available for the future time periods we want to predict. These are subtle
but important differences for real-world applications. While forecasting alone gives
rise to ambiguous problems formulations, many more learning tasks can emerge in
a temporal data context, including time series classification, time series regression
and annotation, among others. As a consequence, it is not always obvious how
different problems relate to each other or how solutions for one problem can be
applied to another. Understanding the different forms such problems may take is
crucial for understanding how we can use ML techniques to solve them. What
are common forms of data that arise in temporal settings? What are common
kinds of learning problems? How are they related? And how can we define these
problems in a mathematically precise manner?

The first goal of this thesis is to address these questions. We do this by

'For an introduction to machine learning, see e.g. James et al. [132].
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1.2. A UNIFIED FRAMEWORK FOR TIME SERIES ANALYSIS

developing a formal description and taxonomy of time series data and key learn-
ing learning tasks. The taxonomy concentrates on predictive time series tasks,
specifically (deterministic) point-prediction tasks, including forecasting as well as
time series classification and regression, leaving non-predictive tasks (e.g. time
series clustering) and probabilistic tasks (e.g. distributional forecasting) for future
work. Note that throughout the thesis, we focus on learning associations rather

than identifying causal relationships.

1.2 A unified framework for time series analysis

A second goal of this thesis is to design a unified software framework for multiple
time series learning tasks. In practice, ML applications typically involve a number
of steps: practitioners first specify, train and select an appropriate model and then
validate and deploy it. To evaluate such workflows, practitioners write software
code, often incorporating functionality from existing software packages. These
software packages, called “toolboxes”, provide prefabricated pieces of code that
make it faster to write application code. Instead of constructing every piece of
software from scratch, practitioners can simply put together prefabricated pieces of
code. A “framework”, on the other hand, is a special kind of toolbox. Frameworks
not only offer reusable functionality, but also provide overall structure. They
capture common software design decisions within a given application domain and
distill them into templates that practitioners only need to copy and fill in. This
reduces the number of decisions practitioners must take and allows them to focus
on application specifics. Not only can practitioners write software faster as a
result, but applications will have a similar structure. They will be more consistent,
more reusable and easier to maintain.

In recent years, frameworks have become essential infrastructure of modern
data science. They largely determine what is possible in practice. They have
become the principal tool for practitioners and central components in scientific,

commercial and industrial applications. Popular examples include scikit-learn
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CHAPTER 1. INTRODUCTION

[205] in Python, Weka [101] in Java, MLJ [31] in Julia, and m1r3 [151] or caret
[148| in R. However, many existing frameworks, including all of the above, focus
on cross-sectional data. Cross-sectional data consists of observations on multiple
independent instances from different kinds of measurements at a single point
in time (e.g. the medical diagnosis for different patients at hospital admission).
The fundamental assumption of cross-sectional data, that observations represent
independent samples, is typically violated by time series data. This is why cross-
sectional frameworks tend to consider time series out of scope (see e.g. Buitinck
et al. [46]). Note that while one can still apply cross-sectional techniques to
time series, this usually adds considerable complications to standard data science
workflows and requires extra care to avoid errors. Despite the ubiquity of time
series data, to our knowledge, no framework comparable to the cross-sectional
ones exists for ML with time series. The second goal of this thesis is to develop

such a framework.

As we have seen, time series data can give rise to many learning tasks, including
forecasting, classification and annotation. These tasks describe distinct learning
problems, but they are also closely related. This relation can be understood in
terms of “reduction” [24]. Reduction is a technique for leveraging an algorithm for
one task to solve another task. As we will see, reduction is central to time series
analysis. Many reduction approaches are possible in the time series domain and

many existing state-of-the-art solutions make use of reduction.

Many popular reduction approaches reframe a time series task into a related
cross-sectional task, so that one can use any of the more established cross-sectional
algorithms to solve the original time series task. For example, a forecasting task
can be solved via cross-sectional regression with the help of a prior sliding-window
transformation of the data [34]. Similarly, a time series classification task can be
reframed into a cross-sectional classification task by first extracting features from

cach time series [87].

However, despite the importance of reduction, there is no unified framework for

multiple learning tasks which would enable practitioners to easily apply algorithms
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1.2. A UNIFIED FRAMEWORK FOR TIME SERIES ANALYSIS

for one task to another. Much to the contrary, the current software ecosystem for
time series analysis is relatively fragmented. While there are various specialized
toolboxes that provide rich interfaces to particular model families or learning tasks,
most toolboxes are incompatible with each other and lack integration with more
foundational cross-sectional frameworks. For practitioners, this makes it hard
to combine functionality from different toolboxes and to fully leverage reduction
relations. For developers, this makes it hard to build and integrate new methods
without having to re-implement substantial parts of functionality that already
exists elsewhere. Overall, toolbox capabilities for time series analysis therefore
remain limited. To address these issues, we propose to develop a unified framework,
supporting multiple learning tasks and reduction approaches between them.

The proposed framework has been implemented in sktime, a free and open-
source software package.? To the best of our knowledge, sktime is the first unified
framework for ML with time series. The aim of sktime is to build a well-established
framework that makes the current ecosystem more usable and interoperable as a
whole. While our target audience is capable of basic programming, the ambition
is to provide a practical and consistent ML framework in Python for the purpose
of specifying, training and validating time series algorithms within a programming
environment that is accessible to non-ML experts and reusable in various scientific
applications. The focus is, therefore, on providing a modular and principled
object-oriented application programming interface (API). We make use of the
enhanced, interactive Python interpreter [206], specifically designed for scientific
computing, rather than expending efforts into creating a command-line interface,
let alone a graphical user interface (GUI). We concentrate on medium-sized data
that fits into the memory of a single machine. For larger data sets, we intend to
integrate existing tools for more scalable, distributed computing across multiple
machines (e.g. Dask [219)]).

The current version of sktime focuses on common predictive tasks such as

time series classification, regression and forecasting. The design, however, is

2sktime is hosted on GitHub at https://github.com/alan-turing-institute/sktime.
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easily extensible to other tasks. In future work, we want to add support for

non-predictive tasks, such as time series clustering and annotation.

1.3 Software design for ML toolboxes

It will be helpful to distinguish, from the above, two fundamental problems in
ML applications and research. We call them the “practitioner’s problem” and
the “developer’s problem”. The practitioner’s problem is to solve a particular
ML problem at hand. For example, forecasting the temperature of a chemical
process or predicting the type of disease from a patient’s heart rate. To solve
these problems, practitioners write application code. The developer’s problem,
on the other hand, is to develop toolboxes that help practitioners solve their
respective problem more effectively. Much of existing ML research has focused
on algorithm development and finding better solutions to specific practitioner’s
problems. Much of this thesis, by contrast, is concerned with finding better
solutions to the developer’s problem.

The effectiveness and applicability of a toolbox crucially depends on its design.
Toolbox design — much like any software design — is hard. One has to identify
key objects in practitioners’ workflows, find abstractions for them at the right
level of granularity, translate them into classes and functions with well-defined
interfaces, specify clear hierarchies and relations among them, and implement
them in a reusable software package. For example, the key objects in an ML
context are learning algorithms and data containers. Toolbox design is then about
finding abstractions for these objects, so that practitioners can reuse algorithms
on different data sets without having to change much code.

While the importance of the developer’s problem has been recognized (see e.g.
Sonnenburg et al. [238]), there is still only little research to date that addresses
its challenges. In particular, few papers exist that study the principles of toolbox
design. Instead, discussion often concentrates on communicating the “what” of

designs (e.g. software features or usage) while almost completely ignoring the
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1.3. SOFTWARE DESIGN FOR ML TOOLBOXES

“why”. For example, toolbox developers often subscribe to a set of design principles
when presenting their work, however these principles typically remain too vague
to explain concrete design decisions (see e.g. Buitinck et al. [46]). While the
actual software tends to contain a wealth of design ideas, we are not aware of
any literature in which generalizable design principles for ML frameworks are
described. To address these issues, a third goal of this thesis is therefore to derive

key software design principles for ML toolboxes.

We believe that analyzing the “why” is crucial for generalizing successful designs
from one domain to new ones (e.g. from the domain of cross-sectional data to
time series). Our principles, as we will see, cannot just explain key aspects of
existing toolboxes, but also guide the development of new frameworks — including
sktime, our proposed framework for ML with time series. Ultimately, we hope
that our research will inspire other research on the underlying design principles of

ML toolboxes.

Our approach to software design largely falls under “domain-driven design”
[78]. The central idea of domain-driven design is that the structure and language
of software should closely correspond to key concepts in the domain of interest.
Every software relates to some activity or interest of its intended users. That
subject area to which the user applies the software is the domain. The first step
in toolbox design is therefore to develop a conceptual model of our domain of
interest, namely ML theory or methodology and specifically for ML with time

series.

The second step is to map the conceptual model onto software. The corpus of
classical software design offers a natural source of relevant ideas, useful formalism
and best practices for translating concepts into software. While much is directly
transferable from existing software design practice, there is a substantial aspect
in which ML departs from classical domains: algorithms, interfaces and workflows
are closely intertwined with mathematical and statistical theory — to an extent
that mathematical objects are not just at the methodological core, but also a key

element in their representation, workflow specification and user interaction. We
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CHAPTER 1. INTRODUCTION

believe that progress in toolbox design necessitates progress in ML theory, both in
terms of conceptual analysis and mathematical formalism. Yet, ML theory remains
largely absent from scientific discussions on software design. This situation poses
unique challenges: How can one identify, describe and motivate design solutions
for ML toolboxes? How can we find incisive abstractions in the domain of ML?
How can we formalize these abstractions in a way that is linked to the underlying
mathematical concepts and at the same time implementable in software? What
generalizable design principles can be derived from existing toolboxes to guide
the design of new ones? While these questions address ML toolbox design more
generally, there are also questions specific to the time series domain that need to
be answered: What are the different types of algorithms in the domain of ML
with time series? What should the interface for these algorithms look like? And

how do different algorithms interact and relate to each other?

We attempt to address these questions by a combination of conceptual modeling,
formal mathematical statistics, novel design principles and adapted state-of-art
design patterns. We will start by reviewing key concepts in software design,
with a focus on object-oriented programming, the predominant paradigm for ML
software. We then propose a simple but powerful idea called “scientific types” — a
new type system which captures the data scientific purpose of key ML concepts.
In brief, a scientific type is a structured data type together with key mathematical
or statistical properties that all elements of that type must satisfy. Scientific
types will enable us to describe key concepts in a way that is both mathematically
precise and easily implementable in software. For example, we might say that a
“pipeline” consists of a “feature extractor” and a “supervised learner”, put together
in a certain form. We believe that the types in question can be made precise
so that they can be leveraged for design considerations, rather than just being
vague metaphors without tangible content. With scientific types, we are able to
derive a novel set of ML-specific software design principles. As we will see, these
principles cannot only explain central aspects of existing toolboxes, but also guide

the development of new ones like sktime.
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1.4. COMPARATIVE BENCHMARKING OF ALGORITHMS

1.4 Comparative benchmarking of algorithms

Having developed a unified framework for ML with time series, the fourth and last
goal of this thesis is to illustrate its effectiveness by reproducing and extending
one of the major comparative benchmarking studies for forecasting, called the M4
competition [182].

Comparative benchmarking studies are essential for ML research, as they allow
us to systematically evaluate new algorithms and compare them against existing
baselines and state-of-the-art solutions. The reproducibility of these studies is
therefore crucial for scientific progress [40, 128, 178]. Toolboxes, like sktime,
with a principled and modular interface, enable us to easily replicate results from
existing algorithms and experiment with new ones.

In particular, reproducing the M4 competition will allow us to validate the
published results, test our framework against reference implementations, and
illustrate its effectiveness and applicability. Extending the M4 competition will
allow us to implement and evaluate previously unstudied algorithms and investigate
whether simple, reduction-based ML algorithms can match the state-of-the-art
performance of the custom-built algorithms that won the M4 competition. To this
end, we use sktime to re-implement key algorithms included in the competition
and add reduction-based models that are easily implementable in sktime. To our
knowledge, this is the first complete reproduction of the M4 competition that
is independent of the published code. As we will see, we are able to not just
re-implement the competition within the single framework provided by sktime,
but also to build simple ML models that perform on par with the winning models

on important subsets of the M4 data set.

1.5 Research questions

In summary, the research questions addressed in this thesis can be grouped into

three sets of questions, according to their conceptual, methodological and applied
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nature.

The first set of questions is of conceptual nature: What are the different kinds
of data forms and learning problems that arise in a time series data context? How
can we formalize these problems in a mathematically precise way? How are they
related? These questions are addressed in part I of this thesis by developing a

formal taxonomy of learning tasks.

The second set of questions is of methodological nature: How can we identify,
describe and motivate design solutions for ML toolboxes? How can we find incisive
abstractions in the domain of ML? How can we formalize these abstractions in
a way that is linked to the underlying mathematical concepts and at the same
time easily implementable in software? What generalizable and reusable design
principles and patterns can be derived from existing toolboxes to guide the design
of new ones? These questions are addressed in part II. Answers to these questions
largely require novel research on ML toolbox design. We hope to provide some
answers in this thesis by deriving key design principles from existing state-of-
the-art toolboxes and best practices from classical software design. While these
questions concern toolbox design more generally, this thesis also addresses the
specific design of a unified framework for ML with time series: What are the
different types of algorithms in this domain? What should the interface for these
algorithm types look like? How do different algorithm types interact and relate to
each other? In addition, we discuss questions relating to the rationale for creating
a new unified framework for ML with time series: What related software does
already exist? What are the limitations of the existing software ecosystem? What
are the reasons for developing a unified framework for ML with time series? While
several toolboxes exist for ML with time series, to our knowledge, we are the first
to provide a unified framework supported by our taxonomy of learning tasks and
design principles.

The last set of questions is of applied nature: How can we use the unified
framework to specify new ML algorithms? Given a unified framework for ML

with time series, can we find simple ML algorithms that match the performance of
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state-of-the-art algorithms for forecasting? These questions are addressed in part
I1I by reproducing and extending the M4 competition, one of the key comparative

benchmarking studies in forecasting research.

1.6 Contributions

The research contributions of this thesis can be summarized as follows:

1. Formalization of time series learning problems as learning tasks and devel-
opment of a formal tazonomy for time series learning tasks, with a focus on
common (deterministic) point-predictive tasks such as time series classifica-
tion, regression and forecasting, as well as the reduction relations between

them.

2. Development, formalization and motivation of a novel set of general, reusable
design principles for ML toolbozes based on the idea of a scientific type system
that links the software implementation with the underlying mathematical
and statistical concepts, inspired by existing state-of-the-art toolboxes and

best practices from classical software design.

3. Review of existing time series analysis software and a discussion of the
limitations of current toolbox capabilities, with a focus on the open-source

ecosystem in Python.

4. Design and implementation of the first unified framework for ML with time
series, with the aim to provide a principled and modular object-oriented
application programming interface (API) in Python for specifying, training
and validating time series algorithms for medium-sized data. The unified

framework has been implemented in an open-source project called sktime.?

5. Reproduction and extension of the M} forecasting competition, one of the

major comparative benchmarking studies for predictive performance of

3https://github.com/alan-turing-institute/sktime
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forecasting algorithms, with a focus on using sktime to evaluate and compare
simple reduction-based ML algorithms. To our knowledge, this is the first
complete reproduction of the M4 competition within a single framework

independent of the published code.

1.7 Structure

This thesis has a three-part structure, with a conceptual, a methodological and
an applied part.

In the first part, we develop the conceptual model for the domain of ML
with time series, including the taxonomy of time series learning task. We start
in Chapter 2 by reviewing key ML concepts and the traditional cross-sectional
supervised learning setting which will serve us as a reference for comparison
throughout the thesis. The formal taxonomy of time series learning tasks is then
developed in Chapter 3.

The second part is methodological. We first derive general software design
principles for ML toolboxes, and then use them to develop the specific design of
the unified framework for ML with time series implemented in sktime. We begin
in Chapter 4 by introducing fundamental concepts from software design in the
context of ML toolbox design. Chapter 5 introduces the idea of scientific types
and derives generalizable design principles. Chapter 7 reviews the open-source
Python time series ecosystem and discusses the current limitations and rationale
for a unified framework for time series analysis. Chapter 8 motivates and describes
the design and implementation of sktime, combining the conceptual model from
part I and software design principles from part II.

The third and final part is applied. In Chapter 9, we use sktime to evaluate and
compare simple ML algorithms for forecasting by reproducing and extending the
M4 forecasting competition, validating published results, testing the correctness of
the implemented functionality against reference implementations and illustrating

sktime’s effectiveness and applicability.
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Chapter 10 concludes by discussing limitations of this thesis and directions for

future research.
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A Taxonomy of Learning Tasks
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Chapter 2

Background: Machine Learning

2.1 Introduction

The questions addressed in this thesis are at the intersection of time series analysis,
ML and software design. This part of the thesis focuses on time series analysis
and ML. The next part focuses on software design.

We begin by developing a conceptual model of the time series domain. In
line with domain-driven design [78], the conceptual model is a crucial first step
for developing the proposed unified framework for ML with time series. In this
chapter, we review key concepts from ML and time series analysis. In the next
chapter, we introduce the taxonomy of learning tasks.

Throughout this thesis, we will refer to both “machine learning”, or “ML” for
short, and “time series analysis”, or jointly “ML with time series” as a set of
techniques, or a methodology, that is being used and developed in various fields.
ML is highly interdisciplinary. Similarly, time series analysis draws upon ideas
from multiple related and often overlapping fields, including statistics |36, 41, 59,
93, 105, 132, 161], artificial intelligence [222], data science |75|, data mining |77,
79, 83, 103], econometrics [16, 97, 175, 208, 267, finance [51, 66| as well as signal
processing and engineering [239|, among others.

While ML techniques for time series are being used and developed in all of

these fields, the way they are typically presented differs from field to field. As a
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result, it is not always obvious how techniques from different fields relate to each
other or could be applied to applications in other fields. The aim of the taxonomy
of learning tasks developed in the next chapter is to clearly describe these tasks
and clarify their relationship.

The rest of this chapter is organized as follows: We start in Section 2.2 by
giving a motivating example for ML with time series. Based on the example,
we will describe the concepts a learning task in Section 2.3. In Section 2.5, we
illustrate how learning tasks help us formalize learning problems by reviewing the
the traditional supervised learning tasks, an example that should be familiar to
most readers. This example will serve us as a reference for comparison when we

introduce the taxonomy of time series tasks in the next chapter.

2.2 A motivating example: Chemical process en-

gineering

To motivate our study of ML with time series, we begin with an example inspired
by Loning et al. [168]. The purpose of the example is to provide an intuitive
introduction to the topic. We will later formalize some of the key concepts.

Suppose that we are data scientists hired by a pharmaceutical company. Our
job is to provide advice on how to improve a chemical production process to
increase the quality of the drugs produced. The production process is carried
out in a chemical reactor, i.e. an enclosed vessel in which chemical reactions take
place in a controlled environment. This allows us to both control the process by
adjusting certain parameters and to collect data about the process.

Suppose we run the same kind of process multiple times. For each run, we
collect repeated measurements, say at one-minute intervals, of two key variables,
say temperature and pressure inside the reactor. Suppose the total duration of
the process is one hour, so we observe a total of T'= 60 time points. Combining

data from all runs gives us what we call “multivariate panel data”, consisting of
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observations on multiple independent runs for different kinds of measurements
at multiple time points. At the end of each process, we additionally measure the
quality of the drug produced. Suppose that product quality is simply recorded as
a binary variable indicating “high” or “low” quality.

In order to improve drug quality, we need to simplify our problem into more

tractable tasks which can be solved by ML algorithms.!

Time-series classification

For example, one of these tasks may be to make an accurate prediction of the
drug quality from a partially observed process, say a process observed only up
to 30 minutes. In its general form, this task is called “time series classification”.
Predictions about the process outcome from a partially observed process may
be crucial in practice since they can guide our decision making and save costs.
For example, it can signal adjustments to process control parameters or early
termination of a process that is predicted to yield a low-quality drugs.

In this setting, the time series data for temperature and pressure are input
variables, while drug quality is the output variable. Denote the input variables by
7, with a subscript to distinguish the variable and time point. So Z;; might be
temperature at some time point t < T and Zs; might be pressure. The output
variable is usually denoted by Y. We assume that there is some relationship

between Y and Z which can be written in the general form:
Y ~ f(Z2). (2.1)

Here f is some fixed but unknown function of Z. In this formulation, f represents
the systematic information that Z provides about Y. The task is then to find an

estimate of the unknown function f so that we can predict Y as Y = f (Z), where

I'Note that an adequate answer to the question of how to improve the chemical process
control requires causal modeling which is beyond the scope of this thesis. Throughout the thesis,
we focus on learning associations rather than causal relationships. For an introduction to causal
inference, see e.g. Pearl, Glymour and Jewell [204].
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f denotes the estimated function and Y the predicted outcome.

To estimate f , we typically use a learning algorithm. In this setting, the
learning algorithm takes in some training data returns a fitted prediction function
f. In our case, the training data consists of a subset of the runs. For each run,
we have a pair of input-output data. Various time series classification algorithms
have been proposed in the ML literature (e.g. Time Series Forest [71] or ROCKET
[68]). For an overview, see Bagnall et al. [14]. We will later return to time series

classification.

Forecasting

Another task that may help us improve drug quality is to make accurate temporal
forward predictions of one of the process variables itself based on a partially
observed process. In its general form, this task is called “forecasting”. Being able
to make forecasts is important in practice, as it enables us to anticipate future
changes to process and can indicate process adjustments.

In this setting, the time series variable that we want to predict, say temperature,
is called the “target” variable and denoted by Z. We assume there is some

relationship over time which can be written in the general form:
Zy =~ f(t). (2.2)

Here, f is some fixed but unknown function of time ¢ that we want to estimate so
that we can predict Z, = f(t) at some future time point ¢.

As before, to estimate f we use a learning algorithm that takes in some training
data and returns a fitted prediction function f . In this setting, training data
typically consists of past data of a single run observed up to the point in time at
which we want to make a prediction. Various algorithms have been put forward
in the literature (e.g. exponential smoothing [113, 114, 263] or ARIMA [39]). For
an overview, see Makridakis, Spiliotis and Assimakopoulos [182].

So far we have given an introduction to time series classification and forecasting.
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We will define these two tasks more formally in Chapter 3. Time series classification
and forecasting are two examples of time series learning tasks. Many more other
tasks may be encountered in practice. We give a stylized overview of key time
series tasks in Table 3.1.

We make a few additional remarks below to further motivate our study of ML

with time series and limit the scope of this thesis.

Why estimate f? — predictive and explanatory modeling

There are two fundamental reasons why practitioners may wish to estimate f

[229):

e Predictive modeling. In many situations, a set of inputs is readily available,
but the output cannot be easily observed. So practitioners find an estimate
f to generate predictions from the input. In this setting, f is often treated as
a “black box” in the sense that we are not typically concerned with the exact
form of f provided that it yields reliable predictions. Predicting the drug
quality from input series or forecasting temperature from past observations

are two examples of modeling for prediction.

e Faxplanatory modeling. In other situations, practitioners are interested in
explaining the relationship between data points. In this setting, one wishes
to estimate f but the goal is not necessarily to make predictions, but rather
to understand the relationship between the input and output variables. Now
f cannot be treated as a black box because practitioners want to know its
exact form. Trying to understand the relationship between temperature and
drug quality in terms of how much a given change in temperature at some
point during the process is associated with a change in drug quality is an

example of modeling for explanation.

In this thesis, we are primarily concerned with predictive modeling, leaving

explanatory modeling (e.g. time series clustering [2|) for future work.
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Deterministic and probabilistic predictions

In many situation, it is enough to make a point prediction giving a single value
for the data point of interest. In others situation, one wishes to quantify the
uncertainty associated with a point prediction or make predictions for an outcome
which is inherently uncertain. In these situations, it is not enough to make point
predictions. Instead, practitioners need to make probabilistic predictions giving a
probability distribution over the values that the output variable could take. In
this setting, a point prediction can be understood as an estimate of a central value
of the predicted distribution (e.g. the mean). Common probabilistic time series

tasks include:

e Survival analysis, modeling the risk of a single event under censoring [60,

139, 146],
e Point process analysis, modeling the risk of multiple recurring events [64],

e Probabilistic variants of the predictive tasks discussed above (e.g. distribu-

tional forecasting or probabilistic time series classification).

In this thesis, we focus on deterministic, point-predictive tasks, leaving probab-
ilistic modeling for future work. But note that much of the conceptualization and
design ideas presented in this thesis extend to non-predictive and probabilistic
modeling. We will now start to further define the concepts of a learning algorithm

and a learning task.

2.3 Learning tasks — no solution without a prob-

lem

A learning task is a formal, mathematical definition of the learning problem one
wants to solve. Common examples of learning tasks include cross-sectional classific-

ation and regression, which we will at the end of this chapter. Common examples
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of time series learning tasks include time series classification and forecasting, as
described in the chemical process engineering example above.

We argue that to fully define a learning tasks, one has to specify the following
three parts:

e Data specification. This includes a formal description of the assumed
data-generative process that gives rise to the observed data, including the
statistical dependency structure between data points, as well as descrip-
tion of the relational structure (in database parlance) of the data in some
(mathematical) data objects, for example a two-dimensional matrix with

descriptions for the meaning of rows and columns.

e Learning process specification. The learning process specification an-
swers the question: at what point does the learning algorithm take in what
data, and what does it return? It includes a combination of an algorithmic
interface description specifying the input and output objects of the learning
algorithm, and a statistical model specifying the relationship and dependency

between data and fittable model parameters.

e Success specification. This includes evaluation criteria for the learning
algorithm specifying quantitatively what it means for such an algorithm
to be a good solution. This needs to be operationalizable. Whether the
algorithm has been successful should be clearly defined and empirically
verifiable. In a predictive setting, this involves a loss function which, by
comparing predicted values against actually observed values, quantifies the
predictive accuracy of the algorithm. Other evaluation criteria are usually
taken into account too, such as interpretability [95], fairness [187, 191] or

computational efficiency of the algorithm.

The three parts of the learning task are crucial. For a clear problem specification
we need to know: given what, what are we doing, and how do we know we have

done it well. We will use this three-part specification as a template, both for
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the traditional supervised learning task below and the taxonomy of time series
learning tasks in the next chapter.

We make a few additional remarks:

e A learning task describes a type of problem. It describes the general structure
and assumptions of a learning problem, without reference to specifics about
data sets, algorithms or loss functions. The problems that practitioners
might work on in practice can be seen as a particular instance of a given
type of task. A instance of task will contain the necessary information about
the problem at hand in order to fully specify it. For example, in supervised
learning, the task would contain at least a reference to the target variable,
so that one knows which variables are features and which one is the target
to predict. In forecasting, it would contain at least a reference to the target
variable and forecasting horizon, that is, the time points for which one wants

to generate predictions.

e To find a solution, a clear task specification is crucial. Without a clear
problem description, it is not even clear what solutions could look like. On
the other hand, once we arrive at a clear task specification, the type of
solution is also defined. As we will see, a task not only describes what we
want to solve, but also the type of learning algorithm required to solve it. A
task can be understood to be the counterpart of a learning algorithm. The
algorithm reflects the type of task that it is meant to solve. More specifically,
the algorithm can be understood as the counterpart to the task’s learning
process specification, which defines the steps that the algorithm is required
to perform in order to solve the task. We will make use of this insight later

when discussing ML toolbox design in Chapter 5.

e The concept of a learning task is not uncommon in ML methodology, but

typically implicit.? It is rarely made explicit as a concept on its own, possibly

2For example, see the taxonomy of different cross-sectional predictive tasks put forward by
Dietterich [72].
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since it is not a necessary concept in typical methodological arguments where
it appears as part of the framing. Instead, it is often implicit in the choice of
algorithm type, scope of the software, or application domain. For example,
when we choose a regressor from scikit-learn [205], the implied task is
that of cross-sectional supervised regression. As a partial inspiration of our
conceptual model, the mlr toolbox ecosystem |28, 151] and openML API
[252] has software formalism for (concrete) learning tasks, which is similar

to our (generic) tasks on the conceptual level.

Correctly identifying the learning task from a real-world problem is not
always straightforward, especially in a time series settings where several
closely related but distinct tasks are possible. Misdiagnosing the learning
task, if unnoticed, can often make developed ML models inapplicable to the
actual real-world problem, or worse, lead to over-optimistic performance

estimates and bad outcomes when the model is deployed.

Before we look at the example tasks of cross-sectional supervised learning, we

will introduce some terminology.

2.4 Terminology: Instances, variables and time

points

Here and throughout the thesis, we will use the following terminology to describe

different forms of data:

e An instance, sometimes also called “example” or “sample”, refers to an
experimental unit, that is, a member of the set of entities being studied
about which an ML practitioner wishes to generalize (e.g. patients or chemical
process runs) [61, 193]. The crucial statistical assumption is that instances
represent identically distributed and independent (i.i.d.) realizations of the

same assumed generative process. Throughout the thesis, I will use “instance”
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rather than “sample” to disambiguate the term from the individual “samples”,

or observations, of a time series.

e A wvariable refers to a kind of measurement. Variables may be cross-sectional
(sometimes also called “static” or “offline”), representing a time-invariant
measurement (e.g. a patient’s place of birth or the drug quality measured at
the end of a chemical process) or time series (sometimes called “dynamic” or
“online”), representing a time-varying measurement (e.g. a patient’s blood
pressure over time or repeated measurements of the temperature in a chemical

process).

e A time point refers to a point in time at which we make an observation.
A time point may represent an exact point in time (a timestamp), a time
period (e.g. minutes, hours or days), or simply an index indicating the
position of an observation in the sequence of values. We discuss time series

data in more detail in Chapter 3.

2.5 Example: Cross-sectional supervised learning

In this section, we review the traditional cross-sectional classification and regression
tasks, jointly known as “supervised learning”. These tasks should be familiar to
most readers and will serve us as a reference for comparison when developing the
taxonomy of time series learning tasks in the next chapter.

In supervised learning, we are interested in predicting the value of a target
variable based on patterns between feature data and the target variable. Our
exposition below follows the “consensus” formulation as, for example, found in

James et al. [132].3

3Similar formulations can be found in Hastie, Tibshirani and Friedman [105] and Shalev-
Shwartz and Ben-David [228] among others. For a more fundamental approach to statistical
learning theory, see e.g. Vapnik [253-255].
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Data specification

We assume cross-sectional data. Cross-sectional data consists of observations on
multiple independent instances for different variables at a single time point —i.e. a
cross-section in time. Formally, we can define the assumed data generative process
as follows. Let

YOy (XM yM) (XY (2.3)
be random variables which are jointly i.i.d., with X denoting feature variables, Y
the target variable, and N € N* the number of instances.* Note that X and YV
are not assumed to be be independent of each other. Otherwise labels would be
independent of, and hence completely unrelated to features.

The features X take values in X', where usually X C R¥ with the number
of features K € NT. Features, sometimes also called “attributes”, “independent
variables” or “predictors”, represent the kind of measurements from which we want
to predict the target variable. Note that all features are assumed to be static, or
cross-sectional variables.

The target variable Y takes values in ). The target, also called “label” or
“dependent variable”, represents the outcome to be predicted. If ) = R, we call
the learning task “cross-sectional regression”. If ) = C where C is a finite set of
given class values, we call the learning task “cross-sectional classification”. For
example, for binary classification, one has C = {0, 1}.

In practice, we observe realizations of these random variables as feature-target
pairs (2, y®), for instances i = 1... N. In terms of the relational data structure,
we usually collect these realizations in a N x K dimensional matrix for the feature

data, with rows representing instances and columns representing variables, and a

4As is standard, for random variable X : Q — X, we write “X takes values in X”. This is
done without specifying the probability space 2 which will implicitly be assumed to exist and
to be fixed, as usual to the finest such spaces of all appearing variables. Measurability of X is
implicitly assumed.
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N x 1 dimensional vector for the target values, given by:

:cgl) :cgl) e x%) y
(2) (2) (2) (2)
X — 1 2 K y = Y
N N N
_xg ) xé b x% )_ _y(N)_

where the superscript denotes the instance and the subscript the feature variable.
Because of this representation, cross-sectional data is sometimes called “tabular
data”. Note that the term “tabular data” refers to the shape of the data, i.e. a
table, whereas “cross-sectional data” refers to the generative setting. Since other
data can also be represented in a tabular format without necessarily being of
cross-sectional nature, we prefer “cross-sectional data” throughout this thesis.
Also note that even though this setting assumes cross-sectional data with no
repeated measurements over time, it can still be used to solve time series problem.

These approaches will be discussed under the idea of “reduction” in Section 3.4.

Learning process specification

The assumed relationship we want to estimate is Y ~ f(X) where f is an
unknown function of X. So, a good learning algorithm should yield a prediction
functional f that on average provides a good approximation to the putative
relationship Y =~ f(X). The estimation process, also called “fitting”, “learning”
or “training”, tries to find the best possible approximation to the data used for
training. However, the algorithm should not only perform well on the training
data, but more importantly, should generalize well to new data.

To measure the generalization performance on new data, the data is usually

split into two disjoint subsets: a set of training instances used for training the

algorithm and a set of test instances reserved for evaluating the performance on

unseen data.” Denote the training data as D = {(X®) y®)) (XM y()y}

5Some references call the test set as the “hold-out set” because these data are “held out” of
the data used for training. We will use “training set” and “test set” throughout this thesis.
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where M € NT, M < N is the number of instances in the training set.
For a given training set, the learning process is to use algorithm A to fit a

prediction functional f = A(D), where A is defined as follows:
A (X x M =[x =) (2.4)

In words, algorithm A is a function that takes in data of type (X x V)M and
returns a function that maps input of type X to outputs of type ). That is, the
output is the prediction functional f : X — Y. The direction of information
transfer goes from the features to the target variable.

Trainable algorithms such as A are sometimes also called “learning machines”,
“estimators”, “strategies” or “predictors”, among others. For classification, we call A
a “‘cross-sectional classifier”. For regression, we call A a “cross-sectional regressor”.
This task is referred to as “supervised learning” to indicate that for every training
instance 2 the learning algorithm is provided with a teaching signal y®.

It is important to distinguish prediction functionals such as f from learning
algorithms such as A. Formally, f = A(D) is not a function, but a function-valued
random variable which mediates the dependence of f on the data used to train
it. While f may depend on D, it is assumed to be independent of anything else.
Also note that algorithm A may also involve some randomness. For simplicity, we

assume a deterministic dependence of f on D.

Success specification

To estimate the generalization performance, it is important to evaluate an al-
gorithm on new data. In the case of cross-sectional data, new data refers to i.i.d.
instances that have not been used during training. Having trained the algorithm
on the training set, we can use the test set, denoted by (X*,Y™), for evaluation.

To quantify performance, we define a loss function L : ) x Y — R comparing
the predicted value with the true value from the test set. For example, for

7k

regression, we can use the squared loss Ly, (9%, y*) = (¢* — y*)?. For classification,
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we can use the misclassification loss L.(y*,y*) = Lz, where 1 denotes the
indicator function equal to one if §* # y* and zero otherwise.

For a given training set D, the learning task can then be understood as the
optimization problem of finding the prediction functional which minimizes the

generalization error defined as:

~

GE(f|D) = E[L(f(X"),Y")|D], (2:5)

where expectations are taken over (X* Y*), and f is fixed for the given training
set D.

When the goal is evaluate different learning algorithms, it is important to
make comparisons on a more general basis, accounting for the dependence of f on
the training data D. In this case, we are interested in minimizing the expected

generalization error given by:
EGE(A,D,X*,Y*) =E[GE]| = E[L(A(D)(X™),Y™)]. (2.6)

where expectations are now taken over everything that involves randomness,
including the training set to account for the dependence of f on D.

Note that GE gives a conditional generalization error, since it depends on
the training data used to train f. As such, GE is a success criterion for a
given prediction functional f . EGE, on the other hand, gives an unconditional
generalization error and is a success criterion for the learning algorithm A.

Both GE and EGE are defined in terms of random variables. They are theor-
etical quantities. In practice, they have to be estimated. Additional algorithms are
needed for their estimation and comparison. These algorithm may take different
forms and may be sensible to varying degrees according to statistical argument.

A final remark: The supervised learning tasks highlight that we can define
tasks at different levels of generalization. A task may be defined as a sub-task of
a more general task. For example, we can define classification and regression as

sub-tasks of the more general supervised learning tasks, where the domain of the
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target variable is further restricted in otherwise identical task descriptions, i.e. for

classification we have ) = C, for regression we have ) = R.

2.6 Concluding remarks

In this chapter, we gave an overview of the domain of ML with time series, with an
example from chemical process engineering and focusing on point prediction tasks.
We introduced some terminology to describe different forms of data which we
will use throughout the thesis. We also introduced the concept of a learning task,
which we will use as a template when we develop the taxonomy of time series tasks
throughout the next chapter. To illustrate the concept of the learning task, we
reviewed the traditional supervised learning tasks of cross-sectional classification
and regression. These tasks will serves us as a familiar reference for comparison

when we formalize time series tasks in the next chapter.

47






Chapter 3

Machine Learning with Time Series

This chapter is partly based on:

e Markus Loning et al. ‘sktime: A Unified Interface for Machine Learning with
Time Series’. In: Workshop on Systems for ML at NeurIPS 2019 (2019)

3.1 Introduction

In the previous chapter, we have introduced the concept of a learning task and
discussed cross-sectional supervised learning as an example. In this chapter, we
will develop a taxonomy of time series learning tasks. The taxonomy is the first
research contribution of this thesis as described in Section 1.6. It addresses the
first set of research questions laid out in Section 1.5. The taxonomy will formalize
key time series learning tasks. As such, it will form a key part of the conceptual
model of the time series domain which underlies the unified software framework
implemented in sktime. As we will see in Chapter 8, the structure and language
of sktime closely corresponds to the taxonomy of tasks.

To recall, a time series consists of an indexed sequence of values measured
repeatedly over time. Time series data are ubiquitous in real-world applications.
Examples include price movements on financial markets, sensor readings in indus-
trial processes (e.g. the temperature or pressure in a chemical reactor), patients’

medical records (e.g. the blood pressure and heart rate), and customers’ shopping
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histories. An inherent characteristic of time series data is that observations are
statistically dependent on previous observations. Time series analysis, or ML with
time series, is a set of techniques that is concerned with the analysis of this de-
pendence. Analyzing time series is extremely important in real-world applications.
It enables us to better understand the underlying process that give rise to the data
we observe and make predictions about them. Ultimately, it guides our decision
making and can improve outcomes. As discussed in Chapter 2, this thesis will

focus on predictive learning tasks, leaving non-predictive tasks for future work.

As we have seen in the previous chapter, there are well-established “consensus”
formulations for the learning task that arise in the more traditional cross-sectional
setting. Many time series tasks, by contrast, are rarely fully formalized in the
literature. For example, task descriptions tend to be incomplete. Often they only
include the data and success specification, leaving the learning process unspecified
(see e.g. [182]). As a result, learning problems become ambiguous. What should
be distinct tasks become conflated under the same name. The lack of clear task
specifications may potentially lead to unfair comparisons between algorithms,
pairing of the wrong algorithm with the problem at hand, or over-optimistic

performance estimates.

For example, consider the M4 forecasting competition [182]. The M4 com-
petition is one of the major benchmarking studies for forecasting. It provides a
systematic, reproducible and comprehensive comparison of forecasting algorithms.
The competition guide provides a clear descriptions of the data and success criteria.
However, it lacks a clear specification of the learning process. When looking at
the accompanying code, we can see that some models, especially the “statistical”
ones, are trained on a single series. The majority of the “ML” models, on the other
hand, are trained on multiple series and hence can exploit consistent patters across
series (e.g. the winner [234] and runner-up [192]). Comparing models trained on a
single series with models trained on multiple series, without making the distinction
clear, is an unfair and potentially misleading comparison of models. Technically,

the learning task appears to be panel forecasting, sometimes also referred to

50



3.1. INTRODUCTION

as “cross-learning” [227|, rather than univariate forecasting. We describe these
learning tasks in Table 3.1. Note that even though many of the univariate models
are originally designed to be trained on a single series (or require multivariate
data to also be available during prediction), they can in principle still make use
of multiple series in training, for example by optimizing hyper-parameters across
series rather than through temporal cross-validation. We believe that a clearer
task specification, including a description of the learning process, would have

made these differences more explicit and avoided any confusion.

Moreover, since some models have been trained on all available series model
performance estimates and statistical comparisons between these models may
become unreliable. This is because, without a clear separation of series into a
training and test sets, the assumption that each forecast represents an independent
sample no longer holds. As a consequence, performance difference between models
that appear statistically significant may in fact be insignificant after all. We
do not intend to single out the M4 competition; other examples of implicit or
incomplete task descriptions can be found in the literature. The aim of this
chapter is to provide a formal definition of key time series tasks, with the hope to

avoid ambiguity and reduce confusion in future research.

As we have seen, tasks describe distinct learning problems. At the same time,
many time series tasks are closely related. One way to understand their relation
is the idea of reduction. Reduction allows us to transfer knowledge between tasks
and to apply an algorithm for one task to help solve another. Reduction is central
to time series analysis. Many reduction approaches are possible and various time
series algorithms rely on reduction. However, not only are time series tasks rarely
fully formalized in the literature, they are also rarely discussed in relation to each
other. To close this gap, we will discuss reduction relations between tasks at the
end of this chapter. Clearly separating these learning tasks, while at the same
time understanding their relations, will be crucial for finding useful abstractions

and a modular design for the unified software framework developed in Chapter 8.

The rest of this chapter is organized as follows: we will start by formalizing
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key temporal data generative settings in Section 3.2. We will then develop the
taxonomy of time series learning tasks in Section 3.3, focusing on three tasks,
namely forecasting, time series classification /regression and supervised forecasting.
Having clarified the differences between these tasks, we will discuss how they are

related through reduction in Section 3.4.

3.2 Time series data

As we have seen, the cross-sectional supervised learning task is characterized by a
single data generative setting, i.e. cross-sectional data consisting of observations
on multiple instances of one or more variables at a single time point. Time series
data, by contrast, can arise in different generative settings. Understanding the
different settings that such data may come from is important for understanding
the learning tasks that arise in these settings.

We will use the terminology introduced in Section 2.5. In some situations, we
may observe a single time series, consisting of observations on a single instance
(experimental unit) and a single variable (kind of measurement) at multiple time
points. We call this “univariate” data. In other situations, we may observe
multiple series. This can happen in two fundamentally different ways. We
may observe multiple series representing observations on a single instance of
multiple variables, called “multivariate” data. Or we may observe multiple series
representing observations on multiple instances of one or more variables, called
“panel” data.

We will now formalize these three forms of time series data and the assumed
generative processes that can give rise to such data. Afterwards, we will develop

the taxonomy of time series tasks which will refer to these forms of data.

3.2.1 Univariate time series

For the discussion of univariate and multivariate series in this and the next section,

we partly follow the exposition in Box et al. [39].
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A time series consists of an indexed sequence of values observed sequentially

over time. We consider a time series to consist of both:
e the values we observe,
e the time points or indexr at which we observe the values.

While the values tell us what we observed, the index tells us when we observed it.

Formally, we denote a time series by (z(t1), z(t2), ..., z(tr)), where z(t) repres-
ents an observation at time point ¢. 7' is the total number of observations, with
T € N*t. We may also represent a univariate time series can be represented in

terms of a T' x 1 dimensional vector given by:

21

22

zT

Note that to keep our notation simple, we do not explicitly carry the time
index. Technically, in our notation, a time series is only a sequence of values
without time indices. We assume that the associated information of the time

index is available whenever needed.

Data generative setting

If the values of a time series are exactly determined by some mathematical function,
for example, z(t) = f(t) for some function f and time point ¢, the time series is
said to be deterministic. If, on the other hand, values can only be described in
terms of a probability distribution, the time series is said to be non-deterministic
or stochastic. Throughout this thesis, we are concerned with stochastic time
series.

A statistical phenomenon that evolves over time according to a probability

distribution is called a “stochastic process”. A time series that we observe can be
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thought of as a particular realization produced by a stochastic process. Formally,
we can define a the assumed generative process as follows.

Let with Z; be a random variable taking values in the domain Z with some
probability distribution. We discuss the value domain, Z, in more detail below.
It follows that we can regard the observation z(t) as a realization of Z; at time
point ¢. In general, a time series (z(t1), z(t2), ..., 2(tr)) consisting of multiple
observations can be regarded as a realization of a multi-dimensional random
variable, Z = (Z;,, Zy,, ..., Z1,), with a joint probability distribution. The joint
probability distribution captures the inherent characteristic of time series that
realizations depend on adjacent realizations. Note that the time points and the
number of time points are assumed to be fixed. Only the values observed at those

time points are regarded as random quantities.

Value domain

For the value domain of a time series, one usually has Z C R, where R represents
the set of real numbers. For example, the random variable Z; may represent the
temperature of a chemical process with temperature being a continuous variable.
In this case, the time series is called “value-continuous” and takes values from a
continuous domain (e.g. the real numbers).

In other cases, a time series may take on values from different domains,
depending on the kind of measurement that the random variable represents. For
example, one may have Z C Nt (e.g. count values) or one may have Z C C, where
C represents a finite set of some discrete values (e.g. categories). In these cases,

the time series is called “value-discrete”.

Time domain

The time index usually represents a point in time. We denote the ordered
sequence of time points at which we make observations as t = (t; € T for all
i=1,...,T;t; < tjforall i < j with i,j € NT). T" € N* denotes the total

number of observations. We can then define the domain of the random variable Z
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as series(Z,t), where we define:

series(Z,t) = {(z(t;) : 2(t;) € Z;t; € t)} (3.1)

as the set of tuples of values ordered in time for given time points in t. We will

often further abbreviate this to series(Z), assuming the time points are given.
For the time domain, 7, one usually has 7 C R", meaning that time points

lie on the positive real half-line. However, in some situation, it may also represent

other scales, as discussed in remark 1.

Remark 1 (Non-temporal sequential data). Time series data, as defined here,
can also arise in non-temporal settings, in the sense that the data may not come
from a process which obeys the direction or flow of time. Other data falls under
the definition too as long as it consists of sequentially ordered values. Examples of
non-temporal but sequential data include wave length data (e.g. from spectroscopy)
or image outlines unrolled into a sequence with an arbitrary starting point using

the distance from the image center to points on the image contour as values.!

Regardless of its domain, the index always denotes the position of its associated
value in the series. As such, it carries the orderedness information of the data.
Depending on the domain of the index, it may contain additional information.
For example, an index representing points in absolute time may carry additional
calendar information such as the day of the week or whether it is a holiday.

If the index, or set of time points, is continuous, the time series is said to be
“time-continuous”. If the set of time points is discrete, the time series is said to be
“time-discrete”. Throughout this thesis, we are only concerned with time-discrete

series. Time-discrete series may arise in two ways:

'For an explanation of this transformation from image outlines to se-
quences, sometimes called “radial scanning”, see https://izbicki.me/blog/
converting-images-into-timeseries-for-data-mining.html. For papers that use
data from radial scanning, see e.g. Keogh et al. [144] and Tak and Hwang [242]. Note that this
transformation can be understood as a reduction from image learning task to a time series
learning task, with hyper-parameters such as the starting point, the direction of unrolling, the
choice of center point and the number of time points. Reduction is discussed in more detail in
Section 3.4.
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e By sampling a time-continuous time series at a number of time points (e.g.

temperature readings during a chemical process at one minute intervals), or

e By accumulating a time-continuous time series over a period of time (e.g.

measuring accumulated rain fall over a day).

A common simplifying assumption is that intervals between time points are
regular, that is, fixed and of equal length. Formally, we can assume that the T
successive values of a series are made at equidistant time points tq + d, to + 2d,
...y tg + T'd where d is a fixed interval between the time points. This allows us
to write the time series z(t1), z(t2), ..., z(tr) simply as 21, 2, ..., zr. For many
purposes, the values of the ¢y and d are unimportant, but if the observation times
need to be defined exactly, these two values can be specified. If we adopt ty as
the origin and d as the unit of time, we can regard z; as the observation at time t¢.

We discuss deviations from this assumption in remark 2.

Remark 2 (Random event times). In some situations, observations may not be
recorded as regular time series with fixed and equal time intervals. For example,
we may observe a sequence of events with exact time points representing random
event times. Events may, for example, represent machine failures, shopping
transactions or hospital admissions, and we observe the exact time point of each
event. Formally, we can define such time points on the positive half-line [0, 7| with
7 € R*, such that (0 <t <ty <t3<..<tnr <7), where N :[0,7] = N*t is
a non-decreasing, piece-wise constant counting function which makes unit steps
at the event times. In contrast to regular time series with fixed, equal-length
intervals, there is not just additional information in the order of observations,
but also in the length of the observed interval between successive observations,
sometimes called the “wait time”. In order to capture the inherent uncertainty

in these processes, a common approach is to use point process models (see e.g.

Daley and Vere-Jones [64]).

So far we have discussed single or univariate time series. In many situations,

we observe multiple series. It is crucial to distinguish two fundamentally different
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ways in which this may happen: multivariate time series and panel data. We
will consider multivariate data first and then turn to panel data in the following

section.

3.2.2 Multivariate time series

A multivariate time series consists of multiple, related univariate series. Like
univariate series, multivariate series consists of observations on a single instance.
Unlike univariate series, multivariate series consist of observations on multiple
variables. As before, instances represent experimental units and variables different
kinds of measurements. For example, we may observe the temperature and
pressure from a single chemical process.

Formally, we can define a multivariate stochastic process as multi-dimensional
random variable taking values in the domain, series(Z), with a joint probability
distribution over time points and variables. One now has Z C R”. L is the number
of variables, with L € N*. Note that we here make the simplifying assumption
that all univariate series take values in the same domain. We discuss deviation
from this assumption in remark 4.

Denote the observation zj as a realization of the random variable Z;; for
variable 7 at time point ¢, with j = 1... L. If we assume that the set of time
points t is shared across variables, we can represent multivariate time series as a

T x L dimensional matrix given by:

211 221 ... RL1

212 222 ... ZI2
7 =

21T RT .. RLT

with rows representing time points and columns representing variables.
The joint probability distribution captures the inherent characteristic of mul-

tivariate time series that observations are not just statistically dependent on past
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observations within the same univariate series, but also across series, both contem-
poraneously and across time points. Some series may lead other series, or there
may exist feedback relationships between the series. Hence, it is implausible to
assume that the different univariate component series are statistically independent.

This is the key difference with regard to panel data discussed below.

Remark 3 (Different time indices across variables). A complication in some
situations is that observed time indices vary across univariate component series.
Series may not share a common index. Specifically, series may exhibit one or both

of the following:

e varying number of time points (sometimes also called “unequal-length” or

“variable-length” data),

e fized time intervals within series but varying intervals between series (some-

times called “unequally spaced” data).

Of course, time points may also be completely random, as discussed in remark 2.
This is an important consideration for the design of a suitable time series data

container discussed in Chapter 8.

Remark 4 (Different value domains across variables). Another frequent com-
plication is that observed univariate component series may have different value
domains, Z. Again this is relevant for the design of a suitable time series data

container discussed in Chapter 8.

Multivariate time series is only one of the ways of observing multiple time

series. The other way is panel data which we will discuss now.

3.2.3 Panel data

Panel data, sometimes also called “longitudinal data” [74], consists of observation
on multiple instances of the same kind(s) of measurements at multiple points in

time. Like cross-sectional data, panel data consists of observations on multiple
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instances. Unlike cross-sectional data, panel data consists of repeated observations
over time. Put differently, panel data consists of multiple cross-sections taken

repeatedly over time.

Formally, we can represent the underlying data-generating process by N jointly

i.i.d. random variables given by:
(ZW, ... zW i g, (3.2)

where the random variable Z takes values in series(Z) and N € N*. In contrast
to multivariate time series, in panel data, it is plausible to assume that each
instance is an i.i.d. realization of the same stochastic process. Note that the
i.i.d. assumption is only plausible when applied to the different instances. It is
implausible when applied to the time series observations within a given instance,
as they may still depend on past observations. Of course, we may also observe
panel data with multivariate time series. In this case, the different instances are
still i.i.d., but the univariate time series variables within an instance are not, as

discussed in Section 3.2.2.

To ease notation, we will make the simplifying assumption of observing what
we call “time-homogeneous” data. Time-homogeneous data contains observations
which share a common time index across both instances and variables. For
example, in time-homogeneous multivariate time series, all univariate component
series share the same time index. In time-homogeneous panel data, all variables

of all instances share the same time index.

A simple case of panel data is where we observe N instances of a univariate

time series, denoted as z( = (zy), zéi), ...,zp}i)), 1 =1...N, for T time points.
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This can be represented in a N x T" dimensional matrix given by:

NOIC R
(2) (2) (2)
z z

7 — 1 2 T
Z%N) ZéN) Z;N)

Here, rows represent i.i.d. instances and columns represent time points. Note
that multivariate panel data does not fit into the tabular format, at least not
without making further assumptions. Typically, multivariate panel data requires
three-dimensional matrices or hierarchical data structures.

An important case for our purpose is mixed panel data. Mixed panel data
consists of instances with observations from both time series and cross-sectional
variables. For example, data on patients for who we observe cross-sectional
variables (e.g. the date of birth) as well as time series variables (e.g. the heart

rate). In this case, we represent the underlying data-generating process as follows:
(20, X0),..., (2%, X)) "= (2,X) (33)

Here, (Z, X)) are random variables, with Z = (Zy, Zs, ..., Zr), which take values in
the domain series(Z) x X. As in the cross-sectional setting, discussed in Section
2.5, one usually has X C R¥, where K denotes the number of cross-sectional
features. Note that a cross-sectional variable may be regarded as the target
variable to be predicted from the available time series and any other time constant
variables. We return to this case in the context of time series classification and

time series regression in Section 3.3.1.

Remark 5 (Different time indices across instances). In panel data, time indices
may not only vary across variables, as discussed in remark 3, but also across
instances. We may observe (i) different number of time points for different
instances and/or (ii) different intervals between time points. In this sense, panel

data is sometimes described as being “asynchronous”, in contrast to “synchronous”
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data with shared time indices. Of course, time points may also be completely

random as discussed in remark 2.

Remark 6 (Different variables across instances). An additional but less common
complication is that instances may have varying numbers of variables, e.g. some

variables may only be observed for some instances.

Until now, we have reviewed three different time series data forms including
univariate, multivariate and panel data. We highlighted differences between the
generative settings in which these data forms can arise and compared them to the
cross-sectional setting from the previous chapter. Based on these data descriptions,

we will formalize key time series learning tasks in the next section.

3.3 A taxonomy of time series learning tasks

The variety of generative scenarios is mirrored in a variety of learning tasks that
arise from such data. We give a stylized overview of key time series learning
tasks in Table 3.1. In this section, we will formalize three of these tasks, using
the template defined in Section 2.3, namely time series classification, time series
regression and forecasting. These are three fundamental time series tasks. The
formalization for these tasks will serve as a foundation for the development of a
unified software framework for ML with time series. The formalization of other
tasks is left for future work. Throughout the discussion of learning tasks below

we refer to the different data settings defined in Section 3.2 above.

3.3.1 Time series classification /regression

Two of the most fundamental time series learning tasks are time series classification
d ti i ion.? In these task interested i dicti -
and time series regression.” In these tasks, we are interested in predicting a cross

sectional target variable from one or more input time series based on patterns

2For an overview of time series classification algorithms, see e.g. Bagnall et al. [14] and
Ismail Fawaz et al. [131]. For an overview of time series regression, see e.g. Tan et al. [243].
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Table 3.1: Stylized overview of key time series learning tasks

Name

Data

Description

Forecasting

Multivariate forecasting

Panel forecasting

Supervised forecasting

Classification

Regression

Clustering
Annotation

Supervised annotation

Time series
Time series

Panel data

Panel data

Panel data with a
target variable

Panel data with a
target variable

Panel data

Time series

Panel data with
annotations

For a given forecasting horizon, make a temporal forward prediction of a univariate time series based
on patterns found across time points in past data [39].

For a given forecasting horizon, make a temporal forward prediction of a multivariate series based on
patterns found across individual series and time points in past data [175].

For a given instance and forecasting horizon, make a temporal forward prediction based on patterns
found across instances and time points in past data where all instances are partially observed up
to a given point in time. Instances are typically observed on a common time scale (e.g. countries
observed over the same time period) [16].

For a given instance and forecasting horizon, make a temporal forward prediction based on patterns
found across instances and time points where some instances are fully observed up to the end of the
forecasting horizon. Instances are typically observed on individual time scales (e.g. chemical process
runs as described in the example in Section 2.2).

For a given instance, predict the value of the categorical cross-sectional target variable with predefined
class labels based on patterns found across instances between the time series and the target variable
[14].

For a given instance, predict the value of the continuous cross-sectional target variable based on
patterns found across instances between time series and the target variable [243].

Find groups of time series based on the similarity between instances [2].

Annotate time points of a series where tasks varies by the value domain and interpretation of the
annotations, including: (i) outlier detection [110], (ii) anomaly detection [52], (iii) change-point
detection [5], (iv) segmentation [143].

For a given instance, annotate time points based on patterns found across instances and time points
between values and annotations [73].

Notes: This table gives a stylized, informal description of key time series learning tasks. We will formalize some of these tasks in Section 3.3. All of
these tasks can also arise in an online learning setting where new data becomes available incrementally and predictions have to be generated repeatedly

as time moves on.
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found across instances between the input series and the target variable. These
tasks are direct extensions of cross-sectional classification and regression to panel
data.

We distinguish cross-sectional and time series variants of these learning task
because they assume different data generative settings. It may not be obvious
at first sight how these tasks are different. The key difference is that features
are now series, rather than scalars (e.g. numbers, categories or strings). For this

reason, we will sometimes call these tasks “series-as-features” tasks.

Data specification

We assume mixed panel data as defined in Section 3.2.3. Let
(ZO, YOy . (ZzM yWy & (7 y) (3.4)

be jointly i.i.d. random variables with the number of instances N € N*. Z
represents time series feature variables. Y represents the cross-sectional target
variable. The random variables Z and Y are not assumed to be independent of
each other. Otherwise target values would be independent of, and hence completely
unrelated to features.

The time series features Z take values in series(Z) for a given set of time
points t. Z may be univariate or multivariate. As in the cross-sectional setting,
the random variable Y takes values in Y. If ) = R, we call the learning task
“time series regression”. If J = C where C is a finite set of given class values, we
call the learning task “time series classification”.

In practice, we observe realizations of (Z("),Y®) as feature-target pairs
(20, y®), i = 1...N, where 2@ = (27 : ¢ € t) is a time series for given
time points ¢ in t. For simplicity, we assume time-homogeneous data, as defined

in Section 3.2.3.

Remark 7 (Additional time-invariant features). There may be additional time-

invariant features X taking values in X C R¥ as in the traditional setting. For
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simplicity, we ignore them here, but the description can easily be generalized to

account for extra time-invariant features.

Learning process specification

The assumed relationship we want to estimate is Y ~ f(Z) where f is a fixed
but unknown function of time series Z . The learning process is similar to the
cross-sectional setting, with the only difference that the feature variables are
now series rather than scalars. We split the data into set of training instances
D= {(ZzW, yW). . (ZM) Yy} used for training the algorithm and a set of
test instances (Z*,Y™) reserved for evaluating the performance, where the number
of training instances M € Nt M < N.

For a given training set, the learning process is to use an algorithm A to fit a

prediction functional f = A(D) where A is given by:
A : (series(Z) x V)M — [series(Z) — V) (3.5)

with prediction functional f : series(Z) — Y. The direction of information transfer
goes from the time series variables to the target variable. For classification, we
call A a “time series classifier”. For regression, we call A a “time series regressor”.

Algorithm A may involve some randomness. For simplicity, we assume a
deterministic dependence of f on D. As before, this task is referred to as
“supervised learning” because for every training instance 9 the learning algorithm
is provided with a teaching signal y®.

We can now further clarify the difference between cross-sectional and time
series supervised learning algorithms. Cross-sectional algorithms take in cross-
sectional feature data, whereas time series algorithms take in panel feature data.
Time series algorithms make use of the information contained in the ordering of
the time series observations. By contrast, shuffling the order of the features in
the cross-sectional setting will not have an effect on the fitting of cross-sectional

supervised learning algorithms (barring negligible changes due to any randomness
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involved in these algorithms). On the other hand, shuffling the order of time series
observations may have an effect on the fitting of time series algorithms.
Nevertheless, cross-sectional algorithms can still be used to solve time series

tasks. We discuss these approaches under the idea of reduction in Section 3.4.

Success specification

Evaluation for time series classification and time series regression is analogous
to the cross-sectional setting discussed in Section 2.5. To recall, we evaluate
performance on new data, where new data refers to independent instances not
used for training. Having trained the algorithm on the training set, we can use
the test instances (Z*,Y*) for evaluation.

To quantify performance, we define a loss function L : Y x Y — R. For a

given training set D, we want to minimize the generalization error:
GE(f,2*,Y*|D) = E[L(f(2"),Y")|D] (3.6)

To account for the dependence of f on the training data D, we want to

minimize the expected generalization error:
EGE(A,D,Z*Y*) = E[GE] = E[L(A(D)(Z"),Y™)]. (3.7)

Both GE and EGFE are theoretical quantities and have to be estimated in practice.

3.3.2 Forecasting

Besides time series classification and regression, one of the most fundamental time

series learning tasks is forecasting.® In forecasting, we are interested in making a
* Y

temporal forward prediction of a univariate series based on patterns found across

time points in past data.

3For a textbook overview of forecasting, see e.g. Box et al. [39], Brockwell and Davis [43]
and De Gooijer and Hyndman [65] or Hyndman and Athanasopoulos [122].
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The forecasting task comes in different variations. Our definition below focuses

on the simple univariate case without exogenous variables. Other variations are

described in Table 3.1.

Data specification

We assume univariate time series defined in Section 3.2.1. Let Z be a random
variable for given time points t = (t1,ts,...tr), where Z = (Z; : t € t), taking
values in series(Z), with Z C RY, L = 1 meaning that Z is univariate.

In practice, we observe realization z = (z; : t € t) for given time points ¢ in t.
Importantly, we observe only a single instance of the time series. No assumption

of independence is made.

Learning process specification

The assumed relationship we want to estimate is Z; ~ f(t) where f is a fixed
but unknown function of time ¢. As before, a good learning algorithm gives a
good approximation to the assumed relationship so that we can predict 2z, = f (t)
at some time point t. The estimation process aims to find the best possible
approximation to the training data. However, the algorithm should not just
perform well on the training data, but more importantly generalize well to new
data. Consequently, it is important to evaluate algorithms on genuine forecasts.
For this reason, we split the available data into two disjoint subsets, called a
training and test set, where the training set is used for training the algorithm
and the test set is used for evaluating its performance. Because the test set is not
used in training the algorithms and hence determining the forecasts, it should
provide a reliable indication of how well the model is likely to perform on new
data. The training set is also sometimes called “in-sample data” and the test set
“out-of-sample data”. We prefer “training set” and “test set” as the more common
terms in the ML literature.

Formally, we split the observed time points into a set of training time points

t, = (t; : t; € t;t; < 7) used for training the algorithm and a set of test time
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points t,, t7 > t, > 7 reserved for evaluating the performance. The cut-off point
7 is defined by 7 € T, 7 < ty, where T denotes the time domain as defined in
Section 3.2. We call 7 the “cutoff point” because it cuts off the test set from the
training set. Some references call it the “origin”. It represents the point in time at
which we want to generate predictions. Usually, the cutoff point is the last time
point in the training set. We denote the training data as D = (Z; : t € t,), and
the test observation at time point ¢, as z;,, or simply z,.

For a given training set, the learning process is to use an algorithm A to fit a

prediction functional f := A(D). A can be defined as follows:
A :series(Z) — [T — series(Z)]. (3.8)

In words, algorithm A is a function that takes in data of type series(Z) and returns
a function that maps input of type 7 to outputs of type series(Z). That is, the
output is the prediction functional of type f : T — series(Z). The prediction
functional takes in a new time point, called the “forecasting horizon”, and returns
a prediction for that time point. The direction of information transfer goes from
past to future observations. We call A a “forecaster”.

Algorithm A may involve some randomness, but as before we assume a de-
terministic dependence of f on D. Forecasting may also be understood as a
“supervised” learning task. For most observations in the training series z;, the
learning algorithm is provided with the next observation z;,; as a teaching signal.
However, the algorithm is not presented with different independent instances of
the same stochastic process.

We make a few additional remarks:

e In the definition above, the forecasting horizon consists of a single time
point. In practice, we may want to predict values for multiple time points at
the same time. Many prediction functionals require predictions for previous
time points in order to generate predictions for time points multiple steps

ahead. For simplicity, we assume that these predictions are available to the
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prediction functional.

e The fitted prediction functional usually requires not only a time point, but
also some past data to generate predictions. So we could define f instead as

f series(Z) x T — series(Z). Algorithm A would then be given by:
A : series(Z) — [series(Z) x T — series(Z2)]

For simplicity, we assume that the required past data is available to the
fitted prediction functional and continue with algorithm A as defined in

Equation 3.8.

e Some algorithms require the forecasting horizon already during training.
This includes all those algorithms that fit separate parameters for each time
point in the forecasting horizon (e.g. the “direct” reduction strategy [34]).
While these considerations are important for the design of sktime in Section

8.3.3, we continue with the simpler notation in Equation 3.8.

Success specification

In general, the way in which we evaluate models should simulate the way in which
we deploy the model in the real-world application in question. We here focus
on the deployment situation of a single, fixed cutoff point in which we generate
predictions for a given forecasting horizon. We leave aside the alternative setting
of a moving cutoff point, sometimes also called “dynamic” or “online” learning.
To estimate the generalization performance of an algorithm, it is important to
evaluate it on new data. The size of the residuals from the training set is therefore
not a reliable indication of how large true forecast errors are likely to be. The
accuracy of forecasts can only be determined by considering how well a model
performs compared to new data that was not used for training the model. New
data here refers to observations at future time points not used during training.

Having used the time points t, = (¢; : t; € t;t; < 1) for training, we can use test
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time points t,, t7 > t, > 7 for evaluation.

To quantify performance, we define loss function L : Z x Z — R, comparing
the predicted value with the true value at a given time point. For a given training
set D, the learning task can then be understood as the optimization problem of

minimizing the generalization error at the test time point ¢, given by:
GE(fv t*7Z*) = E[L(f<t*)vz<t*))|D]’ (39)

where expectations are taken over z(t,).
To account for the dependence of f on the training data D, we can estimate

the expected generalization error:
EGE(A, D,t,, z.) = E|GE] = E[L(A(D)(t.), z(t.))]. (3.10)

where we now take expectation over everything that involves randomness, including
the training set.

We make a few additional remarks:

e Performance estimates are only reliable to the extent that the test set is
representative of the data-generative process. In order to estimate the
expected performance on new data based on past data, we therefore need to
assume that the underlying data-generative process follows some statistical
equilibrium, typically expressed in an assumption of stationarity [38, chap. 2].
Without such an assumption, performance estimates based on the training

data may not generalize to new data.

e As before, both GE and EGE are defined in terms of random variables.

They are theoretical quantities. They have to be estimated in practice.

e GG F gives a conditional generalization error, since it depends on the training
data used to train f. As such, GE is a success criterion for a given prediction
functional f . EGFE, on the other hand, gives an unconditional generalization

error and is a success criterion for the learning algorithm A.
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e GE and EGFE are defined for a single time point t,, but we may be interested
in aggregate errors over a range of test time points. If we want to evaluate
the performance over multiple time points, we can aggregate individual loss
values in different ways. A simple strategy is to take the mean. Common
examples of loss functions used in forecasting are the symmetric mean
absolute percentage error (sMAPE) and mean absolute scaled error (MASE)
[125].

e Note that in contrast to the cross-sectional and series-as-features setting
with independent instances, here the test set is not independent of the
training set. The test set comes from the same time series as the training set
and hence they are likely to be statistically dependent on each other. As a
consequence, when estimating the uncertainty of our performance estimates,

we have to take into account the dependency structure of the data.

3.4 Reduction

The above definitions of learning tasks have emphasized the differences between
tasks. In this section, we will highlight the relations between them. One way
to understand how tasks are related is the idea of “reduction”. In the context
of ML, reduction often refers to “data reduction” or “dimensionality reduction”.
Instead, reduction here refers to a technique for converting one task into another
Beygelzimer et al. [24]. As such, reduction allows us to apply an any algorithm
for the original task to solve the new one.

While reductions are not new, they are rarely discussed in the time series
analysis literature as a concept that relates different tasks. Reductions are central
to ML with time series. Figure 3.1 gives an overview of the most important
reduction relations in the time series domain. Reduction typically works by decom-
posing a complex tasks into simpler tasks so that solutions to the simpler tasks
can be recomposed to give a solution to the complex task. A classical example

in supervised learning is one-vs-all classification, reducing k-way multi-category
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Figure 3.1: Stylized overview of time series reduction relations

Forecastin L Panel d Time series g Cross-sectional
& "C—‘ forecasting regression regression
ayth ayth fi fi
b . . . .
. Supervised e Time series g Cross-sectional
E—
Annotation <. annotation classification classification
- -
Time series Panel data Cross-sectional data

Notes: The figure shows learning tasks connected by arrows. Table 3.1 gives a description of
the time series learning tasks. Section 2.5 describes the cross-sectional tasks. Arrows indicate
reduction relations, including: (a) annotate time series with future values, (b) sliding-window
transformation to convert single series into panel data with multiple output time periods [34],
(c) ignore training set (e.g. fit forecaster on test set only) or use training set for model selection,
(d) iterate over output periods, optionally time binning/aggregation of output periods [34],
(e) sliding-window transformation to convert single series into panel data with single output
period [73], (f) discretize output into one or more bins, (g) feature extraction [55, 88] or time
binning/aggregation of input time points, (h) annotate based on forecasts (e.g. within or without

predicted interval forecasts).

classification to k binary classification tasks |24, 26]. With time series, many
reduction approaches are possible. Reductions are widely used in time series ana-
lysis, both in applications and as components in specialized time series algorithms.
For example, cross-sectional regressors are often used to solve forecasting problems
(see e.g. the M4 competition [182]). Similarly, cross-sectional classifiers are often
used as components inside specialized time series classification algorithms (see e.g.
the review by Bagnall et al. [14]).

Reductions can be understood as mappings of an algorithm of one type to
an algorithm of another type. For example, the reduction from forecasting to
cross-sectional regression can be understood as a mapping operation that takes
in an algorithm of the cross-sectional regressor type as input and returns an
algorithm of the forecaster type. As we will see, reduction plays a key role in
the design of the proposed unified software framework for ML with time series.
We discuss reduction more formally in Chapter 6 and 8. In the following, we
first describe two examples in more detail and then highlight key properties of

reduction relations.
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Example 1 (Reducing time series classification to cross-sectional classification).
A common example is reduction from time series classification to cross-sectional
classification. This reduction allows us to apply any of the more established
cross-sectional classification algorithms to a time series classification task. In
Figure 3.1, this reduction relation is indicated by the (g) arrow in the bottom row.
There are various strategies to perform this reduction. All of them involve feature
extraction as a way to transform the time series features into scalar features as
the required input format by cross-sectional classification algorithms. A trivial
strategy is to treat each time point as a separate feature, ignoring any information
contained in the order of the time series data. A popular strategy is to extract
scalar features from the time series. Characteristics range from simple ones such
as the mean to more advanced ones such as Fourier transform coefficients or the

time reversal asymmetry statistic [55, 56].

Example 2 (Reducing forecasting to cross-sectional regression). Another common
example is reduction from forecasting to a cross-sectional regression. This reduction
allows us to apply any cross-sectional regression algorithm to a forecasting task.
In Figure 3.1, this reduction relation is indicated by the top-row arrows from (b)
through (d) to (g). There are various strategies to perform this reduction. A
common strategy, called the “recursive” strategy [34], is as follows: We first split
the training time series into fixed-length windows using a sliding window, and
then stack all windows on top of each other. This gives us the feature data in the
required tabular format, with each row representing one of the windows and each
column a time point. To obtain the target variable, we simply take the next value
after each window. For a univariate time series (21, 22, . . ., 2r) and window length

w, the resultant T'— w X w dimensional feature matrix and 7" — w x 1 dimensional
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target vector are given by:

21 z9 R Zw Zw41
) Z3 cee Rwtl Zw+2
X_ = y =
RT—w RAT—w+1 -+ RT-1 27

where T denotes the total number of time points in the time series, with T,
w € NT and T > w. Since we regress the target variable on its lagged values, this
approach is sometimes also called “‘auto-regression” or “lagged-variable regression”.
Having transformed the series into the required tabular format, we can then fit

any cross-sectional regression algorithm to the data.

Once we have a fitted algorithm, we use the last available window [z, 41,
27 w2, -, 27] @s input to the fitted algorithm to generate the first-step-ahead
prediction. For multi-step-ahead predictions, we recursively (i) update the last
window using previously predicted values and (ii) generate new predictions for
the next step ahead. Other strategies than the recursive one are possible (for an

overview see Bontempi, Taieb and Le Borgne [34]).

Note that in cross-sectional regression, we assume to have observations on
multiple i.i.d. instances. However, in forecasting, we only observe a single instance.
Even though the transformed data has a tabular format, it is implausible to
assume that the rows of the matrix represent independent instances, as they are
likely to depend on previous rows. As a consequence, typical model evaluation
approaches based on random shuffling of instances, such as using a hold-out test
set or resampling strategies such as cross-validation, are likely to lead to over-
optimistic performance estimates. So, while we can use cross-sectional regression
algorithms to solve forecasting tasks, it is important to evaluate their performance
in the context of the original forecasting task and not the reduced regression

setting.

Reduction relations have some key properties which we summarize below:
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e Adaptive. Reductions are adaptive. They adapt an original task to a
new task. They enable us to apply an algorithm for the new task to solve
the original task. However, note that even though we reframe the task,
we still wish solve the original task. Ultimately, we need to be careful to
evaluate our algorithm in the context of the original task, not the new
task. Performance estimates of the algorithm obtained from the new task, in
general, do not hold for the original task. The reason is that key assumptions
associated with the new task may not hold in the original task. For example,
when reducing a forecasting task to cross-sectional regression using a sliding
window transformation, as described in example 2, the transformed data can
be represented in a tabular form, but rows do not represent i.i.d. instances.
So, while the relational data structure is the same, the assumed data

generative setting is not.

e Modular. Reductions convert any algorithm for a particular task into an
algorithm for a new task. Applying some reduction approach to N base
algorithms gives N new algorithms for the new task. Any progress on the
base algorithm immediately transfers to the new task, saving both research

and software development effort |25, 26].

e Composable. Reductions are composable. They can be composed to
solve more complicated problems |25, 26]. For example, we can first reduce
forecasting to time series regression which we can then reduce to cross-

sectional regression as indicated in Figure 3.1 by the top-row arrows (d) and

(2)-

e Tunable. Most reductions require practitioners to make additional modeling
choices. For example, when reducing a forecasting task to cross-sectional
regression, as described in example 2, practitioners need to select the window
length parameter or strategy for generating forecasts — be it the “recursive”
strategy or any other [34, 240|. These choices can be understood as hyper-

parameters of the reduction approach. In practice, we may wish to optimize,
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or tune, these choices using appropriate model selection techniques.*

We return to these properties in the context of the API design for the unified

framework for ML with time series in Section 8.4.2.

3.5 Concluding remarks

In this chapter, we gave an overview of different data generative settings that
give rise to time series data. We discussed the key formats such data can take,
including univariate, multivariate and panel data. From the overview of the
different data settings, we then developed the taxonomy of learning tasks. The
taxonomy forms the first research contribution of this thesis as laid out in Section
1.6. We focused on three fundamental tasks, namely time series classification, time
series regression and forecasting. While the taxonomy highlighted the differences
between these tasks, we discussed reduction as a key concept to understand the
relation between tasks. The insights from this chapter will form a central part of
our conceptual model for the domain of ML with time series, based on which we

will design the unified software framework in Chapter 8.

4For an introduction to hyper-parameter optimization and model selection in a setting with
i.i.d. data, see e.g. Guyon [99]. For model selection in a temporal data setting, see e.g. Bergmeir
and Benitez [23].
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Chapter 4

Background: Toolbox Design

This chapter is partly based on:

e Franz J. Kirdly et al. ‘Designing Machine Learning Toolboxes: Concepts,

Principles and Patterns’. In: arXiv preprint (2021)

4.1 Introduction

In the previous part, we have developed a conceptual model for the domain of
ML with time series, with the taxonomy of learning tasks at its core. In this part,
we address the second set of methodological research questions on the topic of
software design for ML toolboxes as discussed in Section 1.5. The answers we
develop in this part will form the second research contribution of this thesis as
laid out in Section 1.6, namely the development, formalization and motivation of
a novel set of general, reusable design principles for ML toolboxes. In the next
part, we will apply these design principles to develop a unified framework for ML
with time series and its implementation in sktime.

This part is concerned with what we have called in Chapter 1 the “developer’s
problem”. While practitioners try to solve a particular applied ML problem at
hand (e.g. forecasting the temperature in a chemical process or predicting the type
of a patient’s disease), the developer’s problem is to develop toolboxes that help

practitioners solve their respective problems more effectively. Specifically, we are
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concerned with the software design aspect of the developer’s problem. The design
of a toolbox crucially determines its effectiveness and applicability. Toolbox design
— like any software design — is difficult. One has to identify relevant objects in
the domain of interest, find abstractions for them at the right level of granularity,
translate them into classes and functions with well-defined interfaces and specify

clear hierarchies and relations among them.

A natural source of relevant ideas, useful formalism and best practices is found
in the corpus of classical software design. Our approach largely falls under “domain-
driven design” as put forward by Evans [78], but also draws on ideas from “design
by contract” [188], “responsibility-driven design” [264-266| and “pattern-oriented
design” [48, 90]. While much is direct transfer from existing software design, there
is a substantial aspect in which ML departs from classical domains: algorithms,
interfaces and workflows are closely intertwined with mathematical and statistical
theory — to an extent that mathematical objects are not only at the methodological
core, but a key element in their representation, workflow specification and user
interaction. This situation poses a number of unique research questions which we
try to address in the following: How can one identify and describe a “good” design
for ML toolboxes? How can one find incisive abstractions in the domain of ML
that are both linked to the underlying mathematical and statistical formalism
in ML theory and translatable into software? And what generalizable design
principles can be derived from existing toolboxes to guide the development of new

ones?

Our approach to addressing these questions relies on a combination of formal
mathematical statistics, a new type system called “scientific types”, novel design
principles as well as adapted software design patterns. In particular, we will
see that the design of modular and principled ML toolboxes relies on a clear
description of underlying learning tasks, algorithms and the relations between
them. We believe that in order to advance toolbox design, one first has to advance

the formal, mathematical specification of tasks and algorithms.

The rest of this part of the thesis is organized as follows:
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e We begin in this chapter to state and further clarify the problem we are
trying to solve — what we have called the developer’s problem. We then
review key ideas from classical software design, including domain-driven

design and object-oriented programming (OOP).

e Next, in Chapter 5, we begin to describe our solution to the developer’s
problem. We do this by developing a conceptual model of ML theory. As is
standard in software design, we start by separating out those elements in
typical practitioners’ workflows that are more likely to change than others.
We take these elements as sensible points of abstraction. We then formalize,
relate and abstract these elements based on two key aspects: (i) the set
of operations that is typically performed on them and (ii) their statistical
properties. We express these abstractions through what we call “scientific
types” — a new type system that captures the scientific purpose of elements
in a precise way that is both usable in ML theory and implementable in

software.

e In Chapter 6, we can then derive, from our conceptual model, general
design principles and reusable design patterns. The design patterns are
inspired by the classical software design patterns put forward by Gamma
et al. [90]. As we will see, our principles and patterns enable us to translate
the abstractions we found during conceptual analysis into software in a

systematic and rigorous manner.

e Before we discuss sktime, we review related software in Chapter 7 and
discuss the limitations of the current software ecosystem and the rationale

for a unified framework.

e Finally, in Chapter 8, we will be able to design the proposed framework for
ML with time series and describe its implementation in sktime. We do this
by combining our insights from previous chapters, including the taxonomy

of learning tasks, the conceptual model of ML theory as well as our design
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principles and patterns.

In the next and final part of the thesis, we will illustrate stkime’s effectiveness
and applicability by reproducing and extending the M4 competition, one of the

major comparative benchmarking studies for forecasting.

4.2 Problem statement

In this section, we describe in more detail what we have called in Chapter 1 the

“practitioner’s problem” and the “developer’s problem”.

Practitioner’s problem. The practitioner’s problem is to solve a certain prac-
tical ML problem. For example, forecasting the temperature of a chemical process
or predicting the type of a patient’s disease. Solutions to a practitioner’s problem
typically involve specifying a suitable workflow from model specification, training
and selection to validation and deployment. To execute such workflows, practi-
tioners write software code in which they usually incorporate functionality from
existing software libraries called “toolboxes”. Toolboxes provide collections of
related and reusable functionality that practitioners can import to write code.
Instead of writing every application from scratch, they can simply put together
the predefined pieces of code provided by toolboxes. In order to evaluate their
solutions, practitioners estimate the predictive accuracy of their models — at least
for predictive tasks — but also take into account other criteria such interpretability
[95], fairness [187, 191] or computational efficiency. For example, while practition-
ers try to find the most accurate model, they may also need to ensure that the

model’s predictions are interpretable in terms of its input variables.

Developer’s problem. The developer’s problem, on the other hand, is to de-
velop toolboxes. Example include the development of scikit-learn [205], a
toolbox for cross-sectional ML or the development of sktime, the goal of this
thesis. Solutions to the developer’s problem typically involve identifying key

elements in typical practitioners’ workflows, find incisive abstractions for them,
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specify classes and functions with well-defined interfaces, define clear hierarchies
and relations among them, and finally implement them in a reusable software lib-
rary. In order to evaluate their solutions, developers usually consider the following

three aspects:!

e the content (what the library does, e.g. whether it is correct or at least

consistent with some theoretical specification),?

e the design (the language and structure of the library),

e the performance (how computationally efficient the library is in terms of run

time and memory usage).

For example, developers want to test the library to ensure its consistency with
some specification, make its syntax readable and write code that is efficient enough
to be practically useful. Note that the evaluation aspects are not independent
of each other. For example, more readable code may be easier to test but less
efficient. In general, there will be no “pareto optimum” and trade-offs have to be

made.

In this part of the thesis, we focus on the developer’s problem, particularly
on the design aspect. While the content and performance aspects are taken into
account throughout the thesis, we only discuss them more explicitly in the context
of sktime in Chapter 8. In the following, we make a few additional remarks to

further clarify and motivate the design aspect of the developer’s problem.

4.2.1 Design as a result

Design often refers to both the design process and the result of that process [45].
Viewed as a process, software design is about the software engineering life cycle

activity in which software requirements are analyzed and translated into a software

'We leave aside hardware or compiler related aspects such as code portability as this is
usually ensured on the level of the programming language.

2Correctness in software is always a relative notion. No software element is correct or
incorrect per se. The only practically useful notion is that of consistency with some specification.
Consistency can, at least partly, be ensured through testing.
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plan that will serve as the basis of its implementation. Examples of design process
methodologies include the “waterfall model” [220] or “agile development” [20, 58,
108].3 Viewed as a result, design is about the overall architecture of software, its
organization into modules, and the specific structure of key components within
modules, their interfaces and relations to other components.

This thesis is mainly concerned with design as a result and not tied to any
particular process methodology. We briefly comment on the design process in the

context of sktime in Chapter 8.

4.2.2 Applications, toolboxes and frameworks

It will be helpful to distinguish three forms of code [90]:

e “Applications” are the single-purpose code that practitioners write to solve

a certain applied problem.

e “Toolboxes” are collections of reusable and related functionality that prac-
titioners can import to write applications. As such, toolboxes emphasize
code reuse. Note that toolbox design is arguably harder than application
design. This is because toolboxes have to work in many applications to be
useful, and toolbox developers are often not in a position to know exactly

what those applications or their special requirements will be.

e “Frameworks” not only offer reusable functionality, but also provide overall
structure to application code. Frameworks capture common design decisions
and distill them into reusable design templates. These templates may
specify common ways of partitioning workflows into key components or
define common blueprints and interfaces for those components. Instead
of designing every application from scratch, practitioners can simply copy

templates, thereby reducing the design decision they must take and allowing

3Note that the waterfall model and agile development are more general software development
management methodologies that also apply to other parts of software development beyond
design.
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Example 1: scikit-learn’s cross-sectional classification API

i classifier = RandomForestClassifier ()
> classifier.fit(y_train, X_train)
s y_pred = classifier.predict(X_test)

X_train and y_train denote the training set of the cross-sectional feature data and label vector,
X_test is the test set of the feature data, and y_pred the predicted labels.

them to concentrate on the application specifics. Not only can practitioners
write software faster as a result, but applications will have a similar structure.
They will be more consistent, more reusable and easier to maintain. While
toolboxes emphasize code reuse, frameworks emphasize design reuse, even
though frameworks usually also provide reusable code that practitioners can
put to work immediately. As such, frameworks are the way that software
achieves the most reuse. Note that if applications are hard to design,
and toolboxes are harder, then framework design is arguably the hardest.
Framework developers have to find one design that is abstract enough to
be practical for a wide range of problems, while at the same time specific

enough to capture important details about these problems.

One of the main goals of this thesis is to develop a framework for ML with

time series, where framework is understood in the above sense.

4.2.3 Toolbox design as a research problem

The developer’s problem may seem trivial at first sight or perhaps not even
worth scientific investigation. After all, popular toolboxes have been so widely
adopted that it is hard to imagine what alternative designs might look like or
what challenges had to be overcome in their development. However, when taking
a closer look, it becomes clear that many questions remain unanswered. These
questions often become clearest when one tries to explain certain design decisions.

Consider the design of the cross-sectional classification API in scikit-learn
[205] shown in example 1. We may ask: Why is “classifier” as in RandomForest-

Classifier a meaningful algorithm type? Why are the fit and predict methods
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its main interface points? What other key interface points are there? How is
a classifier related to other algorithm types? And how can they interact? Be-
sides these practical questions, there are also deeper methodological ones: Can
we generalize scikit-learn’s API design to other algorithm types beyond the
cross-sectional setting? How do we derive and motivate API design in the ML
domain? And how do we make sure that our abstractions remain closely linked to
the underlying ML theory, but are also easily translatable into software?

We believe that there exist principles that can answer these questions and
that these principles can be discovered through analysis and research. Finding
these principles is one of the main goals of this thesis. Our aim is to identify these
principles and describe them in a way that developers can use them to create new

toolboxes or improve existing ones, without having to rediscover these principles.

4.2.4 Evaluating design

It is difficult to define what exactly constitutes a “good” design.* We believe that
toolbox design — much like any software design — remains partly at least an art,’
however that there do exist some design quality criteria that can guide and assess
design solutions. We will describe what we believe to be key quality criteria for
ML toolbox design in Section 4.3 below.

Throughout this thesis, we will make qualitative arguments to support our
design choices,, drawing on the similarity to well established APIs, notably scikit-
learn [46], as well as the adherence to domain-driven design principles [78],
common design patterns [90, 152] and other best practices in data science [136,

164, 261, 262| and classical software design [18, 214].

4For an overview of different approaches to assessing software design, see e.g. Budgen [45].
5Similarly, software design is sometimes characterized as a “wicked problem” with no definite
solution [67]. For more details, see Budgen [45].
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4.2.5 Related literature

The importance and challenges of toolbox design has been recognized in the data
science literature. However, to our knowledge, discussions on design are still rare.

A part of the literature has focused on promoting open-source development
[156, 238] and best practices for scientific computing, with the aim to make
research more reliable and reproducible [136, 164, 261, 262|. However, discussions
on the central role of ML toolboxes for data science practice are still largely
missing.

Another part of the literature has concentrated on the “what” of design, i.e.
software features and usage, while almost completely ignoring the “why” (see
e.g. Buitinck et al. [46]). For example, developers often subscribe to a set of
design principles when presenting their work. However, these principles typically
remain too vague to explain concrete design decisions. Of the few discussion on
design principles, most also concentrate on a single toolbox without attempting to
generalize design ideas.® While the actual software tends to contain a wealth of
design ideas, we are not aware of literature in which underlying design principles
are studied. We believe that analyzing the “why” is crucial for generalizing
successful designs from existing toolboxes to new ones like sktime.

The software design literature, on the other hand, has focused on the design of
ML systems as a whole [196, 197, 226, 259], but paid little attention to the toolbox
layer within these systems, even though toolboxes form a central part of those
systems implementing core algorithmic and mathematical functionality. In fact,
authors often point out that there is a lack of strong abstractions to support ML
software, hindering much needed progress towards a more declarative SQL-like
language for ML [226, 272].

We attempt to address these issues in this part of the thesis by deriving general
design principles for ML toolboxes. Rather than describing a single toolbox, or

analyzing ML software at a system level, we focus on general principles for ML

6A few exceptions include for example Howard and Gugger [117] on the design of fastai
and parts in LeCun et al. [155] on the design of deep learning frameworks.
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toolbox design. These principles, as we will see, cannot just explain key aspect of
existing toolboxes, but also guide the design of new ones, including the proposed

framework for MLL with time series.

4.3 Toolbox design quality

In this section, we will describe what we consider to be key quality criteria for
ML toolbox design. These quality criteria are based on the role of toolboxes in

contemporary data science.

4.3.1 The role of toolboxes in data science

Toolboxes have become workhorses of modern data science and central components
in scientific, commercial and industrial applications. We believe that toolboxes
should be designed in a way that facilitates and promotes best practices in the
key activities that data science practitioners and developers have to perform [136,
164, 261, 262|.

For practitioners, this includes the following activities:

o Writing and changing of workflows, i.e. enabling practitioners to rapidly
prototype and execute typical workflows from model specification to de-
ployment, with a small amount of easy-to-write code, and to change key
components, without having to change substantial parts of the workflow as

a whole.

e Reading and inspection of workflows, i.e. enabling practitioners to easily
understand a workflow’s underlying mathematical, statistical and algorithmic
operations, inspect key workflow components and their intermediate outputs,
and check the scientific validity of workflows, reproduce their results, and

compare them against alternative workflows.

For developers, this includes the following activities:
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o Writing and changing of tools, i.e. enabling developers to implement new
methods or enhance existing ones and make these tools easily accessible and

interoperable as part of a wider ecosystem.

o Maintenance and testing of tools, i.e. enabling developers to refactor and

improve code when necessary and easily test functionality.

4.3.2 Design quality criteria

From the above we can derive a set of quality criteria for toolbox design. In
particular, we believe that these activities will be facilitated by toolboxes that

exhibit the following design quality criteria:

e Code reusability. The code provided by toolboxes should be highly

reusable across a wide range of practitioners’ problems.

e Design reusability. The design should be highly reusable across a wide
range of problems and enable practitioners to follow common workflow
templates in their applications and developers to follow common templates

when developing new methods.

e Domain-driven design. The structure and language of the framework
should be closely aligned with the mathematical and statistical concepts
of ML theory. The software will be more in tune with what practitioners
are already familiar with as a result, thereby reducing their cognitive load
and making it easier for practitioners and developers to communicate. We

discuss domain-driven design in more detail in Appendix B.

e Modularity. Toolboxes should provide functionality that breaks down
complex workflows into modular components that can be recombined and
interchanged. As a result, practitioners will be able to substitute components
without having to change other parts of the workflow and developers will be

able to refactor code without affecting code in other parts of the library.

89



CHAPTER 4. BACKGROUND: TOOLBOX DESIGN

e Parsimony. Toolboxes should avoid unnecessary conceptualization, formal-

ization and semantics.

e Interoperability. Toolboxes should be interoperable with other libraries
in the same domain. Practitioners will be able to use methods from different

libraries in a single workflow and combine advances from different areas.

Note that these criteria are already met, to varying degrees, by existing toolboxes.
We will review existing toolboxes in Chapter 7.

Having described the developer’s problem and key quality criteria of ML
toolbox design, we are now in a position to start describing ways how to solve the

problem.

4.4 Concluding remarks

After having developed the taxonomy of time series learning tasks in the previous
chapter, we have begun to address the developer’s problem in this chapter. In
particular, we have further clarified and motivated the developer’s problem, with
a focus on software design. Based on this background, we are now in a position
to start developing our solution to the design aspect of developer’s problem in the

next chapter.
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Chapter 5

Scientific Types: A Conceptual
Model for ML Theory

This chapter is partly based on:

e Franz J. Kiraly et al. ‘Designing Machine Learning Toolboxes: Concepts,

Principles and Patterns’. In: arXiv preprint (2021)

5.1 Introduction

In the previous chapter, we stated the problem that we are trying to solve —
what we have called the developer’s problem — and reviewed key concepts from
classical software design and object-oriented programming. In this chapter, we
start developing our solution to the problem. The solution we present will form
the basis of our second research contribution of this thesis as laid out in Section
1.6.

As we have seen, the developer’s problem is about translating elements from
ML theory to software. In line with domain-driven design [78], development of
a conceptual model is the initial step in which relevant concepts are identified,
abstracted and related. The software is then designed to closely match the

conceptual model.
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We have begun to develop our conceptual model of ML theory, particularly
for ML with time series, by developing the taxonomy of learning tasks in Chapter
3. In this chapter, we will complete the conceptual model by analyzing relevant
elements in ML theory more generally. We do this through conceptual analysis:
we first identify, formalize and abstract common elements found in ML theory.
We then express the abstraction we found in a new type system, which we call
“scientific types”, or “scitypes” for short. In this conceptualization, two realms are

inextricably linked:

e The realm of software: programming languages, object-oriented program-

ming and machine types.

e The realm of theory: mathematical objects, functions, signatures, domains

and formal types.

We therefore try to ensure that both realms are taken into account simultaneously.

As we will see, scientific type are defined as a combination of structured data
types and mathematical properties that all elements of that type must satisfy.
Scientific types offer a rigorous and systematic way to translate elements between
the two realms of ML theory and software. For example, we might say that a
“pipeline” consists of a component of “feature extractor” type and a component
which is of “supervised learner” type, put together in a certain form. We believe
that the types in question can be made precise so that they can be leveraged for
design considerations, rather than just being vague metaphors without tangible
content. Scientific types enable us to formalize the conceptual abstractions in
question, they make them both mathematically precise and easily translatable
into software. Based on scientific typing, we will propose design principles and
design patterns in the next chapter.

Much of our conceptual analysis can already be found in some form in ML
literature, often in the framing of ML theory or in the documentation and dis-
cussions surrounding ML software. However, to our knowledge, the ideas we are

presenting here have neither been put together as a coherent conceptual model,
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nor have they been framed as the underpinnings of ML toolbox design. A first
draft of these ideas appeared in Kiraly et al. [145]. We here refine some points,
add details and align the terminology and overall structure with the rest of this
thesis.

We subscribe to object-oriented programming (OOP). OOP is the predominant
paradigm for ML toolboxes and thus often assumed without rationale. We give
key reasons why object-oriented programming is especially well suited for building
ML software in Section 5.5.

The rest of this chapter is organized as follows: In Section 5.2, we start
developing our conceptual model for key objects in ML theory. We will then
introduce our novel type system called “scientific types” in Section 5.3 and apply
it to key ML objects in Section 5.4. Finally, we will make a few remarks about
the implementation of scitypes in Section 5.5, including the rationale for using
OOP. In the next chapter, we will derive key design principles and patterns from
our conceptual model, and in particular scitypes.

We review key ideas from classical software design, including abstraction and

domain-driven design, as well as object-oriented programming in Appendix B and

A.

5.2 A conceptual model for ML theory

ML theory uses mathematical and statistical formalism to describe, analyze and
relate common concepts in ML. In analogy to OOP, one can understand ML
theory as a system made up of mathematical objects. As is standard, we start by
identifying and separating out the more change-prone objects as sensible points

for abstraction. These are:
e Problems or tasks that we want to solve (e.g. regression or classification),

e Algorithms that can solve these tasks (e.g. linear regression or a decision

tree),
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e Related mathematical objects, on the conceptual level, such as loss functions

or distributions.

We have already discussed learning tasks in Chapter 3, both as a key concepts
in ML theory and in terms of specific examples for cross-sectional and time series
learning problems. We therefore focus on algorithms and related mathematical

objects that are relevant for ML toolbox design for the rest of this chapter.

5.2.1 Examples of mathematical objects

There are a number of mathematical objects that appear repeatedly as variable

parts in ML theory. Examples of recurring objects include:

e Data frames with definable and inspectable column types, e.g. numerical,

categorical, or complex (in a formal mathematical sense),

e Non-primitive and composite data objects such as series, bags, shapes, or

spatial data,
e Sets and domains, e.g. for specifying ranges, intervals, parameter domains,

e Probability distributions, e.g. arising as return types in Bayesian inference

or probabilistic prediction,

PO YRRNN14

e ML algorithms (sometimes also called “estimators”, “strategies”, “models” or

“learning machines”),
e ML pipelines, neural networks, composites or entire workflows,

e Other related objects for ML workflows involving model tuning or model

evaluation.

5.2.2 The common interface of mathematical objects

In ML toolboxes, mathematical objects, such as the examples above, appear both

as at the methodological core (e.g. in the internal representation of methods)
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as well as key elements of user interaction and workflow specification (e.g. in
interacting with data, specifying models or inspecting fitted models).

In these situations, one can identify a set of common interaction points in
dealing with mathematical objects. We call these interaction points the common
“interface” of mathematical objects, parallel to the notion of an interface in OOP.

The common interaction points include:

e Definition. Creating variables that are mathematical objects, for example:
“let X be a normally distributed random variable with mean 0 and variance
42, or “let myseries be a time series” for a given list of values and time

points.

e Parameter inspection. “What is the mean of X7 or “what is the value of

myseries?” at a given time point,

e Type inspection. Querying the mathematical type (e.g. domain) of an object:

“what domain does X take values in?” or “how long is myseries?”

e Trait and property inspection. “Is the distribution of X symmetric?” or “are

the time stamps of myseries equally spaced?”

5.2.3 The common attributes of mathematical objects

Based on the common interface, we postulate the following common attributes of

mathematical objects:
(a) a symbol or name, e.g. X or myseries,
(b) a type, e.g. a “real random variable” or “real univariate time series”,
(c) a domain, e.g. “the set R” or “absolutely continuous distributions over [0, 1]”,

(d) a collection of parameters on which the object may depend, being mathem-

atical objects themselves,!

LOf course, there may not be infinite recursion. Therefore, eventually there are nested
parameters without parameters.
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(e) a collection of properties and traits, e.g. “this random variable has a finite

domain” or “this time series is univariate”.

Here, the domain could be the universal domain and the collections of parameters,
properties and traits could be empty collections. Based on the above description of
the common interaction cases, we postulate these attributes as attributes intrinsic

to any mathematical object.

As an example of a mathematical object and its attributes, as defined above,
consider the common definition: “Let X be a random variable, distributed accord-
ing to N(0,42)”. Here, one could define (a) the symbol being X, (b) the type
being “real random variable”, (¢) the domain being “absolutely continuous over R
(d) the parameters being p := 0, 0% := 42, with types of y, o being numeric or
continuous and domains p € R, 02 € RT, and (e) traits as X being a symmetric

distribution.

Note an important subtlety here: defining a mathematical object with variable
free parameters is not the same as defining a mathematical object with variable
but set parameters, e.g. a generic N'(i,0?) in contrast to a concrete N'(0,42).
As we will see below, this duality is easily resolved in, and partly motivates the

object/class distinction in the object-oriented paradigm, as discussed in Appendix

A.

How are mathematical objects, as defined above, related to software? At-
tributes (a) and (b) are commonly found as defining attributes of any variable
in common programming languages (e.g. in Java, Python or R ). They can be
regarded as standard, even without our conceptualization of mathematical objects
introduced here. On the other hand, attributes (c), (d) and (e) are typically not
found in programming languages, at least not as features of the base language,
and therefore need dedicated implementation. We discuss implementation details

later in Section 5.5 and in the context of design patterns in Chapter 6.
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5.2.4 Statefulness: Value and entity objects

An important distinction that divides common objects in ML theory into two

categories is that of statefulness:?

e Immutable value objects having the same properties independent of the

condition or context,

e Mutable entity objects being subject to changes of properties, with a con-

tinuous identity that needs to be maintained.

The typical mathematical object, as introduced above, is understood as a value
object — an object that, once defined in common mathematical formalism (e.g.
“let x := 42”), remains unchanged within the scope of its existence. State changes
are not properties one would commonly associate with mathematical objects. We,
therefore, conceive of mathematical objects as value objects.

Note that because of this, state changes were not part of the common interface
for mathematical objects defined above. Value objects, by definition, characterize
objects without such interface points. Overall, value objects are also those for
which there is unambiguous convention on mathematical notation in the ML
literature.

On the other hand, ML objects, such as ML algorithms, are conceived of as
entity objects. We argue that ML objects are primarily defined by their identity,
rather than their attributes. They are typically characterized by state-changing
operations, for example ingestion of training data and fitting of model parameters
changing the state of an algorithm object from “unfitted” to “fitted”.

ML objects often possess multiple internal states between which they can
transition. States often span several properties and states are often accessed
and modified through several interaction points (e.g. data ingestion and fitting).
Changes to those properties must be coordinated in order to maintain the con-

sistency of the object. In addition, a threat of continuity needs to be maintained

2For a discussion on value and entity objects and how to decide between values and entities
in design, see e.g. Evans [78] and Vernon [257].
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between the estimation algorithm and the output of that algorithm, i.e. the fitted
prediction functional. Otherwise, one may end up with a prediction functional
that cannot be traced back to the algorithm and hyper-parameter configuration
that was used for fitting it. Construing learning algorithms as entity objects
helps both to manage state changes and to maintain continuity between the fitted
prediction functional and the learning algorithm used to fit it.

In our conceptual model, we will therefore distinguish between “mathematical
objects”, that model formal mathematical objects in the classical sense and are
value objects, and “ML objects” that model ML algorithms and are entity objects.?
In the list of common examples above, the following are mathematical objects in

this sense:

e Data frames with definable and inspectable column types, e.g. numerical,

categorical, or complex,

e Non-primitive and composite data objects such as series, bags, shapes, or

spatial data,
e Sets and domains,

e Probability distributions.

Note that we consider data frames and data objects as value objects. State changes
are not usually a defining characteristic of data, at least not in the context of ML
modeling. State changes to data are conceptualized as part of model specification,
rather than the data object itself.* For example, we may specify a pipeline with a
prior data transformation and a final learning algorithm.

On the other hand, the following are ML objects, and thus entity objects:

e ML algorithms,

e ML pipelines, networks, composites, or entire workflows,

3An ambiguous case, to which we will return in Section 6.3.3, is the nature of composition
meta-algorithms, which are themselves value objects, but which specify entity objects.

4We leave aside special cases such as streaming data in which state changes may well be a
defining characteristic of the data itself.
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e Workflow elements such as for automated tuning or model performance

evaluation.

All of these objects are characterized by operations which change states but with
a continuous identity.

Note that in comparison to value objects, the ML literature disagrees more
widely on conceptualization of ML entity objects. For example, an algorithm may
be represented by a prediction functional on test data or a functional in which
both training and test data have to be substituted, thus representing the fitting
process by some of its argument.® Besides the lack of consistency, we argue that
there is also a lack of expressivity which prevents clear conceptualization on both
the theory and software level. We will attempt to partly remedy this situation by

introducing scitypes in the next section.

5.3 Scientific types

So far our conceptual analysis has revealed that ML theory is made up of objects —
objects which in analogy to OOP are characterized by having common attributes,
interfaces and, in some cases, state changes. Our aim now is to further abstract
these objects. We want to find incisive categories that capture their data scientific
purpose and express them in way that is translatable into software.

We argue that a conceptual model for this purpose is naturally rooted in a type
system. The reason is that type systems offer exactly what we need: a type makes
explicit the category of objects in a precise way that is usable in mathematical
statements but also implementable in software.

The challenge is then to identify the “right” type system. Type systems are
both at the foundation of modern programming languages and the mathematical
formalism that underlies much of ML theory. We argue that these type systems

are not sufficient on their own to inform ML toolbox design. We therefore propose

S5For example, compare the framing in Hastie, Tibshirani and Friedman [105, chapter 2] and
Bishop [29, chapter 1].
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a new type system called “scientific types”, which combines the type systems found
in ML theory and software. As we will see, a scientific type, or “scitpye” for short,
enables us to abstract mathematical objects, based on their interface and key
statistical properties, in a way that is both mathematically precise, but also easily
translatable into software.

To introduce this idea, we extend classical mathematical formalism to stateful,
structured objects, along the lines of type systems found in programming languages
[210]. We do this by making use of common formalism in type theory, extended
with some novel aspects.

Before we introduce scitypes, we briefly motivate why the type systems found
in mathematical formalism and programming languages are not sufficient on their

owI.

5.3.1 Limitations of existing type systems

Programming languages, particularly object-oriented ones, allow to create objects
with complex internal representations, involving multiple properties and methods.
However, while programming languages allow to construct almost arbitrary user-
defined types, their types are ultimately defined in terms of a widely used set of
primitive “machine types” (e.g. floats, strings or integers).® From a data scientific
perspective, machine types are not enough to describe objects. They fail to
capture key statistical properties which are crucial for our understanding of ML
objects.

A simple example is that in a programming language, objects of R, R™ or [0, 1]
may all be represented by floats. On the other hand, any collection of floats may
be continuous in R or categorical in a predefined finite subset C C R, depending
on knowledge or assumptions about the data generating process. This is not
inferrable from the machine type alone.

Another example is the difference between cross-sectional learning algorithms

6Machine types are sometimes also called “data types”. They are called “machine types”
because they are ultimately defined at the compiler or hardware level [142].
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and their time series counterparts, as discussed in Section 3.3.1. Whereas cross-
sectional algorithms make no assumption about the orderedness of feature data,
their time series counterparts do. In other words, shuffling the order of the feature
data makes a difference to time series algorithms, but not to cross-sectional
algorithms. Again, this is not be inferrable from the machine type of an algorithm
by itself.

On the other hand, mathematical types usually only extend to objects of a
relatively simple structure. As we have seen in Section 5.2, mathematical objects
are usually conceptualized as immutable value objects, without the capacity to
maintain a continuous identity through state changes. As such, mathematical

types are not enough either to express the more complex ML objects.

5.3.2 What is a type?

Having described the limitations of type systems in mathematical formalism and
programming languages, we will now attempt to combine the two into what we
call scientific types. We begin by defining what a type is.

The general concept of a “type” arises both in mathematical formalism, as well
as in modern programming languages [210]. In both situations, any object may

have one or multiple of the following:

(a) a symbol or name, e.g. x,
(b) a type, e.g. an “integer”,
(c) a value, e.g. 42.

There is some ambiguity around the definition of “type” [142, 202]. For our

purposes, it is enough to understand a type as being defined in terms of:

e a named interpretation, a meaningful name assigned to the type (e.g. “in-

tegers”)

e a representation, a domain or value space into which the value of objects of

the type must fall (e.g. the set of integers Z),
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e an interface, a set of operations that are well defined and associated with

the representation (e.g. addition for integers).”

Assigning a type to a symbol or value is a purely formal act and in-principle
arbitrary. It becomes practically useful through typing rules. Most importantly,
any type has “inhabitants”, that is, values that are admissible for a type. For
example, the formal type “integer” is inhabited by the numbers 0, 1, -1, 2, -2, and
so on. As such, the representation aspect of mathematical types can often be
identified with their inhabitant sets.

In mathematical notation, the typing colon is used to denote an object’s type.
For example, the formal statement x : int states that the object denoted by
symbol x is of type int. The set membership operator “€” is also frequently used
to denote an object’s type, e.g. x € Z, but we will here prefer the typing colon,
in line with common notation in programming languages.® Programmers will be
familiar with the notation in their favored language, for example, in Java the

statement would be int x.?

5.3.3 Composite types

So far we have mentioned examples of primitive types (e.g. integers, floats or
strings). From primitive types, type operators allow construction of more complex

composite types. Two important type operators are the conjunction,'® which

7,

"Kell [142] calls these aspects “named interpretation”, “storage contracts” and “operational
well-definedness over storage”, and adds one more aspect, namely “semantic well-formedness”,
which is not directly relevant for our purposes.

8Readers with a mathematical background may also note the statement z : Z (“z is of
type Z7) is different in quality from saying x € Z (“x is an element of the set Z”), even if, as a
statement, the one is true whenever the other is. The difference lies in that the first is interpreted
as an attribute of the object represented by = (“the object represented by the symbol x has integer
type”), the second as a property of the value of x (“the value of the object represented by z is an
integer”). While this may not be much of a difference on the conceptual level in mathematics,
where symbols only serve as mental reference, there is a difference on the implementation level
in a computer, where the symbol may be attached to an object or in-memory representation
which implements the conceptual model. On the formal side, this interpretation is also reflected
through differences in axiomatization of type systems, versus axiomatization of set theory.

9Even in weakly typed, duck typed, or untyped languages, there are usually mechanisms at
the compiler or interpreter level that correspond to formal typing, even if they are not exposed
to the user directly.

100ne also finds the symbol “I” in literature.
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can be identified with the Cartesian product “x” for sets, and the arrow “—",
which allows to construct function types mapping inputs of one type to outputs of
another type. Examples include collection types for tuples, lists, sets, dictionaries,
vectors or matrices or function types such as A — B denoting the family of
functions that map elements of type A to elements of type B. Table 5.1 gives more
examples, highlighting the similarity between typing in software programming

and mathematical formalism.

Table 5.1: Some examples of type notation in programming and mathematical
type notation

Description Programming language Mathematical notation
notation (pseudo-code)

x is an integer int x r:7Z
x is the integer 42 int x = 42 r=142:7
f is a function which takes func int f(int) f:Z -7

as input an integer and out-
puts an integer

f is the function which func nat f(int x) f:Z—=N;z— 22
takes as input an integer return x*x
and outputs its square

x is a pair made of: an in- [int,real] x z:Z xR

teger (1st), and a real num-

ber (2nd)

f is the function which func int f(int x, int f:Z xZ — Z; (z,y) —
takes as input two integers y) return x+y r+y

and outputs their sum

Notes: We express the example statements in vernacular description (first column), pseudo-
code of a stylized typed programming language (second column), and formal mathematical
type notation with inhabitant-set identification convention (third column). Mathematical type
operators used in the third column are the conjunction type operator, denoted as x, and the
arrow (type construction or function) operator, denoted as —. A reader may recognize the colon
commonly used for range/domain specification in mathematical function definition as the typing
colon, and the arrow in function definition as the arrow operator (such as in third/fourth row,
third column); whereas the typing colon for domain statement of a variable (such as in first row,
third column) would be unusual in contemporary usage, outside of formal type theory.

Another important composite type is that of a “structured type”, sometimes
also called “structured data type”, denoting the type of a structured object as

commonly found in OOP. Concretely, a structured type is a container with named
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types in “slots”, formally called “component types”, which correspond to an object’s
attributes or methods. The inhabitants of a structured type are structured objects,
where every slot is inhabited by a concrete value inhabiting the slot type.

Note that composite types are defined recursively in terms of their component
types. For example, the type of a set is defined in terms of the types of its set
members. The type of a function is defined by its signature, which in turn is

defined by the types of its input and output arguments.!*

5.3.4 Notation

To introduce the notion of a scientific type, we need some notation. While a more
formal discussion of types, including structured types, can be found in Pierce and
Benjamin [210], there are no notational conventions. We therefore proceed with

the following ad-hoc conventions, inspired by UML class diagrams [152].

e Structured types are denoted by a Python-like type header giving a named
interpretation for the structured type, followed by the slots in the composite.

Slots are symbol/type pairs, separated by a typing colon.

e The slots are categorized under one of three headers: params for “hyper-
parameter” slots that are immutable per inhabitant, state for state variables
that are mutable per inhabitant, and methods which are of function type

and correspond to object methods in OOP.!?

e When specifying a type, a name of a symbol in scope can be used instead of
its type. If a symbol in state is used in this way in a function in method,

the function is interpreted to write to, or read from the value of that state.

1 Of course, there may not be infinite recursion. In mathematical formalism, types are
therefore ultimately defined in terms of their inhabitant sets (extensional definition). In
programming languages, they are defined in terms of “machine types”’ at the compiler or
hardware level [142].

12 A “hyper-parameter” is a parameter to configure or control the learning process, in contrast
to a “parameter” which is estimated or derived from the data during the learning process. We
follow scikit-learn in using params to refer to hyper-parameters.
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e Method implementations can, but need not depend on hyper-parameters in

params as function arguments.

e If x is a structured type, with a slot of name y, the slot can be directly
referred to by the symbol x.y, i.e. the symbol for the structured type,
followed by a dot, followed by the symbol for the slot name.

e Inhabitants of a structured type are defined by values for params, state and
methods. Inhabitants of a structured type can be both classes and objects,
where an object is an instance of a class, as commonly defined in OOP.
Classes and objects follow the same notational conventions as structured
types with the follow exceptions: A class is denoted by a class header, an
object by an object header. While the state is made explicit for classes,
it is omitted for objects, as it is changed by objects. In objects, if a specific
value is assigned to a slot, rather than a type, we use the equality sign

instead of the typing colon. The object name may be omitted.

Following this notation, we can write a template for a structured type as:

type <name>

params <name> : <type>
state <name> : <type>
methods <name> : <type>

where <name> and <type> are placeholders to be made precise for any particular
type. There may of course be more than one slot under each header. The <name>

placeholder on the first line denotes the named interpretation of the type.

5.3.5 Example: Gaussian distribution

Given the above notation, we will now introduce scitypes with a simple example.
In next section, we will provide a more formal definition.

The following structured type GaussianDistribution represents the input/out-
put signature type of a Gaussian distribution object, defined by the cumulative

distribution function (cdf) and probability density function (pdf):
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type GaussianDistribution
params [ R
o ;R
methods cdf : R — [0,1]
pdf : R —[0,00)

An inhabitant of this type would be the structured object given by:

object
params 4 = 1
o = 4
methods cdf = x> ¢ (=4)
2\ 2
pat — w3 (2)°)

where ® is the standard normal cdf. As a typing statement, we can write
a : GaussianDistribution. To refer to the cdf, we can write a.cdf which is
identical to the function a — ® (1),

Note that the type GaussianDistribution, as defined above, does not fully
capture what a Gaussian distribution object is. In terms of software, the imple-
mentation is missing. In terms of theory, the mathematical specification is missing.

For example, the structured object:

object
params = 1
o = 4
methods cdf = x+— 2u
pdf = x— 42

also inhabits the structured type GaussianDistribution.

To fix this issue, one can now define the “scientific type” of a Gaussian distribu-
tion object by adding the missing information into the definition. For example, by
defining the following: “An object d has scientific type GaussianDistribution if

it has structured type:

type GaussianDistribution
params : R
o ;. RT
methods cdf : R — [0,1]
pdf : R —[0,00)
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and if the methods have the following form: d.pdf(z) = ® (%), and d.cdf(z) =

1 _ 1 (z—d.p 2\ 5 : R : :
Tovon exp( 5 ( T ) ) .7 While it is somewhat cumbersome in this case, we

have defined, a scientific type GaussianDistribution. In particular, any ob-
ject with the scientific type GaussianDistribution will, by definition, satisfy
the compatibility between parameters and methods expected intuitively from a

Gaussian distribution.

5.3.6 What is a scientific type?

We can now give a definition of a scientific type. We define a scientific type as a

combination of:

e a structured type with slots made explicit, as in our notation introduced

above,

e a set of mathematical and statistical properties that inhabitants of the type

must satisfy.

The structured type does the work of a type as commonly used in programming
languages or mathematical formalism: it defines the representation, or value space
that all inhabitants must fall into, the interface that inhabitants must satisfy and
gives a named interpretation. A scientific type, or “scitype” for short, extends that
notion by including a set of mathematical or statistical properties that inhabitants
must satisfy.

The named interpretation of a scitype, as we will see below, assigns a meaning
to inhabitants based on their data scientific category or purpose, for example
denoting a class as a “forecaster” or “cross-sectional regressor” indicates the data
scientific purpose of those classes, namely algorithms for forecasting or cross-
sectional regression, respectively.

Scitypes satisfy the postulates from our conceptual model of mathematical

objects in the following way:
(a,b) name and type statement are intrinsic to the definition of the structured
type,
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(c¢) domains can be specified as inhabitant sets,

(d) hyper-parameter statements are intrinsic to our extended notation/definition

of the structured type, in the params block,
(e) traits and properties are encoded by the slots in the methods block.
We make a few additional remarks:

e While the initial definition of a scitype may be a bit cumbersome, later
reference to the type or an arbitrary inhabitant can be invoked with a few
symbols, e.g. “let d : GaussianDistribution”, and methods or parameters

may also be invoked without prior appearance in the binding statement, e.g.

d.p.

e The conceptualization resolves some items of common ambiguity of math-
ematical language. For example, which symbols are to be considered para-
meters? The resolution is: parameters are explicitly designated as a matter
of definition. Or more subtle ambiguities around concept identity such as
of a “distribution” which, across literature, may be defined or denoted in
terms of different methods or properties (e.g. distribution defining functions,
measures, maps, etc), depending on context. The resolution is: the object
need not be identical with any of its methods, instead it has the methods as

attributes.

e Subject to some formalization burden, the concept of scientific types can be
fully formalized, along the lines of classical type theory [210]. This amounts
to defining inhabitance by satisfaction of a definition property, and should be
intuitively clear from the example. For readability, we refrain from adding

further formal overhead.

e Note that the structured type notation are simplified representations of the
scitype-defining interface. It is intended to capture the defining aspects

of scitype interface and highlight differences between different scitypes. It
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necessarily abstracts away many details. For example, it ignores common
methods for object initialization and inspection, among others. We give a
more complete list of key interface points in Section 6.3.1. Also note that
hyper-parameters in params may not only influence the model in state, but
also change the behavior of methods. Similarly, the state of objects may in
practice be represented through a number of fields with potentially different

types, rather than a single state slot.

Scitypes for mathematical object may not be directly necessary or fully novel in
isolation. However, in the next section, we will extend scitypes from mathematical
objects to ML objects. Before we move on, we point out some important conceptual

distinctions related to the concept of scitypes:

e A class in the OOP sense usually already contains implementations for some
methods, whereas the structured type does not specify an implementation
for the method. A structured type only records its input-output type and

state access signature.

e Type systems usually present in programming languages (e.g. float, string,
integers), called “machine types”, are not the same as scitypes, nor are they
sufficient to inform ML design. As argued above, the reason is that types
in programming languages do not capture statistical properties which are
crucial to identify and abstract elements in the context of ML modeling.
Rather, scitypes are separate or orthogonal to the type systems typically

found in programming languages.

e A scitype is not “meta-data”, i.e. data about objects but rather a property

of the object.

5.4 Scientific types for ML objects

Having defined scitypes, we will now discuss examples of a scitype for stateful ML

objects. We will start with a simple example and then discuss ML algorithms as
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the central entity objects in ML theory.

5.4.1 A simple example

A simple example of an entity object is the structured type of the class Power-
Computer, which computes the n-th power of a number in one of its slots, given
by:

type PowerComputer

params n ;N7

state T : R

methods store_number c R—-w
compute_power : z — R

Here, the exponent n is a parameter to the class, store_number is of type R — R
and writes to x; the method compute_power is of type R — R and reads its input
from state variable z. Implementations differ by choices of the parameter n. For

example:

object Squarer

params n = 2

state x R

methods store_number D2
compute_power : I+ 2"

is an inhabitant of this structured type which computes the square for some input

z of type R. It is also an instance of the class, as defined in OOP:

class PowerComputerClass

params n : NT

state T - R

methods store_number 2=
compute_power : x> a"

where in said instance the parameter n is set to the value 2. We can thus write,
formally, Squarer : PowerComputer. In common object constructor syntax, one
has Squarer = PowerComputerClass(n = 2).

Note the difference between object, class and structured type: an object is an

instance of a class, both of which have the same structured type, inhabited by the
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object (a value in the value space defined by the structured type). A structured
type does not specify a particular implementation as a class; multiple classes with
different implementations may inhabit the same type. There may be multiple

distinct instances of a class, each with their own parameter values and states.

5.4.2 Scientific types for ML algorithms

We are now ready to describe how scityping can be used to specify ML algorithms,
the central entity objects in ML theory.

We argue that a clear problem specification is crucial to define an algorithm
scitype. Without a clear problem description, it is not clear what algorithms
should look like. On the other hand, once we arrive at a clear task specification, the
algorithm scitype required to solve it is also defined. We discussed learning tasks
as a formal problem specification in Section 2.3. Accordingly, in our conceptual
model, we define an algorithm scitype in correspondence to a learning task.

In particular, the learning process specification can be used to define the key
interface points. The learning process specification tells us at which point, what
data is given and what needs to be returned by an algorithm in order to solve
a given task. From this, we can define the methods necessary for solving the
learning tasks and their signatures, where the signatures will be defined in terms
of function types based on the given input and output types.

As a key step in our conceptualization, we adopt an interface perspective
for learning algorithms. That is, we consider a learning algorithm as defined
by the ways in which it interacts with its environment (e.g. other algorithms,
other software or human users). In practice, a learning algorithm is a collection
of individual algorithms.'® In typical task specifications, we have the following

interface points:

e Specifying a given algorithm and any hyper-parameter settings,

13 An algorithm, in turn, is typically defined in computer science as a computational procedure
for solving a class of problems, or to perform a computation, consisting of a finite sequence of
well-defined, computer-implementable instructions.
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e Ingesting data to “fit” or “learn” the (statistical) model represented by f,
e Calling the fitted model f to generate predictions.

Each interface point is defined in correspondence to the task specification. For
example, the interface point for data ingestion and fitting is defined in terms
of types of the input data and the returned prediction functional. Since we
conceive of ML objects as entity objects, the prediction functional, rather than
being returned, would be absorbed in the object as a state change. Similarly, the
interface point for generating predictions is defined in terms of the function type
of the prediction functional.

Note that depending on the learning task we may require algorithms to have
additional interface points. For example, setting or retrieving hyper-parameters or
fitted parameters, updating an already fitted model in an online learning setting,
or saving and loading a fitted model for deployment. We give a more complete
list of interface points in Table 8.1.

We make a number of remarks about the interface perspective:

e An interface specification can be used to define a type of learning algorithm.
In line with OOP, whenever another algorithm has the same interface, it is
considered as having the same type. For example, all time series classifica-
tion algorithms allow the modes of access described above — specification,
fitting, prediction — and this can be used as a defining property subject to

assumptions on their statistical nature.

e Mathematically, the task can be understood as the codomain of the algorithm
scitype. While algorithms are functions that, given some data, fit and return
a function, the task defines the set of destination into which all of the

returned functions of the algorithm are constrained to fall.

e Due to its close correspondence to a learning task, a scientific type captures

the scientific purpose of ML algorithms. Scitypes help to uncover the implicit
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task specification by defining clear algorithm categories with “intention-

revealing interfaces” that reflect the learning task they are meant to solve.

e [t is important to separate the concepts of the learning algorithm and
possible workflows it is part of. For example, predicted labels from a
time series classification algorithm can then be used to obtain performance
certificates for the model. However, note that this is no longer an interaction
directly with the algorithm, but with artifacts it produced, namely the
predictions. Conceptual separation of use cases, workflows and interfaces is
common in software design practice, but not always present (or necessary)
in methodology-oriented data science. Conceptual hygiene in this respect
allows a clear treatment of methodological units, as well as clear formal

separation of means from ends.

e The interface perspective is substantially different from common exposition
in ML literature, where learning algorithms are often defined in terms of
a mathematical, statistical or algorithmic model. However, this is not
contradictory but complementary: both the mathematical and algorithmic
specification, as well as the interface are important and necessary to fully
specify a particular algorithm. The distinction between internal specification
and interface perspective allows to formally distinguish specific algorithms
and types of algorithms — a recurring theme in this thesis. Ultimately, the
interface perspective enables us to separate what the algorithm does from

how it does it.

We will now illustrate the definition of algorithm scitypes with an example.

5.4.3 Example: Cross-sectional supervised learning

Before turning to the time series setting, it will be helpful to consider the familiar
example of cross-sectional supervised learning. Understanding the cross-sectional

setting will also be helpful for understanding reduction approaches from time
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series to cross-sectional tasks. In particular, we derive an algorithm scitype for a
cross-sectional classifier and regressor defined in Section 2.5. These examples will
illustrate how scitypes can explain key aspects of cross-sectional frameworks such
as scikit-learn [205]. In Chapter 8, we will show how scitypes can generalize
the design to the time series domain and guide the development of new frameworks
such as sktime.

As argued above, we start with the task specification for cross-sectional super-
vised learning. Following the “consensus” formulation of that task, introduced in
Section 2.5, we can define a scitype for a cross-sectional classifier as a combination
of a structured type specifying the interface and its statistical properties.

For cross-sectional classification, the structured type is given by:

type CrossSectionalClassifier

params paramlist : paramobject

state model : mathobject

methods fit : (X x V)M — model
predict . X X model — Y

where paramobject and mathobject are types of abstract representation of para-
meters and model objects respectively (e.g. umbrella types). The structured type
would not yet be the full scitype without reference to the definition of the types
of the input and output arguments in the method signatures, specifically X', Y
and M. We refer to Section 2.5 for these definitions.

We can of course define a CrossSectionalRegressor scitype in the same way,
adjusting the domain of the target variable, ), accordingly, as discussed in section
2.5.

Note that the cross-sectional nature of the learning task implies two additional
statistical properties. The learning algorithm, specifically the result of fitting,
will be invariable to permutations of the i.i.d. instances and variables, barring
variations due to the randomness involved in these algorithms. This means that,
when represented in tabular form, the output of fit will not change if the order
of the rows (instances) or columns (variables) is permuted. In other words, the

order of instances and variables does not matter.
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Example 2: scikit-learn’s implementation of the MajorityDummyClassifier
class

classifier = DummyClassifier(strategy="most_frequent")
> classifier.fit(y_train, X_train)
s y_pred = classifier.predict(X_test)

Notes: X_train and y_train denotes the cross-sectional training data and label vector, respect-

ively, X_test the cross-sectional test data, and y_pred the predicted label.

Inhabitants of the CrossSectionalClassifier scitype are specific classific-
ation algorithms that follow the interface and statistical properties specified by
the scitype. For example, the following class implements a naive classification

strategy for always predicting the majority label of the training set:

class MajorityDummyClassifier

state model : C
methods fit o ((x1,%1), ..., (xN,yn)) — argmax Zf\il 1y; = |
ceC
predict : (z,¢)—c

This class has no parameters, i.e. an empty parameter list. Note that this is not
the only possible implementation of this strategy, since instead of only storing
the majority class in fit, one could store all the training data and compute the
majority class later in predict.

Example 2 shows the implementation of the MajorityDummyClassifier al-
gorithm in scikit-learn [205]. When comparing the CrossSectionalClassi-
fier scitype with scikit-learn’s core API, it becomes clear that this scitype
is central to scikit-learn’s interface. In particular, the universal base class
of scikit-learn [205] is the BaseEstimator class. It requires concrete imple-
mentations to specify scitype-defining fit and predict methods with a uniform
interface. In addition, it implements get_params for hyper-parameter inspection,
and generic functionality for hyper-parameter specification and construction (e.g.
the __init__ method in Python). In scikit-learn, there are also scitype-specific
base classes for regressors and classifiers, namely RegressorMixin and Classifi-
erMixin, but their remit is mainly accessory functionality (scoring) and scitype

inspection (signposting by inheritance), rather than handling the fit/predict
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interface. Note that in scikit-learn adherence to the underlying scitype is
enforced through conventions and unit testing, following “design by contract”
principles [188], rather than strict inheritance from abstract base classes. We
comment on the implementation of scitypes in Section 5.5 below. Similar designs
can be found in other frameworks such as mlr3 [151], MLJ [31] or Weka [101].

Finally, note that we may also consider the following more general definition:

type SupervisedLearner

params paramlist : paramobject

state model : mathobject

methods fit : (X x V)N — model
predict : X Xmodel — )Y

which can be considered a parametric type in N, X', ). Again, the structured type
is not yet the full scitype, because supervised learners can be defined for multiple
choices of N, X and ). Classifiers and regressors are defined by specific choices of
Y. Admissible input data types X define specific sub-types of supervised learners.
For example, above, we have seen a scitype for cross-sectional supervised learners.
In Chapter 8, we will define a scitype for time series supervised learners.

Having defined scitypes and discussed cross-sectional supervised learning as a
key example, we are now in a position to derive key design principles and patterns
for mapping objects from ML theory onto software. Before we move on, we make
some remarks on the implementation of scitype systems and review prior art in

existing literature and toolboxes.

5.4.4 Beyond scitypes: Finer categorization of objects

In some situations, we may want to introduce a finer categorization of classes
of the same scitype, without having to define a whole new set of scitypes. In
these situations, it may be helpful to consider class traits to complement a scitype
system. For example, a class trait can be defined for whether a learning algorithm
can handle missing data, whether a classifier can handle multi-label problems,

or whether a forecaster accepts exogenous data. Such traits are useful for user
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guidance. They allow users to query and filter algorithms by trait in addition to
scitype. They are also useful for testing. They allow developers to define a set of
common tests to be run on all classes with the same traits.

Traits can be implemented as class attributes specified on the level of concrete
classes, possibly with some functionality for managing traits residing in an abstract
parent class. The use of traits for ML algorithms is common in existing toolboxes.

For example, in scikit-learn [205] they are called “algorithm tags”.

5.5 Implementation remarks

In this section, we make a few general remarks on the implementation of scitype

systems. We discuss the implementation of specific scitypes in the next chapter.

5.5.1 The case for object-oriented programming

A key architectural principle which has already stood the test of time is that
of representing learning algorithms as objects, in the sense of the programming
paradigm called “object-oriented programming” (OOP). We gave an overview
of key OOP concepts in Appendix A. OOP is the predominant programming
paradigm for ML toolboxes.'* While OOP is often assumed implicitly without
rationale, we here present key reasons why using OOP is well suited for developing
ML toolboxes.

OOP is a general, not ML-specific motif supported by a programming language.
OOP may take different forms depending on the language. For example, it
may be of imperative, functional or mixed flavor. Note that on first sight, our
conceptual model may seem to exclude functional programming paradigms and
favor imperative (classical) object orientation (e.g. insisting on lineage of entity
objects or methods). This is not true. While it is less enforced by other languages,

entity lineage (the object remembers its “identity”) and method lineage (methods

14 All of the major toolboxes mentioned in this thesis follow OOP, including scikit-learn
[205] in Python, Weka [101] in Java, MLJ [31] in Julia, and m1r3 [151] or caret [148] in R.
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“belonging” to an object can be queried) is implementable in functional object-
oriented paradigms. Some examples relevant for data science are: pure class-based
OOP in Java or Python; functional, dispatch-based OOP in Julia [27]; and the
various mixed OOP paradigms in R (S3, S4, R6) [50].

We argue that OOP is the natural programming language paradigm for design-
ing ML toolboxes. The primary reason is that domain-driven design [78] calls for
an implementation technology in tune with the particular design being followed.
OQOP allows us to create direct analogues to the mathematical objects found in
our conceptual analysis keeping the software implementation in lockstep with the
conceptual model. There are a number of reasons why conceptual objects found

in ML theory lend themselves to OOP:

e Conceptual objects may exist in multiple instantiations (objects) following
a common blueprint (class). For example, different instances 1 and 2 of a
linear model fitted on some batch of data and instance 3 of a linear model

fitted on some other batch.

e For a given (abstract) type of learning algorithm (e.g. cross-sectional clas-
sifier) we have multiple concrete implementations (e.g. random forest or

support vector machines).

e Many programming task require the program to manage multiple states.
For example, a newly constructed model and a fitted model after parameter
estimation. We often access and modify the state through several opera-
tions (e.g. fitting and updating) and the state often spans several variables.
Changes to those variables must be coordinated in order to maintain the
consistency of the state. When construed as entity objects, these objects
possess multiple internal states between which they can transition and which

we can manage consistently through an interface.

e Objects wnteract via defined interfaces with each other. For example, a

learning algorithm can ingests data represented as a data container object.
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A pipeline object is composed of several component objects (e.g. transformers

and a final learning algorithm).

5.5.2 Implementing scitype systems

Scitypes may be implemented in form of a full typing system on the level of a
programming language as a typed language of objects, possibly dual to an existing
machine type system. In this case, we can perform static checks at compile
time to prevent ill-defined programs from running. However, limitations of most
existing programming languages do not allow for more than a single (ordered)
type system, and retro-fitting a type system onto a language not designed with
type checking in mind can be challenging. In that case, we can still implement
scitypes by performing sufficiently detailed dynamic type checks at run time to
rule out ill-defined programs.

We can implement scitypes even in languages which only provide limited
support for typing such as Python. For example following ideas from “design
by contract” [188|, we can define a scitype as a set of conditions. We write
corresponding input checks (i.e. assertions) to ensure that these conditions are
met by the input to an object’s method. These input checks are called “pre-
conditions”. We can write corresponding output checks to ensure “post-conditions”.
Alternatively, we can use unit testing to check if the output from an object’s
method call complies with its scitype over a given range of common inputs.
scikit-learn [205] follows this “design by contract” approach in defining and
testing their algorithm types. Finally, even if scitypes are not implemented in

software, they are still useful for conceptual analysis of ML theory.

5.6 Prior art

We are unaware of literature that discusses scitypes for ML theory objects in a
general and mathematical manner.

In terms of formalism, the closest is perhaps the area of type theory for
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structured objects [210]. In terms of conceptual analysis, scitypes tend to be a
frequent, though often implicit, concept appearing in discussion of ML algorithms,
especially in the context of ML toolboxes. Implicit scityping of algorithms can
be thought of as a conceptual guiding principle behind many existing toolbox
designs, including scikit-learn [46, 205, 256], mlr3 [151], MLJ [30] and Weka
[101]. Scitypes for categorizing data sets (e.g. scientific types for data column
in data frames) have been an increasingly common idea, but we are unaware
of a fully explicit implementation of a full (sci)type system. Examples include
data frame column typing in base R [215], explicit “semantic type” hints in dabl
[195], and perhaps most stringently and explicitly realized in the parallel type
system implemented by the ScientificTypes.jl module of the MLJ ecosystem

[31], which also introduces the shorthand term “scitype”.

5.7 Concluding remarks

In this chapter, we have developed our conceptual model for ML theory, with
scientific types at its core. The solution we presented is the foundation for our
second research contribution of this thesis laid out in Section 1.6, namely the
development of a novel set of general, reusable design principles for ML toolboxes.
These principles will provide answers to the research questions of how one can
identify and motivate design solutions for ML toolboxes as discussed in Section
1.5.

We started by discussing parallels between common mathematical objects
found in ML theory and software. We described common object attributes and
interface points as well as statefulness, a key concept for ML objects. We then
defined a new type system to categorize and abstract objects found in ML theory.
As we have seen, a scientific type combines an structured type with a set of
key statistical properties that objects of the type have to satisfy. Finally, we
used scientific types to express common objects in ML theory in a way that is

both mathematically precise, but also easily translatable into software. Using
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scikit-learn [205] as an example, we illustrated how scientific types can explain
key aspects of contemporary toolbox design.
In the next chapter, we will derive key design principles and patterns based

on scitypes.
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Chapter 6

Design Principles and Patterns

This chapter is partly based on:

e Franz J. Kirdly et al. ‘Designing Machine Learning Toolboxes: Concepts,

Principles and Patterns’. In: arXiv preprint (2021)

6.1 Introduction

Having introduced our conceptual model for ML theory in the previous chapter,
with the scientific type system at its core, we are now in a position to derive
practical design principles.

In this chapter, we express what we believe to be key principles for ML toolbox
design. The solution we present will form the second research contribution of
this thesis as laid out in Section 1.6. In particular, we will motivate, develop
and formalize a novel set of general, reusable design principles for ML toolboxes.
These principles will provide answers to the research questions of how one can
identify and motivate design solutions for ML toolboxes as discussed in Section
1.5.

We propose these principles as our solution to the developer problem stated
in Section 4.2. As discussed, the developer problem poses the research question
of how to translate ML theory, and its underlying mathematical objects, into

software. We derive our principles to address this problem from the conceptual
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model of ML theory developed in the previous chapter. Our conceptual analysis
identified, formalized and abstracted key mathematical objects. Our principles, as
we will see, describe key patterns for mapping these mathematical objects from

ML theory onto classes and functions in a programming language.

We hope to show that our principles not only allow us to explain why certain
designs are more successful than others, but also guide us in the design of new
toolboxes. We believe that these principles, when followed, will ensure high-quality
solutions, in the sense that they achieve the design quality criteria laid out in

Section 4.3.

Together with the conceptual model from the previous chapter, we regard
our principles as a first attempt to consolidate the science of ML toolbox design.
Principles communicate the reasons for design decisions, not just the results [19].
In other words, they communicate the “why”, not just the “what” of designs (e.g.
software usage or features). We intend to present our principles in a way that other
toolbox developer can follow them when improving existing designs or creating

new ones.

The rest of this chapter is organized as follows: We will start in Section 6.2
by introducing three design principles for ML toolboxes. These principles serve
as guiding principles. From these principles, we will derive key design patterns
in Section 6.3. These patterns describe reusable solutions to recurring problems
in ML toolbox design, building onto the classical design patterns proposed by

Gamma et al. [90]. In Section 6.4, we give a brief overview of related literature.

Throughout the chapter, we illustrate how our principles and patterns can
explain key aspects of existing frameworks with examples from scikit-learn [205].
For an illustration of how our principles and patterns can guide the development
of new toolboxes, we defer to Chapter 8, in which we will develop the design
of sktime. A first draft of these principles and patterns appeared in Kiraly
et al. [145]. We here refine some points, add details and align the structure and

terminology with the rest of the thesis.
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6.2 Design principles

In this section, we discuss the following three guiding principles for ML toolbox

design:

e Architectural separation of key conceptual concerns. Key concerns
are specification of tasks, data, learning algorithms and workflows. This is a
special case of the common “separation of concerns”, “layering” or “decoupling”

design principles, applied to the categories found during conceptual analysis.

e Scitype-driven encapsulation. This includes learning algorithms and
other key conceptual objects (e.g. data, distributions, loss functions). Inter-
face points should mirror the conceptual abstractions for the scitype and
its defining interface points. For example, parameter setting, fitting and
prediction define a learning algorithm and its interface. This can be seen as

»

a special case of the classical “encapsulation”, “modularity” and “interface

abstraction” design principles.

¢ Domain-driven and declarative syntax. Following domain-driven design
[78], the language of the software should closely match the conceptual model
of ML theory. For example, specification of learning algorithms should be
as close as possible to their mathematical definition in terms of scitypes.
This can be seen as a special case of classical “symbolic abstraction” and

“language abstraction” design principles.

We proceed by discussing each of these principles in more detail.

6.2.1 Architectural separation of key conceptual concerns

The first design principle is about module-level architecture. To identify the
right architectural categories means identifying key abstraction points — i.e. those
elements that may be “switched out” while others are kept constant, as discussed

in Appendix B. For example, the same algorithm can be applied to different data
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sets, or different algorithms of the same type can be used to solve the same task.
Thus, tasks, data sets and algorithms should be abstraction points. In this vein,
based on our conceptual model, we can identify four key abstraction points and

thus architectural categories:

o Learning tasks and related concerns; specification of the data setting, learning
process and performance indicators. For example, the cross-sectional learning
task in abstraction as defined in Section 2.5, or in concrete reference to a

data set and specific performance metrics such as the mean squared error.

e Data sets and data related concerns; representation and manipulation of
concrete data containers. For example, the concept of a data frame and

operations on it.

e Learning algorithms and related concerns; specification of abstract algorithm
types and concrete algorithms, their specific operations such as data ingestion,
fitting or application of the algorithm. For example, the concept of a specific
cross-sectional classification algorithm, such as a random forest, including

functionality for fitting and prediction.

o Workflows and related concerns; as special cases, workflows for model in-
spection, evaluation, deployment and monitoring, with key concerns be-
ing specification and execution. For example, the concept of a predictive
benchmarking experiment, model performance diagnostics or interpretability

analysis.

We argue that these concerns should be the basis for abstraction since they
delineate “independent moving parts” in the conceptual model. While there are
some inherent conditionalities between the categories (e.g. only certain workflows
make sense for cross-sectional tasks), varying parts from key use cases are typically
localized within just one of the categories (e.g. choice of data set or learning
algorithm). In the following, we discuss important consequences from this principle

and address common “anti-patterns”.!

! An “anti-pattern” is a common but poor solution to a recurring software design problem as
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6.2.1.1 Separation of model specification and data specification

Models can be fitted or applied to data, but specification of learning algorithms
should be separate from data specification. Application of learning algorithms,
such as fitting or prediction, should be separate from operations intrinsic to the

data.

e Important consequence 1: Software design of learning algorithms should be

abstract in the sense that it can be applied to data sets of a certain kind.

e Anti-pattern 1: Writing code where the learning algorithm is specific and
hence inseparable from a particular data set. The level of generality depends
on the use case, but it usually should go substantially beyond a “data frame

with the same column names”.

e Important consequence 2: Data cleaning operations sit in the data category,
data transformations for the purpose of modeling sit in the learning algorithm
category. This may put the same operation in either depending on purpose.
For example, data cleaning for the purposes of consolidating a data set
should fall into the data category. Missing data imputation for the purpose
of applying an algorithm that does not support data missingness, should
usually fall in the algorithm category, as part of a pipeline that includes the
imputation and final prediction algorithm, since the primary purpose is not

related to data but to modeling.

e Anti-pattern 2: Conflating concerns of modeling or model evaluation with
data preparation, for example placing imputation or feature extraction for
the purpose of modeling not with modeling but with data loading; or making
the creation of training and test sets for algorithm training part of the data
loading and cleaning workflow. In this context, the classical software design
anti-pattern of conflating conceptual concerns can easily enable common

methodological mistakes along the lines of information leakage.

described by Brown et al. [44].
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6.2.1.2 Separation of model specification and task specification

Fitting and application of learning algorithms requires task information (e.g. target
variable or forecasting horizon), but model specification should be separate from

task specification.

e Important consequence 3: Software design of learning algorithms should be
abstract in the sense that it can be applied to tasks of a certain type, for
example, the cross-sectional learning task as described in Section 2.5 or the
forecasting task described in Section 3.3.2. Consequently, one should be
able to specify a cross-sectional learning algorithm without reference to the
target variable to predict, or any actual data set for that matter. Similarly,
one should be able to specify a forecaster without reference to a forecasting
horizon. The information of specific data sets should be recognized by, but

extrinsic to the learning algorithm.

e Anti-pattern 3: A design that fails to separate specification of learning
algorithms and tasks. For example, a learning algorithms that requires its
hyper-parameters to be specified together with the target variable to be
predicted. That is, a design where representation of a learning algorithm is
not possible without a specification of how it is applied to a specific learning

task.

6.2.1.3 Separation of model specification and workflow specification

A learning algorithm may be used in accordance with a specific task or within
a workflow for model evaluation or deployment, but the workflow in which the

learning algorithm is used should be separate from the learning algorithm itself.

e Important consequence 4: Concerns specific to model evaluation workflows
(e.g. training and test sets, cross-validation or loss functions) should not
be considered part of learning algorithms or their design. As before, the

placement of a specific methodological concept should be motivated by its
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purpose. For example, re-sampling and performance estimation for the
purpose of tuning is part of a learning algorithm, thus should be part of
the learning algorithm category. By contrast, re-sampling and performance
estimation for the purpose of model evaluation is part of the workflow, thus

should be part of the workflow category.

Anti-pattern 4: Conflation of learning algorithms and performance evaluation
(e.g. a design where tuning and model evaluation are considered identical).
As in anti-pattern 2, this anti-pattern facilitates common methodological
mistakes, such as evaluating on the training set or conflating validation and

test splits.

Important consequence 5: Concerns related to monitoring and scrutiny of
a learning algorithm (e.g. logging, diagnostics, interpretability) should be

separate from the learning algorithm.

Anti-pattern 5: The “learning algorithm that scrutinizes itself”, conflating
the concern of carrying out learning with the concern of checking how well it
has been carried out. As in anti-pattern 2 and 4, this anti-pattern facilitates
common methodological mistakes, such as circular reasoning in performance

estimates and certification of algorithm predictive reliability.

6.2.2 Scitype-driven encapsulation

The next set of design principles primarily concerns module-level and object-level

design within the architectural categories established by the previous principle.

Our key argument is that the design of units within modules, especially classes

and objects, should be driven by the scitypes identified during conceptual analysis.

The rationale for this principle is the centrality of scitypes in our conceptual model.

According to domain-driven design [78], such conceptual lines should guide design

decisions, especially if objects can be delineated and formalized as mathematical

units. Following this reasoning, the correspondence between scitype and software
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units should be taken into account for the definition of:

e Modules within the above architectural categories, particularly when thinking

about which functionality to “bundle”,

e Objects, functions and their interfaces; especially when considering which

functionality to encapsulate and their key interface points,
e Entity objects, their state changes and classes implementing entity objects.

In the following, we derive some important consequences for object-oriented design.

6.2.2.1 Representation of scitypes as the simplest possible abstract

classes

The scitypes found during conceptual analysis should be mapped onto the simplest
possible abstract classes. A scitype will define the class interface that multiple
classes can follow, ensuring non-proliferation of classes. Scitype inhabitants can

then be implemented as concrete classes inheriting from the abstract class.

e Important consequence 1: Key interface points identified during conceptual
analysis define the class design for instances of a given scitype. For example,
the scitype of a cross-sectional learning algorithm maps onto the familiar

fit/predict interface in scikit-learn [205].

e Anti-pattern 1: Individual objects of the same scitype are implemented in
separate, disconnected parts of the software or different objects of the same

scitype have inconsistent interfaces.

e Important consequence 2: Scitypes defining entity objects with non-trivial
state changes should map onto classes or interfaces that ensure that the
state and its changes remain traceable with the “entity”. For example, if
algorithms are conceived of as entity objects — as in our conceptual model —

then they should retain their identity when fitted.
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e Anti-pattern 2: Different states of entity objects are separated and state
changes are not traceable. For example, fitting a cross-sectional prediction
algorithm produces a separate object representing the fitted model which
does not allow to trace back its entity lineage to the model and parameter

specification that were used in fitting.

6.2.2.2 Operations with conceptual objects are methods of classes,

operations on conceptual objects are operations on classes

Operations of conceptual objects should be methods of the class implementing that
conceptual object (e.g. model fitting or application of a fitted model). Operations
that work on conceptual objects should be operations on classes (e.g. pipeline
building). As we will see in the next section, operation of objects invoke behavioral
design patterns (e.g. encapsulation, interface abstraction, inheritance and the
strategy pattern), whereas operations on objects invoke structural patterns (e.g.

composite, adapter, decorator pattern).

e Important consequence 3: During conceptual analysis, mathematical defin-
itions should be scrutinized for which operations of an object are key, in
the sense of being a defining characteristics of its scitype. Key operations
should be methods of the class that implements the object, or otherwise
closely coupled to the object (such as by being a queriable part of the same
module). For example, fitting a model should be a method of the class that

implements the model.

e Anti-pattern 3: Uncoupling the representation of a conceptual object from
the functionality that is considered part of it in the conceptual model. For
example, a design where it is impossible to find the function to train a

cross-sectional prediction model given only the model.
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6.2.2.3 Operations on conceptual objects with a scitype define a higher-

order scitype

A higher-order scitype should be considered in design if it is a recurring element
in typical workflows. For example, composition of individual learning algorithms
into a pipeline or ensemble. In terms interface design and implementation via
classes, higher-order algorithm scitypes found during conceptual analysis should

be considered first-class types.

e Important consequence 4: A good design will treat both primitive (zeroth-
order) scitypes (e.g. cross-sectional learning algorithm) and higher-order
scitypes (e.g. composition algorithms) consistently. In particular, class and
interface designs should be consistent between primitive and higher-order

scitypes.

e Anti-pattern 4: Higher-order scitypes are second-class citizens, for example
higher-order scitypes may lack encapsulation, have inconsistent interfaces or
may be implemented as functions while primitive scitypes are implemented

as classes.

6.2.3 Domain-driven and declarative syntax

So far we have argued that conceptual analysis and scitype formalism should guide
module and object level design. With the third and last principle, we argue that
scitypes should determine syntax of usage.

Most importantly, this should cover the following use cases:

e Specification of conceptual objects, including algorithms and other math-
ematical objects, especially for hyper-parameter settings, composites, and

higher-order constructs,

e Execution or application of conceptual objects, especially when using scitype-

defining methods,
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e Inspection of conceptual objects, especially when inspecting parameters,

properties, or state.

We motivate this design principle from domain-driven design, more specifically
the principle that the language and structure of software should closely follow
the conceptual model [78]. Since conceptual algorithmic or mathematical objects
are key concepts in our conceptual model, and operations on said objects key
interface points, it follows that the software syntax for specifying and interacting
with such objects should be as close to the conceptual model as possible.

We list a few requirements arising from this principle:

e Level of abstraction. The highest level of abstraction should be at least at the
level of key mathematical and algorithmic objects found during conceptual
analysis. It should not be necessary to access or configure specifics of
implementation. This is a special case of the “no boilerplate code” design
principle, where, in accordance with this principle, boilerplate is defined as

being lower-level than the key conceptual objects.

e Congruence of syntax and conceptual language. Syntax should follow, as
closely as possible, the conceptual model of conceptual objects, particularly

the scitype formalism.

e Consistency of syntax. Syntax of specification and usage should be consistent
across different conceptual objects, and across different levels of abstraction.
This should in particular be the case for properties shared across objects
with different scitypes, such as the representation of parameters, states or

methods.

e Parsimony of syntax. Syntax of specification and usage should be as simple
as possible, while being at a sufficient level of abstraction. This is a special

case of the “simplicity” design principle.

Until now we have discussed three guiding principles for ML toolbox design.

In the next section, we will derive from the above principles key design patterns
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that can drive practical design solutions.

6.3 Design patterns

Having laid out the above set of guiding principles, we are now in a position to
derive practical design patterns. These patterns are based on the well-known
patterns proposed by Gamma et al. [90]. A summary of the most relevant patterns
for our purposes can be found in Section B.3.

Our patterns describe ways of mapping objects found during conceptual analysis
from ML theory to software. Each pattern names, describes and illustrates
an important recurring design solution to the developer’s problems. Design
patterns make it easier to reuse successful toolbox designs by making them more

understandable and accessible to developers.

In particular, we will discuss the following design patterns:
e Universal interface points for conceptual objects,
e The scitype strategy pattern,

e The scitype composition patterns, both for run-time and compile-time

compositions of conceptual objects,
e The scitype co-strategy pattern.

We proceed by discussing each of these patterns in more detail.

6.3.1 Universal interface points

Our conceptual analysis of ML theory as outlined in Chapter 5 implies a number
of key interface points that implementations of any conceptual objects should

have. We call these “universal interface points”.
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Description

We list the universal interface points in Table 6.1.

Note that hyper-parameters and properties are separate concepts by definition
of the interface. We explicitly require these concepts to be separated by the
interface, due to them being separate in the conceptual model, rather than due
to being an implementation necessity. Further, the respective universal interface
points should not only returns values, but also the set of hyper-parameters or
properties. This is an important requirement for later composition patterns.

Entity objects have additional universal interface points related to managing
the object’s state. These are listed in Table 6.2. Note that we do not include
state change itself as a universal interface point, since the number and quality of

interface points for state changes depend on the specific scitype of the object.

Table 6.1: Universal interface points for conceptual objects

Interface point Description

Specification Construction of the object, and specification of hyper-
parameters (e.g. constructing a normal distribution
with mean=0, variance=1)

Scitype inspection Query that returns the scitype of the object (e.g. a
distribution)
Domain inspection Query that returns the domain of the object (e.g. ab-

solutely continuous distributions over the reals)

Hyper-parameter inspection Query that returns names, values, and type/domain of
hyper-parameters (e.g. retrieving the value (=1) and
type (real number) of mean)

Hyper-parameter setting Setting values of hyper-parameters (e.g. setting mean
to 2)
Property inspection Query that returns names, values, and type/domain of

properties including parameters and traits (e.g. kurtosis
of the distribution)

Object persistence Saving and retrieving of objects (e.g. storing the distri-
bution once constructed)

Implementation
This pattern can be implemented as follows:
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Table 6.2: Universal interface points for entity objects

Interface point Description

State inspection Query that returns the state of the object, e.g. “fitted” or
“unfitted” for a linear regression model

State variable inspection Query that returns names, values, and type/domain of
state-defining variables, e.g. regression coefficients

e Use of abstract base classes and inheritance for universal interface points.
Abstract functionality for universal interface points should be implemented
by a base class template. This follows the strategy and template pattern
from Gamma et al. [90]. In contrast to the scitype strategy pattern discussed
below, this pattern is not specific to a scitype, but applies to all conceptual
objects. Any class implementing a conceptual object should inherit from
this base class, in the process being endowed with the interface of the scitype
(strategy pattern) and any predefined functionality specific to the scitype
(template pattern) [90]. As a result, methods and usage of universal interface
points is designed to be universal across conceptual objects regardless of
their scitype. For example, the universal base class would implement general
hyper-parameter functionality or trait inspection. Depending on use case or
language, universal interface points for entity objects may also be part of
that base class (and not used for value objects), or added by mix-in classes

or decorator patterns.

e One method (at most) per universal interface point. Universal interface
points should map onto one and only one method. For example, there should
be one method by which all parameters can be inspected, as opposed to one
method for each parameter. Specific scitypes may implement “shorthand”
methods for individual parameters or traits, but the pattern requires a

universal method per interface point.

o Compositionality requirements. Interface implementations need to satisfy

certain requirements to ensure that objects are composable, as discussed in
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the next two patterns.

Examples

The universal base class of the scikit-learn [205] toolbox is the BaseEstimator
class. It implements some of our suggested universal interface points. For example,
get_params for parameter inspection and generic functionality for construction
and specification in the constructor (e.g. __init__ in Python). Notably absent
from BaseEstimator are scitype inspection and a uniform interface for state
variable inspection (e.g. attributes that change during fitting and change the state
of the estimator from “unfitted” to “fitted”). Instead, inspection is specific to
concrete classes and added on a descendant level. We argue that algorithms should
also have a uniform interface for inspecting inference results (e.g. fitted coefficients)
— something which is currently missing from most major toolboxes. This would
allow us to develop higher-level functionality, such as composition algorithms
or model interpretability diagnostics, which make use of fitted parameters of
component algorithms. We give an example of a composition algorithm that use

fitted parameters in Section 8.5.3.

6.3.2 The scitype strategy pattern

The central pattern used in contemporary toolbox design, and one that is thought
of as the defining characteristic for scikit-learn-like toolboxes is what we call the
“scitype strategy pattern”. It can also be considered the primary pattern implied
by the design principles in Section 6.2.2. As already evident from the naming,
this pattern follows the strategy pattern from Gamma et al. [90] in the specific
context of scitypes. As we will see below, it is also closely related to the template

pattern.
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Description

The basic idea of the strategy pattern described by Gamma et al. [90] is to define
a family of algorithms, encapsulate each algorithm and makes the algorithms
interchangeable within that family. In other words, the strategy pattern lets the
algorithm vary independently from clients that use it, be it users or other objects.
This avoids hard-wiring variable parts into code, lets you vary the algorithm
independently of its context. This makes it easier to switch, understand and
extend algorithms. For the scitype version of the pattern, we define the “family of

algorithms” as algorithms of the same scitype.

The pattern applies to concrete classes that implement specific conceptual
objects of a given scitype. For example, concrete probability distributions (e.g.
Gaussian distributions) that follow the “distribution” scitype. Or concrete learning
algorithms (e.g. random forest classifier) that follow the “cross-sectional classifier”
scitype. Through the named interpretation, a scitpye reveals the data scientific

purpose of the conceptual object.

The pattern provides both abstraction and conformity for instances of con-
ceptual objects of a given scitype. The pattern ensures that objects that only
differ with respect to their internal representation, but have the same scitype, also
share have the same interface. The pattern avoids exposing object-specific details
to users. It makes objects with the same purpose easier to use, compare and
interchange. When applied to learning algorithms, the pattern encapsulates the
intricacies of different algorithms (“how”) behind a clear interface (“what”). As a
result, the interface of an algorithm will reflect the type of task that it is designed
to solve, in line with the idea of “intention-revealing” interfaces from domain-driven
design [78]. The key advantage of a common interface for algorithms are inter-
changeability of algorithms of the same scitype at run time. As we will see in the
next pattern, the strategy pattern also enables us to develop modular composition

algorithms which require component algorithm to have the same interface.
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Implementation

The pattern can be implemented as follows:

e Use of abstract classes and inheritance for scitype-specific methods. Abstract
functionality for universal interface points should be implemented by a
scitype base class. Any concrete object of a scitype should inherit from the
corresponding scitype base class, in the process being endowed with the
interface of the scitype (strategy pattern) and any predefined functionality
specific to the scitype (template pattern) [90]. Alternatively, a template can
be adhered to by a combination of implicit specification and inheritance

applied to concrete objects.

e Use of the strategy pattern for concrete objects of the same scitype. Concrete
conceptual objects of the same scitype should behave interchangeably within
key workflows, and share the same interface for key operations. For example,
all cross-sectional classifiers should implement a fit and predict method
with the same signature which are called during training and prediction
within a workflow. This is ensured by adhering to the strategy pattern
where the “family of algorithms” is defined in terms of being of the same

scitype [90].

Concrete classes should (compatibly) inherit both from the universal base class
(see above) and adhere to a scitype-specific strategy pattern. This can be handled
in multiple ways where suitability may also depend on language idioms. For
example, the scitype base class inheriting from the universal base class, multiple

inheritance, or a combination of inheritance and implicit convention.

Examples

In scikit-learn [205], classifiers and regressors adhere to the scitype strategy
pattern for the scitypes of cross-sectional classifiers and regressors. Classifiers and

regressors are required to implement scitype-defining fit and predict methods
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with a consistent interface. Interface conformity is enforced through unit testing
rather than explicit inheritance following a “design by contract” approach as
discussed in 5.5. There are also scitype-specific base classes for regressors and
classifiers called RegressorMixin and ClassifierMixin, but their remit is mainly
accessory functionality and scitype inspection (signposting by inheritance), rather

than handling the fit and predict interface.

6.3.3 Scitype composition patterns at run-time

In this section, we cover a number of construction patterns for use cases that

involve implementations of operations on conceptual objects at run time.

Description

A composition algorithm takes in one or more conceptual objects of potentially
different scitypes and combines them into a single, composite object. Common
examples are tuning, ensembling, pipelining or reduction. The basic idea of the
scitype composition pattern is to compose objects into composite objects that lets
clients treat individual objects and composite objects uniformly [90].

It is important to distinguish the composition operation (the “compositor”)
from the inputs to that operation (the “components”) and the output of that
operation (the “composite”). In general, we can define a composition operation in

terms of formal scitype notation as follows:

Ay x ... xAy— B (6.1)

where A; for i = 1,..., N with N € Nt and B denote scitypes. We call the
A; input or component scitypes and B the output or composite scitype. From
this general formulation, we can express common ML composition algorithms as

special cases:

e A modification can be defined by N =1 and A = B, ie. A — A. In words,

a modification takes in a single object and builds another object out of it,

140



6.3. DESIGN PATTERNS

of the same scitype. Examples include tuning or homogeneous ensembling
where all ensemble members are instances of the same concrete algorithm

class (e.g. random forest).

e A reduction can be defined by N = 1 and A # B, ie. A — B. In
words, a reduction takes in a single object and builds another object out
of it, of different scitype. Examples include reduction from forecasting
to cross-sectional regression where A = CrossSectionalRegressor and

B = Forecaster, as discussed in Section 3.4.2

o A scitype-homogeneous composition can be defined by A; = B for all 7. In
words, a scitype-homogeneous composition takes in a number of objects of
the same scitype and builds a object of the same scitype. Examples include
heterogeneous ensembling where each ensemble member is an instance of a

different concrete algorithm class.

o A scitype-heterogeneous composition can be defined by A; = B for at least
one ¢ and A; # B for at least some j. In words, a scitype-heterogeneous
composition takes in a number of objects of the varying scitypes and builds
a object of the same scitype as one of the input objects. Examples include
pipelining where the composite object takes on the scitype of the last input
object.

Note that for any of the above cases, there may be multiple concrete algorithms
that implement the composition operation. For example, there are various concrete
algorithms for model tuning (e.g. successive halving [133, 157|, full grid-search or
randomized grid-search, among others).

Before discussing the implementation of this pattern, we highlight an important

consequence and anti-pattern:

e Importance consequence: An interesting, and often misunderstood, con-

sequence of the pattern is the “currying out of method inputs” — that is, the

2The CrossSectionalRegressor and Forecaster scitypes are defined in Section 5.4 and
8.3.3, respectively.
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inputs to component methods do not become part of the (implementation

of the) composite, and instead inputs to the composite’s methods.?

e Anti-pattern: For example, the operation of tuning a cross-sectional al-
gorithm, if naively implemented, takes the cross-sectional algorithm and
some training/test data on which the best parameters are determined. The
output is the cross-sectional algorithm whose parameter are set to the “best
parameters”. However, this does not follow the composite pattern as outlined
above. If it is correctly followed, the data is not an input to the composition
operation. Instead, tuning is performed inside the fitting method of the
composite, which has access to the data in deployment. Since the data is
passed to the fitting later anyway (namely: at deployment), there is no need

to pass the data to the composition operation too.

Implementation

For the implementation, the scitype composition pattern depends on the scitype
strategy pattern discussed above. This is because a composite may delegate a
method calls to its components. Call delegation can only be implemented reliably
if the composite can expect components to have a consistent interface. This
is precisely what the strategy pattern ensures. The composite may of course
performs additional operations before and after delegating the call.

For example, consider a composite learning algorithm such as an ensemble. In

this case, at training time, the composite (ensemble) object will delegate the fit

3Currying is a mathematical technique of converting a function that takes multiple input
arguments into a sequence of functions that each take a single input argument. Given a function
f: Ax C — B, currying constructs a new function h : A — [C — B]. That is, h takes an
argument from A and returns a function that maps C' to B. Let us consider the example
of model tuning, particularly the training of a tuned model. In this case, f would be the
naive implementation, taking in some algorithm of scitype A together with data of type C
and returning the tuned algorithm of scitype B, which in the case of tuning will be equal to
A. By contrast, “currying out the method inputs” means to first apply the tuning composition
operation to construct a new composite object with a fit method of type [C' — B]. We can
then call £it with suitable training data of type C' to produce the tuned algorithm of scitype B.
Note that two operations happen during training: finding the best set of hyper-parameters and
fitting a model with the best set of hyper-parameters to the training data.
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call to its components (ensemble members, i.e. individual learning algorithms).
At prediction time, the composite will first delegate the predict call and then
aggregate the predictions from the individual components before returning them.

Composition pattern can be implemented as follows:

e (Compositions are concrete classes with composite’s scitype. The composition
operation is modeled by a concrete class which has the scitype of the
composite. For example, thresholding a cross-sectional regressor’s output is
implemented as a class that also follows the cross-sectional regressor scitype
and its scitype specific strategy pattern. This is in line with principles 3 in
Section 6.2.2. Note that composition learning algorithm are often modular:
they work with any algorithm of a certain scitype and may even work
with multiple scitypes. However, in some cases, composition algorithms
are associated with specific concrete algorithms. In these cases, they are
implemented as separate classes, following the compile-time composition

pattern discussed below.

e Composition as model specification. The components are passed to the
composite as objects at construction time, together with hyper-parameter
settings specific to the composite, using a combination of the composite
pattern and the factory pattern from Gamma et al. [90]. In composition that
require multiple instantiations of the same object, the prototype pattern [90]
is used to create new instances by copying the given “prototype” instance
(e.g. in homogeneous ensembling a single instance is cloned a number of times
to create the ensemble). This also leads to a first-order-like specification

syntax in accordance with requirements in Section 6.2.2.

o Components are properties of the composite. The components are treated as

properties of the composite.

e Component state as part of the composite’s state. The components become
part of the composite’s state. Whenever a component’s state changes, the

composite’s state changes.
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e Compositionality requirements for universal and scitype-specific interfaces.
In order for ML composition to work well, composition must allow nested
hyper-parameter and parameter access. Component interface points should
be visible via the composite interface points (e.g. hyper-parameter inter-
faces or state interfaces). This also puts additional requirements on the
implementation of the universal interface points as well as scitype-specific
interface points, including conventions on how to access hyper-parameters
of components via the hyper-parameter interface of the composite, or how
to list state variables of components via the state variable interface of the

composite.

We proceed with outlining some variation of the pattern depending on the

nature of the composition operation.

o Adapter pattern for reduction. For the reduction case, the adapter pattern
from Gamma et al. [90] is suitable, in the form of adapting the input scitype
to the interface of the output scitype. By adapting the interface of one
algorithm to that of another one, the adapter pattern lets algorithms work

together that could not otherwise because of incompatible interfaces.

o Wrapper and visitor patterns for simple compositions. In the case of simple
modifications or reductions, wrapper and visitor patterns from Gamma et al.

[90] may be alternatives worthwhile considering.

Note that in all of the above special cases, except reduction, the composite’s scitype

depends on the input scitype(s). We call these operations “output-polymorphic”.

e Strategy dispatch for output-polymorphic composition. If there can be mul-
tiple composite scitypes dependent on component scitype, this behavior can
be modeled by strategy dispatch on input scitype. This can be achieved
with a suitable application of the strategy pattern (selecting by component
scitype), by run-time decoration dependent on component scitype following
the decorator pattern from Gamma et al. [90], by method dispatch (on

component scitype), or a suitable combination thereof.
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Examples

In scikit-learn [205], the tuning operation GridSearchCV and pipelining op-
eration Pipeline adhere to the composite pattern. Both operations are output-
polymorphic. GridSearchCV addresses the output-polymorphism by method
polymorphism (the score method) and run-time decoration. For example, in
scikit-learn, the GridSearchCV class exposes certain methods from its compon-
ent algorithm. Pipeline addresses the output-polymorphism by method dispatch

(to predict or transform depending on resultant scitype).

6.3.4 Scitype composition patterns at compile-time

There are situations in which operations may be preferable on the class level (i.e.

at compile-time) rather than on the object level (i.e. at run-time).

Description

The most common situations are as follows:

o Composition at compile-time. Creating a class whose instances are compos-

ites as if obtained by the scitype composition pattern.

e Contraction to a primitive. Turning a composite with specific parameter
settings into a predefined object, for example creating a class whose instances
are fully specified cross-sectional prediction pipelines with a given parameter

specification.

e Contraction of components. Removing the component hierarchy while

leaving parameters settable at construction.

e Contraction of parameters. Fixing some parameters or components to

specific values at compile-time.*

4Mathematically, this is related to the idea of partial function application, in which we fix a
number of input arguments to a function producing a function of smaller arity.

145



CHAPTER 6. DESIGN PRINCIPLES AND PATTERNS

The main advantage of compile-time composition over run-time composition

are as follows:

e Leveraging blueprints to create other blueprints, for example, bulk-converting
loss functions for cross-sectional regression to loss functions for cross-sectional

prediction of numerical-valued sequences or segmentation.

o Fizing a reference implementation for an important composite algorithm,
for example, for convenience in frequent reuse or reproducibility. A common
example is the composite of a grid-search tuned support vector machine
with prior input normalization, as the algorithm does not tend to perform
well in isolation. This is especially important in ML with time series where

many state-of-the-art algorithms are composites.

We proceed with outlining some variation of the pattern depending on the

nature of the composition operation:

o Compile-time decoration. This is using the decorator pattern from Gamma
et al. [90] (at compile-time), and is mostly suitable for operations with
a single component, for example, modification or simple reductions. The

pattern is used to decorate or wrap the component on class-level.

o Compile-time factories. This is using the factory pattern from Gamma et al.
[90] (at compile-time). A typical implementation would suitably construct

the final composite at construction of the factory class and return itself.

Examples

In scikit-learn [205], there exists LogisticRegressionCV and other related
“compiled” tuning classes. These classes implement tuning meta-algorithms for
specific concrete algorithm (e.g. LogisticRegression) which are more efficient

than modular composition via GridSearchCV.
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Any naive definition of short-hands for a frequently used composites is compile-
time composition. Applying standard reductions such as thresholding in probabil-

istic classifiers can be seen as an instance of compile-time reduction.

6.3.5 The scitype co-strategy pattern

The last design pattern we propose is the “scitype co-strategy pattern”.

Description

The pattern abstracts and encapsulates key concepts related to model specification
or task specification as objects in their own right and with their own scitype.
We call these concepts “motifs”. Examples of such motifs include the forecasting
horizon or complex model hyper-parameters. Note that the scitype is not defined
from first principles in relation to a learning tasks, but in secondary relation to
the primary object(s) from which it is abstracted.

We call this the co-strategy pattern because it forms the counterpart to the
strategy pattern. Co-strategies often implement what one may conceptually define
as a “specification”, for construction or behavior of an algorithm. However, we
avoid that term since “specification pattern” is an established design pattern with
a different meaning.

The main use cases include:

o Model specification. Setting the values of hyper-parameters at model spe-
cification, especially if these hyper-parameters represent complex objects
themselves, for example specifying the kernel function in a support vector

machine.

e Tuask specification. For example, specifying task information, such as the
target variable or forecasting horizon, and passing that information to
learning algorithms, especially if representing that information requires

complex objects.

147



CHAPTER 6. DESIGN PRINCIPLES AND PATTERNS

e Model evaluation workflows. Specifying model evaluation workflows, for

example re-sampling schemes such as cross-validation.

Implementation
The pattern can be implemented as follows:

e (Consistency of co-strategies. If the same conceptual motif occurs as para-
meters or arguments in the context of multiple operations, it should be
handled by co-strategies of the same scitype. For example, if cross-validation
specifications appear in tuning operations and evaluation workflows, they
should be handled by the same class or scitype, as opposed to one class for

tuning and one class for evaluation.

e Use of the strateqy pattern for the motif. The scitype strategy pattern can
implement a “conceptual kind” of the motif. For example, specification of a
concrete class for a certain type of learning task, with instance representing
specific tasks with reference to a data set to which a learning algorithm is

applied, or specification of cross-validation parameters used in model tuning.

e Methods implement operations intrinsic to the motif. Functionality that is
specific to the motif without the context should be located with the class
implementing the motif rather than the related primary object. For example,
if the motif abstracted is a data transformation, functionality to execute the
data transformation should be localized with the specification of the data
transformation. Or if the motif is task specification, functionality related to
the task specification should be located with the class representing the tasks
specification (e.g. manipulations of the forecasting horizon should reside in

the class implementing the forecasting horizon).

Examples

Cross-validation specifications (such as the cross-validators in the model_se-

lection module of scikit-learn) can be seen as a co-strategy obtained from
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encapsulating the configuration for cross-validation in tuning via GridSearchCV.
Transformers, a widely used conceptualization of data manipulation operations
(e.g. feature extraction) used as part of a pipeline composite, can also be considered
a co-strategy obtained from encapsulating prior data manipulation steps in the
modification in which we first perform the data manipulation and then apply the

cross-sectional algorithm.

6.4 Prior art

We are unaware of any literature that formulates design principles specific to ML
toolboxes and derives these from domain-driven conceptual modeling. To our
knowledge, while there a number of references that discuss design principles, dis-
cussion usually take place in the context of a specific toolbox without generalizing
principles beyond that setting. For example, Buitinck et al. [46] discuss some of
the consequences mentioned above: compare separation of concerns in Section
6.2.1 with the banana/gorilla/jungle metaphor, consequence 1 and 3 in Section
6.2.2 with “non-proliferation” and “composition”, and consistency of syntax in

Section 6.2.3 with “consistency”.

The design patters, to our knowledge, are entirely novel in the sense of general
and systematic formulation, while drawing inspiration from the classical and
non-ML-specific software design patterns put forward by Gamma et al. [90] and
domain-driven design practice described by Evans [78]. Many of the patterns
presented here have been implicitly used in the design or implementation of existing
toolboxes, notably Weka [101], scikit-learn [46, 205, 256], m1r3 |28, 151] and
MLJ [31], but without being explicitly identified as generalizable design patterns.
The co-strategy pattern, and especially the encapsulation of task information
in objects, is partially inspired by the APIs of m1r3 [28, 151] and the openML
platform [252].
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6.5 Concluding remarks

In this chapter, we derived key object-oriented design principles and patterns
from our previous conceptual analysis in Chapter 5. These principles and patterns
address the developer’s problem, stated in Section 4.2, which poses the research
question of how to translate key concepts from ML theory into software. They
are the second research contribution of this thesis as laid out in Section 1.6.

In particular, we first derived three general guiding principles for ML toolbox
design, advocating for the architectural separation of key conceptual concerns,
scitype-driven encapsulation as well as domain-driven syntax. Inspired by the
classical software design principles proposed by Gamma et al. [90], we then derived
key design patterns from these principles. Our design patterns provide reusable
solutions to recurring problems in toolbox design.

Throughout the chapter, we motivated and illustrated our principles and
patterns with the example of scikit-learn. We hope to have shown that our
principles and patterns can explain key aspects of existing frameworks like scikit-
learn.

In Chapter 8, we will use our principles and patterns, together with the
taxonomy of tasks developed in Chapter 3, to design sktime. Before discussing

the design of sktime, we will will review related software in the next chapter.
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Chapter 7

A Review of Related Software

7.1 Introduction

One of the main goals of this thesis is to develop a unified software framework
for ML with time series. Before we discuss the design and implementation of
sktime in Chapter 8, we will review related software in this chapter. The review

constitutes the third research contribution of this thesis as laid out in Section 1.6.

Our review focuses on open-source software in Python, mainly because we
choose to implement sktime in Python. Our choice of programming language
is motivated in Section 8.7. However, wherever relevant, we will also include

software in other popular programming languages, particularly Java, R and Julia.

As we will see, various well-established ML frameworks exists, but most of
them focus on cross-sectional data. To our knowledge, no comparable frameworks
exist for ML with time series. At the same time, various smaller toolboxes exist for
time series analysis, but most of them are limited in important respects: they focus
on particular model families, learning tasks or steps in typical modeling workflows

and often lack integration with more foundational cross-sectional frameworks.

The rest of this chapter is organized as follows: We start by reviewing cross-
sectional frameworks in Section 7.2. We then turn to time series analysis toolboxes

in Section 7.3. Finally, we review time series data containers in Section 7.4.
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7.2 Cross-sectional machine learning toolboxes

The software ecosystem for the cross-sectional ML setting, as defined in Section
2.5, generally seems to be more mature than the time series setting, with various
well-developed toolboxes and major frameworks.

The most popular framework for cross-sectional ML is arguably scikit-learn
[46, 205, 256] in Python. Similar frameworks are available in other languages.
In Julia, there is MLJ [30]. In Java, there is WEKA [101, 112|, which additionally
offers a graphical user interface (GUI). In R, there is m1r3 [28, 151], caret [149]
and tidymodels [148, 149|, which form part of a wider ecosystem of related ML
toolboxes. All of these frameworks offer an extensive range of tools, covering
typical practitioners’ workflows from model specification, training and tuning to
validation and deployment. They include algorithms and functionality for data
transformations, composite model building, tuning and model evaluation.

More importantly, these frameworks have established standards for the struc-
ture and language of applications and other toolboxes in the same domain. This
includes key design patterns, such as representing learning algorithms as objects,
the adherence to a uniform interface for fitting, predicting, handling of hyper-
parameter and composite model building. This is typically supported by a clear
separation of components (e.g. data, algorithms), separation of algorithm types
for different learning tasks (e.g. classifiers and regressors), and clear hierarchies
between primitive algorithms (e.g. random forest) and higher-order functional-
ity (e.g. pipelining). Many of these patterns are captured in reusable design
templates. For example, scikit-learn provides templates for different types of
cross-sectional algorithm (e.g. classifiers and regressors). Through these templates,
they have set standards which have been adopted by other toolboxes in the ecosys-
tem (see e.g. mlextend [216] and LightGBM [141]). As a result, most applications
and toolboxes have a similar structure. They are more consistent, easier to use
and more interoperable.

However, these frameworks have a clearly defined scope. They are limited to
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cross-sectional data. Most if not all of their functionality assumes cross-sectional
data. As we have seen, cross-sectional data is typically expected to be formatted
in a tabular two-dimensional array, with rows representing i.i.d. instances and
columns representing features. Time series data does not naturally fit into this
setting due to its inherent dependency structure. Time series observations typically
depend on past observations, violating the assumption of cross-sectional data of
having i.i.d. observations.! As a consequence, cross-sectional frameworks usually
consider ML with time series out of scope or provide only limited functionality

that can be supported within a cross-sectional API.

7.3 Time series analysis toolboxes

Most of the major ML libraries, as discussed above, focus on the more traditional
cross-sectional setting. Beyond that setting, toolbox capabilities remain limited.
We will now review open-source toolboxes for time series analysis in Python.
Numerous specialized time series analysis toolboxes exist. Some provide rich
interfaces to specific learning tasks (e.g. forecasting or time series classification).
Others provide implementations of specific model families (e.g. ARIMA). Still
others provide tools for specific steps of common time series modeling workflows
(e.g. feature extraction). In the following sections, we discuss popular open-source
Python libraries in more detail.? Table 7.1 provides an overview of these libraries

and their key functionality. Figure 7.1 shows the number of downloads for libraries

!The problem is not the data format per se, but rather the assumed statistical setting in
which these algorithms have been developed. For example, one could represent a single time
series in the tabular format, with rows representing time points and columns variables. However,
this would violate the assumption that rows represent i.i.d. instances. While this may still
provide a working solution in some cases, common model evaluation workflows that assume i.i.d.
data are no longer reliable (e.g. random splitting of the data into train and test folds during
cross-validation). Similarly, one could represent panel data in the tabular format, with rows
representing instances and columns time points (at least univariate equal-length panel data).
Again, while this may provide a working solution, it would violate an implicit assumption on
the data. In other words, even though the data is represented in the same format, the meaning
of the data has changed.

20ur selection of libraries is partially based on a public and collaborative list of time series
analysis libraries available at https://www.sktime.org/en/latest/related_software.html.
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Figure 7.1: Number of monthly PyPI downloads for popular open-source time
series toolboxes in Python
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Notes: The y-axis shows the total number of downloads per month from the Python Package
Index (PyPI) for popular time series analysis toolboxes. The x-axis shows the month, for the
last 2 years. Note that the number of downloads from PyPI may not be a reliable estimate
of the number of users, as the number of downloads also include downloads from automated
systems such as continuous integration services. Also note that libraries are not independent.
For example, every time someone downloads sktime from PyPI, its dependencies are also
downloaded, including statsmodels and pmdarima, among others. A full list of dependencies is
given in Section 8.7.

over the last 24 months.

7.3.1 Time series classification /regression/clustering

Some libraries extend libraries for the cross-sectional setting, such as scikit-
learn or Weka, to the closely related series-as-features setting, defined in Section
3.3.1. The series-as-features setting includes the time series learning tasks of
time series classification, regression and clustering. While these libraries provide
functionality for one or more of these tasks, they usually do not provide tools for
other tasks. They also often lack tools for reduction to related cross-sectional

tasks.

Notable examples of series-as-features libraries include the following:

e tslearn [244] offers algorithms and composition tools for time series classi-

fication and clustering.
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e pyts [80] provides algorithms and composition tools for time series classific-

ation.

e seglearn [47| provides scikit-learn compatible composition tools for re-
duction from time series tasks to cross-sectional classification and regression,

however without providing dedicated API for the time series tasks.

e dtadistance [186] provides time series clustering algorithms and distances

for comparing time series (e.g. dynamic time warping).

In terms of API design, tslearn and pyts closely follow scikit-learn, ac-
cepting panel data instead of cross-sectional data as input data during fitting.
As a result, they provide APIs largely in line with the principles and patterns
outlined in Chapter 6. For example, they separate model specification from data
and task specification (see Section 6.2.1), follow scitype-driven encapsulation (see
Section 6.2.2) and implement key universal methods (see Section 6.3.1) and the
scitype strategy and composition patterns (see Sections 6.3.2 and 6.3.3).

The main downside of these libraries is that they do not offer a unified interface
for learning tasks beyond the series-as-features setting of classification, regression
and clustering. Note that while these libraries can still be used to solve other
tasks (e.g. forecasting via reduction), they do not provide dedicated APIs for
these tasks. Consequently, practitioners are required to write additional code to
implement reduction approaches. For example, in order to solve a forecasting task
with seglearn, one can use the provided functionality to transform the training
series into the required cross-sectional data format and then apply cross-sectional
regression algorithms from scikit-learn. However, seqlearn does not provide
a dedicated forecasting API (e.g. for specifying task information such as the
forecasting horizon). Instead, data and task information have to be converted
first into a format that is compatible with the cross-sectional API. We discuss
forecasting API design in more detail in Section 8.3.3.

Also note that, to the best of our knowledge, there exists little literature and
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software on time series regression as defined in Section 3.3.1.3 This is surprising
because many time series classifiers are composite algorithms that internally rely
on a cross-sectional classifiers. So, to define time series regressor, one would simply
have to replace the final cross-sectional classifier with its regressor counterpart.
Yet, we are not aware of any Python library that provides time series regression

algorithms.

7.3.2 Forecasting

There are a number of toolboxes designed for solving forecasting tasks.* One
of the most popular forecasting toolboxes is arguably forecast [127]| developed
by Hyndman and Khandakar [124] in R, with its newest iteration called fable
[249]. Together with their companion libraries (e.g. hts [115, 121] or tsfeatures
[218]), they provide extensive functionality for forecasting, including statistical
algorithms (e.g. exponential smoothing) and encapsulated ML algorithms (e.g.
a common neural network architecture), as well as tools for data preprocessing,
visualization and model evaluation. While there is still no comparable toolbox in

Python, a number of forecasting toolboxes do exist:

e statsmodels [207] is mainly a library for econometric and statistical analysis,
implementing many of the traditional panel data methods® and forecasting
algorithms. It has submodules for generalised linear models, mixed effects
models as well as for classical time series analysis and forecasting, including
auto-regressive (AR), auto-regressive integrated moving-average (ARIMA),
vector auto-regressive process (VAR) and Gaussian state space models.

But it lacks the typical ML algorithms and tools for model selection and

30ne of the exceptions is the repository developed by Hamilton [102] which is a small toolkit
that provides specific reduction approaches from different time series learning tasks, including
time series regression, to cross-sectional tasks. Also see Tan et al. [243] and the accompanying
code repository.

4For a brief overview of available Python libraries for forecasting, also see Januschowski,
Gasthaus and Wang [134]. For a larger encyclopedic survey, with a focus on the ecosystem in R,
see Petropoulos et al. [209].

SFor panel data modeling, also see 1inearmodels [17].
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evaluation and is not compatible with more foundational frameworks like

scikit-learn.

gluonTS [4] provides a deep learning framework for probabilistic forecasting.
While it does offer interfaces to other packages, including forecast in
R, gluonTS focuses on deep learning and offers only limited support for
statistical models, model composition or reduction to tasks covered by more

foundational ML libraries like scikit-learn.

pmdarima [233] ports forecast’s Auto-ARIMA algorithm [124] into Python
and provides additional tools for seasonality testing, preprocessing and

pipelining, but is limited to the ARIMA model.

fbprophet [248] is available in both R and Python and provides a single
algorithm based on a general additive model designed for modeling different

forms of seasonality.

PyFlux [246] offers a wide range of classical time series analysis and fore-
casting models. It implements generalized autoregressive conditional hetero-
skedasticity (GARCH) [32] and generalized autoregressive score (GAS) [62]
models, among others. But like statsmodels, it lacks support for typical

ML tools for composite model building, tuning and reduction.

darts [251] provides various forecasting algorithms and composition tools,
interfacing other libraries such as statsmodels, but lacks integration with

more foundational frameworks like scikit-learn.

HCrystalball [106] extends scikit-learn to forecasting, again interfacing
other libraries such as statsmodels and fbprophet with limited support

for composite model building.

pysf [98] provides scikit-learn compatible composition functionality for

supervised forecasting. But it is still at an early stage of development.
tbats [130] provides BATS and TBATS algorithms [166] ported from R.
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In addition, there are a number of repositories which collect and combine
popular forecasting models via interfaces to existing libraries and tools to automate
workflows, such as atspy [236] and the Microsoft forecasting repository®, but none
of them support composite model building.

Many of the existing libraries are collections of particular forecasting methods
or family of methods, without providing a software framework as describe in
Section 4.2.2. This includes pmdarima, fbprophet and tbats. Other libraries
like HCrystalball, darts, gluonTS and PyFlux implement frameworks, but are
mostly limited to the learning task of forecasting, with some functionality for
closely related tasks of time series annotation. As a result, they only offer limited
support for reduction and require custom code from users to implement reduction
approaches and applications of cross-sectional or series-as-features algorithms.

statsmodels is arguably the most established library for forecasting algorithms
in Python. However, statsmodels API lacks many of the key features of scikit-
learn and often does not align with our principles and patterns defined in Chapter

6. Key points of departure from these principles and patterns include:

e Scitype-driven encapsulation is not consistently implemented (see Section
6.2.2). For example, many algorithms of the same scitype have different
interface points for generating predictions. This deviates from the scitype

strategy pattern (see 6.3.2).

e Given the deviation from the scitype strategy pattern, the scitype compos-
ition pattern is not followed either (see Section 6.3.3). As a consequence,
composite models are often implemented in a single, fixed class or through
optional hyper-parameters rather than through reusable composition al-
gorithms with modular components. For example, deseasonalisation or
detrending strategies are not configurable as components of a pipeline but
instead as hyper-parameters. Model composition is complicated by the

fact that model specification is not separated from data specification in

Shttps://github.com/microsoft/forecasting

159


https://github.com/microsoft/forecasting

CHAPTER 7. A REVIEW OF RELATED SOFTWARE

statsmodels (see Section 6.2.1). Instead of specifying the training data
during fitting, it has to be passed already during model construction. This
makes it difficult to specify composite models such as ensembles or pipelines,

without specifying the same training data for each component model.

e Algorithms are conceived of as value objects rather than entity objects (see
Section 5.2.4 and 6.2.2). Fitting of algorithms produces a new value object,
rather than changing the state of the algorithm itself. This makes it harder
to trace fitted objects back to the algorithm and the hyper-parameters used
for fitting.

e Algorithms lack important uniform implementations of universal interface
points such as hyper-parameter inspection (see 6.3.1). For example, unlike

scikit-learn, statsmodels does not have a get_params methods.

Also note that all of the above toolboxes define incompatible APIs. They
require different ways of specifying, fitting and applying algorithms. For example,
all of them require a different representation of the forecasting horizon, a key piece
of information for specifying forecasting tasks. statsmodels requires an interval
with a start and end value based on the absolute index of the training series.
fbprophet requires the absolute time points. pmdarima requires the number of
steps ahead relative to the end of the training series. Similarly, other libraries
require varying specifications of the forecasting horizon. Neither follows the
proposed co-strategy pattern which would allow us to specify the a more uniform
task specification (see Section 6.3.5). We return to this point when discussing the
implementation of sktime in Chapter 8.

In summary, while some of these toolboxes provide rich frameworks for forecast-
ing, they often specialize on certain methods, lack support for model composition,
are incompatible with more foundational frameworks such as scikit-learn (e.g.
via reduction), and are often incompatible with each other. For practitioners,
this makes it hard to combine functionality from different toolboxes and to fully

leverage reduction relations. For developers, this makes it hard to build and
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integrate new methods without having to re-implement functionality that already

exists elsewhere.

7.3.3 Transformations

As we have seen, most of the existing ML toolboxes focus on the more traditional
cross-sectional setting. As discussed in Section 2.5, this setting presupposes cross-
sectional data, which is typically expected to be formatted in a tabular matrix.
If one wants to leverage the methods developed in this setting for solving time
series tasks (i.e. via reduction), it is necessary to first transform the given time
series data into the required tabular input format. There are a few specialized

libraries that provide different strategies for that transformation:

e tsfresh [55, 56| allows to extract numerous features from time series using
various time series analysis and decomposition techniques and to select the
most relevant features based on statistical hypothesis testing. The extracted
features describe basic characteristics of the time series, such as the number
of peaks, the maximal value or more complex features such as the time
reversal symmetry statistic. tsfresh support panel data and thus allows to
transform panel data into the expected tabular format, so that one can apply
cross-sectional algorithms. Although tsfresh even offers a transformer that
can be integrated into a scikit-learn pipeline, it is still restricted by
scikit-learn’s requirement that all input data — including for pipelines —
must be in a tabular format. We, therefore, still have to write additional
code to combine functionality from both libraries. In terms of API design,
this can be seen as an instance where the scitype of the feature extraction
algorithms implemented by tsfresh does not match with the class that
implements the algorithm. That is, tsfresh implements algorithms that
transform panel data into cross-sectional data, but is encapsulated in a
transformer class defined in scikit-learn as a transformer that transforms

cross-sectional data to cross-sectional data (see Section 6.2.2 for the principle

161



CHAPTER 7. A REVIEW OF RELATED SOFTWARE

of scitype-driven encapsulation).

e STUMPY [153] is a library for computing what is called the “matrix profile”,
a vector that represents the distances between all sub-sequences of a given

length within a time series and their nearest neighbors [269].”

e hctsa (highly comparative time series analysis) [86-88| is a toolbox for
extracting, visualizing and interpreting time series features. While based in
MATLARB, hctsa provides an interface to Python. The related “catch22” set
of 22 canonical time series characteristics can be extracted with the catch22

library [172, 173].

In summary, the above toolboxes provide fundamental techniques to analyze
time series. As such, they are applicable to a variety of time series learning tasks.
But they only provide functionality for a specific step in typical workflows without
the necessary tools to compose the workflow itself. Furthermore, they often do not
provide or follow a consistent API for specifying and applying transformations,

making it hard to combine them in the same applications.

7.4 Time series data containers

Any data analysis library depends on a data container. The data container is
fundamental. It determines how the data in memory is represented, accessed and

manipulated. Notable data containers in Python include:

e NumPy [104, 201, 258| augments Python by array objects for multi-dimensional
data and fundamental data scientific operations. NumPy has become the
standard library for handling numerical data and scientific computing in
Python [190, 200]. However, NumPy lack a meaningful representation and in-
tegrated tools for labeled data, i.e. data that comes with metadata associated

with each data point (e.g. column names or time index).

"For more details on the matrix profile and its applications, see https://www.cs.ucr.edu/
~“eamonn/MatrixProfile.html.
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e pandas [184, 185] extends NumPy’s arrays to data structures and tools with
support for type-heterogeneous data (e.g. columns with different data types)
and integrated handling of data labels, including column names and time
indices. pandas has become the most comprehensive and flexible data
container in Python. It now is the standard library for most complex data
processing in Python. It supports various operations based on time indices
(e.g. up/down sampling and slicing based on time points). However, while it
offers extensive tools for processing time series, it is fundamentally designed
for handling tabular data.® For example, to represent panel data, one usually
has to work with a multi-index, where the first index level represents instances
and the second level represents the time index. While this representation does
allow to store and manipulate panel data, it has limitations for developing
ML workflows. The reason is that in this representation, rows no longer
represent i.i.d. instances. Much of the existing functionality for re-sampling
provided by cross-sectional toolboxes like scikit-learn is therefore no
longer usable. In addition, this representation usually assumes that the time

index is shared either across instances or across variables.

e xarray [118] extends pandas to hierarchical (or multi-dimensional), labeled
data structures. However, xarray does not offer support for variable-length

panel data.

e awkward-array (211, 212] is a library for hierarchical variable-length data,
partly based on NumPy, with support for data labels and data type hetero-
geneity. While awkward-array does allow to represent variable-length panel

data, it has limited support for time index operations.

In summary, there are powerful and flexible data container libraries in Python,

most notably NumPy [104] and pandas [185], with extensive support for time series.

8Note that pandas historically supported a data structure called the Panel for three-
dimensional data, but its fixed rank design made it unsuitable for applications that require
arbitrary rank arrays. Additionally, many of the features that made the pandas’ DataFrame
and Series objects so useful, were not fully available on the Panel, and it has been deprecated
as of version 0.20 in favor of xarray.
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However, most of them have limitations for developing ML libraries for time series,

especially in the context of panel data and time-heterogeneous data (see Section

3.2).

7.5 Concluding remarks

This chapter reviewed open-source toolboxes for time series analysis and data
handling, as well as more foundational toolboxes for cross-sectional ML. The
review forms the third research contribution of this thesis as described in Section
1.6.

In summary, we have seen that major toolboxes exist for the cross-sectional
setting,. But they usually consider time series analysis out of scope or only
provide limited support for temporal data. Beyond the cross-sectional setting,
toolbox capabilities remain more limited: various specialized toolboxes exists,
but no overarching frameworks exist, at least none comparable to frameworks
such as scikit-learn. The main limitations of the current open-source time
series analysis ecosystem in Python can be summarized as follows. Libraries
often (i) lack integration with more foundational cross-sectional toolboxes, (ii)
are often incompatible with other time series analysis libraries, (iii) provide only
little support for composite model building or (iv) focus on specific learning tasks,
model families or workflow steps. As a result, practitioners typically face one of

the following options, all of which have drawbacks:

e Use of a specialized library for specific model families, learning tasks or
modeling steps (e.g. statsmodels [207]). The drawback is that these libraries
offer limited functionality (e.g. usually no tools for model composition or
tuning) and are incompatible with other libraries in the same domain. This
makes it hard to combine functionality from different libraries and compare

algorithms.

e Use of reduction from a time series task to a cross-sectional task. This is
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typically done via some data transformation, with feature extraction being
the most common one (e.g. tsfresh [56]), and application of a cross-sectional
algorithm from any library that provides cross-sectional algorithms. The
drawback in this case is that reduction, without an overarching framework,
requires hand-crafted and often error-prone code. The reduction approach
is often neither adaptive, modular, composable nor tuneable (see Section
3.4). Extra care is needed in interpreting performance estimates since the
estimates from the reduced task in general do not hold for the original task

that one tries to solve.

Use of deep learning frameworks (e.g. Pytorch [203] or TensorFlow [1|) with
specific architectures for sequential data (e.g. recurrent neural networks [109,
221]). The drawbacks here are the same as in the first option: without a
unified interface, it is hard to combine and compare different algorithms. In
addition, this option usually requires practitioners to be capable of building

the specific architectures for sequential data.

To address these issues, the goal of this thesis is to develop a unified framework for

ML with time series. We discuss the design and implementation of that framework

in the next chapter. Ultimately, our aim is to make the time series analysis

ecosystem more usable and interoperable as a whole.
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Chapter 8

sktime: A Unified Framework for

Time Series Analysis

This chapter is partly based on:

e Markus Loning et al. ‘sktime: A Unified Interface for Machine Learning with

Time Series’. In: Workshop on Systems for ML at NeurIPS 2019 (2019)

e Markus Loning and Franz J. Kirdly. ‘Forecasting with sktime: Designing
sktime’s New Forecasting API and Applying It to Replicate and Extend the
M4 Study’. In: arXiv preprint (2020)

8.1 Introduction

In this chapter, we describe the design and implementation of sktime! — a unified
software framework for ML with time series. The design of sktime is based on
the combined insights from the previous chapters, including the taxonomy of
time series learning tasks from Chapter 3, our conceptual model of ML theory

and scitypes from Chapter 5, as well as our design principles and patterns from

!sktime is available at https://github.com/alan-turing-institute/sktime. The name
sktime stands for “science toolkit for time series” following a common naming convention in the
Python ecosystem, in which multiple “science toolkits”, or “scikits” for short, have been developed
(e.g. scikit-learn). “scikit” is then often further abbreviated to “sk” (e.g. scikit-learn is
often called sklearn).
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Chapter 6. sktime forms the fourth research contribution of this thesis as laid
out in Section 1.6.

As discussed in Section 4.2, we focus on design as a result, rather than design
as a process. In terms of overall architecture, sktime is organized into modules.
There is one module for every supported task, including time series classification,
regression and forecasting. Tasks provide a set of cohesive, high-level categories
to group functionality, while being part of the unified framework highlights their
relations. Additional modules exist for shared functionality such as transformations
and time series distances, among others. In the following, we will discuss core
modules in greater detail. In particular, we will motivate and describe the design
of key elements within these modules, their interfaces and the relations between

them.

sktime follows the design principles and patterns proposed in Chapter 6. This
chapter will illustrate how these principles and patterns can guide practical design.
Much of the design is of course not entirely new. As we have seen in previous
chapters, our approach draws design ideas from existing toolboxes and classical
software design. However, to our knowledge, we are the first to fully motivate and

derive a design from general principles and patterns for ML toolbox design.

Since its release in 2019, sktime has become one of the most popular open-
source Python libraries for ML with time series. It has grown from the initial
academic collaboration into a community-driven project with contributors from
around the world. At the time of writing, sktime has over 80 contributors, 500
forks, 100 dependent projects, and 3.9K stars on GitHub. sktime is now used in
methodological and applied research for ML with time series as well as commercial
and industrial applications.

The rest of this chapter is organized as follows: We start in Section 8.2 by
defining sktime’s scope. In Section 8.3, we describe the design for primitive
(or atomic) algorithms, with a focus on time series classification, regression and
forecasting. In Section 8.4, we discuss the design for composite algorithms (e.g.

ensembling, pipelining, tuning and reduction). In Section 8.5, we discuss the
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design of time series transformations. Throughout these sections, we will highlight
novel design ideas and illustrate our design choices with code examples from
sktime. The examples are based on version 0.6.0 of sktime. In Section 8.6, we
will give an overview of the implemented functionality. At the end of the chapter,
we briefly discuss the distribution, community building and development process

of sktime.

8.2 Scope

In this section, we define the scope of sktime in terms of software design, content
and performance. We also motivate the choice of Python, the programming
language in which we have implemented sktime.

Our overall objective is to create a unified framework for ML with time series
that supports multiple learning tasks. We want to provide reusable functionality
that practitioners can import and use when writing new applications as well
as reusable design templates that developers can copy when developing new
algorithms. In this thesis, we focus on three key learning tasks, time series
classification, regression and forecasting, leaving the design and implementation

of functionality for other learning tasks for future work.

8.2.1 Design

Our target audience are data science practitioners capable of basic programming.
In terms of design, the objective is therefore to create a consistent and modular
API, supported by a conceptual domain model and clear design principles. We
wan do this in a programming environment that is accessible to non-ML experts
and reusable in various scientific, commercial and industrial applications. This
is why we focus on building an API that makes use of the enhanced interactive
Python interpreter [206], specifically designed for scientific computing, rather than

expending efforts on creating a command-line interface, let alone a graphical user
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interface (GUI).?

In addition, we aim to reuse available Python libraries as much as possible,
notably NumPy [104|, pandas, SciPy and scikit-learn [205]. We want to ensure
that sktime seem familiar to most practitioners and developers. We aim to follow
scikit-learn’s syntax and logic whenever possible and to reuse much of their
functionality. For other time series libraries, we aim to provide adapters to make

them accessible through sktime’s unified interface.

8.2.2 Content

In terms of the content, the objective is to cover the key steps in typical modeling
workflows. These include: task specification (e.g. the forecasting horizon), model
specification including composite model building, model training, model inspection
and application, model selection (e.g. hyper-parameter tuning using re-sampling
schemes such as cross-validation) and model validation. In this thesis, we focus on
(deterministic) point-predictive modeling workflows (see Section 2.2). In future
work, we want to add support for explanatory modeling (e.g. time series clustering)

and probabilistic predictions.

8.2.3 Performance

In terms of performance, sktime is designed for medium-sized data that fits into
memory of a single machine. For larger data sets, we intend to integrate existing

tools for parallelized and distributed computing over multiple machines (e.g. Dask

219]).

8.2.4 Programming language: The case for Python

While the realization of the proposed framework is not bound to a specific

programming language, we choose Python for its implementation. Python has a

2The interactive Python interpreter, called ipython [206], provides a Read-Evaluate-Print-
Loop (REPL) programming environment which executes code piecewise. It takes in user input,
executes it and returns the result to the user.

170



8.3. LEARNING ALGORITHMS: PRIMITIVES

number of advantages over other common languages used in data science:

e Python is free and open-source unlike MATLAB and other proprietary

software.

e In contrast to more specialized languages such as R, Python is a general-
purpose programming language. It offers good support for object-oriented
programming and allows to implement many different projects in a single
framework. It therefore makes sktime more accessible to non-ML experts
and reusable in various scientific, commercial and industrial environments.
In addition, it keeps setup and dependencies to a minimum and facilitates

software exchange and collaboration among researchers.

e Python has becomes one of the most popular programming languages for
data science. It has caught up, if not surpassed, other languages such as R or
MATLAB. Python has a vibrant community of developers and a continuously
growing ecosystem of stable, well-developed libraries for numerical and
scientific computing, notably NumPy [104|, Matplotlib [119], pandas [185],
and IPython [206] as well as state-of-the-art ML capabilities. In addition,
there is a growing number of tools and web services that streamline the
installation process, lowering the barriers to entry for new users and ensuring
easier reproducibility. These tools enable easier collaboration on software
development, easier writing and sharing of software documentation, and

easier testing of software [217].

8.3 Learning algorithms: Primitives

Having illustrated how scitype-based patterns can motivate and explain design
choices of existing toolboxes such as scikit-learn in Chapter 5, we will now
turn to the design of sktime. We begin, in this section, by discussing the design
of sktime’s API for learning algorithms, the central objects in ML workflows.

We first discuss primitive algorithms (i.e. those algorithms that do not consist
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of modular components). In the next section, we turn to composite algorithms,
including pipelining, ensembling, tuning and reduction.

Our overall approach is as follows:

1. As argued in Chapter 5, in order to define scitypes for algorithms, we first
need a formal problem specification, that is, a learning task. The algorithm
scitype is the counterpart to the task specification. While the tasks defines
what to solve, the algorithm defines how to solve it. We make use of the

taxonomy of time series tasks defined in Chapter 3.

2. We can then derive the algorithm scitype from the task specification. As
discussed in Chapter 5, a scitype defines both an abstract class interface
and key statistical properties. Each algorithm scitype is implemented as
an abstract base class, following the scitype strategy pattern described in
Section 6.3. We discuss universal interface points for learning algorithms

below.

3. Specific algorithms of a given scitype are then implemented as concrete

classes inheriting from the corresponding abstract base class.

Throughout the rest of this section, we will discuss key scitypes in sktime,

particularly the APIs for time series classification, regression and forecasting.

8.3.1 Universal interface points for learning algorithms

Table 8.1 describes universal interface points for learning algorithms. Since
we conceptualize learning algorithms as entity objects, these are based on a
combination of the universal interface points for all conceptual objects listed in

Table 6.1 and for entity objects listed in Table 6.2. We make a few remarks:

e As is standard, we have separate interface points for (i) ingesting data and
fitting of algorithms (e.g. £it) and (ii) the application of the fitted algorithm
(e.g. predict or transform for transformers, as discussed in Section 8.5).

Conceptually, the separation between training and application interface
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points reflects the mathematical distinction between the learning algorithm
and the fitted prediction functional as discussed in 3.3. Practically, fitting a
model is often computationally expensive, and once we have a fitted model
we can use it repeatedly to generate predictions. So, separating the two
methods allows to first fit a model and then deploy it, potentially calling

predict repeatedly, without having to refit it.

e Learning algorithms are conceived of as stateful entity objects. For our
purposes, the only interface points that may change the state are training
and updating. For example, when calling £it, the algorithm’s state changes
from being “unfitted” (or “initialized”) to “fitted”. Note that fit does not
return the prediction functional. Instead, the output is absorbed in the
algorithm object as a state change.® Other interface points may not change
the algorithm’s state. But they may of course access it. For example,
predict may access the algorithm’s state, but may not change it. Because
some interface points, including predict, rely on the fitted state, calling
predict requires a prior call to fit. Calling predict on an unfitted object
will raise an error. Note that objects with other scitypes than the ones
discussed in this thesis may have different interface points for state changes.
The number and quality of interface points that may change an object’s

state, in general, depends on its scitype, as discussed in Section 6.3.1.

e While encapsulation will hide some detail, key information such as state
variables (e.g. fitted model parameters) or hyper-parameters are made

accessible through a common inspection interface.

In the following, we will discuss the API design for time series classification,

regression and forecasting.

3Technically, calling fit returns self, a reference to the fitted algorithm instance, following
scikit-learn API specification. Returning self is necessary to allow method composition, e.g.
chaining method calls.
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Table 8.1: Universal interface points for learning algorithms

Interface point Description

Specification Model construction and specification of hyper-parameter

Training Data ingestion and parameter estimation (e.g. fit)

Application Application of fitted model, typically transforming data or generating
predictions (e.g. predict, transform)

Updating Incremental data ingestion and updating of fitted parameters in an
online learning setting (e.g. update or partial_fit)

Inspection Access to key information such as hyper-parameters and fitted para-
meters (e.g. get_params and get_fitted_params)

Persistence Saving of a fitted model for later deployment (e.g. save, load)

Notes: The universal interface points for learning algorithms listed in this table are derived
from the universal interface points for conceptual models in Table 6.1 and for entity objects in
Table 6.2.

8.3.2 Time series classification/regression

We now describe the design of the time series classification and regression API.
As we have seen in Section 3.3.1, time series classifiers and regressors are direct
extensions of their cross-sectional counterparts to panel data. This is why our
API design largely follows scikit-learn.

Following the formulation of the time series classification learning task in
Section 3.3.1, we can define a scitype for a time series classifier as a combination
of a scitype specifying the interface and its statistical properties. The scitype can
be define as follows:

type TimeSeriesClassifier

params paramlist : paramobject

state model : mathobject

methods fit . (series(Z) x V)M — model
predict : series(Z) X model — Y

A TimeSeriesRegressor can be defined in the same way, adjusting the domain of
the target variable, ), accordingly. The nature of the panel input data, series(Z),
implies three key statistical properties. As in the cross-sectional setting (see
Section 5.4.3), we assume permutation invariability for the i.i.d. instances. We
also still assume variable permutation invariability, where variables now no longer

represent scalar values, but entire series. In addition, we now also assume that the
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Example 3: sktime’s API for time series classification

i classifier = TimeSeriesForestClassifier(n_estimators=100)
> classifier.fit(X_train, y_train)
s y_pred = classifier.predict(X_test)

Notes: X_train and y_train denotes the panel training data and label vector, respectively,

X_test the panel test data, and y_pred the predicted label.

result of fitting may change if the order of individual (time series) observations

within an instance is permuted.

Following the scitype strategy pattern, we can implement an abstract base
class from the above scitype. Concrete time series classification algorithms can
then inherit the scitype-defining interface from the base class. Example 3 shows
sktime’s core API for time series classification. The key difference to scikit-
learn’s API is that X_train and y_train now represent panel data, not cross-
sectional data. We will later describe key composition algorithms for time series

classification and regression, but first discuss the forecasting API.

8.3.3 Forecasting

We now describe the design of sktime’s forecasting API. The design of the
cross-sectional API may have been obvious, especially in hindsight, given the
various well established frameworks such scikit-learn. Similarly, the time series
classification and regression API is relatively straightforward because it is a direct
extension of the cross-sectional API. Design of the forecasting API, on the other,
is less obvious. Various toolboxes exist, as discussed in Section 7, but none of

them has been able to establish a standard API.

As before, we follow the strategy pattern and encapsulate forecasters in classes
with a uniform interface. The interface is based on the algorithm scitype which
we derive from the forecasting task defined in Section 3.3.2. The scitype can be

specified as follows:
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Example 4: sktime’s API for (univariate) forecasting

+ forecaster = ExponentialSmoothing(trend="additive")
> forecaster.fit(y_train)

s fh = ForecastingHorizon ([1, 2, 3])

+ y_pred = forecaster.predict(fh)

Notes: y_train denotes the training series. £h denotes forecasting horizon indicating a three
step ahead prediction relative to the end of the training data. y_pred denotes the series of

predicted values.

type Forecaster

params paramlist : paramobject

state model : mathobject

methods fit : Z — model
predict : T xXmodel — Z

The time series nature of the input data implies two key statistical properties:

e Orderedness of time series observations, meaning that shuffling the observa-

tions may change the results of fit,

e A shared domain between the observed time points in Z and the forecasting

horizon T .

Example 4 shows how the scitype is reflected in sktime’s API. We discuss key

design decisions in more detail below.

Model specification interface

Following the design principle of separating model specification and data specific-
ation (see Section 6.2), the constructor takes in only hyper-parameters but no
data. This is in line with scikit-learn’s API specification, but different from
statsmodels’ API [207], where the training data has to be specified during model

construction.

Training interface

The algorithm’s training interface can be used to ingest the training data and fit

its parameters. In addition to the training data, all forecasters in sktime accept
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the forecasting horizon already at training time. This is because some models
require the forecasting horizon already during fitting. This includes all those
models that fit a separate set of parameters for each time point in the horizon, as
discussed in Section 3.3.2. A common example is the “direct” reduction strategy
from forecasting to cross-sectional regression in which a separate cross-sectional
regressor is fitted for each time point in the horizon [34]. This design choice
enables us to include a wide variety of forecasting algorithms with a uniform
interface. If a forecasting horizon is passed to a model that does not need it during

fitting, the horizon is simply stored and retrieved during prediction.

Task specification: The forecasting horizon

The forecasting horizon specifies the time points we want to predict. The fore-
casting horizon can be represented in a number of ways. For example, as the
total number of time points that we want to predict, relative to the last point of
the training data (i.e. the “cutoff point”) as in pmdarima. Or as a set of absolute
time points as in fbprophet. Or as an interval between start and end points as
in statsmodels. Each representation has advantages and disadvantages.

A relative horizon, as opposed to an absolute one, has the advantage that it
allows to update the predictions, as time moves on, without having to update
the forecasting horizon. A disadvantage of relative horizon is that in-sample
horizons are specified as negative steps, going backwards from the end of the
training series, which may be counter-intuitive. Note that we want to avoid
having a separate interface point for in-sample prediction, as we will discuss below.
Another disadvantage is that forecasters have to keep track of the cutoff point
as the reference point for the forecasting horizon. Representing the forecasting
horizon as an interval of time points or simply the number of steps ahead has the
advantage of convenience, but may not be precise enough. This is because some
forecasters may fit separate parameters for each time point in the horizon. To
avoid needless computation, it is necessary to specify the exact time points we

want to predict.
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In sktime, we support two representations and conversions between them:
a set of integer steps, relative to the cutoff point and a set of absolute time
points. The ForecastingHorizon class shown in example 4 provides the necessary
functionality to support different representations and conversions between them.
Supporting multiple representations is crucial for creating a unified interface in
which we interface other libraries with different representations. Note that, in the
example, we provide the task information explicitly to the algorithm using the
fh object. Following the co-strategy pattern described in Section 6.3, we define
the ForecastingHorizon class to carry that information. By contrast, in the
previous examples of the cross-sectional and time series classification API, the
task information is provided implicitly. In those setting, the key information is the
reference to the target variable, which in scikit-learn’s API is given implicitly
by passing the target variable and feature data as separate input arguments. Note
that both designs adhere to the design principle of keeping the task specification
separate from model specification, as described in Section 6.2.

Also note that because forecasting algorithms need to keep track of the
forecasting horizon and cutoff point, the internal state of forecasters is more
complex than that of cross-sectional or time series regressors or classifiers which

only need to keep track of model parameters.

Prediction interface

For a given forecasting horizon, the fitted algorithm can be used to generate
predictions. In forecasting, there are two ways of generating predictions. We call
them “fixed-cutoff” and “moving-cutoff” predictions. Fixed-cutoff predictions are
generated at a single, fixed cutoff point. Moving-cutoff predictions are generated
by recursively making fixed-cutoff predictions and moving the cutoff point for-
ward. For example, out-of-sample predictions involve fixed-cutoff predictions with
potentially multi-step ahead forecasting horizons. In-sample predictions, on the
other hand, involve moving-cutoff predictions, iterating over all time points in the

training data and repeatedly making single-step-ahead fixed-cutoff predictions.
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Since in-sample and out-of-sample predictions require different ways of gener-
ating predictions, one may be tempted to expose them via two separate interface
points, as for example done in pmdarima. However, exposing only a single method
and differentiating between in-sample and out-of-sample predictions internally
depending on the given forecasting horizon has a key advantage: clients — be it
users or other objects — can always rely on a single method and simply delegate the
decision whether to generate in-sample or out-of-sample forecasts to the algorithm.
For example, by exposing a single method, composite forecasters can simply
forward the forecasting horizon to its component forecasters, without having to
distinguish between different method calls. We discuss detrending as a concrete
example of a composite algorithm that involves in-sample and out-of-sample

predictions in Section 8.5.3.

Update interface: Online learning

In addition to fitting, we introduce an interface point for incrementally updating
a fitted forecaster as new data comes in. Updating has two purposes: First, it
keep track of the cutoff point, always moving it to the last time point of the
available data, as new data is ingested. Predictions are therefore always generated
relative to the most recent time point. Second, it provides an interface point for
implementing online learning algorithms to update a model’s fitted parameters
incrementally without having to refit the entire model. This is important in
situation where refitting the whole algorithm is too costly and more efficient online

learning algorithms are available.*

Inspecting fitted algorithms

In addition to the common hyper-parameter interface provided by scikit-learn,
we introduce a new interface for retrieving fitted parameters from algorithms.

For example, this allows us to write composition algorithms which rely of fitted

4For examples of online learning forecasting algorithms, see e.g. Liu et al. [165] or Anava
et al. [6].
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parameters of their component models. We discuss feature extraction as an

example in Section 8.5.4.

Until now, we have discussed primitive learning algorithms. We now turn to

composite algorithms.

8.4 Learning algorithms: Composites

Composite algorithms, sometimes also called “meta-algorithms”, consist of one
or more component algorithms. Through composition interfaces, we enable
practitioners to build a wide variety of models with a small amount of easy-to-read
code. Many algorithms are expressible as composites. sktime provides meta-
algorithms for standard composition techniques like pipelining, tuning, ensembling

and reduction.

The primary pattern that we follow in our design of the API for composite
algorithms is the scitype composition pattern as described in Section 6.3. Following
this pattern, meta-algorithms both consist of one or more algorithms but are also
algorithms themselves. As such, they have the same uniform interface as primitive
algorithms. The key advantage of this pattern is that composite and primitive
algorithms can be treated uniformly and become interchangeable at run time.
As a consequence, users and client algorithms can ignore the difference between

primitive and composite algorithms.

In the following, we discuss selected examples of meta-algorithms in sktime,
highlighting novel algorithms for time series classification, regression and fore-
casting. As we have argued in Section 6.2, important operations on objects with
a scitype should define higher-order scitypes. To express meta-algorithms, we
will therefore give examples of higher-order scitypes throughout the rest of this

section.
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8.4.1 Ensembling

For all series-as-features learning tasks, including time series classification and
regression, we can reuse much of scikit-learn’s ensembling functionality, as the
APIs are sufficiently similar. Below we discuss two examples of ensembling in

sktime.

Ensembling for forecasting

Following scikit-learn, we provide a simple meta-algorithm for ensembling
multiple forecasters. We can define the higher-order scitype of the ensembling

operation for forecasters as follows:
Ensembler: (Forecaster)Y — Forecaster.

In words, the ensemble algorithm takes in N € N* algorithm instances of type
Forecaster and ensembles them into a single, composite algorithm of the same
type.® In the resultant ensemble, during training, each component algorithm is
fitted separately to the training data. At prediction time, the ensemble then

aggregates the predictions from all components before returning them.

Variable-based ensembling for time series classification/regression

We also add a new ensembling meta-algorithm for multivariate time series classi-
fication and regression. This allows us to fit different algorithms on different time

series variables in multivariate panel data. This is illustrated in example 5.

8.4.2 Reduction

One of the main reasons for developing a unified framework is reduction, that is,

the application of an algorithm for one task to another. Many ML approaches

5Technically, this expresses a heterogeneous ensemble where each of the passed algorithm
instances may be a different concrete algorithm. Homogeneous ensembles may be expressed
as HomogeneousEnsembler: Forecaster — Forecaster where the meta-algorithm would take
in an additional argument for the number of component algorithms to use. All component
algorithms would then be instance of the same concrete algorithm class.
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Example 5: Variable-based ensembling in sktime

classifier = ColumnEnsembleClassifier (
("tsf", TimeSeriesForestClassifier (), [0]),
("boss", BOSSEmsemble (), [1]1)1)

. classifier.fit(X_train, y_train)

s y_pred = classifier.predict(X_test)

Notes: X_train and X_test contain multivariate training and test data, and y_train the
associated labels. We use the ColumnEnsembleClassifier to ensemble two component classifiers
over two time series variable (or columns): a TimeSeriesForest on the first column ([0]) and
a BOSSEnsemble on the second one ([1]) using Python’s zero-based indexing. Predictions are

averaged over both components.

for time series work through reduction. While reduction is not a new idea, to our
knowledge, we are the first to encapsulate them as meta-algorithms, following
the composition pattern described in Section 6.3. As discussed in Section 3.4,
reductions have a number of key properties. These properties make them well

suited to be expressed as meta-algorithms:

e Adaptive. Reductions are adaptive. They adapt the interface of the
component algorithm to the algorithm scitype required for solving the new
task. This enables us to use the model evaluation tools appropriate for the

new task.%

e Modular. Reductions convert any algorithm of a certain scitype to an
algorithm of a new scitype. Applying a reduction approach to N algorithms
for one task gives N new algorithms for a new task. Any progress on the
base algorithm immediately transfers to the new task, saving both research

and software development effort |25, 26].

e Composable. Reductions are composable. For example, we can first

reduce forecasting to time series regression which in turn can be reduced to

6Note that it is common to express reductions as transformers rather than composite
estimators. This works if the interface does not change from the original to the new task.
For example, the interfaces of time series and cross-sectional classifications in sktime and
scikit-learn are sufficiently similar that the reduction can be expressed through a transformer.
However, for other reduction approaches where the interface does change, it is preferable to use
composite algorithms. The reason is that composite algorithms can adapt the interface, whereas
transformers cannot.
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Example 6: Reducing forecasting to cross-sectional regression in sktime

i regressor = RandomForestRegressor ()

> forecaster = make_reduction(regressor,

3 window_length=10, strategy="recursive")
« forecaster.fit(y_train)

s y_pred = forecaster.predict (fh=1)

Notes: RandomForestRegressor comes from scikit-learn. make_reduction a factory method
that return the appropriate reduction meta-algorithm for the given hyper-parameters. We here
specify additional hyper-parameters, including the window length used for the sliding window
transformation and “recursive”’ strategy to generate predictions, as described in Section 3.4.
y_train denotes the training series. y_pred denotes the series of predicted values for the given

single-step ahead forecasting horizon.

cross-sectional regression via feature extraction.

e Tunable. Most reductions require modeling choices that we may want to
optimize or tune. By expressing reductions as meta-algorithms, we expose
these choices via the common hyper-parameters interface and make them

tunable.

Without a unified framework, reductions are often hand-crafted — the code used
in the M4 competition [182] being one example. The consequence is that they
are neither modular, tunable, composable nor adaptive. Below we return to the
example of reducing a forecasting task to a cross-sectional regression task from

Section 3.4 and illustrates how this works in sktime.

Reducing forecasting to cross-sectional regression

A common approach is to solve forecasting via cross-sectional regression. The

higher-order scitype for this reduction approach can be expressed as follows:
Reducer: CrossSectionalRegressor — Forecaster.

In words, the reduction algorithm takes in an algorithm of scitype CrossSection-
alRegressor and returns an algorithm of scitype Forecaster. We explain how
the resultant composite algorithm works internally in Section 3.4. Example 6

shows what reduction to cross-sectional regression looks like in sktime.
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Other reduction approaches are of course possible. For example, sktime also
provides a meta-algorithm for reduction to time series regression, so that any
of sktime’s time series regressors can be used to solve a forecasting task. We
illustrate the effectiveness of reduction-based ML models in our extension of the

M4 forecasting competition in Chapter 9.

8.4.3 Model selection

Model selection, or tuning, is another example of a modular composite algorithm.
For all series-as-features learning tasks, including time series classification and
regression, we can reuse scikit-learn’s tuning functionality, as the APIs are

sufficiently similar.

For forecasting, sktime provides its own tuning class. We can express the

higher-order scitype for tuning as follows:

Tuner: Forecaster — Forecaster.

where the tuning meta-algorithm takes in an algorithm of type Forecaster and
returns an algorithm of the same type. At training time, the resultant algorithm
will tune the component algorithm for a given set of tuning instructions, including
the cross-validation scheme, the grid of hyper-parameters to search over, and
the loss function for selecting the best performing model. For example, it may
perform temporal grid-search cross-validation for a given grid of parameter names
and values. At prediction time, it will use the model with the best performing set
of hyper-parameters to generate predictions. Example 7 shows how tuning works
in sktime.

Following the co-strategy pattern described in Section 6.3, we express the set
of tuning instructions as objects in their own right. The SlidingWindowSplitter
is a cross-validation iterator and encodes the way how to split the training series

into sliding windows.
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Example 7: Temporal grid-search cross-validation in sktime

forecaster = make_reduction(RandomForestRegressor (),
window_length=3)

param_grid = {"window_length": [3, 5, 7]}

cv = SlidingWindowSplitter ()

gscv = ForecastingGridSearchCV(forecaster, param_grid, cv)

gscv.fit(y_train)

y_pred = gscv.predict (fh=1)

Notes: As before, RandomForestRegressor comes from scikit-learn. make_reduction is
the reduction meta-algorithm discussed in example 6. param_grid denotes the grid of hyper-
parameters to search over for the window length parameter. cv denotes the cross-validation
iterator which encodes the sliding-window cross-validation scheme used to split the training
data. ForecastingGridSearchCV is the tuning meta-algorithm. y_train denotes the training
series. y_pred denotes the series of predicted values for the given single-step ahead forecasting

horizon.

Example 8: Forecasting pipeline in sktime

forecaster = TransformedTargetForecaster ([
("deseasonalize", Deseasonalizer (sp=12)),
("forecast", NaiveForecaster (strategy="last"))

D

forecaster.fit(y_train)

y_pred = forecaster.predict (fh=1)

Notes: TransformedTargetForecaster is the pipelining meta-algorithm. We here specify a
pipeline consisting of a Deseasonalizer transformer to deseasonalize the training data and a
NaiveForecaster forecasting algorithm. We set the seasonal periodicity (sp) to 12, indicating
monthly data and the strategy of the NaiveForecaster to always predict the last value observed
in the training series. y_train denotes the training series. y_pred denotes the series of predicted

values for the given single-step ahead forecasting horizon.

8.4.4 Pipelining

One of most common composite algorithms is pipelining. In its simplest form,
a pipeline chains multiple data transformations with a final learning algorithm.
We first discuss pipelining here, and then turn to data transformations in the next
section.

Again, for series-as-features tasks, we can reuse scikit-learn’s functionality.
For forecasting, sktime provides its own pipeline meta-algorithm. The higher-

order scitype of a pipelining meta-algorithm can be expressed as follows:

Pipelining: (SeriesToSeriesTransformer)" x Forecaster — Forecaster.
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In words, pipelining takes in N algorithms of type SeriesToSeriesTransformer,
which we will define below in Section 8.5.3, and a single algorithm of type
Forecaster and returns a single composite algorithm of type Forecaster.

When fitting the resultant composite forecaster, the data is first transformed
by the transformers and then passed to the final forecaster. At prediction time, the
order of operations is reversed. The composite forecaster first generates predictions
for a given forecasting horizon. The predicted values are then inverse-transformed
by the transformers before being returned.

Example 8 illustrates how a pipeline can be specified in sktime. In particular,
it shows how the “naive2” model” from the M4 forecasting competition can be
expressed as a pipeline consisting of a deseasonalization transformer and a naive
forecaster. Since the transformers work on the target series to be predicted, we
follow scikit-learn in calling this meta-algorithm TransformedTargetFore-
caster rather than Pipeline. In this example, we use a single transformer. One
can of course chain together multiple transformers.

So far we have discussed primitive and composite learning algorithms. In the

next section, we turn to transformers.

8.5 Transformations

In general, learning algorithms can be split into two categories: predictive and
transformative algorithms. Both algorithms are fittable to data. But while
predictive algorithms generate predictions, transformative algorithms apply trans-
formations to data. Until now we have discussed predictive algorithms, both
primitive and composite ones. In this section, we will discuss transformative
algorithms. As is standard, we call transformative algorithms “transformers” and
continue to call predictive algorithms “learning algorithms”.

Within ML modeling workflows, data object are usually conceived of as an

immutable value object as discussed in Chapter 5. So, rather than keeping track

"The “naive2” model is described in more detail in Table 9.3.
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of changes to data in the data object itself, we treat data transformations as part

of the model specification. For this purpose, we encapsulate them as transformers.

Unlike the predictive learning algorithms discussed so far, transformers by
themselves do not correspond to any learning task. We can, however, still define
scitypes for transformers in relation to the learning task that they are applied
to. In terms of scitypes, we do this by distinguishing between “primary scitypes”
that directly address a task and “secondary scitypes” which arise as operations
related to primary scitypes. For example, in the context of cross-sectional learning
pipelines, transformers need to be compatible with the established scitype for
cross-sectional learning algorithms. In particular, this implies adherence to the
universal interface points listed in Table 8.1, including separate methods for fitting
and application of the fitted model (i.e. predict and transform, respectively) as
well as the common hyper-parameter interface. In this sense, transformers can be
conceived of as modifications to learning algorithms together with the pipelines

that they are part of.

As we have seen in Section 3.2, time series data can come in different forms,
including univariate, multivariate and panel data. In sktime, we distinguish
between the following types of transformation in our API design, depending on

the signature of their transform method:

Series to scalar,

Series to series,

Panel to cross-sectional,

Panel to panel.

Before we discuss key examples of each transformation type in more detail, we

review the cross-sectional API design for transformers in scikit-learn.
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Example 9: scikit-learns’s API for cross-sectional transformers

transformer = PCA()
> transformer.fit (X, y)
3 X_transformed = transformer.transform(X)

Notes: PCA is from scikit-learn. X and y denote cross-sectional feature data and target vector.

X_transformed denotes the transformed data

8.5.1 Cross-sectional transformations

Example 9 shows the cross-sectional transformer API in scikit-learn. We can
see how the transformer API in scikit-learn implements the following scitype

for cross-sectional transformations:

type CrossSectionalTransformer

params paramlist : paramobject

state model : mathobject

methods fit : (X x Y)Y — model
transform : X X model — U

This is a cross-sectional transformer scitype, given the cross-sectional domain of
the input data X and transformed output data U, defined in Section 2.5. As a
consequence, the same statistical properties hold as for the CrossSectionalClas-
sifier or CrossSectionalRegressor scitype discussed in Chapter 5.

In the following, we discuss sktime’s API design for time series transformations.

8.5.2 Series-to-scalar transformations

The simplest time series transformation type is the series-to-scalar transformation.
As the name suggests, it transforms a time series to a scalar (e.g. a number or
string). The series can be univariate or multivariate. If it is multivariate, the
transformation will return a scalar for each variable. Examples of series-to-scalar
transformations include extracting the mean or some percentile from the values of
a time series.

In terms of API design, these transformations are typically defined as func-

tions, not classes. Encapsulating them in classes is not necessary since these
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transformation are deterministic. They do not involve any fittable parameters or
state changes which we need to be managed.

However, in the context of pipelines, these transformations can still involve
modeling choices which we may wish to tune (e.g. the exact percentile to extract).
To expose these choices as tunable hyper-parameters in pipelines, we can use
scikit-learn’s FunctionTransformer, which adapts a function to the typical

transformer interface, including the common interface for hyper-parameters.

8.5.3 Series-to-series transformations

Series-to-series transformations take in a series, either univariate or multivariate,
and return a series. Examples include taking the logarithm, the Box-Cox transform
[37] or the Fourier transform. However, not all of these transformation are
deterministic. Some may involve fittable parameters. Examples of transformation
with fittable parameters include extracting auto-regressive coefficients from a
series, in which one first fits an auto-regressive model to the data and then returns
its fitted parameters as used in composite time series classification algorithms like
RISE [163], or residual detrending as discussed below.

In terms of API design, as before, if a transformation is deterministic, we
can simply define it as a function and use the FunctionTransformer in pipelines.

Otherwise, we encapsulate it in a class. The scitype of series-to-series transformers

is given by:
type SeriesToSeriesTransformer
params paramlist : paramobject
state model : mathobject
methods fit . series(Z) — model
transform : series(Z) X model — series(V)

Here, series(V) denotes the domain of the transformed series. Both the value and
time domain may be transformed. For a example, a Fourier transform transforms
the time domain into a frequency domain. An outlier detector may transform
a real-valued input series into a binary categorical or boolean series indicating

whether or not a time point is an outlier.
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Example 10: Residual detrending in sktime

forecaster = PolynomialTrendForecaster (degree=1)
> transformer = Detrender (forecaster)

s transformer.fit (y_train)

. y_transformed = transformer.transform(y_train)

Notes: Detrender and PolynomialTrendForecaster come from sktime. We here specify a
polynomial of degree 1 (i.e. linear). y_train denotes the training data. y_transformed denotes
the transformed data. We here use the same data in fit and transform, but in-principle

different series could be passed.

Example: Residual detrending

As an example, we discuss a new modular transformer in sktime for residual
detrending. At construction time, the transformer takes in a forecaster. When
calling fit, the transformer fits the forecaster to the input data. When calling
transform, it first generates predictions from the fitted forecaster using the time
index of the input data as the forecasting horizon, then returns the residuals of
the predictions, where the residuals are typically computed by subtracting the
predicted values from the input series. Depending on the input series passed to
fit and transform, this requires to generate in-sample or out-of-sample forecasts.

In terms of higher-order scitypes, the meta-transformer can be defined as follows:

Detrending: Forecaster — SeriesToSeriesTransformer.

Example 10 illustrates how we can use such a detrending transformer in
sktime to remove a linear trend from a time series. In the example, we use a
linear trend forecaster, but in-principle the Detrender works with any forecaster,
including non-linear ones. In a pipeline, the Detrender can be seen as a form
of one-step residual boosting, by first detrending a time series and then fitting
another forecaster on the residuals [241]. We investigate the potential of boosting
a statistical method with an ML model in this way in our extension of the M4

forecasting competition in Chapter 9.
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8.5.4 Panel-to-cross-sectional transformations

Panel-to-cross-sectional transformations take in panel data, either univariate or
multivariate, and return cross-sectional data. A common example is feature
extraction as provided by libraries like tsfresh [55, 56]. As we will see below,
one can think of feature extraction in this setting as a instance-wise composite
transformer, in which a series-to-scalar transformer is applied to all instances
(series) in the panel data.

In terms of API design, these transformations are usually encapsulated in

transformer classes. We can define the scitype as follows:

type PanelToCrossSectionalTransformer

params paramlist : paramobject

state model : mathobject

methods fit . (series(Z))M — model
transform : series(Z) X model — U

As before, U here denotes the cross-sectional domain of the transformed series.
As in the cross-sectional case, input and output data always has the same number
of instances, but may have different numbers of variables. The time index may
also be changed during transformation. Below we discuss an example of feature

extraction in sktime.

Example: Using a forecaster for feature extraction

Forecasting algorithms cannot only be used to solve forecasting tasks, but also
to solve other related learning tasks. A common approach is to use forecasters
as a feature extractors for solving tasks such as time series classification. This
approach involves the iterative application of a series-to-scalar transformation
to each instance (series) of the panel data. As such, it amounts to a reduction
from time series to cross-sectional classification. In particular, a forecaster is first
fitted to each instance of the available panel data, its fitted parameters are then
returned as scalar features. There are both bespoke algorithms which make use of

this approach (see e.g. RISE [14] for time series classification) and toolkits such
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Example 11: Feature extraction for cross-sectional classification in sktime

forecaster ARIMA ()

> classifier = Pipeline ([

("extract", FittedParamExtractor (
forecaster, params=["ar_params"])),

("classify", RandomForestClassifier())

s 1)
7 classifier.fit(X_train, y_train)
s y_pred = classifier.predict(X_test)

Notes: ARIMA comes from sktime. Pipeline and RandomForestClassifier come from
scikit-learn. X_train and y_train denotes the panel training data and label vector, respect-

ively, X_test the panel test data, and y_pred the predicted label.

as tsfresh [55, 56|) which allow to automatically extract numerous features from
time series, including fitted parameters from forecasters, however not in a modular
fashion.

sktime provides a modular feature extraction transformer, which is a meta-
algorithm that extracts the fitted parameters from a forecaster. Example 11
shows how sktime’s implementation of this transformer, called the FittedPara-
mExtractor, can be used as part of a pipeline for time series classification. Note
that this transformer relies on the uniform interface for inspecting fitted model

parameters, as listed among the universal interface points in Table 8.1.

8.5.5 Panel-to-panel transformations

The last transformation type that we discuss is panel-to-panel transformation.
These transformations take in panel data and return panel data. Examples include
variable concatenation as discussed below and composite transformation such as
the iterative application of series-to-series transformation to each instance of the
panel data (e.g. taking the logarithm of all instances (series) in panel data). We

can define the scitype for this type of transformation as follows:

type PanelToPanelTransformer

params paramlist : paramobject

state model : mathobject

methods fit . (series(Z))M — model
transform : series(Z) X model — series()V)
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Example 12: Reducing multivariate time series classification to univariate time
series classification via variable concatenation in sktime

classifier = Pipeline ([
("concatenate", ColumnConcatenator ()),
("classify", TimeSeriesForestClassifier(n_estimators=100)),

classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)

Notes: TimeSeriesForestClassifier and ColumnConcatenator come from sktime. Pipeline
comes from scikit-learn. X_train and y_train denotes the panel training data and label

vector, respectively, X_test the panel test data, and y_pred the predicted label.

As in the cross-sectional case, input and output data always has the same number
of instances, but may have different numbers of variables. The time index may

also be changed during transformation.

Example: Variable concatenation for multivariate time series classific-

ation

A simple way to solve multivariate time series classification tasks is to reduce it
to a univariate time series classification task. One way to achieve this reduction
is to concatenate all time series variables into a single, long time series, ignoring
the fact that the series represent different kinds of measurements. Example 12
illustrates how one can reduce a multivariate time series classification problem
to a univariate time series classification problem by concatenating all time series
variables into a single, long time series.

Having discussed sktime’s API design for learning algorithms and transformers,

we will now give a brief overview of the implemented functionality in sktime.

8.6 Overview of implemented functionality

In this section, we will give an overview of the implemented functionality in sktime
and its dependencies. A more detailed and up-to-date API reference is available

in sktime’s online documentation.® As we will discuss in Section 8.7, much of the

8https://www.sktime.org/en/latest/
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available concrete functionality in sktime has been implemented by open-source

contributors using the API specification and design templates presented above.

8.6.1 Transformations

Various transformers have been implemented. These include:

e Data reshaping. Transformers for padding, truncating, variable concaten-

ation (see example 12) and interpolating.

e Feature extraction. A modular transformer for extracting fitted para-
meters from forecaster (see example 11), an adapter for tsfresh [55, 56|
transformer for automatic feature extraction, and a matrix-profile trans-

former based on STUMPY [153].

e Standardization. A modular detrending transformer (see example 10), a
deseasonalization transformer as well as other common transformations such

as logarithms and the Box-Cox transform [37].

e Adapters. An adapter to apply any transformer from scikit-learn to
single series and to apply our single-series transformers to panel data for

time series classification and regression.

8.6.2 Time series classification /regression

The time series classification module contains various state-of-the-art time series
classification algorithms. The majority of the algorithms has been tested for
correctness against reference implementations in the Java-based tsml library [14].°
They have also been used to reproduce key results from comparative benchmarking
studies for time series classification [12, 13, 15]. The implemented algorithms

include:

9tsml is a Java-based framework, built on top of Weka, and provides algorithms and
composition tools for time series classification and clustering. For more details, go to https:
//github.com/uea-machine-learning/tsml/.
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Interval based. A modular time series forest (TSF) |71] classifier, a TSF
regressor which support configurable time series trees, the random interval

spectral ensemble (RISE) [163], and the canonical interval forest (CIF) [189).

Distance based. Distance measures form a fundamental primitive of many
time series tasks. Eight distance measures have been implemented using
Cython [21] and numba [150] for enhanced performance and several classifiers
that use them, including the Elastic Ensemble [162], Proximity Forest [174]
as well as the ROCKET [68] and MiniROCKET transform [69].

Shapelet based. The shapelet module includes an implementation of the

shapelet transform [35] and MrSEQL classifiers [154].

Dictionary based. The symbolic aggregate approximation (SAX) [159] and
symbolic Fourier approximation (SFA) [224] transform and the associated

bag of patterns (BOP) [160], and bag of SFA symbols (BOSS) [223].

Deep learning. A recent review paper described nine deep learning al-
gorithms for time series classification [131]. These algorithms have been

ported into sktime-dl [232], our deep learning extension package.

Composition. sktime’s compatibility with scikit-1learn enables us to re-
use scikit-learn’s functionality for common composition techniques, like
pipelining, ensembling and tuning. In addition, variable-based ensembling

functionality (see example 5) has been implemented.

8.6.3 Forecasting

The forecasting module includes a number of basic algorithms and provides

adapters to various existing specialized libraries as discussed in the review of

related software in Chapter 7. The majority of these algorithms has been used

to reproduce key results from comparative benchmarking studies for forecasting

[167], as discussed in Chapter 9. The implemented algorithms include:
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e Baselines. Algorithms for simple rule-based or naive strategies and poly-

nomial trend extrapolation.

e Adapters. Adapters have been implemented for forecasting algorithms

in statsmodels [207], pmdarima [233], fbprophet [247] and hcrystalball

[106], following the facade pattern in Gamma et al. [90]. They enable us to

use algorithms from these packages from within the unified API provided

by sktime.

e Composition. Meta-algorithms for pipelining, ensembling, reduction and

tuning have been implemented. In addition, temporal cross-validation

functionality has been included (e.g. iterators for using sliding-window

and expanding-window schemes). Modular reduction meta-algorithms for

forecasting have also been implemented. They allow us to use any cross-

sectional regressor from scikit-learn and any time series regressor from

sktime for forecasting (see example 6).

e Deep learning. Our extension package sktime-dl [232] includes a few

standard neural network architectures for forecasting, including simple RNN

and LSTM network architectures [109, 221].

8.6.4 Dependencies

sktime (version: 0.6.0) requires Python 3.6, 3.7 or 3.8, and a small number of

core dependencies: NumPy [104| and pandas [185] for data handling; SciPy [100,

137|, scikit-learn [46, 205, 256] and statsmodels [207| for modeling; Cython

[21], numba [150] and joblib!? for more efficient computations.

All of the above are hard dependencies. They are required for installing

sktime. In addition, we interface a number of specialized time series libraries as

soft dependencies. These dependencies are optional and only required for using

certain functionality, including: pmdarima [233] for the Auto-ARIMA algorithm,

Onttps://github.com/joblib/joblib
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STUMPY [153| for matrix profile computations, tsfresh [55, 56| for automatic
feature extraction, and fbprophet [247] for the Prophet forecasting algorithm,
among others.

For deep learning, sktime has a companion package, called sktime-dl [232],

based on TensorFlow [1| and Keras [54].

8.7 Distribution, documentation and open-source
development

In this section, we briefly discuss how sktime is distributed, documented and

developed.

8.7.1 Distribution

sktime is distributed under a permissive BSD-3-clause license.!! sktime is avail-
able via PyPI'? and conda-forge!® with precompiled files for Windows, MacOS

and Linux for easy installation on different operating systems.

8.7.2 Documentation

A detailed and versioned documentation is available online via Readthedocs.'*.
We also provide interactive tutorials on Binder [49] allowing users to run sktime

online without having to install anything.

HSee Lin et al. [158] for an overview of open-source licenses. Also see the Open Source
Initiative at https://opensource.org/docs/definition.html. Different understandings of
open-source are also often summarized under the Free-Libre-Open-Source Software (FLOSS)
acronym.

P2https://pypi.org

3https://conda-forge.org/

Msktime’s documentation is hosted at https://sktime.org. To find out more about
ReadtheDocs, go to https://readthedocs.org
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8.7.3 Open-source development

The basic idea of open-source development is simple: everyone with an internet
connection can read, modify and redistribute the source code of a piece of software.
They can also suggest changes to the source code and contribute their opinion
when changes to code, governance or any other aspect of the project are discussed
[89].

Solutions to the developer’s problem, as described in Section 4.2, often need
to involve a wider community of practitioners and developers, which requires
building and sustaining an open-source community and governance structures
with clear pathways for contributing and reporting bugs, discussion forums, and
guidelines for community participation and decision-making [11]. The sktime
project has created clear guidelines for participation and decision making. We
follow a consensus-seeking approach with an community steering committee to
oversee the development process and avoid deadlocks.

Development and most discussions take place on GitHub.'> We use continuous
integration'® services for unit testing on Windows, MacOS and Linux platforms
as well as automatic code quality checks for all contributions in order to ensure a

consistent style and best practices for code throughout our code base.

8.8 Concluding remarks

In this chapter, we described the design and implementation of sktime — the
first unified framework for ML with time series. sktime constitutes the fourth
research contribution of this thesis as laid out in Section 1.6. Much of the design
was guided by our taxonomy of time series learning tasks put forward in Chapter

3, the conceptual model of ML theory and scientific types developed in Chapter 5,

5https://github.com/alan-turing-institute/sktime

16Continuous integration is a software development practice where members of a team
integrate their work frequently, usually each person integrates at least daily — leading to multiple
integrations per day. Each integration is verified by an automated build and test to detect
integration errors as quickly as possible.
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as well as our design principles and patterns described in Chapter 6.

With sktime, we have illustrated how our domain-driven approach to the
developer’s problem cannot only explain key aspects of existing frameworks like
scikit-learn, but can also guide the development of new frameworks. While
this chapter largely focused on API design, we also gave an overview of the
concrete functionality already implemented sktime. Finally, we described sktime’s
distribution, documentation and development process.

After having reviewed the time series analysis ecosystem and its limitations
in Chapter 7, we hope to have shown in this chapter that sktime is capable of
addressing many of the current limitations. In particular, we believe that the
unified framework can reduce confusion between different learning tasks, enable
practitioner to fully leverage reduction relations between tasks by integrating with
more foundational frameworks such as scikit-learn, and ultimately make the
existing ecosystem more usable and interoperable as a whole.

In the next and final part of this thesis, we will use sktime to reproduce and
extend the M4 competition, one of the major comparative benchmarking studies

for forecasting.
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Chapter 9

Reproducing and Extending the M4

Forecasting Competition

This chapter is partly based on:

e Markus Loning and Franz J. Kirdly. ‘Forecasting with sktime: Designing
sktime’s New Forecasting API and Applying It to Replicate and Extend the
M4 Study’. In: arXiv preprint (2020)

9.1 Introduction

In the previous part, we have developed sktime, a unified framework for ML with
time series in Python. In this final part of the thesis, we use sktime to reproduce
and extend the M4 forecasting competition. The reproduction and extension of
the M4 competition is the fifth and final research contribution of this thesis as
laid out in Section 1.6.

Reproducing the M4 competition will allow us to do three things: test our
framework for correctness by comparing it against reference implementations,
illustrate its effectiveness and applicability, and validate the published results.
Extending the M4 competition will allow us to implement and evaluate pre-
viously unstudied algorithms and investigate whether simple, reduction-based

ML algorithms can match the state-of-the-art performance of the custom-built
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algorithms that won the M4 competition. To this end, we use sktime to re-
implement key algorithms included in the competition and add reduction-based
models that are easily implementable in sktime. To our knowledge, this is the
first complete reproduction of the M4 competition within a single framework
independent of the published code. !

There is a long history of empirical comparison of forecasting algorithms. For a
review, see Hyndman [129]. The M4 competition [176, 181, 182] is the penultimate
competition in an influential series of forecasting competitions organized by Spyros
Makridakis since 1982 [183|. The latest edition, the M5 competition, was recently

2 Previous competitions include one on energy demand

carried out on Kaggle.
[116], one on tourism data [10], and the M3 competition [3, 63, 179]|. Several
articles have reviewed the competition results, many of which were published
as part of a special issue of the International Journal of Forecasting on the M4
competition [33, 85, 94, 180, 240]. For the M5 competition, a new special issue is

forthcoming. Additional reviews have been published with a focus on ML and

deep learning models [107, 270, 271].

9.2 Problem statement

The problem we are trying to solve is the univariate forecasting learning task
defined in Section 3.3.2. In brief, the task is to use a univariate time series y =
(y(t1) ...y(tr)), with discrete, equidistant time points, observed up to time point
tr to find a forecaster f which can make accurate temporal forward predictions
y(h;) = f(hj) for the given forecasting horizon h; ... hy, where H denotes the
length of the forecasting horizon.

Note that we focus on models that use only a single series for training. By

contrast, many of the ML models submitted to the M4 competition require multiple

!Note that there is some ambiguity in the term “reproducibility” |7, 76, 96, 213, 225]. We
here mean to recreate the results of the M4 competition by running the same analysis on the
same data using software code which we developed independently of the code used in the original
study.

’https://wuw.kaggle.com/c/m5-forecasting-accuracy/overview
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series for training, so-called “cross-learning” approaches [227]. We only consider
(deterministic) point predictions in this thesis, leaving probabilistic forecasting for

future work.

9.3 Evaluation

In order to evaluate predictive accuracy, the M4 competition uses two performance
metrics®, mean absolute scaled error (MASE) and symmetric mean absolute

percentage error (sSMAPE), which are defined as follows:

200~ Jy(ha) = §(ha)]
MAPE = 52 1y 7 13k &)

T+H
H i=1 T+H+m Zj:erl ly(t;) — y(ti—m)l

The denominator of MASE denotes the naive seasonal in-sample forecasts, de-
scribed as the “sNaive” model in Table 9.3 below, where m denotes the seasonal
periodicity of the data (i.e. the periods per year, e.g. 12 for monthly data). We
scale the error in the numerator by 200 to express the error as a percentage.
MASE and sMAPE are scale-independent and therefore appropriate for comparing
predictions across series with different scales [125].

To rank models, the M4 competition additionally uses the OWA (overall
weighted average) metric. Unlike MASE and sMAPE, OWA is a metric aggregated
over multiple series, given by:
1| L3 VsMAPE, LSV MASE;

OWA = —

9.3
2 % va SMAPEiaNaiVGQ % ZzN MASEi,Naive2 ( )

Here N is the number of time series we aggregate over, with the subscript ¢
denoting the index of an individual series. SMAPE; naive2 and MASE; Naive2 are

the respective metrics on series ¢ for the naive out-of-sample forecasts from the

3For an overview of forecasting performance metrics, see e.g. Hyndman and Koehler [125].
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“Naive2” model described in Table 9.3.

In addition, we test if found performance differences between models are
statistically significant. This extends the previous statistical analysis of the M4
results [147, 182]. In particular, we test whether our reproduced results are
significantly different from the published results for the same model using paired
t-tests. Note that standard errors are not based on repeated applications of the
same model on the same series, but instead on a single application on multiple
series. Given the provenance of the M4 data set, we cannot plausibly assume that
the series are independent. Consequently, the test results have to be interpreted
with caution.

We also check if found performance differences between different models are
statistically significant. We use Friedman tests [84] to check whether the found
average sMAPE ranks are significantly different from the mean rank expected
under the null-hypothesis at the 5% level. We then use post-hoc Nemenyi [199]
tests to find those pairs of models that are significantly different, where model pairs
are defined by the originally published and reproduced performance estimates.
We summarize our findings visually in critical difference diagrams, as proposed by
Demsar [70]. To cross-check our results, we also use pairwise Wilcoxon signed rank
tests [260] together with Holm’s correction procedure for multiple testing [111], as

recommended by Garcia and Herrera [91] and Benavoli, Corani and Mangili [22].

9.4 Data

The M4 competition is based on a data set consisting of 100K time series, mainly
from business, financial and economic domains [176, 177, 181]. The series are
grouped by sampling frequency into yearly, quarterly, monthly, weekly, daily and
hourly data sets. Tables 9.1 and 9.2 present summary statistics, showing wide

variability in time series characteristics and lengths of the available training series.
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Table 9.1: The number of M4 series per sampling frequency and domain

Demographic Finance Industry Macro Micro Other Total

Yearly 1088 6519 3716 3903 6538 1236 23000
Quarterly 1858 5305 4637 9315 6020 865 24000
Monthly D728 10987 10017 10016 10975 277 48000
Weekly 24 164 6 41 112 12 359
Daily 10 1559 422 127 1476 633 4227
Hourly 0 0 0 0 0 414 414
Total 8708 24534 18798 19402 25121 3437 100000

Notes: Rows show M4 data sets grouped by sampling frequency. Columns show M4 data sets
grouped by domains. Values show the number of available series.

Table 9.2: Summary statistics of the length of time series in
the M4 training set

Mean Std Min 25% 50% 75% Max

Yearly 31.3 24.5 13 20 29 40 835
Quarterly 92.3 51.1 16 62 88 115 866
Monthly 216.3 1374 42 82 202 306 2794
Weekly 1022.0  707.1 80 379 934 1603 2597

Daily 2357.4 1756.6 93 323 2940 4197 9919
Hourly 863.9 1279 700 700 960 960 960
Total 240.0  592.3 13 49 97 234 9919

Notes: Rows show M4 data sets grouped by sampling frequency.
Columns show summary statistics of the distribution of the length
of the training series.

9.5 Technical implementation

Our code for reproducing and extending the M4 competition can be found in our
code repository on GitHub.* We ran the experiments on machines with Linux
CentOS 7.4, 32 CPUs and 189 GB RAM.

For all forecasters and composition tools, we use sktime (version 0.4.0). Fore-
casters are specified as composite models whenever possible, using the composition
classes described in Section 8.4. For all regressors except XGB and RNN, we use
scikit-learn [205]. For XGB, we use xgboost [53|. For RNN, we use skime-dl

[232]. The versions of the libraries used are specified in the code repository.

“https://github.com/mloning/sktime-mé
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9.6 Reproducing the M4 competition

9.6.1 Models

In order to reproduce key results from the M4 competition, we implement and
re-evaluate all baseline forecasters of the M4 competition in sktime, except the
automatic exponential smoothing model (ETS) [120, 126] which was not yet
implemented in sktime at the time. In addition, we re-implement and evaluate
the improved model by Legaki & Koutsouri, the best performing statistical model
in the M4 competition. We call the model “Theta-bc” since it involves a Box-Cox
transformation [37]. We give an overview of all models we re-implement in Table

9.3.

9.6.2 Results

We compare our results for each model against the published results in terms of
average performance and computational run time. An overview of our results is
presented in Table 9.4, which shows the percentage differences between reproduced
and published sMAPE values for the data sets grouped by sampling frequency.
Corresponding results for MASE and OWA are shown in the appendix in Tables
C.1 and C.2.

We test whether the found differences are statistically significant using a paired
t-test. Detailed results of the significance tests for sSMAPE and MASE values are
shown in the appendix in Table C.3 and C.4, respectively. Summary results are
shown in Table 9.5.

Our main findings are as follows:

e For all naive forecasters, we can reproduce the published results perfectly,
barring negligible differences due to numerical approximations. This validates

our experimental workflow for training, prediction and model evaluation.

e For the statistical models, we find small but often statistically significant
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Table 9.3: Overview of reproduced M4 models

Name Category  Description

Naive naive Always predicting the last value of the training set.

sNaive naive Always predicting the last value of the training set of the
same season.

Naive2 naive Like Naive, but with seasonal adjustment by applying classical

multiplicative decomposition [57] and an auto-correlation test
at the 90% significance level to decide whether or not to apply
seasonal adjustment [81].

SES statistical ~Simple exponential smoothing and extrapolating [113, 114,
263|, with no trend, and seasonal adjustment as in Naive2.
Holt statistical Like SES, but with a linear trend.

Damped statistical Like Holt, but with a damped trend [92].

Theta statistical ~As applied to the M3 Competition [179] using two Theta lines,
01 = 0 and 02 = 2, with the first one being extrapolated using
linear regression and the second one using SES. The forecasts
are then combined using equal weights [9]. This is equivalent
to special case of simple exponential smoothing with drift
[123]. Seasonal adjustments are considered as in Naive2.

Theta-bc  statistical —Like Theta, but with Box-Cox adjustment [37], where lambda
is estimated via maximum likelihood estimation and con-
strained to the (0,1) interval. Submitted to the M4 competi-
tion by Legaki & Koutsouri (submission #260).

Com statistical ~Simple arithmetic mean of SES, Holt and Damped.

ARIMA  statistical An automatic selection of possible seasonal ARIMA models
is performed and the best one is chosen using appropriate
selection criteria [39, 124].

MLP ML A multi-layer perceptron of a very basic architecture and
parameterization via a recursive reduction strategy with win-
dow length set to 3 (see Section 3.4). Linear detrending and
seasonal adjustments is applied as in Naive2 to facilitate ex-
trapolation.

RNN ML A recurrent network of a very basic architecture and paramet-
erization via a recursive reduction strategy with window length
set to 3 (see Section 3.4). Linear detrending and seasonal
adjustments is applied as in Naive2 to facilitate extrapolation.

Notes: The forecasters are described in detail in the original M4 competition [182]. Following
the M4 competition, models are grouped into three categories: “naive”, “statistical” and “ML”.
We follow the categorization of the M4 competition for consistency, but more informative
categorizations have been proposed by Januschowski et al. [135].

differences. The largest difference we find for sSMAPE is 4% for the Holt
model on the yearly data set. There appears to be no clear trend in the

differences. In some cases, published results are better, in others ours. A
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Table 9.4: SMAPE percentage difference between reproduced and pub-
lished results

Yearly  Quarterly Monthly  Weekly Daily Hourly

Nalve 0.000 0.000 0.000 0.000 0.000 0.000
Naive2 0.000 0.000 0.000 0.000 0.000 0.000
sNaive 0.000 0.000 0.000 0.000 0.000 0.000
SES —0.004 0.069 0.016 —0.005 0.011 0.000
Holt 4.063 —1.528 3.916 —3.365 0.286  —4.347
Damped 1.586 —1.024 0.010 —0.694 1.036  —0.783
Com 1.659 —0.615 1.123 —1.418 0.498  —1.538
ARIMA 1.617 4.572 2.418 0.851 —2.142  -2.017
Theta —1.514 0.046 0.078 0.174 0.057 0.008
Theta-bc ~ —0.948 —0.096 —0.092 —0.043 0.050 3.378
MLP —11.936  —24.109 —-27.567 —52.596 —61.727  —4.558
RNN —22.728  -29.329 —-30.815 —25.979 —33.001 —9.332

Notes: Rows show forecasters described in table 9.3. Columns show M4 data sets
grouped by sampling frequency. Values show the percentage difference between
reproduced and published mean sMAPE values relative to the published values.
Negative values indicate that reproduced results are lower (better) than published
ones.
possible explanation of the differences is the randomness involved in the
optimization routines used during fitting. However, since we do not apply the
same model repeatedly on the same series, we cannot reliably quantify that

source of variation. Of course, differences may also be due to implementation

differences or bugs.®

e For the ML models, including MLP and RNN, we find large and statistically
significant differences. Differences are entirely negative, ranging from —11%
for MLP on the yearly data set to —61% on the daily data set, indicating
that these models now perform better than in the original competition. A
possible explanation is that the algorithm implementations in scikit-learn
[205] and TensorFlow [1] have been improved since the M4 competition,

which may also explain the improved run times shown in Table 9.5.

5For example, statsmodels’ exponential smoothing model seemed to return wrong forecasts
in a few cases, as reported at https://github.com/statsmodels/statsmodels/issues/5877.
We also discovered that the M4 competition used inconsistent seasonality tests for Python and
R which we take into account when reproducing the results, as report at https://github.com/
Mcompetitions/M4-methods/issues/25.
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In addition, we compare the computational run times between sktime and the
model implementations used in the original M4 competition, which mostly relied
on the forecast library in R. Since we use different machines to reproduce the
results (see Section 9.5 for more details), run times are not directly comparable.
To make them more comparable, we scale our obtained run times to the number
of CPUs used in the M4 competition. The scaled values are shown in Table
9.5. Most notably, ARIMA takes approximately 5 times longer than in the M4
competition. This is likely because R’s forecast library supports the conditional
sum of square approximation technique for model estimation [36, p. 209ff.|, which
is considerably faster, especially for long series, but not yet supported by pmdarima
and statsmodels, the libraries we rely on internally. On the other hand, MLP and
RNN, based on scikit-learn [205| and TensorFlow [1], are now substantially
faster than in the M4 competition. The remaining run times are more or less on
par. SES, Holt and Theta are slightly faster in sktime, the naive forecasters and

Damped are slightly slower.

9.7 Extending the M4 competition

Having reproduced key results from the M4 competition, we want to extend it for

two reasons:

e First, we want to further investigate the potential of ML models for forecast-
ing. In contrast to most of the ML models in the original M4 competition,
we focus on models that require only a single series for training and hence

cannot make use of consistent patterns across multiple series.

e Second, we want to illustrate the effectiveness and applicability of sktime
for solving forecasting tasks. We hope to show that, thanks to its modular
API, sktime allows to easily specify, tune and evaluate models, including

common ML techniques like pipelining, reduction and boosting.
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9.7.1 Research questions

In particular, our investigation is guided by three research questions:

Question 1: Can simple reduction approaches based on cross-sectional regression

algorithms outperform the statistical models included in the M4 competition?

Question 2: Can one-step residual boosting with simple cross-sectional regression
algorithms enhance the predictive performance of Theta-bc (see Table 9.3),

the best performing statistical model in the M4 competition?

Question 3: Does tuning of the window length hyper-parameter in reduction
approaches based on cross-sectional regression algorithms improve perform-

ance?

9.7.2 Models

To investigate these questions, we evaluate five previously unstudied ML models
in the M4 competition. These models are described in detail in Table 9.6. All our
models rely on linear detrending of the data, as the sliding window transformation
of the reduction approach makes it difficult for ML models to pick up trends.
We evaluate each of the models with four simple regression algorithms: Linear
regression (LR), K-nearest-neighbors (KNN), random forest (RF), and gradient
boosted trees (XGB). For the Theta-based models #4 and #5 in Table 9.6, we
exclude LR, as Theta already includes some linear extrapolation. This leads to
a total of 18 new models that we add to the original M4 competition. For more

details on the regressors and their hyper-parameter settings, see Table 9.7.

9.7.3 Results

Detailed results for all models are reported in the appendix in Tables C.5, C.6,

C.7, and C.8. Below we discuss our three research questions in turn.

213



CHAPTER 9. REPRODUCING AND EXTENDING THE M4 FORECASTING
COMPETITION

Table 9.6: Overview of ML models used to extend the M4 competition

# Name Category Description

1 {regressor} ML Regression via reduction, using the standard
recursive strategy for generating predictions
(see Section 3.4). No seasonal adjustment,
but linear detrending and standardization
(removing the mean and scaling to unit vari-
ance) is applied. The window length is set
to max(m, 3), where m is the seasonal peri-
odicity of the data.

2 {regressor}-s ML Like #1, but with seasonal adjustment as
in Naive2.
3 {regressor}-t-s ML Like #2, but with tuning of the window

length. We use a simple temporal cross-
validation scheme, in which we make a single
split of the training series, using the first
window for training and the second window
for validation. The validation window has
the same length as the forecasting horizon
(i.e. the test series). We search over the
following window length values: 3, 4, 6, 8,
10, 12, 15, 18, 21, 24.

4 {regressor}-Theta-bc ~ Hybrid One-step residual boosting of Theta-bc (see
Section 8.5.3). Standardization is applied as
in #1 to the Theta-bc residuals. Theta-bc
is defined in Table 9.3. Window length is
set as in #1.

5  {regressor}-Theta-bc-t Hybrid Like #4, but with tuning of the window
length as in #3.

Notes: {regressor} is a placeholder for the cross-sectional regression algorithms, including Linear
regression (LR), K-nearest-neighbors (KNN), random forest (RF), and gradient boosted trees
(XGB), described in Table 9.7.

Table 9.7: Cross-sectional regression algorithms used
to extend the M4 competition

Name Description Hyper-parameters
LR Linear regression fit _intercept=True
KNN  K-nearest neighbors n_neighbors=1
RF Random forest n_estimators=500

XGB  Gradient boosted trees 1n_estimators=500

Notes: For all algorithms except XGB, we use scikit-learn
[205]. For XGB, we use xgboost [53]. For all other hyper-
parameters, we use the libraries’ default values.
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Figure 9.1: Critical difference diagram based on sMAPE and the hourly data set
for selected models
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Notes: The diagram is based on sSMAPE performance and the hourly data set. On the horizontal
line, the diagram shows mean ranks for each forecaster. Forecaster grouped by a bar are not
statistically significant based on pairwise post-hoc Nemenyi tests at the 5% level. Corresponding
Wilcoxon-Holm test results are shown in the appendix in Table C.9.

Question 1: Can simple reduction approaches based on cross-sectional regression

algorithms outperform the statistical models included in the M4 competition?

We present selected OWA results in Table 9.8. We also report some original M4
models as a reference for comparison, particularly the M4 winner [234, 235|, the
runner-up [192|, the best pure ML model submitted by Trotta which we call “M4
best ML” (a convolutional neural network adapted to time series), and Theta-bc,
the best performing statistical model submitted by Legaki & Koutsouri.

In line with previous results [180, 182], we find that over the whole of the
M4 data set, the new ML models cannot on average achieve equal or better
performance compared to the statistical models. However, on the hourly data set,
ML models can perform better than statistical ones. Our best model, RF-s with
an OWA of 0.493 comes even close to the cross-learning models of the M4 winner
(0.44) and runner-up (0.484). XGB-s (0.496) and LR-s (0.501) achieve slightly
worse, but still competitive performances.

To check if found performance differences are statistically significant, we use
significance tests. We show the corresponding critical difference diagram in Figure
9.1. Results from Wilcoxon-Holm tests are shown in the appendix in Table C.9.
For the hourly data set, the observed differences between RF-s and the statistical
models are statistically significant. The differences between RF-s and the M4

winner and the runner-up are not statistically significant.
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To answer question 1: No, simple reduction approaches based on cross-sectional
regression algorithms cannot achieve equal or better performance compared to
statistical methods on the whole of the M4 data set. But they can achieve equal
or better performance on the hourly data set. Indeed, here they even perform on
par with the the custom-built best performing M4 models, with no statistically
significant difference between them.

It is worth emphasizing that compared to the best performing M4 models,
our models are considerably simpler. They only need a single series for training.
They only rely on simple cross-sectional regression algorithms. And with sktime,
they only use out-of-the-box functionality without requiring any custom-built

components.

Table 9.8: Performance of ML models used extend M4 competition (OWA)

Yearly Quarterly Monthly Weekly Daily Hourly Total

M4 winner 0.778  0.847 0.836 0.851 1.046 0.44 0.833
M4 runner-up 0.799  0.847 0.858 0.796 1.019 0484 0.847
Theta-bc 0.776  0.893 0.904 0.964 0.996 1.009 0.876
Com 0.886  0.885 0.93 0.911 0.982 1.506 0.914
M4 best ML~ 0.859  0.939 0.941 0.996 1.071  0.634 0.926
RF-s 0.967 1.014 0.994 1.015 1.078  0.493 0.994
Naive2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
XGB-s 1.022  1.091 1.118 1.113 1.149  0.496 1.088
LR-s - 1.037 2.16 0.964 1.07 0.501 -

Notes: Rows show forecasters described in Table 9.6. Columns show M4 data sets grouped by
sampling frequency. The entry “M4 best ML” refers to the M4 submission by Trotta which
was the best pure ML model. We exclude results for LR model when generated forecasts were
unstable/exploding due the little available data and linear extrapolation.

Question 2: Can one-step residual boosting with simple cross-sectional regres-
sion algorithms enhance the predictive performance of Theta-bc, the best

statistical model in the M4 competition?

To investigate the second question, we compare results for Theta-bc with
their one-step residual boosted variants based on the RF and XGB regression
algorithms. We also include the versions of the boosted models with tuning for

the window length hyper-parameter. Results are shown in Table 9.9.

216



9.7. EXTENDING THE M4 COMPETITION

Figure 9.2: Critical difference diagram based on sMAPE and the hourly data set
for Theta models
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Notes: The diagram is based on sMAPE performance and the hourly data set. On the horizontal
line, the diagram shows mean ranks for each forecaster. Forecaster grouped by a bar are not
statistically significant based on pairwise post-hoc Nemenyi tests at the 5% level. Corresponding
Wilcoxon-Holm test results are shown in the appendix in Table C.10.

Our main findings are as follows: Over the whole of the M4 data set, one-step
boosting does not improve the performance of Theta-bc. Boosting even leads to a
performance loss on the yearly, monthly and quarterly data sets. On the other
hand, it leads to slight performance gains on the weekly, daily and hourly data
set. In particular, on the daily data set, boosting with RF improves the OWA
of Theta-bc from 0.996 to 0.988, and on the hourly data set from 1.009 to 0.985.
For the weekly data set, tuning is needed to improve accuracy beyond that of
Theta-bc.

Again, we test whether found performance differences on the hourly data set
are significant. As shown in Figure 9.2, we find that the boosted variants perform
significantly better than Theta-bc without boosting on the hourly data set, with

no significant difference between the different regression algorithms.

Table 9.9: Performance of one-step residual boosted Theta-bc models (OWA)

Yearly Quarterly Monthly Weekly Daily Hourly Total

Theta-bc 0.776 0.893 0.904 0.964 0.996 1.009 0.876
RF-Theta-bc-t 0.854  0.938 0.933 0.959  0.999 0.987 0.919
RF-Theta-bc 0.864  0.957 0.932 1.052 0.988 0.985 0.925
XGB-Theta-bc 0.898  1.017 0.971 1.153 1.023  0.993 0.968
XGB-Theta-bc-t  0.906  1.009 0.976 1.006 1.04 0.998 0.971

Notes: Rows show forecasters described in Table 9.6. Columns show M4 data sets grouped by
sampling frequency.

Question 3: Does tuning of the window length hyper-parameter in reduction
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approaches based on cross-sectional regression algorithms improve perform-

ance?

To investigate the last question, we compare the performance of each regressor,
once with a tuned value for window length and once with the default value (see

Table 9.6). Results are shown in Table 9.10. Our main findings are as follows:

Over the whole of the M4 data set, tuning of the window length does not
improve performance. Exceptions are the weekly data set and the KNN regressor.
On the weekly data set, all tried out regressors benefit from tuning, with the
biggest OWA improvement being 0.082 for XGB. KNN additionally benefits from
tuning on the yearly and hourly data set.

Note that other temporal cross-validation schemes than the ones tried out
here are possible and may prove to be more beneficial to overall performance
(e.g. a sliding window validation). In addition, one could try to optimize other
hyper-parameters (e.g. the strategy to generate forecasts as discussed in 3.4, or
the hyper-parameters of regressor using a nested cross-sectional cross-validation
scheme). However, note that tuning comes at the cost of a considerable increase

in run time, as reported in the appendix in Table C.8.

Table 9.10: Performance of tuned ML models (OWA)

Yearly Quarterly Monthly Weekly Daily Hourly Total

RF-s 0.967 1.014 0.994 1.015 1.078 0.493 0.994
RF-t-s 1.005 1.070 1.057 0.967 1.087 0.683 1.047
XGB-s 1.022 1.091 1.118 1.113  1.149 0.496 1.088
XGB-t-s  1.038 1.144 1.170 1.031 1.179 0.746 1.131
KNN-s 1.086 1.171 1.257 1.218 1.338 0.544 1.197
KNN-t-s  1.062 1.185 1.276 1.147  1.331 0.751 1.205
LR-s - 1.037 2.160 0.964 1.070 0.501 -
LR-t-s - - 1.876 0.889 1.089 0.670 -

Notes: Rows show forecasters described in Table 9.6. Columns show M4 data sets
grouped by sampling frequency. We exclude LR model results when generated forecasts
were instable/exploding, likely due the little available data and linear extrapolation.
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9.8 Concluding remarks

We used sktime to reproduce and extend the M4 forecasting competition. Re-
producing the M4 competition allowed us to validate published results, test our
framework against reference implementations, and illustrate its effectiveness and
applicability. We found no or only small differences for the naive and statistical
forecasting algorithms, and large improvements for the ML algorithms.

Extending the M4 competition allowed us to further investigate the potential
of simple out-of-the-box ML approaches for forecasting. In particular, we found
that simple reduction-based ML models using cross-sectional regression algorithms
can achieve competitive performance on the hourly data set, outperforming the
statistical algorithms and achieving comparable performances to the best M4
models.

It also appears that the characteristics of the series may be a critical factor
determining the performance of ML models. This suggests that certain forecasting
problems warrant a more systematic exploration — something which we hope

sktime can facilitate in future research.
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Chapter 10

Conclusion and Directions for

Future Work

This thesis had four main goals. The overarching goal was to develop a unified
software framework for MLL with time series and implement it in an open-source
Python library called sktime. A second goal was to create a formal taxonomy
of time series data and learning tasks. A third goal was to derive ML-specific
software design principles. While the taxonomy of tasks and software design
principles were research contributions in their own right, they were necessary to
achieve the first goal. The fourth and final goal was to use sktime to reproduce
and extend the M4 competition, one of the major comparative benchmarking
studies for forecasting.

Our approach to developing the unified framework for ML with time series
largely fell under domain-driven design. The initial step in domain-driven design
is to develop a conceptual model of the domain of interest. The software is then
implemented to closely match the conceptual model. The focus of part I of this
thesis was to develop a conceptual model for ML with time series.

We started in Chapter 2 by introducing ML with time series and defining
the concept of a learning task. A learning task was defined as a combination
of a (i) description of the available data, both in terms of its relational and

statistical structure, (ii) a learning process specification detailing at what point
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what input data is given to the learning algorithm and what output it returns,
and (iii) a definition of success for evaluating algorithm performance. From this,
we developed in Chapter 3 a taxonomy of key time series data forms (univariate,
multivariate and panel data) and key time series learning tasks, including time
series classification, regression and forecasting. We focused on (deterministic)
point-predictive tasks, leaving other tasks for future work. While the taxonomy
highlighted the differences between learning tasks, we also discussed reduction as
a key concept to understand their relation. We gave an overview of important
reduction relations in the time series setting, described common examples and
discussed general properties of reduction relations (modular, composable, adaptive

and tunable).

With the taxonomy for time series tasks at hand, we needed a better un-
derstanding of the domain of ML more generally, and a set of software design
principles that could guide the development of the proposed unified framework.
This was the focus of part II. We started in Chapter 4 by reviewing key ideas from
classical software design and object-oriented programming as the predominant
programming paradigm for ML software. As is standard in software design, we
then began in Chapter 5 to identify those workflow elements that are more likely to
change than others. These elements would serve as sensible points of abstraction.
Examples of such change-prone elements include learning tasks, as described above,
and learning algorithms, among others. In order to further develop our conceptual
model, we then formalized, abstracted and related these elements based on their
common attributes and interface points. At the core of our conceptual model, we
proposed a new type system, called “scientific types”. We defined a scientific type
as a structured data type combined with mathematical or statistical properties
that all elements of that type must satisfy. Scientific types extend classical type
system as found in programming languages and mathematical formalism to data
science. Like classical types, they define a value space into which all objects
of a given type must fall (e.g. integers) and a set of well-defined operations for

objects in that space (e.g. addition). In addition, they ascribe a set of statistical
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properties to all objects of a given type. These properties reflect the particular
kind of learning task in relation to which these objects have been defined. For
example, we can define a scientific type for forecasting algorithms in correspond-
ence to the forecasting learning task, or a cross-sectional classification algorithm
corresponding to the cross-sectional classification task. As such, scientific types
categorize objects according to their data scientific purpose. We illustrated that we
cannot just express simple algorithms like forecasters or cross-sectional supervised
learners with scientific types, but also higher-order composition algorithms such

as pipelining, ensembling, tuning or reduction, among others.

Based on our conceptual model, and scientific types in particular, we were
able to formulate general design principles for ML toolbox design. We derived
in Chapter 6 a set of general guiding principles for ML toolbox design. We also
proposed design patterns to describe solutions to recurring problems in ML toolbox
design, extending the classical design patterns put forward by Gamma et al. [90].
These principles and patterns, together with scientific types, ensure that the
conceptual domain model is tightly linked to the underlying mathematical and
statistical formalism, but also easily implementable in software. Using scikit-
learn [205] as an example, we illustrated that these principles and patterns can

explain key aspects of existing toolboxes.

With these principles in mind, we were ready to address the goal of developing
a unified framework for ML with time series. We described in Chapter 8 the design
of our framework and its implementation in an open-source library in Python
called sktime. The design was derived from combining our previous insights from
the taxonomy of learning tasks, scientific types as well as our design principles and
patterns. Specifically, we first identified relevant objects in the domain of time
series, then abstracted them in the form of scientific types and finally implemented

them as part of a consistent, modular and unified API for ML with time series.

In the last part of this thesis, we used sktime to reproduce and extend the
M4 competition. Reproducing the M4 competition allowed us to validate the

published results, test our framework against reference implementations, and
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illustrate its applicability. Extending the M4 competition allowed us to evaluate
previously unstudied models and investigate new composite models that are
easily implementable in sktime. We began in Chapter 9 by re-implementing key
algorithms from the competition independently of the published code. We found
that our reproduced results were at least as good as the published ones, with
minor variations and some larger improvements for ML models. We then set out
to investigate whether simple, out-of-the-box reduction-based ML models provided
by sktime can achieve competitive performance compared to the custom-built,
cross-learning ML models that performed best in the M4 competition. We found
that on a subset of the series included in the M4 data set, our new models can
achieve state-of-the-art performance, with no statistically significant difference to
the M4 winner models.

Before we discuss limitations and directions for future research, we summarize

the contributions of this thesis below.

10.1 Summary of contributions

In summary, the contributions of this thesis are as follows:

1. Formalization of time series learning problems as learning tasks and devel-
opment of a formal tazonomy for time series learning tasks, with a focus on
common (deterministic) point-predictive tasks such as time series classifica-
tion, regression and forecasting, as well as the reduction relations between

them.

2. Development, formalization and motivation of a set of general, reusable
design principles for ML toolbozes based on the idea of a scientific type system
that links the software implementation with the underlying mathematical

and statistical concepts.

3. Review of existing time series analysis software and a discussion of the

limitations of current toolbox capabilities, with a focus on the open-source
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ecosystem in Python.

4. Design and implementation of the first unified framework for ML with time
series, with the aim to provide a principled and modular object-oriented
application programming interface (API) in Python for specifying, training
and validating time series algorithms for medium-sized data. The unified

framework has been implemented in an open-source project called sktime.

5. Reproduction and extension of the Mj forecasting competition, one of the
major comparative benchmarking studies for predictive performance of
forecasting algorithms, with a focus on using sktime to evaluate and compare
simple reduction-based ML algorithms. To our knowledge, this is the first
complete reproduction of the M4 competition within a single framework

independent of the published code.

10.2 Limitations and future work

In this section, we discuss limitations of this thesis and directions of future research.

10.2.1 Selection of learning tasks

Time series data give rise to a wide variety of learning tasks. This thesis focused
on three key tasks — time series classification, regression and forecasting. All
of these tasks were phrased as (deterministic) point-predictive tasks. In future
work, we hope to extend our taxonomy beyond these tasks. Table 3.1 gave an
informal overview of common time series tasks. We consider the following tasks
as key directions for future research, both in terms of formalization and software

development within sktime:

o Additional predictive tasks. Common predictive tasks not included in this

thesis are time series annotation tasks such as change point detection [5],

https://github.com/alan-turing-institute/sktime
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anomaly detection [52] and outlier detection [110] as well as multivariate

forecasting [175], panel forecasting [16, 267| and supervised forecasting [98].

e Non-predictive tasks. One of the most popular non-predictive tasks is
time series clustering [2]. Other non-predictive tasks include time series

segmentation [143| and motif discovery [194].

e Probabilistic tasks. Probabilistic tasks include probabilistic variants of the
above tasks, including probabilistic time series classification, regression and
forecasting, as well as inherently probabilistic tasks such as survival analysis
(single event risk prediction under censoring) [60, 139, 146] and point process

modeling (multiple event risk prediction) [64].

e Online learning variants of tasks. Most of the above tasks are also possible
in an online learning setting in which data becomes available incrementally
as time moves on (e.g. early time series classification [268]). In this setting,
it is often preferable to update a fitted model when new data arrives, rather
than to completely refit it. Note that, depending on the data generative

setting, new data may consist of new instances, new time points or both.

The conceptual model for ML theory and the design principles presented in this
thesis are generalizable to other tasks. In this thesis, we focused on key conceptual
objects (e.g. tasks and algorithms). To support other tasks, the conceptual analysis
may have to be extended to other common objects, for example loss functions
and probability distributions. Similarly, some these tasks are straightforward
extensions to existing APIs (e.g. time series clustering), whereas others will require
the development of new API designs. In general, inclusion of these tasks will
require formalizing them, developing an API design, in line with the general design
principles and patterns derived in this thesis, and implementing core algorithms

and related functionality.
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10.2.2 Simplifying assumptions

Much of this thesis relied on common simplifying assumptions, both in the
formalization of learning tasks and the implementation of sktime. These include
the assumption of time-homogeneity, as discussed in Chapter 3. In particular, we
assumed that time series data are equally spaced and that they share a common
time index across variables and instances. In the taxonomy of tasks, these
assumptions eased notation and allowed us to concentrate on the most important
aspects. In sktime, these assumptions allowed us to rely on well-established data
containers (e.g. NumPy and pandas).

However, these assumptions are often violated in real-world applications.
Time series data tends to exhibit considerable complexity. For example, different
variables are often recorded at different frequencies and different instances are often
observed over different time periods. In future work, we hope to extend our analysis
and the implemented functionality to handle such data formats. One of the main
challenges is the development of a data container to deal with ‘“ragged” temporal
and hierarchical data. awkward-array [211| presents a promising solution in this

context and we wish to further explore its compatibility with sktime.

10.2.3 Toolbox design: Towards a more declarative lan-

guage for ML

The research presented in this thesis marks a first attempt at consolidating the
science of toolbox design. We hope that our research will inspire more research
on the underlying design principles of ML software.

In particular, the conceptual analysis presented in this thesis, and scientific
types in particular, mark a first step towards a more declarative design for ML
toolboxes. The current API design of sktime, much like that of other ML
toolboxes, falls under the imperative programming paradigm. It uses syntax
statements such as fit or predict that express commands for the computer

to perform. It focuses on how the program operates, in contrast to a more
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declarative language, which focuses on what the program should accomplish. A
more declarative syntax would use a precise description of the task to be solved
and properties of the preferred solution, without requiring a specification how the
program should achieve the solution. To achieve this level of abstraction, it is
necessary to clearly capture and delineate task descriptions in the program and
to categorize functionality according to their ability to address these tasks.

In future work, we want to develop a layered API by adding a more declarative
layer for task specification in sktime. Currently, sktime creates the domain
layer tightly linked to our conceptual model of time series analysis. The task
specification layer would add a new user interaction layer on top that makes it
easier for users to run the most common workflows from specifying a task, to
fitting a model and generating predictions, without having to specify details of

the learning process itself.
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Author’s Contribution

Markus Loning (ML) is solely responsible for content and exposition of this thesis.

sktime is an community-driven open-source project with contributions from
other community members. ML has been sktime’s lead developers since its
beginning, contributing to almost all parts of it, most importantly, the design and
implementation of the core interfaces for classification, forecasting, transformation,
composition and model evaluation, as well as the implementation of specific
algorithms.

An outline of sktime, its design and the taxonomy of learning tasks first
appeared in Loning et al. [169]. Chapter 3 and 8 are partly based on this paper.
The paper was written by ML, with contributions from Franz Kiraly (FK) and
small contributions from the other authors. FK initially conceived the research
project. ML then made key contributions in this thesis to the conceptualization,
design and implementation.

An overview of sktime’s forecasting interface first appeared in Loning and
Kiraly [167]. Chapter 8 is partly based on this paper. The paper was written by
ML, with contributions from FK. In this thesis, ML refines some points, adds
detail and aligns it with the overall structure and terminology of the thesis.

The discussion on design principles for machine learning toolboxes first ap-
peared in Kiraly et al. [145]. Chapters 5 and 6 are partly based on this paper.
The paper was jointly written by ML and FK, with small contributions from
the other authors. The research project was initiated by FK. Anthony Blaom
first introduced the idea and the term “scitype” in the context of data containers

and the MLJ software package. FK conceived of scitypes of objects beyond data
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containers. ML made key contributions by further formalizing the idea, applying
it to the time series setting and implementing it in sktime. In this thesis, ML
further refines some points, adds detail and aligns it with its overall structure and
terminology.

The reproduction and extension of the M4 competition first appeared in Loning
and Kiraly [167]. Chapter 9 is largely based on this paper. The benchmarking
experiments and description of the results was done by ML, with small contri-
butions from FK. All code was written by ML. In this thesis, ML refines some

points and links them to the rest of the thesis.
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Appendix A

Object-Oriented Programming

In this chapter, we will review key concepts from object-oriented programming,
the predominant paradigm for ML toolboxes. We will refer to these concepts
frequently throughout the next chapters, including in the conceptual analysis in
Chapter 5, the discussion of our design principles in Chapter 6 and in the design
of sktime in Chapter 8.

In our review below, we largely rely on the exposition in Gamma et al. [90],
but prefer our own terminology for some of the concepts, in line with common

usage in data science software in Python.

Object. Object-oriented programs are made up of objects. An “object”, sometimes
also called a “structured object”, packages data and methods that operate on that

data.

Attribute. The data is typically represented as “attributes” that are accessible by

PRRNNA

the object’s methods. Attributes are sometimes also called “properties”, “variables”

or “fields”.

Method. A “method”, sometimes also called “operation”, is essentially a function

associated with an object that may operate on the object’s data.

99 L,

Function. A “function”, sometimes also called “routine”, “subroutine” or “proced-
) 9

ure”; is a sequence of instructions that perform a specific task packaged as a unit.
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The function can then be used in programs wherever that particular task should
be performed. Functions are usually “side effect” free, meaning that they do not
affect the state of other objects. Methods, on the other hand, might not be side

effect free, as they modify the state of objects.

Call. An object performs a certain method when it is “called” from a “client”. This
is sometimes expressed as “when it receives a request or message from a client”.
When a call is sent to an object, the particular method that is performed depends
on both the call and the receiving object. Different objects that support identical
calls may have different implementations of the method that fulfills the call.

Client. A “client” may be a user or another object, which in responding to a call,

calls a method from another object.

Encapsulation. Calls are the only way to get an object to execute a method.
Methods are the only way to change an objects internal data. Because of these
restrictions, the object’s internal state is said to be “encapsulated”: it cannot be
accessed directly, and its representation is hidden form the outside of the object.
This means that changes to the internal representation can affect only a small, easily
identifiable region of the program. This constraint greatly improves the modularity
and maintainability of larger libraries. Note that different programming languages

have different ways to enable encapsulation, some more, other less strict.!

Signature. Every method declared by an object specifies the method’s name, the
input arguments it takes and the method’s output, jointly known as the method’s

“signature”.

Interface. The set of all signatures defined by an object is called the object’s
“interface”. An object’s interface characterizes the complete set of methods that

can be called on the object. Note that the object’s internal representation does

1For example, some language allow fields and methods to be marked “public” or “private”,
where private methods and fields restrict their call sites to other methods of the same object.
Other languages, such as Python, do not have mechanisms for enforcing encapsulation, but rely
on conventions among developers to ensure encapsulation.
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not appear in its interface since it does not affect the methods we can perform
with the object. Objects are known through their interfaces: there is no way to
know anything about an object or to ask it to do anything without going through
its interface. An object’s interface says nothing about its implementation, that
is, different objects are free to implement calls differently. That means that two
objects having completely different implementations can have identical interfaces.
Two objects responding to the same set of methods, i.e. with the same interface,
may use entirely different implementation of the methods, as long as each carries
with it an implementation of methods that works with its particular internal
representation. Focusing on the object interface rather than its implementation or
internal structure has two advantages: First, clients — be it users or other objects
— can remain unaware of the specific objects they use as long as the objects adhere
to the interface that clients expect. Second, clients can remain unaware of the
classes that implement these objects, clients only need to know about the interface.
Consequently, we can write programs that expect an object with a particular
interface knowing that any object that has the expected interface will accept the

call.

Application programming interface. The set of all objects, their interfaces and
any stand-alone functions not associated with any object that can be called by

the user is called the “application programming interface” or “API” for short.

Polymorphism. Encapsulation allows us to substitute objects that have identical
interfaces for each other at run time. This substitutability is known as “poly-
morphism”. Polymorphism lets a client object make few assumptions about other
objects except that they support a particular interface. Polymorphism simplifies
the definition of client objects, decouples objects from each other, and lets them

vary their relationship to each other at run time.

Types. Object with the same interface are considered to have the same “type”.
An object may also have many types. Parts of an object’s interface can be

characterized by one type, and other parts can be characterized by other types.
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Two objects of the same type need only share parts of their interfaces. Interfaces
can contain other interfaces as subsets, we say that a type is a “subtype” of another
if its interface contains the interface of its subtype. We often speak of a subtype
inheriting the interface of its “supertype”. We will discuss types in more detail in

Chapter 5.

Class. Let us consider in more detail how objects are implemented. An object’s
implementation is defined by its “class”. The class specifies the object’s internal
data and defines the methods the object can perform. Objects are created by
instantiating a class. The object is said to be an “instance” of the class. So a class
can be understood as a template from which we can create an object. For example,
we can have multiple instantiations (objects) of the same template (class). It is
important to differentiate between a class and its type: An object’s class defines
how the object is implemented. The class defines the object’s internal state and
the implementation of its methods. By contrast, an object’s type only refers to its
interface, that is, the set of calls which it can perform. An object can have many
types and objects of different classes can have the same type. Of course, there is
a close relationship between an object’s class and type: because a class defines
the methods an object can perform, it also defines the object’s type. When we
say that an object is an instance of a class, we imply that the object supports the

interface defined by the class.

Inheritance. New classes can be defined in terms of existing classes. When a new
class “inherits” from an old class, the new class includes the definitions of all the
data and methods that the old class defines. We say the “subclass” “inherits” or
“extends” the “parent” class. A subclass may “override” an method defined by
its parent class. Overriding gives a subclass a chance to handle calls instead of
relying on the behavior of the parent class. Inheritance has two advantages: First,
inheritance is a mechanism for extending functionality by re-using functionality
in parent classes. It makes it easy to define new classes simply by extending other

classes. Subclasses can add or change behavior of parent classes. It is a mechanism
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for code and representation sharing. Second, inheritance lets you define families of
objects with identical interfaces by inheriting from a common parent class. When
inheritance is used carefully, all classes derived from the parent class will share
its interface. This implies that a subclass merely adds or overrides methods but
does not hide methods of the parent class. All subclasses can then respond to the
call in the interface defined by the parent class, making them all subtypes of the
parent class. Some programming languages also support “multiple inheritance”,

meaning that a subclass can have more than one parent class.

Abstract class. An abstract class is one whose main purpose is to define a common
interface for its subclasses. An abstract class will defer some or all of its imple-
mentation to methods defined in subclasses, hence an abstract class cannot be
instantiated. The methods that an abstract class declares but does not implement

are called “abstract methods”.
Concrete class. A class that is not abstract is called a “concrete class”.

Maixin class. A mixin class is one that is intended to provide an optional interface
or functionality to other classes It is similar to an abstract class in that it is not

intended to be instantiated. Mixin classes require multiple inheritance.

Composition. Composition is an alternative to class inheritance. Here new func-
tionality is acquired by assembling or “composing” objects to get more complex
functionality. Object composition requires that the objects being composed have
well-defined interfaces. Whereas class inheritance is statically defined at compile
time, object composition is dynamically defined at run time through objects

obtaining references to other objects.

Delegation. In composition, there are more than one object involved in handling a
call. A receiving object may “delegate” a call to another object in the composition.

This is analogous to subclasses deferring calls to parent classes in class inheritance.
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Appendix B

Classical Software Design

Having described the developer’s problem and key quality criteria of ML toolbox
design in Chapter 4, we here give an overview of classical software design.
Various software design approach have been proposed.! Our approach to
addressing the developer’s problem largely falls under “domain-driven design” as
put forward by Evans [78], but also draws on ideas by “pattern-oriented design”
[48, 82, 90| and other approaches such as “responsibility-driven design” [264-266],
“design by contract” [188| as well as best practices as discussed by Larman [152].
What all of these approaches have in common is the idea of taking those elements
that are likely to vary jn typical practitioners’ workflows as sensible points for

abstraction.

B.1 Abstraction

The basic idea of abstraction is simple: to abstract is to set aside what is less
relevant and to focus on what we judge more important for the purpose in question.
We focus on what persists and abstract away what varies from one instance to
another. For example, in typical ML workflows, some elements (e.g. the training
set or learning algorithm) will vary more often than others. To keep our code

general, we hide those aspects that vary from one instance to another, while

For an overview of software design, see e.g. Budgen [45].
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APPENDIX B. CLASSICAL SOFTWARE DESIGN

exposing those aspects that remain constant between instances.?

In object-oriented programming, we can encapsulate the change-prone parts of
the code in objects and define a set of common, less change-prone interface points
around the change-prone internals. This will hide the change-prone parts inside
the object’s internal representation and prevent external code from referring to the
change-prone details within the object. We discuss object-oriented programming

and key ideas such as encapsulation and interfaces in appendix A.

B.2 Domain-driven design

The central idea of domain-driven design is to first create a conceptual model of
the domain of interest |78, 257|. Every software program relates to some sphere
of knowledge or activity of its user. That subject area to which the user applies
the program is called the “domain” of the software. In this thesis, the domain of
interest is the body of mathematical, statistical and computer science methodology
that underlies much of ML methodology, which we will simply refer to as “ML
theory”.

The conceptual model is a system of abstractions that describe selected aspects
of the domain and can be used to solve problems related to software design
in that domain. The aim of the conceptual model is to identify and select
key elements in the domain, to describe and abstract them, and to relate and
organize them. In practice, this involves analyzing common ML techniques in their
mathematical or algorithmic formulation, common workflows used by practitioners
to solve particular problems, and typical user journeys for existing ML toolboxes.
For example, in ML workflows, key elements include predictive models that
are mathematical or statistical at their core (e.g. linear regression), inspection
these models (e.g. “return coefficients of a fitted linear model”), and generating

predictions from fitted models and assessing their predictive performance (e.g.

2The main reason for this “change-proneness” principle is that changes to software code
account for much of its cost [142]. So, when following this principle, abstraction decision are
always taken according to some expectation of about the cost of software development.

238



B.2. DOMAIN-DRIVEN DESIGN

“estimate the mean squared error”). The software is then implemented to closely
match the structure and language of the conceptual model. The key challenges
then of course becomes finding an incisive conceptual model. We will address this
challenge in the next chapter.

Below we highlight a key themes of domain-driven design as described by

Evans [78]| and their relevance for ML toolbox design:

e Drawing on established formalism. Through the conceptual analysis, domain-
driven design can leverage existing formalism in the domain. In the context
of ML, this include especially mathematical, statistical and computer science
formalism. ML algorithms, interfaces and workflows are inextricably linked
to their underlying mathematical and statistical methodology. As we will see
in the next chapter, our conceptual analysis leverages existing mathematical

formalism to drive software design.

o Ubiquitous language. Conceptual analysis helps clarify and distill knowledge
from the domain of interest and creates a shared language for developers
and practitioners. Because of the close correspondence between conceptual
model and software implementation, developers can communicate with
practitioners in this language without translation. The shared language
allows developers and practitioners to collaborate and communicate more
effectively. Discussions can then be used to further refine the conceptual

model itself.

e [ntention-revealing interfaces. If a user has to understand the implementa-
tion of a method in order to use it, much of the value of abstraction and
encapsulation has been lost. Instead, methods and interfaces should describe
their effect and purpose, without reference to their implementation details.
Naming of methods should therefore following the ubiquitous language, so
that users can understand implementations based on the shared conceptual
model. We argue in the next chapter that our conceptual analysis, and

scientific types for ML algorithms in particular, result in intention-revealing
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interfaces. This is because they are defined in correspondence to the learning

tasks that they are meant to solve.

e (ohesive mechanisms. Computations sometimes reach a level of complexity
that begins to obscure their purpose. The conceptual “what” is blotted out
by the algorithmic “how” — the variety of ML algorithms and their use for
distinct but related tasks being one example. Finding categories for these
algorithms and exposing their capabilities as intention-revealing interfaces
can create a cohesive mechanism, allowing practitioners to focus on the
problem (“what”) and delegating the intricacies of the solution (“how”) to
the algorithms. We hope to show in the next chapter that scientific types,
especially when applied to ML algorithms, can become such a cohesive

mechanism in ML toolbox design.

e Declarative design. Declarative design indicates a way to writing or using an
application as a kind of executable specification. Making the learning task
specification more explicit and developing intention-revealing interfaces for
algorithms can be seen as a first step towards a more declarative language

for specifying and solving ML problems.

e Documenting design. The conceptual model has the added advantage of
providing a rationale for the software design after the fact. Deriving a design
from a conceptual domain model records the design decisions that were
made, and more importantly, why they were made that way. As a result,
communicating the design choices to practitioners and developers will be

easier.

B.3 Object-oriented design patterns

In this section, we review key object-oriented design patterns from classical

software design as put forward in Gamma et al. [90]. We will refer to these
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B.3. OBJECT-ORIENTED DESIGN PATTERNS

patterns frequently throughout the next chapters of this thesis. We review key

concepts from object-oriented programming itself in the next section.

Table B.1: An overview of key design patterns from classical software design

Name Category Description

Strategy Behavioral Define a family of algorithms, encapsulate each one and
make them interchangeable. The strategy pattern lets
algorithms of the same family vary independently from
clients that use it.

Template  Behavioral Define the skeleton of an algorithm in a method, defer-
ring some steps to subclasses. The emplate pattern lets
subclasses redefine certain steps of an algorithm without
changing the algorithm’s structure.

Composite Structural Compose objects to represent part-whole hierarchies. The
composite pattern lets clients treat individual objects and
compositions of objects uniformly.

Adapter Structural  Adapt the interface of a class into another interface clients
expect. Adapters let classes work together that could not
otherwise because of incompatible interfaces.

Decorator ~ Structural — Assign additional methods to an object at run time. Dec-
orators provide a flexible alternative to subclassing for
extending functionality.

Facade Structural  Provide a unified interface to a set of interfaces in a sub-
system. The facade pattern defines a higher-level interface
that makes the subsystem easier to use.

Factory Creational Define an interface for creating an object, but let subclasses
decide which class to instantiate. The factory pattern lets
a class defer instantiation to subclasses.

Prototype  Creational Specify the kind of object(s) to create using a prototypical
instance, and create new objects by copying this prototype.

Notes: A more detailed discussion of these design patterns can be found in Gamma et al. [90].

A design pattern describes a reusable solution to a recurring design problem
within a given context. It is not a prefabricated piece of code as provided by a
toolbox or a finished design as provided by a framework, but rather a description
of how to solve the problem in many different situation. It describes a general
solution in terms of classes, objects and their interactions, without referring to
application specifics. Table B.1 gives an overview of the relevant patterns for our
purpose.

Based on these generic software design patterns, we will formulate domain-
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specific patterns for ML toolbox design in Chapter 6.
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Appendix C

Benchmarking Results from the M4

Competition

Table C.1: MASE percentage difference between reproduced and
published results

Yearly Quarterly Monthly ~ Weekly Daily Hourly

Naive 0.000 0.000 0.000 0.000 0.000 0.000
Naive2 0.000 0.000 0.000 0.000 0.000 0.000
sNaive 0.000 0.000 0.000 0.000 0.000 0.000
SES —0.008 0.015 0.038 —0.002 0.004 0.000
Holt 5.586 0.001 2.805 —1.599 0.200 —3.927
Damped 3.696 —0.458 1.507 —2.887 0.814 —1.154
Com 2.751 —0.425 1.035 —1.900 0.334 —4.332
ARIMA 0.141 3.329 0.991 —11.172 —4.873 4.054
Theta —3.058 —1.153 —0.139 —0.016 —0.041 0.095
Theta-bc  —1.922 —1.013 —0.202 —0.723 —0.035 —3.606
MLP —14.658  —30.207  —41.370 —80.142  —70.993 —9.859
RNN —24.522 —34.106 —-30.284 —38.831 —36.420 —20.987

Notes: Rows show forecasters described in table 9.3. Columns show M4 data
sets grouped by sampling frequency. Values show the percentage difference
between reproduced and published MASE values relative to the published values.
Negative values indicate that reproduced results are lower (better) than published
ones.
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Table C.2: OWA percentage difference between reproduced and
published results

Yearly  Quarterly Monthly = Weekly Daily Hourly

Naive 0.000 0.000 0.000 0.000 0.000 0.000
Naive2 0.000 0.000 0.000 0.000 0.000 0.000
sNaive 0.000 0.000 0.000 0.000 0.000 0.000
SES —0.006 0.042 0.027 —0.003 0.007 0.000
Holt 4.782 —0.812 3.382 —2.568 0.244 —4.048
Damped 2.594 —0.753 0.751 —-1.729 0.926 —0.984
Com 2.179 —0.524 1.080 —1.646 0.416 —3.256
ARIMA 0.909 3.984 1.727 —5.082 -3.502 0.053
Theta —2.267 —0.541 —0.031 0.081 0.008 0.053
Theta-bc  —1.416 —0.542 —0.147 —0.372 0.008 —0.308
MLP —13.251  —-27.165  —34.713 —71.246 —66.951 —7.691
RNN —23.582  —=31.657  —=30.563 —32.746 —34.685 —16.490

Notes: Rows show forecasters described in table 9.3. Columns show M4 data sets
grouped by sampling frequency. Values show the percentage difference between
reproduced and published OWA values relative to the published values. Negative
values indicate that reproduced results are lower (better) than published ones.
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APPENDIX C. BENCHMARKING RESULTS FROM THE M4 COMPETITION

Table C.4: MASE difference between reproduced and published results

Yearly Quarterly Monthly Weekly Daily Hourly
Naive 0.0 +£0.0 0.0 +0.0 0.0 +0.0 0.0 +£0.0 0.0 =+0.0 0.0 +0.0
Naive2 0.0 =+0.0 0.0 =+0.0 0.0 +0.0 0.0 +£0.0 0.0 =+0.0 0.0 +£0.0
sNaive 0.0 =+0.0 0.0 =+0.0 0.0 =+0.0 0.0 +£0.0 0.0 =+0.0 0.0 +£0.0
SES —0.0 +£0.0 0.0 0.0 0.0 =+£0.0 —0.0 +£0.0 0.0 =+0.0 0.0 +£0.0
Holt 0.198 +£0.012  0.00 +0.02 0.028 £ 0.002 —0.039 +£0.012  0.006 +0.009 —0.367 +0.168
Damped 0.125 £ 0.008 —0.005+0.002  0.0154+0.005 —0.069 +0.023  0.026 £ 0.024 —0.034 £0.116
Com 0.090 £ 0.006 —0.0054+0.001  0.010 £0.002 —0.046 £0.012  0.011 £ 0.007 —0.199 £ 0.062
ARIMA 0.005£0.010  0.039£0.003  0.009 +£0.002 —0.286 +0.115 —0.166 £0.024  0.038 £ 0.024
Theta —0.103 £0.002 —0.014 £0.000 —0.001 £0.000 —0.00 +=0.03 —0.001 £0.001  0.002 £ 0.000
Theta-bc  —0.058 £0.005 —0.012 £0.001 —0.002 £ 0.000 —0.019+0.008 —0.001 £0.001 —0.092 £ 0.050
MLP —0.725 £ 0.027 —0.699 £0.019 —0.796 +0.045 —10.874 +5.0563 —9.210+1.916 —0.257 £ 0.033
RNN —1.213 £ 0.028 —0.688 +0.008 —0.485+ 0.005 —1.993+0.263 —2.270+0.114 —0.640 + 0.248

Notes: Rows show forecasters described in table 9.3. Columns show M4 data sets grouped by sampling frequency.

Values show the difference between reproduced and published mean MASE values, together with the standard
error of the difference in means between paired samples. Values in bold indicate that the difference is statistically
significant at the 95% level based on a two-sided paired t-test. Negative values indicate that reproduced results
are lower than published ones.
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Table C.5: sMAPE results

Yearly  Quarterly Monthly Weekly Daily Hourly

Theta-bc 13.239 10.145 12.99 9.144 3.042  18.16
Theta 14.372  10.316 13.012 9.109 3.065 18.14
Com 15.094 10.112 13.585 8.817 2.995 21.714
RF-Theta-bc-t 14.552  10.788 13.543 9.014 3.056  18.136
Damped 15.439  10.132 13.475 8.804 3.096 19.114
RF-Theta-bc 14.738  11.006 13.527 9.801 3.061  18.061
ARIMA 15.413  10.908 13.768 8.727 3.124  13.698
SES 16.395  10.607 13.62 9.011 3.045  18.094
XGB-Theta-be-t  15.334  11.535 14.166 9.484 3.134  18.303
XGB-Theta-bc 15.395  11.651 14.109 10.808  3.16 18.199
Naive2 16.342  11.012 14.427 9.161 3.045  18.383
KNN-Theta-bc 15.503  12.046 14.805 11.133  3.189  19.32
KNN-Theta-be-t  15.507  12.036 14.877 10.17 3.189  19.361
RF-s 16.6556  11.674 14.899 9.327 3.291  10.978
RF 16.656  11.793 15.01 9.31 3.280  13.663
Holt 17.018  10.74 15.393 9.381 3.075 27978
Naive 16.342  11.61 15.256 9.161 3.045  43.003
sNaive 16.342  12.521 15.988 9.161 3.045 13912
RF-t-s 17.31 12.321 16.008 9.009 3.321  15.797
RNN 17.307  12.033 16.643 11.266  3.996  13.326
XGB-s 17.729  12.633 17.158 10.201  3.512  10.912
XGB 17.729  12.671 17.259 10.201  3.512  14.288
LR-s - 12.235 17.768 9.519 3.32 11.235
LR - 12.238 17797 9.519 3.32 16.342
XGB-t-s 17.954 13.21 18.102 9.462 3.608  17.195
MLP 19.166  14.04 17.625 10.12 3.568  13.211
KNN-t-s 18.37 13.701 19.711 10.482  4.062 16.333
KNN-s 18.758  13.548 19.764 11.167  4.08 11.988
KNN 18.758  13.606 19.905 11.167  4.08 14.61
LR-t-s - - 18.619 8.567  3.363 16.76

Notes: Rows show forecasters described in Table 9.6. Columns show M4 data sets
grouped by sampling frequency. We exclude LR model results when generated
forecasts were instable/exploding, likely due the little available data and linear
extrapolation.
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Table C.6: MASE results

Yearly Quarterly Monthly Weekly Daily Hourly

Theta-bc 2.951 1.186 0.964 2.582 3.252  2.465
Theta 3.279 1.218 0.968 2.637 3.261  2.457
RF-Theta-bc-t 3.246 1.229 0.985 2.592 3.257  2.363
ARIMA 3.407 1.204 0.939 2.27 3.244  0.981
RF-Theta-bc 3.282 1.253 0.984 2.87 3.18 2.365
Com 3.371 1.168 0.976 2.386 3.213  4.383
Damped 3.504  1.168 0.987 2.334 3.262  2.922
XGB-Theta-bc 3.392 1.338 1.025 3.127 3.309  2.387
XGB-Theta-be-t  3.476 1.332 1.032 2.713 3.446  2.398
KNN-Theta-bc 3.394 1.366 1.069 3.01 3.365  2.52
KNN-Theta-bc-t  3.396 1.368 1.083 2.842 3.4 2.529
RF-s 3.639 1.327 1.016 2.809 3.523  0.93
RF 3.64 1.341 1.037 2.823 3.521  1.032
Holt 3.748 1.198 1.038 2.381 3.23 8.988
RF-t-s 3.779 1.399 1.068 2.639 3.553  1.212
SES 3.98 1.34 1.02 2.684 3.281 2.385
RNN 3.733 1.329 1.116 3.139 3.962  2.408
Naive2 3.974 1.371 1.063 2,777 3.278  2.395
XGB-s 3.814 1.42 1.113 3.091 3.754  0.954
XGB 3.814 1.431 1.129 3.091 3.754  1.063
XGB-t-s 3.883 1.493 1.154 2.857 3.847  1.335
Nailve 3.974 1.477 1.205 2777 3.278  11.608
sNaive 3.974 1.602 1.26 2.777 3.278  1.193
MLP 4.221 1.615 1.129 2.694 3.763  2.35
KNN-s 4.072 1.524 1.217 3.378 4.38 1.044
KNN-t-s 3.977 1.543 1.261 3.192 4.355 1471
KNN 4.072 1.534 1.239 3.378 4.38 1.112
LR-s - 1.319 3.284 2.467 3.442  0.934
LR - 1.327 3.301 2.467 3.442  1.001
LR-t-s - - 2.618 2.338 3.518  1.027

Notes: Rows show forecasters described in Table 9.6. Columns show M4 data sets
grouped by sampling frequency. We exclude LR model results when generated
forecasts were instable/exploding, likely due the little available data and linear
extrapolation.
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Table C.7: OWA results

Yearly Quarterly Monthly Weekly Daily Hourly

Theta-bc 0.776  0.893 0.904 0.964 0.996  1.009
Theta 0.852  0.912 0.906 0.972 0.999 1.006
Com 0.886  0.885 0.93 0.911 0.982 1.506
RF-Theta-bc-t 0.854  0.938 0.933 0.959 0.999  0.987
ARIMA 0.9 0.934 0.919 0.885 1.008  0.577
Damped 0.913  0.886 0.931 0.901 1.006 1.13
RF-Theta-bc 0.864  0.957 0.932 1.052 0.988  0.985
XGB-Theta-bc 0.898 1.017 0.971 1.153 1.023  0.993
SES 1.002  0.97 0.952 0.975 1.0 0.99
XGB-Theta-be-t  0.906 1.009 0.976 1.006 1.04 0.998
RF-s 0.967 1.014 0.994 1.015 1.078  0.493
Holt 0.992  0.924 1.021 0.941 0.997  2.637
KNN-Theta-bc 0.901 1.045 1.016 1.149 1.037  1.052
Naive2 1.0 1.0 1.0 1.0 1.0 1.0
KNN-Theta-be-t  0.902 1.045 1.025 1.067 1.042  1.055
RF 0.967  1.025 1.008 1.016 1.077  0.587
RF-t-s 1.005 1.07 1.057 0.967 1.087  0.683
RNN 0.999 1.031 1.102 1.18 1.26 0.865
Naive 1.0 1.066 1.095 1.0 1.0 3.593
XGB-s 1.022 1.091 1.118 1.113 1.149  0.496
XGB 1.022 1.097 1.129 1.113 1.149 0.611
sNaive 1.0 1.153 1.146 1.0 1.0 0.628
XGB-t-s 1.038 1.144 1.17 1.031 1.179  0.746
MLP 1.117  1.226 1.142 1.037 1.16 0.85
KNN-s 1.086 1.171 1.257 1.218 1.338 0.544
KNN-t-s 1.062 1.185 1.276 1.147 1.331  0.751
KNN 1.086 1.177 1.272 1.218 1.338  0.63
LR-s - 1.037 2.16 0.964 1.07 0.501
LR - 1.039 2.169 0.964 1.07 0.654
LR-t-s - - 1.876 0.889 1.089  0.67

Notes: Rows show forecasters described in Table 9.6. Columns show M4 data sets
grouped by sampling frequency. We exclude LR model results when generated
forecasts were instable/exploding, likely due the little available data and linear
extrapolation.
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Table C.8: Summary results of new machine learning models

sMAPE MASE OWA Running time (min)
Theta-bc 11.952 1.583 0.876 8.1
Theta 12.264 1.669 0.9 6.27
Com 12.668 1.687 0.914 69.47
RF-Theta-bc-t 12.673 1.671 0.919 14539.77
ARIMA 12.992 1.673 0.92 14992.88
Damped 12.692 1.718 0.92 53.45
RF-Theta-bc 12.763 1.682 0.925  1189.37
XGB-Theta-bc 13.357 1.754 0.968 122.94
SES 13.09 1.885 0.97 5.9
XGB-Theta-be-t 13.337 1.78 0.971 1826.44
RF-s 14.002 1.806 0.994 1168.56
Holt 14.16 1.83 0.997 11.72
KNN-Theta-bc 13.818 1.785 0.998  64.36
Naive2 13.564 1.912 1.0 3.66
KNN-Theta-bc-t  13.848 1.794 1.003 656.04
RF 14.095 1.82 1.004 1163.64
RF-t-s 14.86 1.882 1.047 14165.87
RNN 15.122 1.902 1.067  38941.68
Naive 14.208 2.044 1.072 1.04
XGB-s 15.576 1.926 1.088 116.95
XGB 15.647 1.937 1.096 115.76
sNailve 14.657 2.057 1.105 1.03
XGB-t-s 16.246 1.983 1.131 1718.15
MLP 16.48 2.079 1.156 157.88
KNN-s 17.315 2.088 1.197  58.71
KNN-t-s 17.252 2.092 1.205 634.12
KNN 17.407 2.101 1.207  56.99
LR-s - - - 55.36
LR - - - 53.37
LR-t-s - - - 590.87

Notes: Rows show forecasters described in Table 9.6. Columns show
aggregate values for sSMAPE, MASE and OWA metrics, as well as the
total running time in minutes scaled to the number of CPUs used in the
original M4 competition, as described in Chapter 9.6. We exclude LR
model results when generated forecasts were instable/exploding, likely
due the little available data and linear extrapolation.
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Table C.9: Post-hoc Wilcoxon signed
rank tests results for pairwise compar-
isons on the hourly data set

forecaster A forecaster B p-value
0 LR-s RF-s 0.657
4 LR-s XGB-s 0.243
3 M4 runner-up M4 winner 0.317
2 M4 runner-up RF-s 0.468
1 RF-s XGB-s 0.010

Notes: This table corresponds to the results
presented in Figure 9.1. The results are based
on sMAPE and the hourly data set. We only
show pairs of forecasters which are not signi-
ficantly different. Forecasters are described
in Table 9.6. We use Wilcoxon signed rank
tests to compute p-values. Significance at the
5% is established using Holm’s procedure for
correcting for multiple testing, as discussed in
Section 9.3.

Table C.10: Post-hoc Wilcoxon signed rank
tests results for pairwise comparisons on the
hourly data set

forecaster A forecaster B p-value
2 RF-Theta-bc RF-Theta-bc-t 0.096
1 RF-Theta-be-t XGB-Theta-bce 0.092
3 Theta-bc XGB-Theta-bc-t 0.527
0 XGB-Theta-bc XGB-Theta-be-t 0.028

Notes: This table corresponds to the results presen-
ted in Figure 9.2. The results are based on sMAPE
and the hourly data set. We only show pairs of fore-
casters which are not significantly different. Fore-
casters are described in Table 9.6. We use Wilcoxon
signed rank tests to compute p-values. Significance
at the 5% is established using Holm’s procedure
for correcting for multiple testing, as discussed in
Section 9.3.
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