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Abstract. The performance of many medical image analysis tasks are
strongly associated with image data quality. When developing modern
deep learning algorithms, rather than relying on subjective (human-
based) image quality assessment (IQA), task amenability potentially pro-
vides an objective measure of task-specific image quality. To predict task
amenability, an IQA agent is trained using reinforcement learning (RL)
with a simultaneously optimised task predictor, such as a classification or
segmentation neural network. In this work, we develop transfer learning
or adaptation strategies to increase the adaptability of both the IQA
agent and the task predictor so that they are less dependent on high-
quality, expert-labelled training data. The proposed transfer learning
strategy re-formulates the original RL problem for task amenability in a
meta-reinforcement learning (meta-RL) framework. The resulting algo-
rithm facilitates efficient adaptation of the agent to different definitions
of image quality, each with its own Markov decision process environment
including different images, labels and an adaptable task predictor. Our
work demonstrates that the IQA agents pre-trained on non-expert task
labels can be adapted to predict task amenability as defined by expert
task labels, using only a small set of expert labels. Using 6644 clinical
ultrasound images from 249 prostate cancer patients, our results for im-
age classification and segmentation tasks show that the proposed IQA
method can be adapted using data with as few as respective 19.7% and
29.6% expert-reviewed consensus labels and still achieve comparable IQA
and task performance, which would otherwise require a training dataset
with 100% expert labels.
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1 Introduction

Medical image quality can influence the downstream clinical tasks intended for
medical images [1]. Automated algorithms have been proposed for image quality
assessment (IQA), based on human scoring of image quality [2–6], prior clinical
knowledge [7, 8] or a set of hand-engineered criteria [9–11]. Task-specific image
quality, which measures how well a clinical task can be completed using the im-
age being assessed, may be preferred, but previous methods still rely on human
interpretation [2, 3]. When the downstream clinical tasks are completed by au-
tomated machine learning algorithms, task-specific IQA may become more rele-
vant, however, human perceived task-specific IQA may not accurately reflect the
performance of the machine optimised task predictors. Recent works introduce
task amenability; defined as the task-specific image quality to directly measure
target task performance [12, 13], which also takes into account the dependency
between training an automated IQA and the training of a task predictor.

For predicting task amenability for IQA, Saeed et al. [12] proposed to train a
controller; here, a reinforcement learning (RL) agent, together with the task pre-
dictor. Classification and segmentation neural networks were tested as the task
predictors. The trained controller predicts significantly different task amenability
scores to those determined by humans, with or without requiring human labels
of task amenability during training.

By definition, this IQA approach is inevitably dependent on the task pre-
dictor and the labelled data used to train such a task predictor, in the case of
supervised learning. In clinical practice, the feasibility and cost associated with
obtaining quality labelled data sets for various target tasks can not be overlooked.
Therefore, we propose a transfer learning strategy to train the IQA agent based
on meta-reinforcement learning (meta-RL) across multiple environments. These
RL environments can then be designed to reflect different Markov decision pro-
cesses (MDPs) with differently labelled data. At the same time, a shared task
predictor1 is trained between these MDPs, such that it may be adapted together
with the meta-trained controller. Equipping adaptation ability to both the con-
troller and the task predictor has several potential applications for the efficient
use of labelled data. In this work, we demonstrate the resulting adaptation abil-
ity from relatively low-quality non-expert task labels annotated by individual
observers to high-quality expert labels carefully curated by reviewed consensus.

The contributions of the work are summarised as follows: 1) we propose
a transfer learning or adaptation strategy to train an adaptable IQA system;
2) we design a meta-RL algorithm for training the task-amenability-predicting
controller together with a target task predictor, which is shared amongst mul-
tiple environments, such that training to convergence is not required on every
1 Tasks refer to the target classification or segmentation tasks, while MDPs or envi-
ronments are preferred over meta-tasks found in meta-learning literature for clarity.
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time-step and where adaptability is equipped to both the inner and outer loops
simultaneously; 3) we demonstrate the efficacy of the proposed transfer learning
strategy with experiments using a large set of clinical ultrasound images from
prostate cancer patients, labelled by four different observers with varying expe-
rience and expertise; 4) the experiments show that using 20-30% of the expert
labels is sufficient to fine-tune both the RL controller and the task predictor to
achieve comparable performances to when they are trained using the full set of
expert labels.

2 Methods

2.1 Image quality assessment by task amenable data selection

In this work, we follow the IQA formulation proposed by Saeed et al. [12]. There
are two parametric functions, a task predictor f(·;w) : X → Y and a controller
h(·; θ) : X → [0, 1], with parameters w and θ, respectively. X and Y are the
respective image and label domains with PXY being the joint image-label dis-
tribution, with a density function p(x, y).

The task predictor f is optimised to predict labels, by minimising the loss
function Lf : Y × Y → R≥0 using sampled data:

min
w

E(x,y)∼Ph
XY

[Lf (f(x;w), y)], (1)

where PhXY is the controller-selected joint image-label distribution, with density
function ph(x, y) ∝ p(x, y)h(x; θ).

The controller h is optimised to measure image quality (task amenability),
by minimising the metric function Lh : Y × Y → R≥0:

min
θ

E(x,y)∼Ph
XY

[Lh(f(x;w), y)] (2)

where Lh is in general a non-differentiable metric computed on the validation
set, and different to Lf .

The optimisation is performed using reinforcement learning, where the envi-
ronment consists of the training set from PXY and the task predictor f(·;w); the
agent is the controller h(·; θ) whose action is sample selection at = {ai,t}Bi=1 ∈
{0, 1}B , based on the predicted quality scores {h(xi; θ)}Bi=1, from a mini-batch of
training samples Bt = {(xi, yi)}Bi=1; and the reward is the task predictor perfor-
mance on a validation set from the same distribution PXY , which is computed
after training, for a fixed number of steps, using the selected samples. In this work
we use the reward formulation, from [12], which does not require human task
amenability labels, and weights the validation set using controller predictions.
Rt is thus the reward which is a weighted sum of validation set performance.

2.2 Meta-reinforcement learning with different labels

In this section, we consider multiple label distributions {PkY |X}
K
k=1, such that

each sample x has multiple labels {yk}Kk=1. The joint distributions are thereby
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Fig. 1: An overview of the proposed meta-RL framework for training the task
predictor and the RNN-embedded controller (the IQA agent).

PkXY = PXPkY |X for k = 1, . . . ,K. Each distribution PkXY forms an RL environ-
ment with an MDPMk. These MDPs are assumed to be sampled from the same
MDP distribution PM , i.e. Mk ∼ PM . The task predictors f(·;w) and controller
h(·; θ) are both shared across different environments.

We adopt the meta-RL formulation [14, 15] for reinforcement learning across
multiple environments. Given a set of MDPs {Mk}Kk=1, a trial is defined as
multiple episodes with a sampled MDP Mk. The meta-RL agent learns across
multiple trials by sampling Mk ∼ PM . Different from the RL with one single
fixed environment, at time t+ 1, the meta-RL agent h takes the action at, raw
reward rt, and termination flag dt at the previous time step in addition to the
observed current state st+1. Note that for per-sample operation rt = Rt at the
episode end, and zero otherwise, similar to sparse reward formulations in [14, 15].
Denote the input tuple as τt+1 = (st+1, at, rt, dt), thereby h(·; θ) is now defined
with a space of X × [0, 1]× R× {0, 1}.

In this work, the meta-RL agent adopts a recurrent neural network (RNN)
with internal memory shared across episodes in the same trial. Importantly, the
internal memory is reset when a trial finishes, i.e. before another environment is
sampled. This mechanism allows test-time adaptability, even with fixed weights
[16–20], and thereby transfers knowledge between environments [14, 15, 21]. This
is due to the RNN making the controller a function of the history leading up to a
sample such that changing history can influence the action for that sample. The
full algorithm is described in Algorithm 1, with details for configuring episodic
mini-batches and meta-loop trials. An overview is also presented in Fig. 1. In our
implementation, proximal policy optimisation (PPO) [22] was used to train the
controller. The task predictor employs the Reptile scheme [23] to allow potential
data efficiency benefit for adapting to different observer labels. The predictor
is updated in two steps: 1) update starting weights wt+1 of predictor f(·;wt+1)
to wt+1,new, using gradient descent based on Bt,selected; 2) update weights using
wt+1 ← wt+1+ε(wt+1,new−wt+1) where ε is 1.0 initially and is linearly annealed
to 0.0 as trial iterates. It is worth noting that the IQA algorithm from [12] can
be considered a special case of our proposed method with only one environment.
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After training using the scheme described in Algorithm 1, the adaptation
stage, for both the controller and task-predictor, can be performed on a single
MDP of interest Ma ∼ PM , where Ma is the environment which we would like
to adapt to. If multiple iterations of the outer loop are required, the internal
state of the controller is only reset on the first iteration. The controller weights
remain fixed; adaptability is a result of updating internal state.

Algorithm 1: Adaptable image quality assessment by task amenability
Data: Multiple MDPs Mk ∼ PM .
Result: Task predictor f(·;w) and controller h(·; θ).
while not converged do

Sample an MDP Mk ∼ PM ;
Reset the internal state of controller h;
for Each episode in all episodes do

for t← 1 to T do
Sample a training mini-batch Bt = {(xi,t, yi,t)}Bi=1;
Compute selection probabilities {hi,t}Bi=1 = {h(τi,t; θt)}Bi=1;
Sample actions at = {ai,t}Bi=1 w.r.t. ai,t ∼ Bernoulli(hi,t);
Select samples Bt,selected from Bt;
Update predictor f(·;wt) with Bt,selected using Reptile;
Compute reward Rt;

end
Collect one episode {Bt, at, Rt}Tt=1;
Update controller h(·; θ) using the RL algorithm PPO;

end
end

3 Experiments

In this work we use 6644 2D ultrasound images from 249 prostate cancer pa-
tients. During the early stages of ultrasound-guided biopsy procedures, im-
ages were acquired using a transperineal ultrasound probe (C41L47RP, HI-
VISION Preirus, Hitachi Medical Systems Europe) as part of SmartTarget:
THERAPY and SmartTarget: BIOPSY clinical trials (clinicaltrials.gov identi-
fiers NCT02290561 and NCT02341677 respectively). Images from each subject
initially consisted of 50-120 frames. For feasibility of manual labelling, frames
were sampled at four-degree intervals where relative rotation angles were tracked
using a digital transperineal stepper (D&K Technologies GmbH, Barum, Ger-
many). The resulting 6644 2D ultrasound images were randomly split, at the
patient level, into training, validation and holdout sets, with 4429, 1092 and
1123 images from 174, 37 and 38 subjects, respectively.
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Three sets of task label {Li}3i=1 were collected from three trained biomedi-
cal engineering researchers. These individually-labelled are referred to as “non-
expert” label sets for brevity. In addition, the fourth set of “expert” labels L∗ was
curated by a urologist, first carefully reviewing a reference set of consensus labels
and then editing them as deemed necessary. For all label sets, each image has
both a binary label indicating prostate presence for classification and a binary
mask of the prostate gland for segmentation.

The task predictor algorithms used for the two tested applications are the
same as [12]. For classification, AlexNet [24] was used with a cross-entropy loss
and a reward based on classification accuracy. For segmentation, U-Net [25] was
used with a pixel-wise cross-entropy loss and a reward based on mean binary Dice
score. The controller had a three-layer convolutional encoder, before feeding the
encoded features to an RNN with a stacked-LSTM architecture, as described in
[15]. Experimental results are reported for empirically configured networks and
default hyper-parameter values remain unchanged unless specified.

The following three different IQA models were trained and compared.

– Baseline: Trained with all training and validation data using only the high-
quality expert labels L∗. That is, only one “expert-labelled” environment in
training, establishing a reference for achievable IQA system performance.

– Meta-RL: The proposed model that was first trained with training and val-
idation data using the non-expert labels {Li}3i=1 as three different environ-
ments. Both the task predictor and the controller were subsequently adapted
with k × 100% training and validation data using the expert labels L∗.

– Meta-RL Variant : For comparison, a basic implementation of transfer learn-
ing. The model was first trained with all training and validation data using
the shuffled non-expert labels {Li}3i=1 as one single environment, i.e. without
considering different environment-specific trials, and the Reptile update for
optimising the task predictor reduced to standard gradient descent. Adapta-
tion was done with k × 100% training and validation data using the expert
labels L∗. The internal state of RNN was not reset before fine-tuning.

We evaluate the IQA models jointly with the task predictors using task per-
formance, which serves as both a direct evaluation of the task-predictor and an
indirect evaluation of the IQA agent by its task amenability definition. We re-
port mean accuracy (Acc.) and mean binary Dice score (Dice) on the holdout
set using expert labels for classification and segmentation, respectively. These
measures are averaged over all 2D slices in the holdout set. Where controller
selection is used, the metric is computed over the selected samples only. Samples
are selected by rejecting the subset with the lowest controller predicted values,
with the specified rejection ratios. Standard deviation (St.D) is reported to mea-
sure inter-patient variance, with which, paired t-test results with a significance
level of 5% are reported when any comparison is made. We evaluate the models
for varying k-values, where k is the ratio of expert-labelled samples used for
adaptation (k × 100% samples used).
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4 Results

Table 1: Comparison of holdout set results with a rejection ratio set to 5%
Tasks Prostate Classification (Acc.) Prostate Segmentation (Dice)

IQA Methods k Mean ± St.D. Mean ± St.D.
Baseline N/A 0.932 ± 0.011 0.894 ± 0.016

Meta-RL

0.5 0.936 ± 0.012 0.892 ± 0.018
0.4 0.929 ± 0.016 0.886 ± 0.014
0.3 0.926 ± 0.010 0.888 ± 0.020
0.2 0.925 ± 0.017 0.873 ± 0.017
0.1 0.911 ± 0.012 0.863 ± 0.020
0.0 0.908 ± 0.010 0.857 ± 0.018

Meta-RL Variant

0.5 0.931 ± 0.015 0.884 ± 0.016
0.4 0.920 ± 0.010 0.882 ± 0.021
0.3 0.919 ± 0.013 0.882 ± 0.015
0.2 0.916 ± 0.014 0.860 ± 0.014
0.1 0.905 ± 0.014 0.858 ± 0.021
0.0 0.896 ± 0.016 0.849 ± 0.017

The proposed meta-training took, on average, approximately 48 hours and
the meta-testing (model fine-tuning) took 1-2 hours on a single Nvidia Quadro
P5000 GPU. This result reflects the design of the proposed adaptation strategy
for data efficiency and, arguably, also for computational efficiency.

Performance of the IQA models, in terms of Acc. and Dice, are summarised in
Table 1 and plotted in Fig. 2 against varying k values. In the prostate presence
classification task, no statistical significance was found between the baseline
and meta-RL for k values from 0.5 to 0.2 (p-values ranged from 0.10 to 0.23).
However, meta-RL performance for low k values, k = 0.1 or 0.0, was significantly
lower than that of the baseline (p < 0.01 for both). In the prostate segmentation
task, no statistical significance was found between the two, for k-values from 0.5
to 0.3 (p-values ranged from 0.07 to 0.17), but a significantly lower performance
was found for meta-RL for low k values from 0.2 to 0.0 (p<0.01 for all).

For the ablation study comparing meta-RL to the meta-RL variant, the pro-
posed meta-RL framework generally outperformed the meta-RL variant for the
same k values, for both tested target tasks, as detailed in Table 1. For classifica-
tion, we report a statistically significant difference between the two, for the same
k values from 0.0 to 0.4 (p<0.01 for all), while no significance was found when
the k increased to 0.5 (p=0.06). For segmentation, superior performance from the
proposed meta-RL was statistically significant for all k values (p<0.03 for all).
From an ablation study, with and without the Reptile scheme for updating task
predictors, the Reptile-omitted meta-RL classification and segmentation tasks
achieved Acc.=0.901± 0.013 and Dice=0.851± 0.013, respectively, when k = 0.
The improvement, when using the Reptile scheme, was statistically significant
with p<0.01 for both, but no significant difference was found for other k values.
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Fig. 3 provides visual examples of selection decisions by the adapted IQA
agent. With 5% rejection ratio, all these rejected examples seem visually chal-
lenging for respective classification and segmentation tasks, and rejecting these
examples improved performances of the simultaneously learned task predictors.

(a) Prostate presence classification task (b) Prostate segmentation task

Fig. 2: Task performance (in respective Acc. and Dice metrics) against the k
values with rejection ratio set to 5%.

(a) Prostate classification task (b) Prostate segmentation task

Fig. 3: Examples of controller selected and rejected images (rejection ratio=5%)
for both tasks. Blue: rejected samples; Red: selected samples; Yellow: rejected
samples despite no apparent artefacts or severe noise; Green: selected samples
despite present artefacts or low contrast. Orange arrows: visible artefacts;
Cyan arrows: regions where gland boundary delineation may be challenging.



Meta-RL for image quality assessment 9

5 Discussion and Conclusion

Based on results reported in Sect. 4, for the tested ultrasound guidance ap-
plication, the proposed adaptation strategy allows for the IQA agent and task
predictor to be adapted using as few as 1087 and 1634 expert-labelled images
from 42 and 63 subjects (training and validation sets), for classification and seg-
mentation, respectively. Compared with a total of 5521 expert-labelled images
from 211 subjects that were required to train the baseline, this is a substantial
reduction, to 20-30%, in the required quantity of high-quality and often expen-
sive expert-labelled data. The proposed model also used non-expert labels for
training but these may be used for different IQA definitions, further economic
analysis is beyond the scope of this work. An adaptable IQA algorithm has been
presented, which can be efficiently adapted with new labelled data. The proposed
algorithm may have general applicability to alleviate demand for large quantities
of training data, for example, for other imaging protocols or target tasks.
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