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Abstract

This thesis conducts an extensive analysis within the mobile telecommunications

sub-field of the ultra-dense mobile networks, in which a massive deployment of

network’s pieces of equipment is assumed. Future cache-enabled mobile networks

are expected to meet most of the generated content demands directly at the edge,

where each node has the availability to proactively store a set of contents in a

local memory. This thesis makes several important contributions. The research

being presented in this thesis proposes new analytical expressions to modeling the

performance associated to the network’s edge. Base-stations’ idling technologies

are also investigated to temporarily turn off some network nodes, saving energy

and, in some circumstances, improving the overall performance by contributing

less interference at the network’s edge. On the other hand, making use of fewer

base-stations however reduces the amount of available resources at the network’s

edge. A trade-off is investigated, which balances among interference saturation

and available resources to increase the average user’s quality of experience. In this

work, we treat the edge node density as a variable of the problem. This greatly

increases the difficulty of obtaining analytical expressions, but also offers a direct

access for optimizing the users’ average performance and network’s energy con-

sumptions. An energy-focused performance metric is subsequently proposed, with

the intention to highlight an interesting duality within the same network’s tier,

which can transition from a better efficient to a more performing state, accord-

ing to the energy expenses from the operators. Nonetheless, under an ultra-dense

scenario, line-of-sight wireless links between the user and the nodes become more

likely. The introduction of a main component of the multi-path propagated copies

of a signal involves analytical complications. A feasible approximation is pro-

posed and validated through a set of computer simulations. The scalability of the

proposed technique allows to generalise existing results in the literature.



Impact Statement

This thesis exhibits novel contributions to the design of communication strategies

for future mobile networks. Driven by the expected substantial increase in the

number of low-range access points, new obstacles arise when it comes to accom-

modate the foreseen increased demand in network performance. This research

work aims to highlight the importance of considering a limit to the network nodes

densification, which can be detrimental to the overall performance. The ana-

lytical findings in this thesis allow the reader to quantify the negative effect to

performance and energy consumption brought by over-densification, and provide

arbitrary close-to-optimal strategies to increase the overall quality of user experi-

ence.

The contributions of this work include a set of more encompassing network

metrics, with the derived conclusions and observations supported by numerical

validations. The industrial collaboration with Toshiba Europe Ltd has consider-

ably driven the attention of this work to the precise demands for higher perfor-

mance and efficiency of future mobile network. This thesis has produced results

that bridged the research work with the more complicated set up in real-world

problems.

The improved analytical derivations being presented in this thesis are expected

to attract the attention of wireless telecommunication researchers who aims to

tackle better communication strategies as a result of the optimal management of

densely deployed network access points. Most of the presented research work in

this thesis has been peer-reviewed and subsequently published to international

journals of the sector.
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Chapter 1

Introduction

Future mobile communications networks will face an unprecedented growth of

content requests generation, with the global mobile data traffic increasing nearly

eightfold between 2015 and 2020, reaching 30.6 exabytes per month by 2020 [1].

The 5th Generation (5G) of mobile networks are therefore required to meet a variety

of key performance indicators such as capacity, latency, energy efficiency (EE)

and will consequently adopt several new technologies to deliver enhanced user

experience [2–5]. Network densification has been indicated as a key strategy to

overcome the data traffic increase, with promises of enhanced network capacity and

spectrum reuse [6]. This technique is able to shorten the user-to-node distances,

unlocking the benefits of low-powered and low-latency wireless communications [7,

8]. In addition, diffuse network components can directly meet the users’ requests,

if provided with a local memory storage, alleviating the traffic demand at the

backhaul. Introduced from the latest 3rd Generation Partnership Project (3GPP)

Long Term Evolution Advanced [9], distributed content caching has demonstrated

great quality of service (QoS) improvements when applied to a radio access network

[10–13]. Furthermore, the introduction of a heterogeneous network (HetNet) allows

users to be multiplexed in different domains, but also unlocks content caching at

different layers of the network [14–16].

To reap the benefits from these techniques, success content delivery probability

(SCDP) has paved the way to gain new insights in wireless mobile networks. SCDP

is a QoS performance metric which allows to capture the health of a wireless link
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Chapter 1. Introduction

by addressing the event that the channel transmitting rate at the receiver is higher

than a minimum target bit-rate.

In this first chapter, the fundamentals of the thesis work are presented. In

Section 1.1, the reasons which motivate the directions of our efforts are discussed

with the list of contributions to the state-of-the-art reported. The structure of the

work is illustrated in Section 1.2 and the list of our contributions to the scientific

literature is given in Section 1.3.

1.1 Motivation

Normally, a content request is forwarded to a base station (BS) which connects

to the clouds to fetch the required data by means of a physical wired link, named

backhaul. During peaks of traffic demand, the burden at the backhaul wired

links represents a bottleneck to the users’ QoS [17–19]. Cache-enabled HetNets

serve as a promising solution to the backhaul burden obstacle, by differentiating

distinct layers based on the size of the coverage area of the cells. A representative

example of a multi-tier HetNet structure is depicted in Fig. 1.1. The intuition to

potentially meet a good portion of content requests directly at the network’s edge

not only serves as an alleviating solution to the backhaul burden, but also unlocks

short distance content transmissions, encouraging low-powered transmissions and

frequency reuse. The strategy of massive network’s densification of cache-enabled

cells has promised to bridge the network capacity gap with the 1000-fold increase

in traffic demand, expected to occur in the 5G mobile networks [20]. Therefore, on

top of the HetNet architectures, the deployment of a ultra-dense network (UDN)

as layers in a HetNet, has widely attracted the attention of both research and

operators due to its promising increase in network capacity [21–23]. However, the

massive deployment of network’s pieces of equipment introduces some difficulties

which can be summarized as: dramatic increase in network’s energy consumptions;

interferences from serving a massive number of content requests escalate the users

competition for content retrieving at the edge; complex derivations of QoS metrics

due to the combination of line-of-sight (LOS) and non line-of-sight (NLOS) wireless

links at the user side as higher densities allow direct LOS wireless links to occur

more frequently.
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Chapter 1. Introduction

Figure 1.1: Multi-tier HetNet network.

Current literature has widely investigated optimal or sub-optimal network poli-

cies with the intention to maximize a utility function that resembles the average

user performance. Typically, the problem of augmenting users’ QoS is presented by

independently optimizing either the probabilistic content caching strategy or the

network densities. Moreover, the detrimental effects of a local over-densification of

pieces of equipment (i.e., edge node) to neighbouring content transmissions remain

an open challenge due to its intrinsic analytical difficulties. However, due to the

non-trivial analytical derivations, the random number of caching nodes was often

considered as a conditioning factor for the evaluation of a network performance

metric. After the optimization is performed, the random quantity is commonly

picked deterministically, with its effects empirically studied. Being able to arbi-

trarily choose the operating density of a network’s tier is becoming possible by

means of idling technologies, widely predicted to be employed in future 5G mobile

networks [24–27]. Idling technologies have been investigated as beneficial as a mat-
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Chapter 1. Introduction

ter of network’s energy consumptions. However, the potential benefit to the users

QoS deriving from idling a subset of the active nodes remains an open question.

Massive network densification unlocks frequency reuse as the size of deployed

content source cell decreases, i.e., pico and femto cells. The same frequency bands

can thus be utilised at a local scale given the lower power levels associated to

smaller cells, whose interfering power is less destructive for neighbouring transmis-

sions. However, given the foreseen massive increase in content requests generation,

a full characterisation of the bandwidth usage for multicasting content dissemina-

tion is needed for reliable SCDP estimate. It is a common practice in the literature

to assume light user-load conditions. However, under UDN conditions, especially

when coordinated multi point (CoMP) techniques are engaged, this assumption is

no longer valid.

A direct consequence of employing UDNs for future mobile networks is the

combination of LOS and NLOS wireless links in the environment. This follows as

consequence of having more nodes within the same portion of network’s space such

that the probability of a direct wireless link is increased. The implied difficulty of

introducing possible LOS links lies in the different small-scale channel distribution

which does not have closed-form solutions and thus hinder any insights being

reviewed.

1.1.1 Main Contributions

Contributions of this work shed more light on the limitations and reveal the true

potentials of UDN. The main contributions are listed and summarized as follows:

• Joint SCDP maximization under constraints of probabilistic con-

tent caching policy and density of active network’s nodes (Chapter

3): This is achieved by proposing a Jensen’s lower bound of the target SCDP

measure, which allows to average out the random number of edge nodes and

considers the whole maximization to be performed on two distinct sets of

decision variables.

• Proposal of a localised SCDP maximization approach (Chapter 3):

This is obtained through a spatially binned interpretation of the network

20



Chapter 1. Introduction

area, such that the center of each bin determines the geographical coordinates

of a representative user in the area covered by the bin. A global SCDP

is then maximized as a collection of the experienced metric by the set of

representative users. The proposed approach allows to deploy an arbitrary

user density. It is demonstrated, by means of a numerical analysis, that the

representative location works as a useful description for the averaged SCDP

perceived by a randomly located user in the network.

• Full characterisation of bandwidth usage for content multicasting

(Chapter 3): By means of a rigorous representation of the user-load for-

warded to a small base station (SBS), the whole available bandwidth at the

edge node is divided into homogeneous portions of frequency bands to be

allocated to distinct users for simultaneous contents’ transmission.

• Improved analytical derivation for network’s EE (Chapter 4): Con-

sidering the expected value of the random ratio of the SCDP over energy

consumption within the typical user’s content searching area (CSA), an im-

proved definition of network efficiency is derived. Numerical evaluations

validate the proposed approach against the state-of-the-art as a matter of

efficiency metrics.

• Improved access to network’s insights for LOS wireless links (Chap-

ter 5): When the power contribution from multiple nodes is accounted, a

combination of LOS and NLOS wireless links is observed at the receiver,

thus complicating analytical performance metric derivations. A closed-form

approximation is proposed and, by means of numerical analysis, it is shown

to be an appropriate estimation of the target SCDP.

• Extension method for full-NLOS models to account for LOS con-

tribution (Chapter 5): By means of a feasible correctness scaling factor,

Rayleigh channel fading models can be extended by applying the proposed

approach. The suggested correcting factor for Rayleigh mobile networks is

shown to be a tight approximation of the targeted SCDP and to greatly

simplify the analytical derivation of the performance metric.
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1.2 Thesis Outline

The remainder of the thesis work is organized as follows.

Chapter 2 provides an overview of the basic concepts thoroughly employed

during the thesis. Elements from stochastic geometry, probability theory and

information theory are discussed in Section 2.1 with a representative derivation

of the SCDP been derived in Section 2.2. The network structural choices and

fundamental modeling techniques are described in Section 2.3, with a more specific

network design description being discussed at the begin of each chapter.

Chapter 3 analyses the problem of finding local sets of optimal probabilistic

content caching policies and caching node density by maximizing a lower-bound of

the target SCDP. In Section 3.2, the specific model design choices are discussed

with employed binned network approach introduced. Section 3.3 delineates the

proposed lower-bound of the target SCDP, with the focus on the utilized scaled

probabilistic content caching model, the rigorous definition for user-load and with

the utilized zero-truncated Poisson distribution for the set of cooperating nodes

illustrated. The gradient-based solution is examined in Section 3.4. The resulting

numerical outcomes are discussed in Section 3.5 with the final conclusions been

reported in Section 3.6.

Chapter 4 explores an improved definition of network’s EE, highlighting the

existence of a fundamental energetic dualism in HetNets. This metric is then

maximized against the edge node density, to find the network’s optimum energy

conversion. In Section 4.2 the specific network design choices are indicated. Section

4.3 covers the analytical findings for the upgraded definition of network EE with

the employed numerical search of its global maximum described. In Section 4.4 the

retrieved numerical sub-optimal edge node density is analysed, with an extensive

investigation conducted over a wide set of network’s measures. The chapter is

concluded in Section 4.5 with the resume of the final understanding of the problem.

Chapter 5 examines a SCDP approximation when LOS wireless links and co-

operating content transmitting strategies are accounted. The model specifications

are discussed in Section 5.2, while the analytical fundamentals of the approximated

SCDP are elaborated in Section 3.4.3. Section 5.4 shows the numerical results and

the validation of the proposed approximation is examined. Section 5.5 concludes
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the chapter with the final considerations.

Chapter 6 concludes the work of this thesis, presenting a summary of the

achievements and introducing to the possible future developments of the presented

work.

1.2.1 A Coherent Direction of the Work

The contributions presented in this thesis constitute a coherent direction of the

conducted research work. To face the unprecedented growth in content requests

generation, improved models which can capture the effects on the network metrics

of higher densities are needed. Cooperative transmission techniques, channel power

gain models, user-load quantification and EE are some of the measures that are

greatly affected by higher density levels. The work presented in the technical

Chapters 3, 4 and 5 provide more representative mathematical tools to better

quantify the enhanced performance of UDNs.

More specifically, the efforts in Chapter 3 to find global optimal strategies which

maximise the SCDP can be further improved when contributions from Chapter 5

and Chapter 4 are integrated. The assumptions over the nature of the channel

power gains in Chapter 3 permit to ease the derivation of the performance metric,

which then allow to acknowledge substantial improvements in performance as a

result of an optimisation. Unfortunately, the complexity introduced by accounting

the distribution of the channel power gain for LOS links does not allow to have a

direct access to key parameters. More efforts are required to include the contribu-

tions of LOS wireless links, which are likely to occur in UDNs due to the involved

high densities that shorten the user-node distances. In Chapter 5, this problem is

addressed by proposing a more accessible mathematical derivation of the channel

power gain with combined LOS and NLOS wireless links. A novel interpretation of

the target power levels is proposed and its integration to Chapter 3 is presented in

more details in Section 5.3.2. In conclusion, Chapter 5 aims to improve the quality

of the model from Chapter 3 while keeping the complexity as low as possible.

The contribution discussed in Chapter 4 addresses the problem of efficiency in

UDNs. The intuition behind this work is that a performance focused metric which

numerically quantifies the QoS does not suffice to have a more comprehensive
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knowledge of the network optimal strategies. The results from Chapter 4 allow

to extend our understanding of the optimal behaviours of UDNs under both a

performance and efficiency perspective. The improved EE metric can directly be

applied to the framework presented in Chapter 3, and the combined knowledge

allows to derive local optimal strategies of the network for its most efficient and

most performing states.

1.3 List of Publications

The work being conducted in this thesis has produced three major contributions,

two of which have been published in two technical IEEE journals and one is being

prepared for major submission. The list of publications is given below.

• Journal Publications:

− Emanuele Gruppi, Kai-Kit Wong, Mohammud Zubeir Bocus, and Woon

Hau Chin. ”Ultra Dense Edge Caching Networks with Arbitrary User Spatial

Density”, IEEE Transactions on Wireless Communications. IEEE, 2020.

Volume, 19. Issue, 7. Pages, 4363-4377.

− Emanuele Gruppi, Kai-Kit Wong, and Woon Hau Chin. ”On LOS Con-

tribution to Ultra-Dense Network”, IEEE Access. IEEE, 2020. Volume, 8.

Pages, 100288-100297.

• Submmission in preparation:

− Emanuele Gruppi, Kai-Kit Wong, and Woon Hau Chin. ”Fundamental

Duality in Heterogeneous Networks”
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Introductory Material

Random spatial models are widely employed to represent the randomness in both

number and locations of nodes and users for mobile network applications. Stochas-

tic geometry allows to step from a random spatial displacement of elements to

closed-forms (or semi-closed-forms) of the network’s performance metrics. The

analytical derived results are essential to average out the desired performance

metrics from the influence of a collection of randomly displaced nodes. Hence,

there is a set of network performance metrics (such as signal-to-interference-plus-

noise ratio (SINR), channel capacity or SCDP) that can be derived as a direct

consequence of the application of stochastic geometry to random spatial models.

On the other hand, stochastic geometry provides us with the tool to statistically

determine the necessary quantities to analyze or model the network. Both users

and edge nodes are suitable for being accounted as random Poisson point pro-

cess (PPP), defined on a Euclidean space Rd [28–30]. Stochastic geometry has

therefore become a useful mathematical tool over decades to approximate random

spatial patterns in wireless applications. With a combined use of notions from

point processes theory, probability theory and information theory, researchers can

provide answers to questions as

• How to determine the average desired power and interference from a random

set of transmitters randomly placed across the network?

• How do we address link-distance distribution over all the possible realization

of a random collection of points?
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In the following outline the focus on two-dimensional Euclidean spaces R2 is con-

sidered. However, the reported notions can be extended to either one or three

dimensional Euclidean spaces.

This chapter provides an overview of the analytical tools from stochastic ge-

ometry. Section 2.1 covers the basics of this applied probability theory. In Section

2.2, the introduced notions have been utilised to analytically derive a representa-

tive closed-form for the SCDP. In Section 2.3 the mobile network model employed

in this work is described, with more detailed versions specifically described at the

beginning of each chapter in detail.

2.1 Stochastic Geometry Tools

The concepts of intensity measure Λ and intensity function λ are first introduced,

to define the general PPP with its main properties. Making use of the random

measure formalism, a point process can be described by the counting measure of

all its points in a set (or finite space) B ∈ Rd. The number of points in B writes

as N(B) and corresponds to an integer random variable which follows a Poisson

distribution and whose mean is defined as the intensity measure Λ = E[N(B)].

A PPP φ can be fully characterised by an intensity function λ which might or

might not depend on the spatial coordinates. In the first case, we refer to it as

a non-homogeneous PPP, and in the latter case a homogeneous PPP. Intensity

measure Λ(B) and intensity function λ(x) are strictly linked. One might say the

intensity measure is the integral of the intensity function over a compact Euclidean

space, or the expected number of points over the same area. On the other hand,

the intensity function λ(x) is the expected number of points per unit of area dx.

The following equivalences formalise the relation between intensity measure and

intensity function as

Λ(B) = E [|φ(λ |B|)|] = E [N(B)] =

∫
B

λ(x) dx.

A general PPP, defined over the Euclidean space Rd, is such that

1. Over the compact set B ∈ Rd, N(B) has a Poisson distribution such that
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the random number of points writes as E[N(B)] =
∫
B
λ(x) dx and has a

distribution

Pr(N(B) = n) =

(∫
B
λ(x) dx

)n
n!

e−
∫
B λ(x) dx.

2. If N(B1),N(B2),. . . ,N(BK) are computed over disjoint sets, then they are

also independent random variables.

When the intensity function is not space-dependent, we have
∫
B
λ(x) dx = λ |B|

and the PPP is said to be spatially homogeneous. If we try to investigate the

average number of points over an infinite area, the result will always be infinite

regardless of the density function. Therefore, compact sets are generally in use.

The following properties on point processes have been employed in this thesis.

Property 1 (Translation). If φ = {x1, . . . , xK} defines the point process, then a

translation of x ∈ Rd defines the process φx = {x1 + x, . . . , xk + x}.

Property 2 (Stationarity). A point process is said to be stationary on Rd if its

intensity function λ is translation-invariant. As a general example, if the intensity

function of φ is λ, the same intensity function holds for the translated point process

φx.

Property 3 (Isotropy). A point process is isotropic on Rd if its intensity function

is rotationally invariant with respect to a rotation over the origin.

Property 4 (Motion-Invariance). A point process is motion-invariant on Rd if it

is stationary and isotropic.

The following holds from the formal definition of a PPP.

Property 5 (Independence). The number of points in the Euclidean ball B(x, ε)

is independent on the number of points in any region outside this ball ∀ε > 0.

The independent thinning of a PPP is a common transformation which removes

a subset of points of an initial PPP based on a probabilistic rule. When the removal

event is independent for all points, we refer to it as an independent thinning. The

following theorem is known to hold for stationary PPP.
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Theorem 1 (Independent thinning of a PPP). Let a thinning function g : Rd →
[0, 1] be applied to a stationary PPP such that each point is independently deleted

with probability 1 − g(x). The result of the thinning procedure generates a non-

homogeneous PPP whose intensity function writes as λg(x).

The independent thinning transformation of an initial PPP is particularly use-

ful when it is necessary to discriminate among LOS and NLOS wireless links. The

following applied probability concepts are reported.

Void Probability The probability that no elements of a homogeneous PPP fall

into a ball of radius R is called void or null Probability. This can be interpreted as

the distance over which no elements are found in a ball centered at (0, 0) of radius

R. This result stems from the probability of having no points in a PPP within a

generic R as

Pr
(
N
(
πR2

)
= 0
)

= e−λπr
2

.

From the void probability, the notion of nearest neighbour distance directly follows.

Nearest-Neighbour Distance Distribution Function The distance from

a point x ∈ φ to its closest element of φ is called nearest-neighbour distance. The

probability density function (pdf) of this random quantity is a direct result of the

application of the void probability. The probability of the event φ to have no

elements given a distance r from a point centered at (0, 0) writes as

Pr (R > r) = e−λπr
2

.

The cumulative density function (cdf) can be directly obtained as

Pr (R ≤ r) = FR (r) = 1− e−λπr2

,

and therefore the pdf of the closest element of φ from the origin (0, 0) is

fR (r) =
∂FR (r)

∂r
= 2πλre−λπr

2

.
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2.1.1 Operations over Point Processes

The importance of being able to perform sums and products over the elements of a

point process has important implications for the analysis of a mobile network. As

a matter of fact, the interference perceived at a random spatial location is equiva-

lent to a sum of the single interfering contributions from the modeling interfering

point process. It is essential to have a full distributional characterisation of the

interference. However, this is possible for limited cases and point process function-

als have still an important role when it is necessary to analyse the expected value

of product of functions calculated at the elements of a point process.

One of the underlying results of point process functionals is the mean of the

sum of functions defined over a point process, envisioned by Campbell in 1909

[31]. The following theorem, also known as Campbell-Hardy theorem, states this

important result.

Theorem 2 (Campbell’s theorem for functions summed over a point process).

Let φ be a point process defined on Rd and f a measurable function such that

f : Rd → R. The random sum

S =
∑
x∈φ

f(x),

stands as a random variable whose mean writes as

E [S] =

∫
Rd
f(x)λ(x) dx.

From Theorem 2, the direct consequence of the Campbell’s theorem applied over

a stationary point process permits the expression

E [S] = λ

∫
Rd
f(x) dx.

2.1.1.1 The moment-generating function of a sum over PPP

The derivation of the moment-generating function for a PPP stems directly from

the application of Campbell’s theorem.
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Theorem 3 (Campbell’s theorem for moment-generating functions for PPPs).

Let φ be a homogeneous PPP defined on Rd and f a measurable function such that

f : Rd → R. When the random sum

S =
∑
x∈φ

f(x),

is absolutely convergent, i.e.
∫
Rd min(|f(x)| , 1) dx <∞, then the moment-generating

function of S is given by

E
[
etS
]

= exp

(
λ

∫
Rd

(
etf(x) − 1

)
dx

)
.

The same result can potentially be extended to non-homogeneous PPP, when the

absolute convergence condition holds∫
Rd

min(|f(x)| , 1)λ(x) dx <∞,

then the moment-generating function for S writes as

E
[
etS[f ]

]
= exp

(∫
Rd

(
etf(x) − 1

)
λ(x) dx

)
.

2.1.1.2 The probability-generating and Laplace functionals for PPP

Theorem 4 (probability-generating functional (pgfl) for a PPP). Let φ be a ho-

mogeneous PPP defined on Rd with intensity measure Λ and a function such that

v : Rd → R is a measurable function. Then the pgfl of φ is the following result

P (v) = E

(∏
x∈φ

v(x)

)
= exp

(
−
∫
Rd

[1− v(x)] Λ(dx)

)
,

where, for a homogeneous PPP, simplifies as

P (v) = exp

(
−λ
∫
Rd

[1− v(x)] dx

)
.

From the definition of pgfl for a PPP, the definition of Laplace functional di-
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rectly follows by noting that the relationship that links the pgfl and the Laplace

functionals over the same PPP is

L (v) , P [e−u],

or, equivalently

P (v) , L[− log(v)].

Hence, the following theorem of a Laplacian over a PPP stands.

Theorem 5 (Laplace functional for a PPP). Let φ be a homogeneous PPP de-

fined on Rd with intensity measure Λ and a function such that u : Rd → R is a

measurable function. Then the Laplace functional for φ is the following outcome

L (v) = E
[
e−S
]

= exp

(
−
∫
Rd

[
1− e−f(x)

]
Λ(dx)

)
,

where, for a homogeneous PPP, simplifies as

L (v) = exp

(
−λ
∫
Rd

[
1− e−f(x)

]
dx

)
.

The Laplace functional can be directly seen to be retrieved from the moment-

generating function over a PPP for t = −1. That is,

E
[
eS
]
, E

[
e−S
]
.

The Laplace functional and pgfl can be directly employed to average out the inter-

fering contributions of a PPP as it will be discussed for a representative example

in Section 2.2.1.

2.1.2 A Look at Slivnyak’s Theorem

Slivnyak’s theorem represents one of the most known and significant results avail-

able to researchers to investigate wireless networks modelled as a homogeneous

PPP. In general, it allows to condition the distribution of a PPP to have a point

at the origin of an Euclidean space without changing the distribution itself. The

31



Chapter 2. Introductory Material

user at the origin of the Euclidean space is called typical user and it is represen-

tative to all the users of the PPP. This theorem hugely simplifies the derivation of

performance metrics.

Slivnyak’s theorem stems directly from the notion of Palm probability which

can be synthesised using the following definition.

Definition 1 (Palm probability). The Palm probability of a point process φ is the

probability of an event given that the point process contains an element at some

location. Defining Y as an event (or property) of a point process φ, the Palm

probability writes as

Pr (φ ∈ Y |x ∈ φ) , Px (Y ) .

For stationary processes, the following holds

Pr (φ ∈ Y |x ∈ φ) , Pr (φx ∈ Y | 0 ∈ φ) , P0 (Y ) ,

with the translated φx containing the origin of the Euclidean space. From the

notion of Palm probability, its variant such that a specific point is not included in

φ stands as the following reduced Palm probability.

Definition 2 (Reduced Palm probability). The reduced Palm probability of a point

process φ is the conditioned probability of an event Y to occur given that a point

x is not included in the distribution of φ. Namely, we have

Pr (φ \ {x} ∈ Y | x ∈ φ) , P!
x(Y ).

The independence property for PPP, i.e. Property 5, suggests that conditioning

the point process on x does not change the distribution of the PPP. Slivnyak’s

theorem formalizes this intuition.

Theorem 6 (Slivnyak’s theorem). If the intensity function of a PPP is such that

λ(0) > 0, then

Pr (φ ∈ Y |0 ∈ φ) = Pr (φ ∪ {0} ∈ Y )

or, more compactly

P (Y ) ≡ P!
0 (Y ) .
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When the typical user is considered, the origin of the Rd Euclidean space is in-

cluded in the modeling point process of the users. As a PPP can be considered to

spatially represent the random spatial locations of the users in a mobile network,

the stationary property allows the translation, φ , φx such that 0 ∈ φ. Slivnyak’s

theorem states that we can condition the users PPP on having an element at the

origin of the Euclidean space, without influencing the distribution of the process.

The formalisation of this statement holds as

P!
0 (Y ) , Pr (φ \ {0} ∈ Y | 0 ∈ φ) , P (Y ) ,

where P indicates the unconditional distribution of φ. The implications of this

on the analysis of mobile networks are huge. The typical user, or the element

conditioned at the origin of the Euclidean space, can be regarded as the average

receiver of the whole network such that the metrics can be computed at its location

in order to obtain an averaged result over the whole set of users. The following

results yield as a consequence of the fundamentals discussed in this section.

2.2 Analytical Standings for the SCDP

In this work, the SCDP, also acknowledged as coverage probability, is considered

as the primary QoS metric to capture the health of the network transmitting con-

ditions. Unlike the Shannon channel capacity, which gives a measure in bits per

second of the additive white Gaussian noise (AWGN) affected user-to-node wireless

link, the SCDP is capable of providing a measure over the user’s ability of correctly

decoding the transmitted message. The numerical value of the SCDP is mainly

influenced by the interference pattern, the experienced nature of the wireless links

and the available bandwidth for the content transmission. Research being con-

ducted on the matter has widely made use of stochastic geometric principles of

network design which allows elegant closed forms of the metric.

The maximum transmission rate of a channel, or Shannon capacity, is a QoS

metric which provides an upper-bound to the maximum mutual information be-

tween the input and output of a channel affected by noise. Namely, the mutual

information between two random variables is the maximum amount of informa-
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Figure 2.1: Block diagram digital communication.

tion we can get from X after having observed the output Y . When applied to an

AWGN channel, the capacity can be formalised as

CAWGN = sup I(X;Y ),

which gives the maximum error-free data rate a channel can support.

From Fig. 2.1, it can be seen how this notion of mutual information reflects

the action of decoding a received message after being passed to a channel such

that X has been affected by some kind of perturbation, e.g. noise. The set of

random variables that define the noise in a wireless channel is particularly high

such that the resulting perceived noise by the receiver is a combination of a huge

number of unknown random variables. The central limit theorem of probability

theory suggests that the summation of many random processes results in a zero-

mean Gaussian distributed random variable n ∼ N (0, N), where N is the variance

of the process. Firstly theorised by Claude Shannon in 1948 [32], the maximum

achievable transmission rate of a channel allows an elegant closed form when the

channel is affected by AWGN [33], giving

CAWGN = B log2 (1 + γ) [bps],

where B indicates the effective bandwidth for the content transmission and γ is the

experienced SINR. This QoS metric has intrinsic fairness issues when, for instance,

the maximization of the channel rate is performed over a set of wordbook contents.
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Lack of fairness might result in the most popular contents being encouraged to

experience better transmitting conditions while least popular contents can suffer

from a lack of fairness as most of the network resources are allocated to a limited

set of contents. The same issue can be encountered when trying to maximize

the channel capacity for a set of users. In this case, those users that experience

the best channel conditions are advantaged at the expenses of other users. To

overcome this problem, the SCDP, also indicated as coverage probability, lies as

a fairer metric which accounts for the whole set of contents or users within the

network. The formal definition of SCDP is

SCDP = Pr
(
B log2 (1 + γ) > ρ

∣∣∣γ) , (2.1)

which is conditioned on the SINR distribution.

2.2.1 Analytical Derivation of the SCDP

When Rayleigh channel fading envelope is considered, closed-form results of SCDP

can be attained, given the standard exponential distribution of the channel power

gain which writes as |h|2 ∼ exp(1) (this result will be analytically derived in

Section 2.3.1.1). Namely, given the generic definition of SINR, with considered

transmitting power terms P S = 1 for simplicity, we have

γ =
P

I +W
=

|h|2 r−α∑|I|
i=0 |hi|

2 r−αi +W
,

where P , I and W indicate the received, the interfering and the noise thermal

power terms respectively, I is the set of interfering network nodes, r is the user-

node link-distance and |h|2 represents the channel power gain.
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It can be easily computed, using the SCDP definition in (2.1), that

SCDP = Pr
(

log2

(
1 + γ

)
>

ρ

B

∣∣∣ γ)
= Pr

(
γ > 2

ρ
B − 1

∣∣∣ γ)

= Pr

 |h|2 > rα
(

2
ρ
B − 1

)
(I +W )︸ ︷︷ ︸

ρ̃

∣∣∣∣∣∣∣∣ |h|
2 , r, I


= Eρ̃

[∫ ∞
ρ̃

e−x dx

]
= Eρ̃

[
e−ρ̃
]
.

(2.2)

The derivation (2.2) can be interpreted as

SCDP = EI,|h|2,r

[
e−s(I+W )

∣∣
s=rα

(
2
ρ
B −1

)] = LI (s)|
s=rα

(
2
ρ
B −1

) e−rα
(

2
ρ
B −1

)
W
.

Hence, the SCDP metric is shown to be a function of the Laplace functional for

the interfering point process using the tools described in Section 2.1.1. In the

following, the derivation of the Laplacian term is provided:

LI (s) = EI,|h|2,r

[
exp

(
−s

I∑
i=0

|hi|2 r−αi

)]
a
= EI

[
I∏
i=0

E|h|2,r
[
exp

(
−s |hi|2 r−αi

)]]
b
= exp

(
−λ
∫∫

x,y∈D

∫ ∞
0

[
1− e−sa(x2+y2)−α/2

]
e−a da dxdy

)
c
= exp

(
−2πλ

∫∫
x,y∈D

[
1− 1

1 + s(x2 + y2)−α/2

]
dxdy

)
d
= exp

(
−2πλ

∫ R

0

[
1− 1

1 + sr−α

]
r dr

)
= exp

(
−2πλ

∫ R

0

[
sr−α

1 + sr−α

]
r dr

)
,

(2.3)

where (a) comes from the independence property for a PPP, (b) derives from

utilizing the pgfl of the interfering PPP discussed in Section 2.1.1, (c) derives from

averaging out the Rayleigh channel fading coefficient and (d) is obtained from a
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change from Cartesian to polar coordinates. The derivation (2.3) is representative

for the use of element from stochastic geometry employed to infer analytical forms

of the averaged network SCDP. However, specific cases which derive from design

choices of the model are indicated in each chapter.

2.3 General Model Design

Downlink single-input single-output (SISO) HetNets, which comprise of different

layers differentiated by their composing cells’ radii size, are considered. More

specifically, a macro base station (MBS) layer provides signal ubiquity over greater

portion of space while a denser SBS tier is responsible for locally delivering high-

rate transmissions to the users. Random spatial displacement of both users and

network’s nodes are defined in a 2D space R2 which describes the entire network

space. The users PPP is indicated as φU with intensity function λU. Similarly, the

PPPs for SBS and MBS nodes are respectively φS and φM with their associated

intensity functions λS and λM. If not otherwise stated, we consider homogeneous

PPPs over the whole network space Rd, with their intensity functions not spatially

dependent. Resorting the result of Slivnyak’s theorem in Section 2.1.2, the typical

user or typical receiver is placed at the origin of the R2 Euclidean network space

and is able to perform its content search over a local region centered at (0, 0),

referred to as CSA.

Time is split into frames, within which each user equipment (UE) generates

its content request. The required contents are all considered to have unit length

and be drawn from a wordbook F with size |F| = F and the set of probabilities

p̂f ∈ [0, 1] indicates the popularity of the single f -th content. These content

popularity coefficients are drawn from a zipf-like distribution, with the skewness

factor υ such that
∑F

f=1 p̂f = 1. This specific distribution of the content popularity

has been widely investigated and validated to be highly representative for empirical

observations [34–37]. Without loss of generality, we consider the set of content

popularity coefficients to be ordered as a decreasing sequence such that p̂1 >

p̂2 > · · · > p̂F , with the first content corresponding to the most popular request.

Content popularity usually varies much slower than the density for content requests

generation and in particular, in this thesis, is assumed static. Furthermore, in
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Small-scale channel fading 
+ path-loss

Local cache
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RX

Figure 2.2: Multi-path signal propagation.

this work, it is assumed that both UE density λU and content popularity p̂ =

{p̂1, . . . , p̂F} are known a-priori.

If not stated otherwise, each network node is equipped with a cache of size

M which can store up to M distinct contents. All the pieces of equipment are

allowed to operate on the same frequency bands with a total bandwidth indicated

by B [Hz]. When a node is required to simultaneously perform multiple content

transmissions, a frequency division multiple access (FDMA) scheme is adopted to

equally split the bandwidth into a number of distinct content requests for delivery.

The user-load ξk is defined as the random number of distinct content requests

forwarded to the same k-th edge node. When CoMP techniques, such as joint

transmission (JT), are in place, the experienced user-load for content transmission

is indicated as Ξ = max{ξ1, . . . , ξKf} and is driven by the maximum user-load

perceived by the cooperating set of nodes.

The path loss is modeled by a factor r−α, where r denotes the user to node

distance and α is the path loss exponent. Typical path loss exponent values for

urban areas range within α ∈ [2, 4] (see [38]). A simplified path-loss model is used,

where rk is the distance between the k-th edge node and the reference user such
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that r−αk = max(d0, r
−α
k ) where d0 = 1 [m] is the reference distance.

In the following of this chapter, the set of employed channel fading models, the

probabilistic content caching model and the performance gains from considering a

CoMP technique are presented.

2.3.1 Small-scale Channel Fading Models

In wireless environments, transmitted signals may be subjected to multiple scatter-

ings before arriving to the receiver, see Fig. 2.2. This causes random fluctuations

in the received signal and this phenomenon is regarded as channel fading . In this

section, two of the main models for channel fading are described.

2.3.1.1 Rayleigh Fading

This model best describes the phenomenon of having multi-path signals bouncing

off buildings and obstacles before reaching the destination, without a direct LOS

path. Hence, h is employed in this work to indicate the random fading channel co-

efficient, which is assumed to follow a circularly symmetric zero-mean unit-variance

complex Gaussian distribution h ∼ CN (0, 1). This is the direct result of the ap-

plication of the central limit theorem. When the number of scattered multi-path

components is sufficiently large, the channel impulse response can be interpreted

as a Gaussian process, independently on the distribution of each scattered compo-

nent. The envelope of the channel response is Rayleigh distributed, as it becomes

the magnitude of the sum of the independent and identically distributed real and

imaginary part of a Gaussian process. Given two independent standard Gaus-

sian random variables X ∼ N (0, 1/2) and Y ∼ N (0, 1/2), the magnitude of the

Rayleigh faded channel coefficient is given by

|h| = |hI + jhQ| =
√
X2 + Y 2,

such that |h| ∼ Rayleigh(
√

1/2). The distribution of the channel power gain, i.e.,

|h|2, is obtained by initially computing its cdf F|h|2 (y) which is then derived to
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obtain the pdf f|h|2 (y). Hence, given |h| ∼ Rayleigh(σ), it writes

F|h|2 (y) = Pr
(
|h|2 ≤ y

)
= Pr (−√y ≤ |h| ≤ √y)

=

∫ √y
−√y

x

σ2
e−

x2

2σ2 dx
a
=

∫ √y
0

x

σ2
e−

x2

2σ2 dx = 1− e−
y

2σ2 ,

where (a) follows from the definition of the Rayleigh distribution

f|h| (x) =

 x
σ2 e
− x2

2σ2 if x ≥ 0

0 if x < 0.

The derivative of F|h|2 (y) gives the pdf of |h|2 as

f|h|2 (y) =
∂F|h|2 (y)

∂y
=

1

2σ2
e−y/(2σ

2),

from which, re-inserting σ2 = 1/2 back to the obtained distribution, it follows

f|h|2 (y) = e−y,

that can easily be recognised as the standard exponential pdf.

2.3.1.2 Rician Fading

The Rayleigh fading model is less accurate when it comes to the UDN setup in

which LOS paths tend to exist. When a LOS link is experienced, then a dominant

component of the multi-path signal affects the channel power fading experienced

by the UE and so does the performance metric. According to the 3GPP standard,

the probability of having a LOS link depends on specific cities’ architectures [39].

In this case, the dominant LOS component affects the Gaussian process model-

ing the channel medium, whose envelope follows a Rician distribution. Specifically,

the magnitude of the channel fading coefficient for modeling LOS wireless links

writes as

|h′| =
∣∣h′I + jh′Q

∣∣ ,
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where

h′I ∼ N


√

k

2 (k + 1)︸ ︷︷ ︸
µI

,

√
1

2 (k + 1)︸ ︷︷ ︸
σI


and

h′Q ∼ N


√

k

2 (k + 1)︸ ︷︷ ︸
µQ

,

√
1

2 (k + 1)︸ ︷︷ ︸
σQ

 .

The power ratio between the LOS component over the scattered components is

indicated as the k-factor and stands as an important parameter of this model. The

channel fading coefficient |h′| can be expressed as a function of two independent

standard Gaussian random variables X ∼ N (0, 1) and Y ∼ N (0, 1)

|h′| =
∣∣h′I + jh′Q

∣∣ =

√
(h′I)

2 +
(
h′Q
)2

=

√
(σIX + µI)

2 + (σQY + µQ)2, (2.4)

such that, given µ = µI = µQ and σ = σI = σQ, the magnitude of the channel

coefficient is distributed as |h′| ∼ Ricean(µ, σ). In other words, the magnitude

of two circularly-symmetric independent Gaussian random variables is Ricean dis-

tributed, whose pdf writes as

f|h′| (x) =
x

σ2
e−

(x2+µ2)
2σ2 I0

(xµ
σ2

)
a
= 2x (k + 1) e−x

2(k+1)−kI0

(
2x
√
k (k + 1)

)
,

where in (a) the values of µ and σ are introduced and I0 is the zero-order modified

Bessel function of the first kind, which does not hold a closed-form. The associated

power gain, i.e. |h′|2, writes as a noncentral Chi-squared random variable [40].

This result can also be observed by considering the squared channel magnitude

from (2.4), such that the channel power gain writes as

|h′|2 = (h′I)
2

+
(
h′Q
)2

= (σIX + µI)
2 + (σQY + µQ)2 ,
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which stands as the sum of squared Gaussian random variables with nonzero mean

and non unitary variance. The channel power gain distribution follows from the

definition of the pdf of a noncentral Chi-squared distribution with 2 degree of

freedom, which writes as

f|h′|2 (x) =
1

2σ2

(
x

2µ2

) 1
2

e−
x+2µ2

2σ2 I1

(√
2xµ

σ2

)

= (k + 1)

(
x (k + 1)

k

) 1
2

e−x(k+1)−kI1

(
2 (k + 1)

√
x

k

(k + 1)

)
,

where a first-order modified Bessel function of the first kind, which does not hold

a closed-form, is involved. Despite this channel model is more suitable to capture

the effects of LOS components at the receiver, it also involves a more difficult

analytical expression, which greatly complicates the network’s performance metric

derivations.

2.3.2 Content Caching Schemes

In this section, a detailed discussion over the main content caching schemes,

adopted cache filling procedure and sampling techniques is presented. The content

caching schemes can be grouped in three main categories.

• most popular content (MPC) caching: the memory space is entirely

dedicated to the most popular contents.

• uniform content (UC) caching: the contents in the wordbook F , or, in

some circumstances, a subset of F , are cached following a uniform distribu-

tion.

• probabilistic content caching caching: it makes use of a derived set of

probabilities, i.e. {pf} ∀f ∈ F , which indicate the likelihood of storing a

content at each node’s cache.

Given the knowledge of the content popularity, the MPC lies as the simplest

caching scheme among the indicated, as it does not require a sampling technique
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Figure 2.3: Content caching without replacement with F = 10 and M = 3. In this
example, the cache contents are 1 and 3.

to create instances of the cache. Differently, when the UC scheme or a proba-

bilistic content caching strategy is adopted, a set of instructions to accurately fill

the cache slots is required. Authors in [41] extended the standard method for

generating samples of Bernoulli distributed random variables to content caching

in mobile wireless networks. Each edge node has a cache of size M which can

store up to M distinct contents. The probability of the f -th content being cached

at each cache-enabled edge node is denoted as pf ∈ [0, 1]. Our caching model is

regulated by the constraint
∑F

f=1 pf ≤ M . At each access node, the whole cache

space M ∈ N+ is split into unit-lengthed chunks, and subsequently filled by the

intensity of each probability pf . Fig. 2.3 shows such setup when M = 3, where∑F
f=1 pf < M . To create a snapshot of the cache, a uniform random variable is

drawn, i.e., u ∼ U ∈ [0, 1] and the intersection between u and the cached prob-

abilities determines the set of stored contents. This procedure is widely used to

generate instances of the node’s cache that follow the required content caching

probabilities, i.e. {pf}. Note that, in UC schemes, we set pf = 1/F, ∀f ∈ F .

The illustrated cache filling procedure is a sampling without replacement tech-

nique. More precisely, when a content f ∈ F is selected to be part of the local

cache, it can not be considered to be a valid element when filling the successive

slots. The difference between sampling with replacement and sampling without
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Figure 2.4: Comparison between sampling with replacement and sampling without re-
placement cache filling for various content caching schemes.

replacement is the presence of duplicates in the sampled set. The act of storing

multiple copies of the same content within the same node reduces the capacity of

the cache by a factor which depends by the number of copies. With a slightly more

rigorous approach, given M the number of available slots for content caching and

M̃ ∈ [0,M ] which indicates the number of copies at the same node, the effective

storing capacity reduces to M − M̃ contents. A comparative study between sam-

pling with replacement and sampling without replacement is addressed in Figure

2.4. To numerically target difference between these two sampling techniques, a

number of 204 of cache instances and content requests is generated and the hit-

cache ratio is computed for the presented caching schemes against different cache

sizes M for a wordbook of size F = 8. The representative employed probabilistic

content caching scheme and content request generation process are generated by

means of a zipf-distribution with skewness factor υ = 0.7. This analysis allows to
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have a visual feedback over the loss, in terms of hit-cache ratio, which incurs by

storing multiple copies within the same memory space.

As indicated by the results of the numerical simulation in Fig. 2.4, caching

with replacement strategies have a detrimental effect to the hit-cache ratio, due to

the reduced capacity of the local memory space. However, it is important to point

out that, having more copies of the same element within the same node’s cache

does not contribute to an increase of the SINR, thus the SCDP. Nonetheless,

this same aspect is worth a deeper discussion when copies of the same content are

cached at different nodes of the network. This is be addressed in more details in

the following section.

2.3.3 Cooperation Gain Vs. Diversity Gain

When cache-enabled nodes are in use, it is useful to make use of the concept of

cooperation gain and diversity gain, which we discuss in the following.

Cooperation gain benefits from the increase in the overall transmit power to

compensate the path loss by promoting the use of CoMP transmission from more

than one SBSs. This encourages the same contents to be cached at the SBSs to

perform cooperative transmission but reduces the content diversity available in a

particular CSA. Cooperative transmission could increase the level of interference

perceived by neighbouring users. On the other hand, diversity gain comes about

when different contents are cached at the SBSs within a CSA so that it is more

likely for a user to find the requested content within the CSA to reduce the miss-

cache probability.

There is a trade-off between cooperation gain and diversity gain given by the

limited content storing resources available at the cache-enabled nodes. A more UC

caching strategy would place more distinct contents at the edge to benefit from

the content diversity gain whereas a more biased content caching strategy would

place more popular contents to exploit cooperative transmission.

The discussion presented in this section can be extended to account for the

effect of cache capacity reduction when sampling with replacement cache filling

techniques are adopted. It is important to make a clear distinction between copies

which are cached at distinct network nodes from the act of caching multiple copies
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within the same device. While the first case allows to combine the transmitting

power from distinct sources, thus enhancing the cooperating gain of the transmis-

sion, the second case reduces the content diversity gain of the network, while not

contributing to the cooperating gain simultaneously. This further motivates the

choice of adopting sampling without replacement over their to their counterpart.
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Edge Node Density and Content

Caching Strategy for Arbitrary

Spatial User Density

3.1 Introduction and Problem Statement

To alleviate the burden at the backhaul link, content caching has emerged as

an attractive solution which also brings the benefits of shorter distance between

content servers and users, greatly reducing latency and energy consumption. This

approach has often been investigated in the setting of a multi-tier HetNet, see e.g.,

[42–46], which makes it easy to distinguish among different kinds of SBS by their

radii. Meanwhile UDN is becoming reality as traffic lights, lamp posts, or drones

can act as access nodes serving at the network edge. Having denser cells not only

shortens the communication distance of each cell but also encourages spectrum

reuse to increase capacity per unit area. The network edge however becomes the

main source of interference as a single content transmission has to compete against

a massive number of different requests to be successful. An information-theoretic

approach that fully characterises the asymptotic limits for edge node deployment

remains an open problem.
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3.1.1 Literature Review

Recent years have witnessed considerable efforts on content caching in HetNets.

In [41], an optimal content caching policy to maximise the diversity gain under

different coverage models was provided focusing on the evaluation of the SCDP as

the performance metric. In [47], a probabilistic caching model has been proposed

for homogeneously distributed cache-enabled edge nodes. The authors provided a

closed-form expression to optimise the SCDP over the content caching probabilities

under the noise-limited case while a lower bound was used for interference-limited

scenarios. Edge node cooperation was not considered and users were assigned

to nodes to which they experience the best channel quality. In contrast, [48]

extended the probabilistic content caching scheme to a multicasting network of

cache-enabled BSs. In [49,50], content caching with CoMP to improve the SCDP

was investigated. However, the user-load at the BSs for simultaneous content

deliveries was ignored and an arbitrarily chosen number of cooperating edge nodes

was considered to examine the SCDP. By basing the analysis on a fixed set

of cooperating content providers, the ability to properly consider the network

dynamics and observe the effects of edge node density is however obscured. In

[51], the authors provided both a lower-bound and approximation for the SCDP

for a set of cooperating nodes, with the intention to investigate a trade-off between

cooperation gain and content diversity gain. In particular it is shown that by

increasing of the number of cooperating nodes, an initial benefit for the SCDP can

be experienced. This trend is reversed to favour the diversity gain when the number

of cooperating nodes is sufficiently large. This motivates our efforts in considering

the edge node density as a decision variable of our maximisation problem.

A common assumption of these studies is that homogeneous point processes

for modelling users spatial distribution were considered. Cooperative transmission

and content caching have been widely studied under homogeneity conditions for

the information sources deployment but the case for spatially dependent densities

is less understood [52–54]. User’s spatial distribution normally does not follow

a homogeneous point process, and is often spatially dependent due to manmade

structures such as buildings and roads, and social events. In [55], the authors

considered cooperative content transmission from non-homogeneously and identi-
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cally distributed sources. However, the study was limited to Thomas cluster point

processes and was not able to cope with any arbitrary geometric models. This

motivates our work on edge caching networks that copes with any arbitrary user

spatial distributions.

UDNs using cooperative transmission and content caching are the key enabler

for content-centric mobile communications but as the number of content requests

increases, interference becomes a serious bottleneck. Recent research in [22, 23,

56–58] investigated the impact of UE and BS density in the form of interference

for UDNs. Specifically, the authors in [22] considered the use of higher frequency

bands and network densification to improve the UE rates. They also showed

the possibility of saving energy and reducing interference by idling some edge

nodes in a UDN. Then [23] illustrated the increase in network capacity by having

a denser SBS implementation. In [56], the authors accounted for the backhaul

limitation to address the user’s outage probability with homogeneously deployed

small cells, providing insights over the enhanced SCDP when adjusting the access

nodes’ density given a fixed content caching placement strategy. Most recently, in

[57], queuing theory was employed to model the movement of UEs and evaluate

the throughput and EE performance. Though spatially dependent UE density

was considered, homogeneous deployment of SBS was assumed within the same

hot-spot. Cooperation was also not considered, and spatially dependent downlink

interference was not analysed. In other words, each user perceives interference

only from a homogeneous PPP of BSs belonging to the same cluster.

More specifically, [22] conducted an extensive investigation on the effect on the

performance of a UDN under three degrees of freedom of exploitation of higher

frequency bands, multi-antenna techniques and network’s equipment densification.

The authors particularly highlight the benefits of network densification to reach

up to 18x on average, with peaks up to 48x at the cell edge. The deployment of

diffused network equipment allows shorter user-node distance, triggering low-power

content transmissions and frequency reuse, greatly improving users’ experience.

However, as the content sources of information move toward the network edge,

more interference will be produced closer to the users.

CoMP content delivery strategies are also considered as key technologies to

enhance the performance [59]. Non coherent JTs allow to increase the received
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Reference Description of the adopted content caching scheme

[41] Probabilistic content caching scheme at single tier of BSs.

[47] Probabilistic content caching scheme at single tier of caching helpers.

[48] Probabilistic content caching scheme at single tier of BSs.

[49] Combined MPC and probabilistic content caching schemes at single tier of SBSs.

[50] Probabilistic content caching scheme at SBSs and no caching scheme at the MBS tier.

[51] Probabilistic content caching scheme at single tier of caching helpers.

[55] Probabilistic content caching scheme to assists device-to-device service.

[56] MPC caching scheme at a single tier of SBSs.

[23,57] No content caching scheme is adopted.

Table 3.1: Comparison of content caching schemes.

power at the user side by combining the desired power from multiple sources with

limited overhead signalling among the cooperating nodes [50]. CoMP is therefore

a method to achieve much better performance if compared to the non cooperative

case [60–63]. However, a close-form analysis of the SCDP has not been found for

cooperative content transmissions.

Different from the previous work, our objective is to design a cache-enabled

UDN that can cope with any arbitrary non-homogeneous UE density on a global

scale by locally adapting the cache-enabled SBS density and the content caching

strategy for enhancing the SCDP. Our model is that cache nodes can be turned

on or off to adjust the SBS density for an optimal trade-off between coverage and

interference. In [52], a model for the generation of non-homogeneous user distri-

butions was considered, by means of a quantized representation of the continuous

space wherein the density of users is locally constant. A similar network binning

approach is proposed in this chapter, with the intention of being able to charac-

terise each bin by means of an edge node density and local content caching policy.

In the literature, a random number of caching nodes was often considered as a

conditioning factor for the evaluation of a network performance metric. After the

optimisation is performed, the random quantity is commonly picked deterministi-

cally, with its effects empirically studied.

In this chapter, we show that it is important to average the SCDP over the
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random set of cooperating nodes to achieve better performance under multiple

aspects. Our analysis is different from the literature where the number of co-

operating nodes is assumed fixed which fails to account for most of the network

information.

The contributions of our work are summarised as follows:

1. We consider a network model that discretises the coverage area into a fi-

nite number of bins where the SBS density and the content caching prob-

abilities are optimised to cooperatively deliver contents to a spatially non-

homogeneous content request generation.

2. We derive an SCDP lower-bound which can be adopted as a metric for per-

formance maximisation. The SBS edge-node density and content caching

probability are optimised via the SCDP lower-bound.

3. We analytically study the statistics of the user-load to account for a ran-

dom set of cooperating nodes, which plays a major role in the achievable

SCDP. The insight also allows us to tailor the derivation to suit different

situations such as single node transmission, non-homogeneous user density,

probabilistic caching model, and so on.

4. We adopt a steepest ascent algorithm to jointly optimise the SBS density

and content caching probabilities over the entire network space according to

local content popularity and user density, based on the SCDP lower bound

and the gradients. Simulation results demonstrate that the proposed algo-

rithm achieves significant SCDP performance gain compared to conventional

approaches.

5. Different from previous studies, our results are not conditioned on the num-

ber of cooperative edge caching nodes. Instead, by averaging out the random

number of cooperative edge caching nodes from the performance metric, we

obtain a solution that depends on the SBS spatial density. This allows us to

optimise the decision variables valid over all possible realisations of caching

nodes.
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6. We show that our solution of content caching probabilities and SBS density

is spatially adaptive to the user density, highlighting the need to look for

locally optimised solutions to improve the SCDP performance.

The remainder of this chapter is organised as follows. Section 3.2 presents

the specific design choices to encompass the proposed SCDP maximisation. The

chosen performance metric and its derivation are provided in Section 3.3. Then

Section 3.4 gives details of the proposed solution to the problem. Numerical results

are provided in Section 3.5. Finally, we conclude the chapter in Section 3.6.

3.2 Network Model and Design

A downlink ultra-dense small-cell wireless network1 with short-range low-power

cache-enabled SBS nodes is the subject of our investigation, which comprises of

equipments, commonly referred to as fog access points2 SBSs or simply caching

nodes. The locations of SBSs are modeled as the atoms of a homogeneous PPP ΦS

with intensity function λ̄S. The SBS intensity function is considered to be upper-

bounded by λ̄S, such that the decision variable can be modeled by the network to

chase its optimal value by idling some of its nodes. Each edge node is equipped

with a local cache and is capable of simultaneously performing up to M distinct

content transmissions to UEs, when a hit-cache is experienced.

Those requests that experience a hit-cache with the SBS-tier within the CSA,

can directly be processed by the network edge. A more rigorous definition of

geometric properties of the CSA will be given in Section 3.2.1. In case a request

cannot be met within the CSA, it can be either forwarded to the MBS-tier to be

processed by means of backhaul resources, or fetched by closer SBSs across the

network. These cases are however at the cost of extra power consumption and

latency. The presented work focuses on the hit-cached cases, and it is assumed

1In HetNets, MBSs are present to provide coverage with the aid of SBSs, forming a multi-
tier structure. In this chapter, the inclusion of MBS is omitted in our problem formulation for
simplicity but some discussion will be provided in Section 3.3.4.2 to extend our work to HetNets
with MBSs.

2By the term ‘fog’, we indicate a network architecture that adopts near-user edge devices to
carry out a significant amount of storage and communication.
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that the interference pattern from across the network is to be tailored to respond

to the local UE density.

Non coherent cooperative transmission of the same content from multiple caching

nodes is adopted to exploit the cooperation gain. With this approach, the message

is delivered without prior phase-alignment and little signalling between the cooper-

ating edge nodes is required to work out the amount of bandwidth to perform the

transmission [50]. A multicasting scheme for content dissemination is employed

to perform multipoint-to-multipoint transmissions over the usable bandwidth. A

FDMA scheme is adopted by each caching node to equally split the bandwidth

into the number of distinct content requests (which is referred to as the user-load)

for delivery. The user-load at an arbitrary node depends on (i) the probabilistic

caching model, (ii) content popularity, (iii) UE density and (iv) SBS caching node

density. This will be studied in the subsequent sections.

In this work, the network nodes’ cache is considered to be updated over non

traffic peaks of time and a backhaul which connects the network nodes is not

admitted at this stage. The introduction of a wired link to directly link the network

nodes to the cloud permits to replace obsolete instances of a node’s cache across

the entire network with low-latency. This allows to keep the adopted strategy

optimal over time. However, the focus of this work lies on the study of a punctual

moment of time. The presence of a backhaul link serving the network nodes also

allows to resolve missed-cache cases by fetching the request from higher tiers of the

network at the cost of extra energy and burden at the backhaul. Consequently, to

target these expenses is crucial when designing the whole model as they represent a

major factor which influences the derived optimal strategy. Future research efforts

are needed in order to generate a adequate model which can precisely capture the

expenses from the introduction of the backhaul.

The edge nodes are to be switched between an active or idle state to achieve

certain SBS density, which is optimised according to the content popularity and

the UE density, to balance between cooperation and diversity gain, energy con-

sumption as well as interference. Hence, it is allowed the network to adjust the

local densities of caching nodes to best accommodate the user requests. The op-

timisation operates to determine the optimal spatial displacement of active edge

nodes from an initial homogeneous density of SBS such that λS
n ≤ λ̄S. As a re-
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sult of the optimisation, it is permitted the optimal set of {λS
n} to generate a

non-homogeneous PPP over the considered network space. At the same time,

probabilistic proactive caching is performed at the active SBSs for further im-

proving the SCDP. To derive an achievable lower-bound of the target SCDP, we

condition our performance metric on the existence of at least one edge nodes that

have cached the required content. Further details will be provided in Section 3.3.3.

3.2.1 UE Non-Homogeneity

To best cater for the non-homogeneous nature of UE distribution, we partition

the entire space of network coverage into square-shaped bins. The center of each

bin is regarded as a representative user for that bin, with its coordinates (xn, yn).

We refer to this location as a user candidate location (UCL), a reference for all

the users within the same bin in terms of user density dependent parameters such

as SINR and user-load at the set of cooperating edge nodes. It is noted that

although hexagonal shapes are usually adopted for tessellation to mimic circular

coverage of radio signals, the use of square-shaped bins is chosen for simplicity.

In addition, we define the CSA for a UCL as the squared space of side 2d over

which a content is requested. It is assumed that the nodes within the CSA are

the possible content providers for the reference UCL whereas the nodes outside,

if active, cause interference. The CSA also serves to provide the boundary for

cooperative transmission.3

For a given UCL, (xn, yn), the average number of UEs within its CSA, Dn, is

given by

Un =

∫ ∫
(x,y)∈Dn

λU(x, y) dxdy. (3.1)

Therefore, given the area of each bin, denoted by, Area(Dn) = 4d2, we can use

λU
n =

(
Un

Area(Dn)

)
=
Un
4d2

(3.2)

3In [52], an analogous network binning was used to emulate a non-homogeneous point process
of UEs. Under this approach, local probabilistic caching model, caching node density, content
popularity and all the statistical parameters involved are the same for all the UEs within the
CSA of a reference user.
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Figure 3.1: The bin-based discretisation of the space, where the sets φn,f , φ̄n,−f and
φ̃i will be defined in Section 3.2.2.

to approximate any arbitrary 2D continuous UE density function at the n-th net-

work bin.

In doing so, the discretisation of the entire coverage area into bins can be easily

applied to compute any global performance metric of the entire network. Based on

the discretised network space, the PPPs for the SBSs ΦS and UEs ΦU are modeled

as a homogeneous PPP within each network bin.

The grid-based discretisation of the coverage space with a representative n-

th UCL and CSA is shown in Fig. 3.1. Focusing on the highlighted UCL, we

see that the edge nodes belonging to other squares are not included in the content

transmission but considered as the source of interference, if active. This shows that

it may be desirable to move some edge nodes to an idle state to reduce interference.

In this work, a CSA corresponds to a single network bin for simplicity sake.

A numerical validation of the proposed binned network approach has been

carried out in Section 3.3, as the employed performance metric is analytically

introduced and compared with its numerical obtained averaged value.
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3.2.2 Content Delivery

When a content request is initiated from a UCL, the request is extended over

its CSA. Those edge nodes inside the CSA that will experience a hit-cache are

in charge of processing the request. Note that the number of cooperating nodes

is a random variable whose probability mass function (pmf) follows a Poisson

distribution. To keep the complexity low at the SBSs, non-coherent JT will be

considered from the edge nodes. This cooperation technique has been widely

used in HetNets due to its low complexity and limited communication overhead

[50]. We therefore consider channel state information at the receiver (CSIR) to be

available for coherent detection of cooperative content delivery while the channel

state information at the transmitter (CSIT) is not exploited. Since we are dealing

with a random number of cooperating edge nodes, managing the estimation of

the channel knowledge for a random number of cooperative transmitters would be

highly complex and less practical. Our results can be interpreted as a performance

lower-bound for coherent cooperative transmission. Assuming a user at the UCL

(xn, yn) asking for content f and having unit-power transmissions at the edge

nodes, the received signal power for that user can be expressed as

Pn,f =

∣∣∣∣∣∣
∑
k∈φn,f

hn,kr
−α

2
n,k

∣∣∣∣∣∣
2

+
∑

k̄∈φ̄n,−f

∣∣hn,k̄∣∣2 r−αn,k̄ +
N∑
i 6=n

ωi
∑
k̃∈φ̃i

∣∣hi,k̃∣∣2 r−αi,k̃ + W, (3.3)

where φn,f denotes the set of cooperating edge nodes serving the requested con-

tent, φ̄n,−f denotes the set of interfering edge nodes transmitting different contents

within the same CSA, and φ̃n , φn,f ∪ φ̄n,−f . Thus, φ̃i for i 6= n corresponds to

the set of all the interfering edge nodes outside the CSA of interest. Note that

the interference originated from a given edge node outside the CSA is present only

if that edge node is active and there is at least one UE within its CSA. As a

consequence, we scale the interference power from the i-th CSA by the probability

ωi = 1 − e−λU
i 4d2

, whose derivation is a direct application of the void probability

applied to the users PPP for the i-th CSA. This allows to model the interfer-

ence pattern to adapt to the spatially dependent user density. For simplicity, all

the edge nodes that have not cached the required content within the CSA are
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considered as interferers.

Although the network is initially given as a homogeneous PPP of SBSs with

intensity function λ̄S, we aim to adapt the regional intensity function for each

UCL, i.e., to have λS
n for UCL (xn, yn), so that the network performance can be

maximised. For the PPPs φn,f , φ̄n,−f , φ̃i(i 6= n), we have the following intensity

measures:4

Λ(φn,f ) = E
[∣∣φ (λS

npn,f4d
2
)∣∣] ≡ E [|φ (µn,f )|] , (3.4a)

Λ(φ̄n,−f ) = E
[∣∣φ̄ (λS

n(1− pn,f )4d2
)∣∣] ≡ E

[∣∣φ̄ (µ̄n,f )
∣∣] , (3.4b)

Λ(φ̃i) = E
[∣∣∣φ̃ (λS

i 4d
2
)∣∣∣] ≡ E

[∣∣∣φ̃ (µ̃i)
∣∣∣] , for i 6= n. (3.4c)

From (3.4c), note that the interference from across the network is not influenced

by its local probabilistic content caching model but only by the cardinality of the

sets φ̃i. This design choice has been taken to simplify the subsequent derivation

of the SCDP. More specifically, outer CSA nodes can potentially fetch a content

request in case a missed-cache occurs. While the transmitting scheme is synchro-

nised within the same CSA to avoid concurrent transmissions of hit and missed

caches, it is not between CSAs. This results in the interfering pattern from the

outer CSAs, which is not driven by the regional probabilistic caching policy. From

(3.3), we can write the SINR for the reference user at UCL n as

γn,f =

∣∣∣∑k∈φn,f hn,kr
−α

2
n,k

∣∣∣2∑
k̄∈φ̄n,−f

∣∣hn,k̄∣∣2 r−αn,k̄ +
N∑
i 6=n

ωi
∑
k̃∈φ̃i

∣∣hi,k̃∣∣2 r−αi,k̃︸ ︷︷ ︸
Interference In,f

+W

. (3.5)

A successful content delivery is deemed to occur if a target rate for transmission

ρ is achieved. That is,

En,f ,
{

B

Ξn,f

log2(1 + γn,f ) ≥ ρ

}
=
{
γn,f ≥ 2

ρΞn,f
B − 1

}
, (3.6)

4The expected values are made on stochastic point processes. Therefore, the mean is made
over the random location of the atoms within the area over which the process is defined and over
the number of atoms of the process.
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in which B denotes the whole available bandwidth, and Ξn,f indicates the perceived

load at the set of cooperating edge nodes.

It is possible that the achievable rate far exceeds the target rate. In this case,

the interference caused by those edge nodes can be reduced by turning off some

nodes while the target rate is still met. The benefit is twofold as both interference

and power consumption can be reduced. This is one of the intuitions of this work

that attempts to adapt the spatial intensity of the SBSs by selectively idling some

edge nodes.

3.3 Performance Metric

Considering the event (3.6), we can express the SCDP conditioned on a large

number of network parameters as

Pr(En,f ) =

Pr


∣∣∣∑k∈φn,f hn,kr

−α
2

n,k

∣∣∣2∑
k̄∈φ̄n,−f |hn,k̄|

2r−α
n,k̄

+
∑N

i 6=n ωi
∑

k̃∈φ̃i |hn,k̃|
2r−α
n,k̃

+W
≥ 2

ρΞn,f
B − 1

∣∣∣∣∣∣∣
{rn,k}∀k, {hn,k}∀k,

φn,f , φ̄n,−f ,

{φ̃i}i 6=n,Ξn,f

 .

(3.7)

To better model the SCDP metric, we first focus on the desired signal power term

assuming Kn,f , |φn,f | cooperating edge nodes. Thus, we have

Z ,

∣∣∣∣∣∣
Kn,f∑
k=1

hn,kr
−α

2
n,k

∣∣∣∣∣∣
2

= |X + iY |2 = X2 + Y 2, (3.8)

where X and Y each follow N (0, σ2
n,f ≡ 1

2

∑Kn,f
k=1 r

−α
n,k). It can be observed that

Z ∼ σ2
n,fX 2

2 ∼ 2σ2
n,f exp(1), (3.9)

where X 2
2 refers to the Chi-squared distribution with 2 degrees of freedom, and

exp(1) is the standard exponential distribution. As such, the probability of the
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event En,f to occur is

Pr(En,f ) = Pr

Z̄ ≥ 1

σ2
n,f

(In,f +W )

2
(2

ρΞn,f
B − 1)︸ ︷︷ ︸

ρ̃

∣∣∣∣∣∣∣∣
In,f ,

σ2
n,f ,

Ξn,f


= E

∫ ∞
ρ̃

σ2
n,f

e−x dx

∣∣∣∣∣∣ ρ̃, σ2
n,f

 = E
[
e
− ρ̃

σ2
n,f

∣∣∣∣ ρ̃, σ2
n,f

]
,

(3.10)

where Z̄ corresponds to the standard exponentially distributed random variable.

The SCDP of a single UCL can be found by averaging the expression (3.10) over

the indicated conditioning variables and combining the results for all contents

f ∈ F . Unfortunately, no closed-form expression can be obtained for the averaged

result. For this reason, we resort to Jensen’s inequality5 that leads to

SCDPn,f = EIn,f ,σ2
n,f ,Ξn,f

[
exp

(
−(2

ρΞn,f
B − 1)

2

(In,f +W )

σ2
n,f

)]

≥ exp

(
−EIn,f ,σ2

n,f ,Ξn,f

[
(2

ρΞn,f
B − 1)

2

(In,f +W )

σ2
n,f

])
. (3.11)

The validity of Jensen’s inequality for SCDPn,f follows from the convexity of the

exponential function with negative argument. As the random ratio{
(2

ρΞn,f
B − 1)

2

(In,f +W )

σ2
n,f

}
> 0,

Jensen’s inequality holds.

The accuracy of the binned-network approximation from Section 3.2.1 can now

be tested. Monte-carlo numerical results are obtained by averaging the target met-

ric from (3.11) for all the randomly placed users across the central bin in a 7×7 bins

network, while the same quantity is computed for the representative user placed

5Jensen’s inequality is a well known result in the fields of mathematics and probability theory
such that, given a random variable X and a convex function f , then f(E[X]) ≤ E[f(X)]
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Figure 3.2: The average SCDP from a UCL and the random free-of-bin results for
various wordbook contents.

at the center of the bin. In Fig. 3.2, the results are obtained for a representative

{p̂f} and {pf} retrieved from a zipf distribution with skewness factor υ = 0.7,

with F = 8, M = 3, an available bandwidth of B = 40 [MHz] and with two homo-

geneous PPPs for UE and SBS of density respectively λU
n ≈ 0.0153, ∀n ∈ N and

λS
n ≈ 0.0893, ∀n ∈ N . The considered values for user and caching node density

adopted in Fig. 3.2 are chosen to be consistent with the guidelines for UDNs indi-

cated in [7]. More precisely, higher values for the elements of the set {λS
n} improve

the cooperation and diversity gain across the network but also contribute to gener-

ate more interference at the network’s edge. Differently, the values of the element

in the set {λU
n} govern the content request generation, controlling the competition

among distinct content requests. The selected simulation parameters are selected

to be consistent with the intensities employed during the future optimisation. The

choice of a reduced available bandwidth for the simulation in Fig. 3.2 has been

made to best represent the illustrated SCDP values. The analysis is conducted

on single contents from the wordbook. As a consequence of that, the choice over

the employed bandwidth works to best represent the quantities, allowing the most

popular content, i.e. f = 1, to be delivered with an high probability of success and

the least popular content, i.e. f = 8, to experience lower probability of success
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over the considered spectrum of values for ρ. In this way, the binned network

space approach can be validated for a wider range of SCDP values to resemble

different qualities of content transmissions. The obtained numerical results indi-

cate the binned network approach is suitable to represent the average randomly

displaced users’ SCDP as the same metric evaluated at the UCL. The notion of

representative user is therefore validated.

Before we evaluate the lower bound of SCDP for the f -th content given by

Jensen’s inequality in (3.11), we look at several important parameters of our model.

3.3.1 The Scaled Probabilistic Content Caching Model

When a given content f is being considered, it is assumed that a hit-cache has

occurred. The knowledge of the realisation of this event conditions the content

caching probabilities at the set of cooperating edge nodes. Given that the generic

f request has been cached, and the constraint over the cache size
∑F

f=1 pf ≤ M ,

the set of content caching probabilities becomes

pf ′|f =


pf ′ ×

( ∑F
f̄=1 pf̄−η−1∑F
f̄=1 pf̄−η−pf

)
if f ′ 6= f,

1 if f ′ = f,

(3.12)

where η denotes the number of contents with caching probability of one. The scal-

ing factor, introduced in (3.12), is important to correct the caching probabilities

when content f is considered cached and the whole set of content caching prob-

abilities changes accordingly. This adopted scaled version of the set of content

caching probabilities is necessary to correctly evaluate the user-load and hence

the effective bandwidth used by the set of cooperating nodes. Note that we have

omitted the location index n as the discussion is the same regardless of the UCL.

In the sequel, unless otherwise stated, the reference UCL 0 will be considered. In

Fig. 3.3, the validity of (3.12) is proven starting from an initial representative set

of content caching probabilities {pf̃} with skewness factor ν = 0.7. The original

set of caching probabilities is reported against the results from (3.12). The ob-

tained monte-carlo results follow by producing random instances of the cache from

the original set of caching probabilities {pf̃}. When f is found to be cached, the
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instance of the cache is stored and the resulting distribution of the caching prob-

abilities is obtained for 5 × 104 executions. The conditioned set of probabilities

deriving from (3.12) is shown to precisely follow the monte-carlo results. Also,

it can be seen that when a specific content is considered to be locally stored, its

content caching probability stands as one, as expected.

Figure 3.3: Original and scaled probabilities for the most and least popular contents
with F = 10 and M = 3.

3.3.2 User-Load with K Cooperating Caching Nodes

In our model, it is assumed that the set of cooperating nodes has access to operate

over the whole available bandwidth B when delivering content f . However, the

effective bandwidth usage for the single content transmission depends on the user-

load experienced by the whole set of edge nodes that cooperate to perform the

transmission. If we now define the user-load for a generic active edge node k as

ξk ∈ {1, 2, . . . ,M} which represents the number of distinct simultaneous contents

to be delivered by that node, then the amount of bandwidth that can be used

to deliver a single content for that node would be given by B/ξk. If there are
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multiple edge nodes cooperatively delivering the same content, according to our

JT approach, all the cooperative edge nodes will need to occupy a common portion

of bandwidth to deliver the content to the UE. A centralized approach is considered

and we assume that resource allocation is suitably done to ensure that the same

portion of bandwidth is used by all the cooperating edge nodes for delivering the

same content. Specifically, let us say that C is the set of some cooperating edge

nodes of interest. Then for k ∈ C, those cooperating nodes should use

B

maxk∈C ξk
≡ B

Ξ
bandwidth (3.13)

to deliver the same requested content. Note that the subscripts n and f have been

dropped here for conciseness. Clearly, Ξ is a random variable and we can work out

Pr(Ξ = m) = Pr(Ξ ≤ m)− Pr(Ξ ≤ m− 1)

= Fξk(m)K − Fξk(m− 1)K , (3.14)

where Fξk(m) stands for the cdf of the user-load for a single generic edge node ξk.

Also, it is known that for discrete random variables, we can write

Fξk(M) =
M∑
m=1

Pr(ξk = m). (3.15)

As such, if we can obtain the pmf of ξk, then we will be able to derive the pmf of

the user-load for a set of collaborating edge nodes Ξ. As our discussion is always

based on the condition that the f -th content is cached, ξk is certainly at least one.

To derive Pr(ξk = m), we first define the sets of indices for hit-cache contents as

ζ, missed-cache contents as ζ̄ and not-cached contents as ζ̃. Considering a generic

ξk = m with m > 1, it means that m− 1 contents from the set F \ f contribute to

the user-load. These contents belong to the set ζ and the total number of possible

index combinations belonging to this set is(
|F \ f |
m− 1

)
=

(
F − 1

m− 1

)
. (3.16)
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Given an instance of ζ, we can write that the total number of possible index

combinations for ζ̄ stands as(
|F \ {f, ζ}|
M −m

)
=

(
F −m
M −m

)
, (3.17)

with the remaining elements F \ {f, ζ, ζ̄} that define the indices in ζ̃. Note that

when computing the pmf of ξk for m = M (i.e., all the contents in the cache

contribute to the user-load), the corresponding set ζ̄ would be empty. Similarly,

when computing the pmf for m = 1 (i.e., no contents in the cache except f

contribute to the user-load), we would consider an empty ζ. According to the set

the content belongs to, for a generic f̃ ∈ F\f , we have, at UCL 0, the probabilities:

hit-cache →
(

1− eλU
0 p̂f̃4d2

)
pf̃ |f

missed-cache → eλ
U
0 p̂f̃4d2

pf̃ |f

not-cache → 1− pf̃ |f

(3.18)

where pf̃ |f is defined in (3.12), and p̂f denotes the global content popularity for con-

tent f which is known a priori and is not location dependent. Clearly,
∑F

f=1 p̂f = 1.

A visual representation of an example with m = 2 is provided in Fig. 3.4. As we

can see, the shaded box is the sure-cached content f . Moreover, the cache line

separates the cached contents from the not-cached contents while the user-load

line is used to distinguish the hit-cached contents from the missed-cached con-

tents. In this example, one content experiences a hit-cache |ζ| = m − 1 = 1, one

experiences a missed-cache |ζ̄| = M −m = 1 while the remaining contents are not

cached |ζ̃| = F −M = 5. The probability of occurrence of each possible index

combination can be found by(
1− eλU

0 p̂i4d
2
)
pi|f︸ ︷︷ ︸

i∈ζ

× eλU
0 p̂j4d

2

pj|f︸ ︷︷ ︸
j∈ζ̄

×
∏
k∈ζ̃

(1− pk|f )︸ ︷︷ ︸
k∈ζ̃

. (3.19)
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Cache

User-load

Figure 3.4: A visual representation of the sets ζ, ζ̄, ζ̃ for a wordbook and cache size of
F = 8 and M = 3 and with user-load ξk = 2.

Summing up all the contribution of the combinations will give Pr(ξk = 2) for the

example in Fig. 3.4. As a result, we can obtain the generic pmf of ξk as

Pr(ξk = m) =
∑
c(m)

∏
i∈ζc

(
1− eλU

0 p̂i4d
2
)
pi|f

∑
g(c(m))

∏
j∈ζ̄g

eλ
U
0 p̂j4d

2

pj|f
∏
k∈ζ̃g

(1 − pk|f ),

(3.20)

where c(m) specifies a combination of hit-cached indices such that ξk = m, g(c(m))

indicates a combination of indices as a function of c(m) and the sets ζc, ζ̄g and ζ̃g

are defined as before except they are now specific to a given combination, either

c(m) for ζ or g(c(m)) for ζ̄g and ζ̃g. By replacing (3.20) into (3.15), the pmf of the

user-load at the set of cooperating edge nodes can be found from (3.14).

Note that because of the way we define pf ′ and pf ′|f in the probabilistic caching

model, the probability (3.20) may have a scaling issue, but this can be easily fixed

by

Pr(ξk = m)← Pr(ξk = m)∑M
i=1 Pr(ξk = i)

. (3.21)

In Fig. 3.5, the theoretic pmf of Pr(ξk = m) in (3.21) is reported against the

monte-carlo numerical validation. Our analytical derivation is shown to match

with the empirical averaged results for a variety of values of λU
0 , showing the

accuracy of the theoretic approach for different user densities.
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Figure 3.5: Visual feedback on the Pr(ξk = m) distribution for the most popular con-
tent, with F = 20, M = 5, and various values of λU

0 .

3.3.3 A Zero Truncated Poisson Distribution

As described, the number of edge nodes follows a Poisson distribution across the

network. As a consequence, there exists a probability of not having any caching

nodes at the network edge to perform the required transmission, and in this case

the content will have to be fetched from the nearest MBS over the backhaul link.

For a more complete analysis, this would mean that the latency as well as the

power consumption for the MBS will need to be accounted for. Our objective

is however on the benefits of using the cache-enabled edge nodes in terms of the

SCDP. Thus, we focus on the lower bound of SCDP in (3.11) where the probability

is conditioned on the fact that there is at least one edge nodes (i.e., K ≥ 1) able

to provide the required content, successfully or not.

Because the case K = 0 is not valid in our analysis, we adopt the zero truncated

Poisson distribution when accounting for the number of cooperating caching nodes,

thus removing the case K = 0. Hence, given µ as the mean of the general Poisson
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distribution f(k;µ), the zero truncated pmf, g(k;µ), can be expressed as

g(k;µ) = Pr(K = k|K > 0) =
f(k;µ)

1− f(0, µ)
=

µk

k!(eµ − 1)
, (3.22)

where µn,f = pn,fλ
S
n4d2 if the n-th CSA for content f is considered. The zero

truncated pmf will be useful when retrieving the unconditioned lower bound of

the SCDP in (3.11).

3.3.4 The Objective Function

In order to come up with a global performance metric that can capture all the

essential parameters of the caching network, we define G(λS,p) as the metric,

based on the lower bound (3.11) and averaged over the random variables, given by

G(λS,p) =

N∑
n=1

λU
n

F∑
f=1

p̂f exp


−E
In,f , {rn,k}k∈φn,f ,

Kn,f ,Ξn,f

1

2

(
2
ρΞn,f
B − 1

) In,f +W∑Kn,f
k=1 r−αn,k

2



, (3.23)

where λS , {λS
1, λ

S
2, . . . , λ

S
N} and p , {pn,f}∀n,f are the network parameters to be

optimised for maximising the function G. Note that the variables {In,f}, {Kn,f},
{Ξn,f}, depend on the choices of λS and p. The index n in (3.23) indicates over

which UCL the SCDP is computed.

Theorem 7. The global performance metric, G(λS,p) in (3.23), permits the ex-

pression

G
(
λS,p

)
=

N∑
n=1

λUn

F∑
f=1

p̂f exp
(
−ϕD

n,fϕ
I
n,f

)
, (3.24)
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where

ϕD
n,f

(
λSn,pn

)
=

1

eµn,f − 1

∫ ∞
0

M∑
m=1

(2
ρm
B −1)

(
eµn,fFξn,f (m)Jn(t) − eµn,fFξn,f (m−1)Jn(t)

)
dt,

(3.25)

and

ϕI
n,f

(
λS, pn,f

)
= µ̄n,f J̄(n) +

N∑
i 6=n

ωiµ̃iJ̃(i) +W, (3.26)

in which the functions µn,f , µ̄n,f and µ̃i have been defined earlier in (3.4), pn ,

(pn,1, . . . , pn,F ), Fξn,f (m) is given by

∂Fξn,f̃ (m)

∂pn,f
= (3.27)

m∑
m̄=1

∂

∂pn,f

∑
c(m̄)

∏
i∈ζc

(
1− eλUn p̂i4d2

)
pn,i|f̃

∑
g(c(m))

∏
j∈ζ̄g

eλ
U
n p̂j4d

2

pn,j|f̃
∏
k∈ζ̃g

(1− pn,k|f̃ )


(3.28)

with the indices n and f re-inserted to the equation, and

Jn(t) ,
1

4d2

(∫∫
Dn\B0

e
− t

(x2+y2)α/2 dxdy + πe−t
)
, (3.29)

where B0 is the circle of unit radius centered at the n-th UCL.

Proof. See Appendix A.1.

3.3.4.1 Numerical Validations for G(λS,p)

Having analytically defined G(λS,p) in Theorem 7, numerical evaluations can now

be undertaken with the intention to both validate the obtained metric in (3.24)

and the gap with the target SCDP from Jensen’s inequality in (3.11). To obtain

the following analysis, homogeneous intensity functions for both UEs and SBSs

as λU
n ≈ 0.0153, ∀n ∈ N and λS

n ≈ 0.0893, ∀n ∈ N are considered over a

7 × 7 binned network, for a wordbook and cache size of respectively F = 8 and

M = 3, a representative content popularity retrieved as a zipf distribution of
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Figure 3.6: Match between empirical measure of G from (3.23) and derived analytical
result from Theorem 7.

skewness factor υ = 0.7 and UC probabilistic caching policy. Results from Fig.

3.6 show the exact match of our analytical derivation from Theorem 7 and the

monte-carlo outcomes obtained from (3.23). Furthermore, in Fig. 3.7, the gap

between the target SCDP and the proposed metric (3.24) is inspected against

the decision variables λS
0 and p0,1 for the representative central network bin. The

reported numerical values highlight that the Jensen’s gap turns out to be higher

when either the SBS density is low or the caching probability for the content under

investigation is low. Conversely, the gap is greatly reduced when the content is

more accessible at the network edge, namely when more copies of the content

are disseminated and when high density of caching node is deployed. It can be

concluded that when UDN are accounted, the two measures are tighter as the

contents are more available at the edge, thus making the application of Jensen’s

inequality suitable for the purpose of this study.
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Figure 3.7: Resulting Jensen’s gap between the target SCDP and the proposed lower-
bound.

3.3.4.2 Extension with MBS Sharing the Same Frequency Bands

To consider the presence of MBSs, it is necessary to add an independent interfer-

ing term ϕM to ϕI
n,f in the argument of the exponential function in (3.24). The

derivation of ϕM can be easily done following the steps in Appendix A.1 as

ϕM = ErM
b ,h

M
b ,φ

M
b

[
NM∑
b=1

∣∣hM
b

∣∣2 (rM
b )−α

]
= ErM,hM,NM

[
NM

∣∣hM
∣∣2 (rM)−α

]
=
µM

D

(∫∫
D\B0

(x2 + y2)−α/2 dxdy + π

)
, (3.30)

where µM, rM and hM are, respectively, the average number of MBSs, the random

link-distance and the channel fading coefficient. Note that the indices for location

(i.e., n) are no longer needed because the same density for the MBSs is considered

over the entire coverage area.
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3.4 The Proposed Approach

In this section, the joint maximisation is defined, and the employed techniques

are illustrated. The difficulties of the chosen problem are also discussed with final

observations in terms of performance trade-offs retrievable from this approach

highlighted in Section 3.4.3.

3.4.1 The Problem and Subproblems

Our objective is to maximise the global metric (3.23) (and hence (3.24)) by adapt-

ing the SBS density and the content caching probabilities for all the UCLs. That

is,

(P0) : maximise
λS,p

G(λS,p) (3.31a)

subject to
F∑
f=1

pn,f ≤M (3.31b)

0 ≤ pn,f ≤ 1 (3.31c)

0 ≤ λS
n ≤ λ̄S, (3.31d)

where λ̄S denotes the upper limit of the caching node density. Note that while the

initial upper-bound on the SBS intensity function is homogeneously considered,

it can potentially be adapted as a non-homogeneous upper-bound as λ̄S
n, with

no changes to be made in our method. This allows operators to better mimic

the existing initial SBS distribution and eventually investigate the benefit from

introducing edge nodes.

The problem (P0) needs some interpretation. We observe that the linear con-

straints for (P0) are jointly independent. The problem can be decoupled as a com-

bination of subproblems which can be solved via an iterative algorithm. Therefore,

we decompose (P0) in (4.9) into N + 1 subproblems, where N is the total number

of distinct network bins. In particular, (P0) can be solved by repeatedly finding

the solutions to N problems for the local optimum content caching probability

(one for each n), and the solution for the SBS density optimisation problem, in an

71



Chapter 3. Edge Node Density and Content Caching Strategy for Arbitrary
Spatial User Density

iterative fashion. We refer to the two subproblems as (P1) and (P2), given by

(P1) : maximise
pn

Gn(λS,p) ≡ λU
n

F∑
f=1

p̂f exp
(
−ϕD

n,fϕ
I
n,f

)
(3.32a)

subject to
F∑
f=1

pn,f ≤M (3.32b)

0 ≤ pn,f ≤ 1, (3.32c)

and

(P2) : maximise
λS

G(λS,p) subject to 0 ≤ λS
n ≤ λ̄S. (3.33)

Although Theorem 7 gives an expression to evaluate G(λS,p), a closed-form ex-

pression is not possible, and a steepest ascent gradient based method is used when

searching for the maximisers. Also, note that the constraints for both (P1) and

(P2) are convex sets. Ideally, it would be necessary to prove that the involved

objective functions are concave so that the search of a local maxima would lead

to the global maxima. For both (P1) and (P2) we are dealing with two continuous

optimisation of differentiable functions over a convex set. However, the study of

the concavity of Gn(λS,p) and G(λS,p) is rather arduous. We target a station-

ary point for the problem (P0) by means of a diminishing stepsize gradient-based

maximisation. The obtained results will thus be compared with the numerically

found optimal solutions, to validate the proposed method.

To solve (P0), the two subproblems (P1) and (P2) allow the gradients to be

determined with respect to the decision variables {λS
n} and {pn,f}. We propose to

solve the two subproblems separately and iteratively to provide the joint solution.

In particular, (P1) addresses the probabilistic caching problem while (P2) deals

with the effects of caching node density at a global scale. The pseudocode of the

proposed algorithm is given as Algorithm 1.

3.4.2 Backtracking Line Search based Optimisation

Backtracking optimisation is a gradient-based inexact line search method which is

particularly suitable for the exploration of stationary points and the avoidance of
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Algorithm 1 Alternating optimization for solving (P0)

1: initialize the iteration index t = 1
2: initialize τ = some large number
3: initialize p

(t)
n from a uniform content caching probability

4: initialize λS,(t) = λ̄S

5: initialize δinit
p , δinit

λ , β, εp, ελ, κ
6: while τ > some small threshold do
7: for n = 1 to N do
8: δp ← δinit

p

9: while δp ≥ εp do
10: compute gp = ∇Gn

‖∇Gn‖

11: if Gn(p
(t)
n + δpgp) ≥ Gn(p

(t)
n ) + δpκgTp∇Gn then

12: p
(t+1)
n ← p

(t)
n + δpgp

13: else
14: δp ← βδp
15: end if
16: end while
17: end for
18: δλ ← δinit

λ

19: while δλ ≥ ελ do
20: compute gλ = ∇G

‖∇G‖

21: if G(λ(t) + δλgλ) ≥ G(λ(t)) + δλκgTλ∇G then
22: λS,(t+1) ← λS,(t) + δλgλ
23: else
24: δλ ← βδλ
25: end if
26: end while
27: update τ = max{‖λS,(t+1) − λS,(t)‖, ‖p(t+1)

n − p(t)
n ‖}

28: t = t+ 1
29: end while
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saddle points6 of an objective function. This line search approach moves along the

dimensions computed by the gradients of the objective function, with a tailored

step-size found by starting from an initial large value, which is then iteratively

decreased until a satisfying condition is met, i.e. Armijo-Goldstein condition. This

is the general idea behind inexact line search algorithms, which represent a cheap

option in terms of computational burden and avoid divergence of the solution. On

the other hand, exact line search algorithms are quite cumbersome in terms of

calculations, as they aim to find a local optimum, or an approximation of it, of the

function along the directions. Typically, this class of algorithms are used to have

a faster convergence in terms of number of iterations needed to find the solution.

However, the search of the exact step size represents a significant burden which

greatly increases the complexity of this class of algorithms. As a consequence of

that, inexact line search methods are more indicated to perform the optimisation

in this work. The proposed backtracking line search is among the simplest line

search methods to implement, with strong guaranteed convergence properties to

the solution.

As seen in Algorithm 1, the backtracking line search with Armijo-Goldstein

condition [64,65] is employed when solving (P1) or (P2). In the search, the objective

at each iteration is to find a step size δ which satisfies the following Armijo-

Goldstein condition at the t-th iteration

f(x(t) + δg) ≥ f(x(t)) + δ × κ× gT∇f(x
(t)
k )︸ ︷︷ ︸

local slope along direction g

, (3.34)

where the superscript (t) is the iteration index, g is a unit vector computed in

the direction where a local increase occurs and κ = 10−4 is the control parameter

which ensures the increment to be at least a fraction κ of the Taylor approximation

of f at x. In addition, f(·) and ∇f(·) correspond to the objective function and its

gradient, respectively.

The initial step-sizes for the probability and density maximisation problems

are chosen to be δinit
p = 0.1 and δinit

λ = λ̄S

4
, respectively. Note that λ̄S denotes

6A saddle is a point on the surface of a function where the gradients are zero but which is
not a local extremum.
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the maximum SBS density of the network. The search terminates if a sufficiently

small step-size is reached. In our simulations, we set the stopping thresholds to

be εp =
δinit
p

20
and ελ =

δinit
λ

20
. Also, at the t-th iteration, if the Armijo-Goldstein

condition is not met, the step-size δ will be reduced by a factor β = 0.8; otherwise,

the optimising variables will be updated by x(t+1) = x(t) + δg.

To carry out the steepest ascent algorithm, we also need the expression for the

gradient ∇f(xk).

For the subproblem (P1), we need to know ∂Gn
∂pn,f

, which after some lengthy

derivations gives the expression (3.39) (see page 69), where

∂µn,f
∂pn,f

= λS
n4d2, (3.35)

∂µ̄n,f
∂pn,f

= −λS
n4d2, (3.36)

and
∂Fξ

n,f̃
(m)

∂pn,f
is given by (3.27) in which pn,i|f̃ has been defined in (3.12) with the

index n re-insterted in the expression.

Similarly, the gradient ∇f(xk) for the subproblem (P2) over the n-th UCL, i.e.,
∂G
∂λS

n
, writes as (3.40) (see page 69), where

∂µn,f
∂λS

n

= pn,f4d
2, (3.37)

∂µ̄n,f
∂λS

n

= (1− pn,f )4d2. (3.38)

3.4.3 Performance Trade-off

There is a performance trade-off achievable by controlling the local intensity of

edge nodes density. If the number of edge caching nodes storing multiple copies of

the same content is increased, then the cooperation gain is increased to enhance

the SCDP. However, having more cooperative edge nodes increases the experienced

user-load, resulting in less bandwidth which can be exploited for the content trans-

mission. At the same time, when SBS density is too high, it might cause too much

interference outside the CSA. The optimisation aims to strike a good balance by

finding the edge caching node density to maximise the overall SCDP.
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Variable Value Description

λS(x, y) ≈ 0.0893 [unit/m2] Initial caching node density

λ̄S ≈ 0.0893 [unit/m2] Upper caching node density limit

#UE 300 Total number of users

- 140× 140 [m2] Total network space

d 10 [m] Half side length of each CSA

W −174 [dBm] Thermal noise power

F 8 Wordbook size

M 3 Cache size

υ 0.7 Skewness factor content popularity

α 3 Path-loss coefficient

B 100 [MHz] Bandwidth

ρ {2, . . . , 30} [Mbps] Target bit-rate

P S 1 Transmitting power at the edge node

Table 3.2: The network parameters.

3.5 Simulation Results

In this section, the simulation results to evaluate the performance of the proposed

algorithm that jointly optimises the spatial cache node density and the content

caching probability are reported. Table 3.2 provides the values of the network

parameters used in the simulations, if not stated otherwise.

The following baselines are also considered and compared with the proposed

algorithm:

1. MPC caching policy with λS ≈ 0.0893. This can be used together with any

SBS density.

2. UC caching policy with λS ≈ 0.0893. This can also be used with any SBS

density.

3. Content caching optimisation in [48] with fixed caching node density of λS ≈
0.0893.

In Fig. 3.8, an example of the employed arbitrary user density over a 1D

projection of the 2D network space is shown, with minn∈N λ
U
n ≈ 0.0037 and

maxn∈N λ
U
n ≈ 0.0350. User density is considered zero outside the 140 × 140 [m2]
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Figure 3.8: A user intensity function λU
n for the generating PPP.

network space. When zero UE density is experienced at some location, the cor-

responding ωi coefficient in (3.26) would be zero and no contribution to the in-

terference is given. Note that the bin model is used only for our optimisation to

compute the edge node density and content caching probabilities but the SCDP

results in the figures were obtained using Monte-Carlo simulations without the

bin model restriction. Similarly, the following results will consider the case of no

cooperating nodes, i.e., K = 0, avoided during the optimisation of (P0), as a zero

contribution to the reported SCDP.

3.5.1 SCDP vs User Target Bit Rate

Fig. 3.9 provides the SCDP results for the proposed algorithm and baselines against

the network work-load (i.e., spectral efficiency usage) ρ/B for the 7 × 7 network.

Results show that the proposed method achieves the best SCDP compared to other

benchmarks although the SCDP of the proposed method gradually decreases and

converges to that of JT-MPC for high spectral efficiency usage. The proposed

method’s superior performance is particularly obvious when the spectral efficiency

usage is on the low side, which corresponds to the case with higher network densifi-
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Figure 3.9: The SCDP results.

Figure 3.10: The probability hit-cache results.

cation. Also, it is expected that at high spectrum efficiency usage, JT-MPC tends

to be optimal so it makes sense to see that the proposed method converges to JT-

MPC. The hit-cache probability results in Fig. 3.10 show the different approaches

being taken by the various methods. As we can see, for JT-MPC, its hit-cache

probability and SCDP are similar, which suggests that in this scheme, whenever

there is a hit-cache, it will likely be successfully delivered. On the contrary, for
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Figure 3.11: The probabilistic content caching policy by the proposed model for vari-
ous ρ/B. The x-axis shows the index of the UCL while the y-axis corre-
sponds to the content index.

JT-UC, it has a hit-cache probability of one, but not all the contents will be suc-

cessfully delivered. Therefore, we can also observe that for the proposed method,

it is able to increase the hit-cache probability while ensuring that almost all con-

tents are delivered successfully and this is the reason why the proposed method

is able to enhance the SCDP. The resulting sets of content caching probabilities

from our proposed method are shown in Fig. 3.11 for some representative cases

of work-load ρ/B and content indices f = [1,M, F ]. When user density is high,

cooperation gain outweighs diversity gain by storing multiple copies of the same

content. A low user density operates to exploit the diversity gain by storing more

distinct contents, as reported in Fig. 7. Also, a higher rate requirement ρ will

amplify the benefit of cooperation gain and prefer a more biased caching strategy
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Figure 3.12: The SBS density {λS
n} by the proposed method.

based on content popularity while a smaller ρ will favour a more uniform caching

strategy to benefit from content diversity. It can be observed in Fig. 3.12 that the

edge node density tends to follow the user density for content delivery. This is

particularly clear at higher ρ. The reason is that at higher ρ the caching strategy

tends to exploit more the cooperation gain, and decrease the edge node density in

areas with low UE density, as shown in Fig. 3.12, to reduce the local number of

cooperating nodes.

3.5.2 Network Energy Consumption

Knowing that idling caching nodes can help reducing interference, it is anticipated

that the proposed algorithm can not only improve SCDP but also achieve energy

saving. It is worth noticing that our objective function (i.e., a lower bound for the

target global SCDP) does not explicitly take into account any measure of energy

consumption. Caching nodes density and probabilistic content caching model also

have a strong effect on the employed bandwidth for content transmission, and the

amount of consumed energy by a network is dependent on the bandwidth over

which the power is spread. To compare all the considered approaches, we provide

the relevant results normalised by that achieved by the proposed method.

Fig. 3.13 shows the total network energy consumption of all the methods nor-

malised by that of the proposed method. As we can see, all the benchmarks except
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Figure 3.13: Average total network power consumption for various work-load values
ρ/B.

JT-UC spend more total power than the proposed method, while it is also impor-

tant to note that the proposed method has the best SCDP out of all the methods.

In addition, although JT-UC spends the least overall power consumption, it has a

much worse SCDP than the proposed method, as has been demonstrated before.

From the results in this figure, we can compare the energy consumption perfor-

mance with and without optimising the SBS density. Recall from the results in

Fig. 3.9 that optimising the SBS density does not seem to provide any additional

benefit for SCDP. We have now identified that the benefit of optimising the SBS

density comes in terms of energy consumption.

3.5.3 Optimality for the Proposed Method

The proposed method finds a stationary point for maximising the lower-bound

of the SCDP. To understand the optimality of the proposed method, Fig. 3.14

provides the results for the SCDP obtained by the proposed method and that

obtained by the function from the optimisation toolbox of MATLAB. Due to the

high computational complexity of GlobalSearch, we are restricted to consider

only a simple 3× 3 edge caching network. It can be noticed that at ρ
B

= [.06, .14]

[Mbps/MHz], the results for the proposed method and GlobalSearch depart only
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Figure 3.14: Comparison of SCDP results for different methods in a 3× 3 network.

very slightly. For the other cases both methods appear to have achieved the

same SCDP performance. Based on these results, it is believed that the proposed

algorithm is effective to obtain the near-optimal solution.

3.6 Conclusions

In this chapter, we investigated the joint optimisation of the SBS caching node den-

sity and the content caching probability for an ultra-dense content caching network

where the user density is non-homogeneous. We considered a simple cooperation

strategy for delivering the contents from the active SBSs and the only interfer-

ence control mechanism is to idle SBSs. The optimisation has been performed

to maximise the lower bound of the SCDP using the steepest ascent algorithm.

Simulation results have illustrated that significant performance improvement in

terms of the SCDP can be obtained by the proposed algorithm over conventional

approaches, and revealed that the optimised SBS density and content caching

probabilities can adapt very well to the non-homogeneous user spatial density. An

analytic derivation of the user-load has been derived and shown to be affected by

a set of key network parameters. From the numerical results of the sub-optimal

sets for the SBS density λS
n, it can be observed that the network’s choice to idle
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some of its components result is beneficial to the SCDP metric (although very

narrow improvements have been shown when λS
n < λ̄S). This indicates that over-

densification of a network can be detrimental to the performance metric, while

obvious benefits are obtained in terms of energy consumptions.

As the network edge node density appears to be operating as a balance of

energy consumptions and performance, it is of great importance to deepen the

knowledge of the effects of this network parameter.
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Chapter 4

Fundamental Network Energy

Operating Point

4.1 Introduction and Problem Statement

The massive increase in the number of network components to overcome future

demand for network capacity comes at the cost of higher network energy consump-

tion [66, 67]. Moreover, the interference caused by unplanned and massive node

displacement in UDN has been indicated as a major bottleneck for performance

[68, 69]. Interference saturation is a significant hurdle for content transmission

which brings the network to make great resource expenses to finally achieve its

most performing state. To obtain network efficiency metrics is becoming more im-

portant as the trend of network densification becomes a reality [70,71]. A theoretic-

centered approach which can capture the network EE response to different edge

node density becomes essential with the intention to provide high-performance

QoS with cost-effective energy expense.

4.1.1 Literature Review

High densities are required to serve massive number of requests, and to strike the

optimum balance between performance and efficiency remains an open problem.

In [72], i.e., Chapter 3, a limit on the sub-optimal density was proposed for jointly

transmitting contents which maximises the overall SCDP, accounting for the re-
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source management and interference pattern control. The direct consequence is

that a control over network over-densification can also be beneficial to the users’

QoS. From [73], the EE of a network is defined as the average network throughput

per unit area over the energy consumption per unit area, which is then numerically

maximised to determine an optimum operating tier’s density. The studies [74–77]

adopted the same interpretation of EE. In [74], an analysis was conducted on the

obtained EE against the tier density and number of antennas at the BS. Also,

[75] confirmed over the importance of the densification of smaller cells over macro

cells in terms of EE for a SISO system. However, when aggregated to the measure

of network capacity, misleading results are obtained since the adopted measure

of energy consumption per unit area is an averaged value which should instead

be considered as random variable when de-conditioning the overall EE metric. In

[76], caching at BSs was investigated as a tool to improve the network EE and the

advantage of caching at smaller cells was shown.

In this chapter, a novel approach for the evaluation of the network EE is envi-

sioned. In [73–77], a ratio of expected values was considered. However, the number

of nodes which contribute to energy expenses of the network also contributes to

the interfering pattern, therefore affecting the network throughput. As a direct

consequence, it is important to define the network EE as the expected value of a

ratio of two dependent random quantities.

The contribution of this chapter includes a closed-form expression of the net-

work EE for a given edge node density. By attaining the maximum of the EE

metric, a global maximum conversion point (MCP) is found to deliver the high-

est efficiency to the operators. A comparison with the pure SCDP maximization

is investigated and the distance between the most efficient and most performing

network states is indicated as an important parameter. This means that the net-

work can arbitrarily idle some of its nodes at the advantage of much lower energy

consumptions.

The reminder of this chapter is as follows. Section 4.2 describes the model

design. The proposed metric is elaborated and illustrated in Section 4.3 while the

associated results are reported in Section 4.4. Finally, conclusions and future work

are presented in Section 4.5.
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Figure 4.1: Visual representation of the network model, with the interfering set I and
Ī, closest user-node distance r̄ and CSA of radius R.

4.2 The Model

A typical user served by the network nodes in the denser tier of a downlink HetNet

is considered. These pieces of equipment are responsible of delivering the users’

requests directly at the edge of the network. Without loss of generality, no local

cache at the nodes is considered and the user-node association relies on a proximity

principle, i.e., the user is associated to the closest SBS. The focus of this chapter is

indeed beyond the local availability of the physical copy of the content. However,

the introduction of a cache-enabled network is illustrated as an extension in this

chapter. The interfering region is regulated by the distance of the closest node to

the typical user r̄. The sets I and Ī are used to denote the interferers within the

circular sector of area π(R2 − r̄2) and from the outer CSA space, respectively. In

this chapter, we refer to CSA as the circular region centered at the typical user

and of radius R. For the sake of analysis, we consider each transmitter to be able

to make use of the full available bandwidth for each content transmission. The

activity of an higher tier, i.e. MBSs, to serve a request is considered to have null

contribution to the network performance metric. The focus of this work is on a

single tier only. Typically, when no network nodes are found within the CSA, a
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Figure 4.2: Block diagram of BS transceiver.

less dense tier is responsible for content delivery. However, its contribution to the

SCDP is not considered at this stage as it requires the energy expenses of an MBS

to retrieve a content to be properly quantified, greatly increasing the complexity

of the model.

The energy expenses model of a single network node is inspired from [78].

Namely, a sum of three terms which account for the energy groups of a transmit-

ter, i.e. power amplifier, radio-frequency transceiver and baseband interface, is

accounted. The tier’s single node energy expense can be written as

eA =
Pout/ηPA + PRF + PBB

(1− σDC)(1− σcool)(1− σMS)
[W ] , (4.1)

where σDC, σcool and σMS indicate the loss factors for DC-DC power supply, main

supply and active cooling of the BS transceiver and ηPA is the power efficiency. A

block diagram of a generic BS transceiver is depicted in Fig. 4.2.

To greatly simplify the analysis of this chapter, it is considered that no content

transmission can be performed within 1 [m] of distance from the typical user. Fig.

4.3 gives the cdf of the shortest user-node distance as its analytical derivation,

i.e., Pr (r̄ < r) = 2πλS
∫ r̄

0
re−λ

Sπr2
dr, and from its empirical validation obtained

by means of a monte-carlo simulation. From the conducted analysis, it has been

detected that Pr (r̄ < 1) = 2πλS
∫ 1

0
re−λ

Sπr2
dr ≈ 0.03 with λS = 0.01. Hence, the

following investigation is a close approximation of the target measure which allows

particularly accessible expressions.
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Figure 4.3: Theoretic and empirical measurements of the cdf for the random shortest
user-node distance.

4.3 The Proposed Performance Metric

In this section, an analytical expression for the EE is derived. When the maximi-

sation of the SCDP is conducted, the network energy expenses are usually not fully

accounted. This often results in minor SCDP increments at the expenses of an

enormous amount of consumed energy, especially when the network is interference

saturated. The proposed performance metric considers the random ratio between

the experienced SCDP and the consumed energy by the nodes within the CSA of

the typical user. The ratio of the two terms, dependent on the random realisations

of the considered PPPs, writes as
Pr

(
PS|h|2r̄−α∑|I|

i=0 P
S|hi|2r−αi +

∑|Ī|
ī=0

PS|hī|
2r−α
ī

+
∑|IM|
m=0 P

M|hm|2r−αm +W
> ρ̃

)
∑|I|+1

i=0 [1A(i)eA + 1O(i)eO]

 , (4.2)

where eA and eO are respectively the node energy consumption when active or

idle, whose selection depends on an indicator function which discretises among
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them according to the event the index i belongs to the set of active A or idled O
nodes. Moreover, I and Ī indicate the interfering sets of nodes within and outside

the CSA respectively, with the SINR threshold ρ̃ = 2
ρ
B − 1 and where the set of

edge nodes |I| + 1 includes the designated transmitter within the CSA in charge

of delivering the message to the typical user. Unfortunately, the random ratio

(4.2) does not permit a closed-form for the node density λS and does not allow to

explore the properties associated to the MCP. However, in the ultra-dense context

and during peaks of traffic time, we can consider all the nodes to be active and

contributing to the interfering pattern, hence consuming eA [W ]. Our analytical

results are therefore intended to depict a situation of high network activity. With

these assumptions, the proposed performance metric can be regarded as a lower-

bound of (4.2). We define the EE as

G
(
λS
)

= E

[
ρ

SCDP∑
|I|+1 eA

] [
Mbps

Watt

]

= ρωE


Pr

(
PS|h|2r̄−α∑|I|

i=0 P
S|hi|2r−αi +

∑|Ī|
ī=0

PS|hī|
2r−α
ī

+
∑|IM|
m=0 P

M|hm|2r−αm +W
> ρ̃

)
∑|I|+1

i=0 eA


[

Mbps

Watt

]

≤ ρωE


Pr

(
PS|h|2r̄−α∑|I|

i=0 P
S|hi|2r−αi +

∑|Ī|
ī=0

PS|hī|
2r−α
ī

+
∑|IM|
m=0 P

M|hm|2r−αm +W
> ρ̃

)
∑|I|+1

i=0 [1A(i)eA + 1O(i)eO]


[

Mbps

Watt

]
,

(4.3)

with the scaling factor ω =
(

1− e−λSπR2
)

which indicates the probability at least

one node exists within the CSA and is a direct application of the void probability

for φS. In this work, the focus is on a single network tier and the contribution of an

upper MBS tier is considered as interference to the SBS transmission. In particular,

the energy expenses from a ubiquitous MBS tier have to be properly addressed to

allow a fair investigation over the denser lower tiers. Secondly, the performance

metric in (4.3) stands as a simpler handle on the problem. The proposed metric

G can be interpreted as an improved measure of the efficiency of the network. It

can easily be seen that G ∈ [0, ρ/eA] [Mbps/Watt] achieves the minimum when
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the SCDP reaches zero and attains its maximum when both the SCDP stands

at its maximum value and when one single SBS is actively transmitting to the

typical user within the CSA. The maximum achievable value by G leads to the

conclusion that the upper limit of this performance metric is determined by the

energy consumption of the tier’s single node, i.e. eA [W ], considering the users’

target bit-rate fixed. According to (4.1), the choice of the type of nodes that

compose the tier makes the upper-bound to vary. Specifically, lower values of

efficiency can be possibly attained when more powerful BS types are considered

following the same intuition from [75].

The operating density at which G is maximized is defined as the MCP of the

network, i.e., λ? , argmax G(λS). The convenience in considering G over the

traditional SCDP metric lies in the advantage of knowing the most efficient tier’s

operating point. More insights over the most efficient and most performing states

of the network’s tier will be lately discussed in Section 4.3.2.

The proposed metric in (4.3) can be averaged out from its dependencies, using

the steps being discussed in Appendix B.1, and is given by

G
(
λS
)

=
2πρ

eA

(
1− e−λSπR2

)∫ R

1

r̄LIM

(
PMρ̃r̄α

P S
, r̄

)
e−λ

S(πR2+ξ2(r̄)) e
λSξ1(r̄) − 1

ξ1(r̄)
e−

ρ̃W r̄α

PS dr̄,

(4.4)

where ξ1(r̄) = 2π
∫ R
r̄

r
ρ̃r̄αr−α+1

dr and ξ2(r̄) = 2π
∫∞
R

[
1− 1

1+ρ̃r̄αr−α

]
r dr and with

the Laplace functional for the femto-tier interfering PPP in (4.4) expressed by

means of its components to ease future analysis.

Following the Leibniz integral rule1, the derivative of G with respect to λS

stands as

∂G
∂λS

(
λS
)

=
2πρ

eA

∫ R

1

r̄
e−

ρ̃W r̄α

PS

ξ1(r̄)
LIM

(
PMρ̃r̄α

P S

)
e−λ

S(πR2+ξ2(r̄))×
(

(πR2 + ξ2(r̄))− eξ1(r̄)λS
(πR2 + ξ2(r̄)− ξ1(r̄))

)
−

e−λ
SπR2

(
(2πR2 + ξ2(r̄))− eξ1(r̄)λS

(2πR2 + ξ2(r̄)− ξ1(r̄))
)
 dr̄.

(4.5)

1Leibniz rule for differentiation under the integral sign states that, given constant integration

bounds, the following special case holds ∂
∂x

∫ b

a
f (x, t) dt =

∫ b

a
∂
∂xf (x, t) dt given that both

f (x, t) and its partial derivative are continuous in t.
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Some terms of the integrand function can be re-arranged as

πR2 + ξ2(r̄)− ξ1(r̄) = πR2 + 2π

∫ ∞
R

[
1− 1

1 + ρ̃r̄αr̂−α

]
r̂ dr̂ − 2π

∫ R

r̄

r̂

1 + ρr̄−αr̂−α
dr̂

= πr̄2 + 2π

∫ ∞
r̄

[
1− 1

1 + ρ̃r̄αr̂−α

]
r̂ dr̂ > 0,

(4.6)

from which the inequality between the scaling terms πR2 +ξ2(r̄)−ξ1(r̄) and πR2 +

ξ2(r̄) stands

πR2+2π

∫ ∞
R

[
1− 1

1 + ρ̃r̄αr̂−α

]
r̂ dr̂ ≥ πr̄2+2π

∫ ∞
r̄

[
1− 1

1 + ρ̃r̄αr̂−α

]
r̂ dr̂, (4.7)

where the equality holds when r̄ = R. The same conclusions can be drawn for

the scaling terms terms in (4.5), with the resulting inequality 2πR2 + ξ2(r̄) ≥
2πR2 + ξ2(r̄) − ξ1(r̄). It is important to find where and how many stationary

points characterise G. The following Theorem 8 stands as an analytical result for

the existence of a unique stationary point for G within λS ∈ (0,∞), thus confirming

the solution λ?, such that ∂G
∂λS (λ?) = 0 is the global maximum. The detailed proof

of Theorem 8 is given in Appendix B.2.

Theorem 8. The performance metric G(λS) has three distinct stationary points:

(i) a zero solution such that λS = 0, (ii) an infinite solution when λS → ∞, and

third solution (iii), which also corresponds to the network tier’s MCP, within the

range λ? ∈
[
λ−Ψ1

,∞
)
, where

λ−Ψ1
=

ln
(

πR2+ξ2(r̄)
πR2+ξ2(r̄)−ξ1(r̄)

)
ξ1(r̄)

∣∣∣∣∣∣
r̄=R−

.

with R− = R− ε for ε > 0 an arbitrary small quantity such that λ−Ψ1
exists.

The analysis conducted in Theorem 8 has some important implications over

the results obtained in this chapter. From (B.3), it can be observed that the

intersection of the indicated functions Ψ1

(
λS
)

and Ψ2

(
λS
)

does not depend on

the energy expenses of the network tier’s node eA. This implies that the MCP

computed for different network tiers changes as a function of (i) the transmitting
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Algorithm 2 Bisection search for MCP

1: initialize u← ∂G
∂λS (0)

2: δ ← λ+

3: λ? ← λ−+λ+

2

4: while δ > λ+/105 do
5: u← ∂G

∂λS (λ?)
6: if u < 0 then
7: λ? = λ? − δ
8: else
9: λ? = λ? + δ

10: end if
11: δ → δ/2
12: end while

power of the network tier under investigation, (ii) the transmitting power of nodes

from different tiers and (iii) the interference produced at different tiers of the

HetNet. Having established the uniqueness of λ? , argmax G(λS), the subsequent

focus is on obtaining this value.

4.3.1 The Employed Numerical Solution

Due to the absence of a closed form for G with respect to r̄, the MCP can only be

obtained by means of a numerical search. A bisection search, whose pseudo-code

is indicated in Algorithm 2, is employed to find an arbitrary close approximation

of the MCP. The proposed bisection search is meant to find a solution to the

maximisation of the proposed utility function

(P0) : λ? , argmax G(λS)

subject to 0 ≤ λS,
(4.8)

and to the SCDP maximisation

(P1) : λ̄? , argmax GSCDP
(
λS
)

subject to 0 ≤ λS,
(4.9)
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where

GSCDP
(
λS
)

= ωE

[
e−

ρ̃

PSr̄−α
(
∑|I|
i=0 P

S|hi|2r−αi +
∑|Ī|
ī=0

PS|hī|
2r−α
ī

+
∑|IM|
m=0 PM|hm|2r−αm +W )

]

= 2πω

∫ R

1

r̄λSe−λ
S(πr̄2+ξ3(r̄))LIM

(
PMρ̃r̄α

P S
, r̄

)
e−

ρ̃W r̄α

PS dr̄

(4.10)

is the pure SCDP analytical form whose derivation can be found in Appendix

B.3 and with ω =
(

1− e−λSπR2
)

standing as the void probability in the CSA

applied to the SBSs’ PPP. The indicated quantities λ− and λ+ in Algorithm 2 are

directly obtained from λ−Ψ1
and λ+

Ψ2
(in Appendix B.2) for (P0) and from λ−

ΨSCDP
2

and

λ+
ΨSCDP

2
(in Appendix B.4) for (P1). It can be demonstrated that the same outline

from Theorem 8 can be applied to GSCDP to draw the same conclusions over the

uniqueness of its solution λ̄?, with the detailed derivation provided in Appendix

B.4. From the application of Theorem 8 to GSCDP
(
λS
)
, it can be obtained that

λ+
ΨSCDP

2
< λ̄? <∞, with

λ+
ΨSCDP

2
= ln

(
πR2 + πr̄2 + ξ3(r̄)

πr̄2 + ξ3(r̄)

)
1

πR2

∣∣∣∣
r̄=1

.

This element is necessary to prove the lower-bound between the sub-optimal solu-

tions λ? < λ̄?, which will be demonstrated in the next section.

4.3.2 Network Energy Dualism

Having proved that a unique density solution exists which maximises the EE per-

formance of a network tier, this section will analytically demonstrates that the

optimal λ? stands as a lower-bound for λ̄?. The existing lower-bound gives raise to

a gap ∆ = λ̄? − λ? whose interpretation will be discussed as well. The bounding

is proved in Theorem 9 and its derivation discussed in detail in Appendix B.5

Theorem 9. The density operating point at which a mobile network reaches its

optimal energy-to-SCDP conversion is always a lower-bound of the density at which

the maximum SCDP is experienced, i.e. λ? < λ̄?.

The gap between the two measures is referred as ∆λ = λ̄? − λ? and it can
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be interpreted as a measure of the density distance between the most performing

and most efficient operating points of the network. This leads to the conclusion

that by considering a generic density λ? ≤ λS ≤ λ̄?, the operator can choose

between a more efficient or better performing network state by oscillating within

the indicated range of values. The cost for an operator when moving from λS to

λ̄?is in terms of energy expenses, which directly yields from the average number

of nodes of the PPP defined by the intensity function λS as E
[∣∣φ(λS)

∣∣] = λSπR2.

Hence, the network energy expenses are linearly increasing with λS, as the average

number of pieces of equipment linearly depends on the displacement density. To

an increase of ∆λ, more expense is needed to transition from the most efficient to

the most performing density operating point of the network. On the other side,

from the user’s point of view, a lower density of network nodes comes at the cost

of a higher latency time.

4.3.3 Extension to Cache-Enabled HetNet

The presented model can easily be extended to a cache-enabled HetNet. To do so,

the density λS can be substituted by the scaled term λS ← pfλ
S with pf being the

probability of caching the f -th content. Theorem 8 is still valid when the MCP

is searched for a cache-enabled extended network and the performance metric is

expressed as

G
(
λS
)

=
F∑
f

p̂f
2πρ

eA
ω

∫ R

1

r̄LIM

(
PMρ̃r̄α

P S

)
e−pfλ

S(πR2+ξ2(r̄)) e
pfλ

Sξ1(r̄) − 1

ξ1(r̄)
e−

ρ̃W r̄α

PS dr̄,

where ω =
(

1− e−pfλSπR2
)

.

4.4 Numerical Results and Analysis

The obtained performance and energy consumptions resulting from (P0) and (P1)

are illustrated and commented in this section, against the target bit-rate ρ. In

this way, it is intended to highlight the distance of the investigated network tier

operating points as the content transmitting conditions become more demanding.

95



Chapter 4. Fundamental Network Energy Operating Point

Variable Value Description

W −174 [dBm] Noise thermal power

α 3 Path-loss exponent

B 30 [MHz] Bandwidth

λM 10−4 [unit/m2] Density MBS tier

P S 17 [dBm] SBS transmitting power

PM 46 [dBm] MBS transmitting power

PRX 0.3 [W ] Consumed power radio-frequency transceiver

PBB 2.5 [W ] Consumed power baseband interface

ηPA .044 Transceiver power efficiency

σDC .9 Loss factor DC-DC power supply

σcool 0 Loss factor from cooling

σMS .11 Loss factor from main supply

Table 4.1: The network and femto-cell energy consumption parameters.

The energy consumption for a femto-cell network tier node, following the power

consumption model in (4.1), is considered in Table 4.1 together with the baseline

network parameters. The following discussion will focus on the sub-optimal values

for λ? and λ̄?, the time-latency for a content chunk being correctly transmitted, the

energy consumption over the CSA and the comparison of the proposed upgraded

EE measure with the benchmark results obtained from the EE definition employed

in [73–77].

4.4.1 Sub-optimal Network Tier Densities Vs. ρ

In Fig. 4.4, the optimal densities are shown for (P0) and (P1), together with

the associated SCDP values. As expected from the analysis conducted in Section

4.3.2, the values obtained for λ̄? give an upper-bound of those obtained for λ?.

Similarly, the obtained SCDP values from (4.10), computed for the sub-optimal

densities λ? and λ̄?, show the gap in QoS perceived at the typical user. The

maximum value for ∆λ has been detected at ρ = 9 [Mbps], with a progressive

decrease as ρ is incremented. From an overall observation on the domain of ρ, it

can be concluded that the values of λ̄? are much larger than λ?. This indicates

that enormous energy expenses are behind the QoS increase from SCDP(λ?) to

SCDP(λ̄?). As more demanding target bit-rate values are required, the network’s
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Figure 4.4: Sub-optimal network tiers’ densities and associated SCDP values.

choice for λ̄? is to decrease the network tier density in order to regulate the level of

interference, when λ? continues to slightly increase as ρ is incremented. Therefore,

it can be noted that ∆λ decreases as more demanding conditions are required for

the transmission.

4.4.2 Energy Expenses Measures

The energy expenses within the CSA are discussed in this section. The numerical

results are obtained as a direct application of the average size of a PPP, defined

by E[|φ(λπR2)|] = λπR2. As a consequence, it can be noted in Fig. 4.5 that

the energy expenses within the CSA follow the values of sub-optimal densities

discussed in Section 4.4.1. From this analysis, it can be seen that massive energy

costs are associated to even a minor SCDP increase and thus the importance of the

knowledge of the most efficient network’s tier operating point can be employed to

strike the optimal efficiency/performance balance by the operator. This confirms

the validity of the proposed metric to obtain sufficient knowledge of the network

to allow the operators to make use of the best tools to run their networks.
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Figure 4.5: Energy expenses for λ? and λ̄? within the CSA.

4.4.3 Latency

The averaged values of the random content elapsed transmission time are given in

Fig. 4.7. The routine from Algorithm 3 is employed to obtain the random value

of latency-time, such that the average can be computed over 105 instances. A

content request is initiated and a uniform distributed random variable u ∈ [0, 1]

is generated to be compared with the corresponding obtained SCDP value from

Fig. 4.4. A transmission is considered to be successful if u > SCDP. Differently,

the same content is re-transmitted, with the associated latency time increase.

Inspired by the indicated 3GPP LTE sub-frame design [59], the latency time is

increased by a 10 [msec] factor each time the transmission is unsuccessful. The

obtained averaged values highlight higher latency time for the maximization over

the EE, as expected. This is a direct consequence of the lower SCDP values. This

gap affects the users’ QoS and the given values provide a numerical feedback on

the detrimental effects which derives from operating the most efficient state of a

network’s tier.
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Algorithm 3 Calculation process for average content latency-time

1: initialize u← 0
2: initialize content latency-time T ← 10 [msec]
3: while u < SCDP(λ) do
4: generate u ∼ U ∈ [0, 1]
5: if u < SCDP(λ) then
6: T ← T + 10 [msec]
7: end if
8: end while

Figure 4.6: Averaged latency time for λ? and λ̄?.

4.4.4 Comparison among EE Approaches

In this section, the numerical evaluation of the EE, i.e. G
(
λS
)
, has been reported

for the obtained values of λ?, λ̄? and the results from the maximisation of the

network EE, as employed in [73–77], are compared as the baseline. The sub-

optimal benchmark density values λ̂? are obtained by applying the bisection search

in Algorithm 2 to maximise the network EE defined as the ratio of the average
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Figure 4.7: Comparison among network tier’s EE.

SCDP over the average network consumption as

λ̂? , argmax ρ
E
[
GSCDP

(
λS
)]

E
[∑

|I| eA

] , subject to 0 ≤ λS,

where

E
[
GSCDP

(
λS
)]

E
[∑

|I| eA

] =
2πω

∫ R
1
r̄λSe−λ

S(πr̄2+ξ3(r̄))LIM

(
PMρ̃r̄α

PS , r̄
)
e−

ρ̃W r̄α

PS dr̄

eAλSπR2
.

As expected, the values of G (λ?) stand on higher values than G
(
λ̄?
)
. This indicates

a remarkable difference in efficiency when considering the proposed metric, which

increases as more demanding transmitting conditions are investigated. It can be

noted that the benchmark G
(
λ̂?
)

obtains the lowest value of EE, validating the

importance of considering the proposed metric.
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4.5 Conclusions

A novel definition of network EE is derived in this chapter as the expected value

of the random ratio of the SCDP over the CSA energy consumptions. It is demon-

strated a closed-form of the proposed metric for the random number of nodes

contributing to both energy expenses and interfering pattern is accessible. This

in turns has allowed to deepen our understanding of the network tier EE and we

found the MCP of a network tier is always upper-bounded by the optimal density

which maximizes the SCDP. The examination of the EE is conducted against the

results of the pure SCDP metric and a network dualism between performance and

efficiency is found and discussed.
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On LOS Contribution to UDN

5.1 Introduction and Problem Statement

Spectrum release of higher frequency bands for 5G means that direct LOS wireless

links are exploited for the best network capacity [79]. As network densification

is considered as the most promising strategy to meet the 1000-fold increase in

traffic demand, LOS wireless links are expected to occur more frequently. A wide

set of 5G technologies depends on the network ubiquity of its components. In

UDNs, LOS links are more likely to occur, and more power can potentially be

released as both desired and interfering power. While a substantial amount of

research has been conducted under Rayleigh distributed channel conditions (with

no LOS), it becomes more important to investigate approximations which can

analytically describe the LOS contribution. In previous chapters, we modeled

channel fading as Rayleigh distributed. In this chapter, the aim is to incorporate

the LOS contribution into the performance of a cache-enabled UDN.

5.1.1 Literature Review

While it is well understood that LOS channel paths improve performance, it is

unfortunately extremely difficult to account for their contributions to the network

performance [80]. In [81], the authors considered an exponential series approxi-

mation to model the non-central Chi-squared distribution which derives from LOS

Rician faded channels. However, the approximation only holds for Rician faded

102



Chapter 5. On LOS Contribution to UDN

channel power of the desired signal and Rayleigh faded signals from the interferers,

and it fails to account for the interferers which also have LOS links. Furthermore,

[82] employed a distance-dependent probabilistic rule to distinguish between LOS

and NLOS communication channels, and a more suitable approximation of the

interference term was proposed by approximating the resulting non-homogeneous

PPPs from the application of the distance-dependent LOS model with an homo-

geneous counterpart. The limitation of this result is nevertheless that the approxi-

mation is complex and unable to be used to gain insight for network optimization.

Moreover, JT or any form of cooperative transmission from SBSs which has be-

come an essential feature for UDNs [60] was not considered. Technically speaking,

the mathematical challenge to account for Rician LOS channel paths is to handle

the Bessel function of the first kind in the channel power distribution [83]. There is

a pressing need to analytically quantify network metrics such as SCDP for UDNs

with a mixture of LOS and NLOS links that could help optimise network param-

eters such as content caching probability, SBS spatial density, and etc. [84], which

motivates our work.

In this chapter, our objective is to consider a more realistic scenario where both

the desirable links and interference links can come from LOS and NLOS paths

randomly. We focus on analysing the SCDP performance of the UDN using JT in

this scenario. Our contribution is an approximation for the SCDP for the mixed

LOS/NLOS scenarios by separating the contributions of a full NLOS network and

that from an LOS network. The proposed approximation can be interpreted as a

correction factor for previous results which only account for Rayleigh distributed

small-scale channel fading. By means of closed-form expressions, the access to some

key network parameters is uncovered and the relations among those variables that

mostly affect the LOS components are revealed. Our model permits the use of any

arbitrary LOS probability function, and the simulation results show the tightness

of the proposed approximation over a wide set of LOS probability functions. Hence,

the novelty in this chapter can be regarded as (i) a suitable approximated scaling

factor to extend the results of full-NLOS networks, (ii) the random nature of this

scaling factor is averaged out in closed-form for its main key dependencies and (iii)

the gaps with the empirical target SCDP are finally shown and discussed.

The remainder of this chapter is organised as follows. Section 5.2 describes
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the network design and content delivery scheme. In Section 5.3 the proposed

approximation is elaborated and the network trade-offs are discussed. Numerical

validations of the proposed approach are reported in Section 5.4 and Section 5.5

concludes this chapter.

5.2 Network Model and Content Delivery

A downlink two tiers HetNet in which a layer of densely populated SBSs is placed

on top of a tier of MBSs serving the UEs is considered. Independent and homoge-

neous PPPs are employed to model the multi-tiers network nodes, considered over

the network space R2. These pieces of equipment are supposed to respond to the

requests of the UEs, spatially modeled as an independent homogeneous PPP with

homogeneous intensity function over the network space R2. In this chapter, the

concept of typical user is considered. Also, the CSA is defined as an Euclidean ball

B(0, R), centered at the origin of the Euclidean space and of radius R. The adopted

user-node association scheme works as follows: the content request is firstly passed

from the typical user to its CSA; if a hit-cache is experienced, the content can be

directly transmitted from the SBSs at the network edge; if the request experiences

a missed-cache the closest MBS is in charge of the content delivery. In this case,

for simplicity, we consider the MBS to be able to meet all the possible content

requests, with no extra costs in terms of latency and power consumption. In case

multiple hit-caches are experienced, this means that several SBSs have the content

to serve the request and a non-coherent JT scheme over those SBSs is performed

to transmit the same required content over the same portion of bandwidth [72,85].

It is reasonable to impose a practical limit on the maximum number of cooperating

SBS nodes for JT, say Kmax
f for transmission of content f .

To perform the content transmission of a generic f -th content over the same

portion of bandwidth among network’s nodes, the available bandwidth for the

transmission is split by the user-load ΞS
f = max{ξ1, . . . , ξKf}, where ξk stands as

the user-load experienced by the k-th SBS from the set of Kf ≤ Kmax
f cooperating

nodes. Similarly, ΞM
f indicates the user-load of the closest MBS. At the typical
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Figure 5.1: Visual representation of the network model, with interfering power indi-
cated in red and desired power from the cooperating set Kf in black.

user, the averaged target SCDP over the whole wordbook is given by

SCDP =
F∑
f=1

p̂f

(
af Pr

(
γS
f > ρ̄S

f

)
︸ ︷︷ ︸

ΓS
f

+(1− af ) Pr
(
γM > ρ̄M

f

)
︸ ︷︷ ︸

ΓM
f

)
, (5.1)

where af = (1 − e−λSpfπR
2
) comes as a direct application of the void probability

such that there is at least one SBS that has cached the required content within

B(0, R), with ΓS
f and ΓM

f respectively standing as the SCDP when a hit-cache or

a missed-cache is experienced, and finally with ρ̄S
f = 2

ρ
B

ΞS
f − 1 and ρ̄M

f = 2
ρ
B

ΞM
f − 1

which stand as the SINR thresholds. Indicating the NLOS and LOS channel fading

respectively as nL and L, and using in and out to refer to the nodes within and

outside the Euclidean ball B(0, R), we can write the SINR from the cooperating
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SBS nodes as

γS
f =

DS
f(

IS,in,nL
f + IS,in,L

f + IS,out,nL + IS,out,L + IM,nL + IM,L +W
) =

∣∣∣∑k∈φS,nL
f ∩B(0,R) hkr

−α/2
k +

∑
k∈φS,L

f ∩B(0,R) h
′
kr
−α/2
k

∣∣∣2∑
i∈φS,nL
−f ∩B(0,R)

|hi|2 r−αi +
∑

i∈φS,L
−f ∩B(0,R)

|h′i|
2
r−αi +

∑
i∈φS,nL∩B(R,∞)

|hi|2 r−αi +
∑

i∈φS,L∩B(R,∞)

|h′i|
2
r−αi +

∑
i∈φM,nL

|hi|2 r−αi +
∑
i∈φM,L

|h′i|
2
r−αi +W

(5.2)

and the SINR from the closest MBS as

γM =
DM

IS,nL + IS,L + IM,nL + IM,L +W

=



|hk|2 r−αk∑
i∈φS,nL

|hi|2 r−αi +
∑
i∈φS,L

|h′i|
2
r−αi +

∑
i∈φM,nL\B(r̄,∞)

|hi|2 r−αi +
∑

i∈φM,L\B(r̄,∞)

|h′i|
2
r−αi +W

, if NLOS (5.3a)

|h′k|
2 r−αk∑

i∈φS,nL

|hi|2 r−αi +
∑
i∈φS,L

|h′i|
2
r−αi +

∑
i∈φM,nL\B(r̄,∞)

|hi|2 r−αi +
∑

i∈φM,L\B(r̄,∞)

|h′i|
2
r−αi +W

, if LOS (5.3b)

where the coefficients h and h′ indicate, respectively, the Rayleigh and Rician

fading channel coefficients. In (5.3a) and (5.3b), r̄ indicates the distance of the

closest MBS from the typical user and the interfering pattern is determined by

those SBSs that have at least one mobile users within and by all the MBSs in

the circular sector B(r̄,∞). In (5.2), the interfering pattern is determined by the

union of the set of SBS edge nodes with at least one users within their CSA, the

set of those edge nodes that experience a missed-cache within B(0, R) and from

the MBS tier as if they are all active. Apparently, when a number of cooperating

edge nodes exceeds Kmax
f , the two interfering regions are determined by r̄ ≤ R,

with r̄ denoting the distance of the farthest cooperating SBS edge node.

The set of nodes φ
S,[L,nL]
−f in (5.2) refers respectively to those SBSs with a LOS

and NLOS link where the f -th content has not been cached and that are associated

to at least one UEs. For ease of subsequent analysis, we refer to KS,L
f and KS,nL

f ,

respectively, as the random number of cooperating nodes whose channel links
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experience LOS and NLOS small-scale channel fading, namely, the snapshots of

the two PPPs φS,L
f ∩ B(0, R) and φS,nL

f ∩ B(0, R), after having applied a LOS

thinning function to the initial φS process. Following the indications from Section

2.3.1, the mean and standard deviation of the modeling Gaussian random variables

for the channel coefficients are respectively referred as µh = (k/(k + 1))1/2 and

σh = (2(k + 1))−1/2.

5.2.1 The LOS Thinning Function

A space dependent thinning transformation is applied to φS and φM, in order to

model the spatial displacement of LOS communications. As a result, the modeling

non-homogeneous PPP for LOS communications φS,L has an intensity function

p(r)λS, with r being the node-to-user link-distance. On the other hand, the inten-

sity function of the point process for those nodes with NLOS is (1− p(r))λS.

The independent thinning rule p(r) is strictly correlated to the surrounding

environment. We therefore expect this function to dramatically change according

to the city’s architecture, as indicated by the 3GPP standard [39]. When empir-

ical measures are instead accounted, scaling issues are inevitably associated. For

what concerns the following analysis, the actual shape of the thinning function is

irrelevant as the proposed approach applies to all possible shape and forms of the

thinning function. However, some observations over the hypothetical nature of this

function can be taken, to have a tool to arbitrarily control the signal shadowing.

The thinning rule employed in our model is

p(r) = e−
(r−µ)2

2σ2 , (5.4)

with the scaling factor
√

2πσ2 being applied to the original Gaussian-like pdf to

allow p(r → 0) → 1. The function (5.4) allows to arbitrarily change from open

or narrow spaces by means of its shape parameter σ. From (5.4), we consider

µ = 0 as we account for the typical user located at the origin of a two dimensional

Euclidean space and we vary the factor σ2 to mimic the obstruction effect on the

proposed performance metric. The adopted function can easily be changed with

any arbitrary LOS probability rule.
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5.3 The Analytical Findings

5.3.1 Essential Tools for ΓS
f and ΓM

f Approximations

Here, we present our approximations for ΓS
f and ΓM

f . Due to the property of a

sum of normal distributed random variables, the desired power term in (5.2) can

be obtained as

DS
f =

∣∣∣∣∣∣∣
∑

k∈KS,nL
f

hkr
−α/2
k +

∑
k∈KS,L

f

h′kr
−α/2
k

∣∣∣∣∣∣∣
2

= |H +H ′|2 =
∣∣H̄∣∣2 ,

where H ∼ CN (0,
∑

k∈KS,nL
f

r−αk ), and H ′ = X ′ + iY ′ with

X ′ ∼ N

µh ∑
k∈KS,L

f

r
−α/2
k , σ2

h

∑
k∈KS,L

f

r−αk


and

Y ′ ∼ N

0, σ2
h

∑
k∈KS,L

f

r−αk

 .

Consequently, H̄ = X̄ + iȲ where

X̄ ∼ N

(
µh

∑
k∈KS,L

f

r
−α/2
k

︸ ︷︷ ︸
µL

, σ2
h

∑
k∈KS,L

f

r−αk +
1

2

∑
k∈KS,nL

f

r−αk

)
,

Ȳ ∼ N

(
0, σ2

h

∑
k∈KS,L

f

r−αk +
1

2

∑
k∈KS,nL

f

r−αk

)
.
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We can rewrite the variance of X̄ and Ȳ as

V[X̄,Ȳ ] =
1

2

((
1− 1 +

1

k + 1

) ∑
k∈KS,L

f

r−αk +
∑

k∈KS,nL
f

r−αk

)

=
1

2

( ∑
k∈KS,L

f

r−αk +
∑

k∈KS,nL
f

r−αk

︸ ︷︷ ︸
σ2

P=
∑
k∈φf∩B(0,R) r

−α
k

− k

k + 1

∑
k∈KS,L

f

r−αk

︸ ︷︷ ︸
σ2

L

)
, (5.5)

where the scaling factor for σ2
L can be written as µ2

h, following the definition of

the mean for the Gaussian distributed modelling variable for Rician distributed

channel coefficient h′. Therefore the desired power can finally be written in terms

of non-complex, zero-mean Gaussian random variables as

DS
f =

∣∣H̄∣∣2 =
(
X̄2 + Ȳ 2

)
=(

σ2
P(X2 + Y 2)︸ ︷︷ ︸

DS,nL
f

−µ2σ2
L

(
X2 + Y 2

)
+ 2µLµ

√
σ2

P − µ2σ2
LX + µ2

Lµ
2︸ ︷︷ ︸

∆DS
f |D

S,nL
f

)
, (5.6)

in which X ∼ Y ∼ N (0, 1/2). Note in (5.6) that we have decoupled the term that

describes the desired power from a full NLOS network DS,nL
f from the contribution

of the LOS components indicated with ∆DS
f |D

S,nL
f . It can be seen that the term σ2

P

can be interpreted as the sum of the power attenuation factors of the cooperating

SBSs, with no distinction made on the experienced NLOS/LOS small-scale channel

fading. In other words, this term coincides with the sum of the contributions of

the power attenuation for the desired content as if the network is only composed

by NLOS links.

The interfering power from the SBSs in (5.2) is now studied in terms of non-

complex normal random variables X ∼ Y ∼ N (0, 1/2). The detailed derivation is

discussed in Appendix C.1 and and shortly reported in the following for the set of
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Variable Description

µh Mean for LOS small-scale channel fading

σh Standard deviation for LOS small-scale channel fading

µL Sum of amplitude losses LOS components

σ2
L Sum of power losses LOS components

σ2
P Sum of power losses full NLOS network

σ Control parameter for LOS thinning function p(r)

Table 5.1: Resume of key variables.

interfering PPPs φS,nL
−f ∩B(0, R), φS,L

−f ∩B(0, R),φS,nL∩B(R,∞) and φS,L∩B(R,∞)

IS,in,nL
f + IS,in,L

f + IS,out,nL + IS,out,L =
∑

i∈φS
−f∩B(0,R)

(X2 + Y 2)r−αi

︸ ︷︷ ︸
IS,in
f

+
∑

i∈φS∩B(R,∞)

(X2 + Y 2)r−αi︸ ︷︷ ︸
IS,out

+
∑

i∈φS,L
−f ∩B(0,R)

(
− k

k + 1
(X2 + Y 2) +

2
√
k

k + 1
X +

k

k + 1

)
r−αi

︸ ︷︷ ︸
∆IS,in

f |IS,in
f

+
∑

i∈φS,L∩B(R,∞)

(
− k

k + 1
(X2 + Y 2) +

2
√
k

k + 1
X +

k

k + 1

)
r−αi︸ ︷︷ ︸

∆IS,out|IS,out

,

(5.7)

where the terms IS,in
f and IS,out do not distinguish among NLOS /LOS small-scale

channel fading and with ∆IS,in
f |I

S,in
f and ∆IS,out|IS,out, respectively, standing for

the conditioned terms that describe the LOS contributions. Similarly, for what

concerns the interference from the MBS in (5.2), we can apply the same intuitions

in Appendix C.1 for φM,nL and φM,L to obtain

IM,nL+IM,L =
∑
i∈φM

(X2 + Y 2)r−αi︸ ︷︷ ︸
IM

+
∑
i∈φM,L

(
− k

k + 1
(X2 + Y 2) +

2
√
k

k + 1
X +

k

k + 1

)
r−αi︸ ︷︷ ︸

∆IM|IM

.

(5.8)
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The same analysis is now undertaken for what concerns the MBS transmis-

sion. The desired power term in γM from (5.3b) can be interpreted, following the

guidelines in Appendix. C.1 as

DM = |h′|2 r−α =
(
X2 + Y 2

)
r−αi︸ ︷︷ ︸

DM,nL

+

(
− k

k + 1
(X2 + Y 2) +

2
√
k

k + 1
X +

k

k + 1

)
r−αi︸ ︷︷ ︸

∆DM

.

(5.9)

Note that for (5.3a), no LOS contribution is experienced for the term of the desired

power and the result would coincide with the DM,nL component in (5.9).

We now apply the separation of the full NLOS term to the interference per-

ceived when the closest MBS is transmitting as previously obtained, which gives,

following the result in Appendix C.1 for φS,nL, φS,L, φM,nL \ B(r̄,∞) and φM,L \
B(r̄,∞)

IS,L + IS,nL + IM,nL + IM,L =
∑
i∈φS

(X2 + Y 2)r−αi︸ ︷︷ ︸
IS

+
∑

i∈φM\B(r̄,∞)

(X2 + Y 2)r−αi︸ ︷︷ ︸
IM

+
∑
i∈φS,L

(
− k

k + 1
(X2 + Y 2) +

2
√
k

k + 1
X +

k

k + 1

)
r−αi︸ ︷︷ ︸

∆IS|IS

+
∑

i∈φM,L\B(r̄,∞)

(
− k

k + 1
(X2 + Y 2) +

2
√
k

k + 1
X +

k

k + 1

)
r−αi︸ ︷︷ ︸

∆IM|IM

.

(5.10)

5.3.2 The Approximations

We have now the tools by which the proposed approximations can be retrieved.

Hence, in this section, the main contribution of this work is presented.

The term γS
f can now be rewritten by isolating the contribution given by a

full NLOS network from the contribution given by LOS communications. We

therefore obtain that an approximation for γS
f can be attained by considering the

conditioned terms to be independent from their respective conditioning factors.
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Thus, the SINR γS
f is approximated as

γS
f ≈ γ̃S

f =
DS,nL
f + ∆DS

f

IS,in
f + IS,out + ∆IS,in

f + ∆IS,out + IM + ∆IM +W
, (5.11)

where the terms ∆IS,in
f |I

S,in
f , ∆IS,out|IS,out and ∆IM|IM were initially conditioned

on the resulting Gaussian distributed random variables X, Y , and the point pro-

cesses φS,L
f ∩ B(0, R), φS,L

f ∩ B(R,∞) and φM,L.

We claim that the same approximation is valid for γM when the closest MBS

is associated to the typical user. Then,

γM ≈ γ̃M =
DM,nL + ∆DM

IS + ∆IS + IM + ∆IM +W
, (5.12)

with ∆DM = 0 in case the wireless link is NLOS as in (5.3a), where the terms

∆IS|IS and ∆IM|IM were initially conditioned on the resulting Gaussian dis-

tributed random variables X, Y , and the point processes φS,L and φM,L. This

allows us to uncondition the SCDP independently as a full NLOS network, and

separately account for the LOS contribution. The approximated SCDP values of

ΓS
f ≈ Γ̄S

f and ΓM
f ≈ Γ̄M

f are finally obtained as

Γ̄S
f = E

[
exp

(
−
ρ̄S
f

σ2
P

(IS,in
f + IS,out + IM +W )

)]
︸ ︷︷ ︸

typical NLOS network

×

E

[
exp

(
−
ρ̄S
f

σ2
P

(∆IS,in
f + ∆IS,out + ∆IM) +

∆DS
f

σ2
P

)]
︸ ︷︷ ︸

LOS contribution

,

(5.13)

Γ̄M
f = E

[
exp

(
−
ρ̄M
f

r̄−α
(
IS + IM +W

) )]
︸ ︷︷ ︸

typical NLOS network

E
[

exp
(
−
ρ̄M
f

r̄−α
(
∆IS + ∆IM

)
+

∆DM

r̄−α

)]
︸ ︷︷ ︸

LOS contribution

.

(5.14)

The complete SCDP approximation at the typical user from (5.1) is now attained
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as

SCDP ≈ SCDP =
F∑
f

p̂f

(
af Γ̄

S
f + (1− af )Γ̄M

f

)
. (5.15)

The probabilities Γ̄S
f and Γ̄M

f can assume higher values than one, given by the LOS

contribution. Therefore, during simulations, we have to respect the support of the

exponentially distributed random variable [0,∞] and fix the probability to one

when the argument of the exponential function assumes positive values following

Γ̄S
f = min(Γ̄S

f , 1) and Γ̄M
f = min(Γ̄M

f , 1).

The generic Laplacian functionals been utilised in the subsequent derivations

are shortly reported

LΦ,L (s, a, b,Φ) = E

[
exp

(
s
∑
i∈φ

(
− k

k + 1
(X2 + Y 2) +

2
√
k

k + 1
X +

k

k + 1

)
r−αi

)]
a
= E

[∏
i∈φ

exp

(
s

(
− k

k + 1
(X2 + Y 2) +

2
√
k

k + 1
X +

k

k + 1

)
r−αi

)]

b
= exp

−2πλ

∫ b

a

1− e
ksr−α(sr−α+1)

ksr−α+k+1 (k + 1)

ksr−α + k + 1

 rp(r) dr


(5.16)

and

LΦ,nL (s, a, b,Φ) = E

[
exp

(
s
∑
i∈φ

(
X2 + Y 2

)
r−αi

)]
a
= E

[∏
i∈φ

exp
(
s
(
X2 + Y 2

)
r−αi
)]

b
= exp

(
−2πλ

∫ b

a

(
1− 1

sr−α + 1

)
r dr

)
, (5.17)

where, in both (5.16) and (5.17), (a) is from the independence of the considered

PPPs and (b) is the result of the pgfl of the interfering PPPs.

In the following, we show that our solution is able to enhance the understand-

ing of the effects of LOS communications. The expected value over the random

variables X and Y (thus the channel small-scale fading) for the LOS contribution
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of the desired power of Γ̄S
f can be obtained, after re-arranging its terms, as

EX,Y

[
exp

(
∆DS

f

σ2
P

)]
= exp

(
2µ2

Lµ
2

µ2σ2
L + σ2

P

)
σ2

P

σ2
P + µ2σ2

L

(5.18)

by averaging out from X ∼ Y ∼ N (0, 1/2).

For what concerns the interfering LOS contribution of Γ̄S
f , the Laplace trans-

form and pgfl can be employed. We therefore obtain

E

[
exp

(
−
ρ̄S
f

σ2
P

(
∆IS,in

f + ∆IS,out + ∆IM
))]

=


L∆S,in

(
s, 0, R, φS,L

−f ∩ B(0, R)
)

×L∆S,out
(
s, R,∞, φS,L ∩ B(R,∞)

)
×L∆M

(
s, 0,∞, φM,L

)

∣∣∣∣∣∣∣∣∣
s=

ρ̄S
f

σ2
P

, (5.19)

where L∆S,in, L∆S,out and L∆M can be drawn as the Laplacian functional of the

LOS interfering contribution in (5.16). The NLOS term in (5.13) can easily be

retrieved as

E

[
exp

(
−
ρ̄S
f

σ2
P

(IS,in
f + IS,out + IM +W )

)]

= e−sW


LS,in

(
s, 0, R, φS

−f ∩ B(0, R)
)

×LS,out
(
s, R,∞, φS ∩ B(R,∞)

)
× LM

(
s, 0,∞, φM

)

∣∣∣∣∣∣∣∣
s=

ρ̄S
f

σ2
P

, (5.20)

where LS,in, LS,out and LM are drawn from the Laplacian functional of the NLOS

interfering terms in (5.17). By replacing (5.18), (5.19) and (5.20) in (5.13), we

have obtained the proposed approximation for Γ̄S
f .

Similarly, the de-conditioned derivation from X and Y of the LOS contribution
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for the desired power in Γ̄M
f can be computed to yield

EX,Y
[
exp

(
∆DM

r̄−α

)]
= exp

(
kr̄−α(r̄−α + 1)

kr̄−α + k + 1

)
k + 1

kr̄−α + k + 1
. (5.21)

In case the closest MBS does not experience an LOS link with the typical user,

we would simply consider ∆DM = 0. For what concerns the LOS interfering

contribution, we can apply the Laplace transform of the interference as

E
[

exp
(
−
ρ̄M
f

r̄−α
(∆IS + ∆IM)

)]
= (5.22)(

L∆S
(
s, 0,∞, φS,L

)
L∆M

(
s, r̄,∞, φM,L \ B(r̄,∞)

)) ∣∣∣∣
s=

ρ̄M
f

r̄−α

, (5.23)

where L∆S and L∆M are obtained from the Laplacian in (5.16) with r̄ standing as

the distance of the closest serving MBS. Similarly, the interfering term of a typical

NLOS network can be written as

E
[

exp
(
−
ρ̄M
f

r̄−α
(IS + IM +W )

)]
= (5.24)

e−
ρ̄Mf

r̄−αW
(
LS
(
s, 0,∞, φS

)
LM
(
s, r̄,∞, φM \ B(r̄,∞)

)) ∣∣∣
s=

ρ̄M
f

r̄−α

, (5.25)

where LS and LM are obtained from (5.17).

By replacing (5.21), (5.22) and (5.24) in (5.14), we have derived our approxi-

mation Γ̄M. Note that in case the approximated terms in (5.11) and (5.12) were

not considered, the derived SCDP in (5.13) and (5.14) would write as a non solv-

able integral which involves a modified Bessel function of the first kind as in [83].

Also, it is known that a closed-form solution for jointly transmitting contents has

not been found yet, even for the simple full NLOS network [50,55,72]. Thus, when

maximising the SCDP (or minimising the outage probability) over some network

parameters, an iterative solution is generally required to achieve a sub-optimal

feasible set of decision variables. Based on our proposed approximation, existing

solutions in the literature which aim to find sub-optimal network parameters can

be updated by scaling the SCDP for a full NLOS network with the proposed LOS

contribution as in (5.13) and (5.14). As a final remark, it can be observed that
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the derived approximations can easily be integrated to the SCDP derivation in

(3.11). More precisely, the LOS contributions derived in (5.18) and (5.19) can be

applied as scaling factors to the full NLOS term (3.11), with minor changes to be

accounted to the derived approximations in order to be included to the framework

in Chapter 3.

5.3.3 Network Trade-off

From the approximated Γ̄S
f and Γ̄M

f , some intuitions over the effects of LOS com-

munications can be retrieved. Some preliminary insights can be obtained at this

stage.

Conjecture 1. The limit for k → 0 for the approximated SCDP in (5.15) results

in a full NLOS network.

When we consider the limit to infinity of k, it can be seen that the mean and

variance of the generating Gaussian random variables for the Rician distributed

channel fading coefficient tend to µh → 1 and σ2
h → 0. As a consequence, the

channel power fading for the LOS link no longer acts like a random variable, due

to the collapse of the variance.

Conjecture 2. The limit for k →∞ for the approximated SCDP in (5.15) condi-

tioned on Rayleigh distributed small-scale channel power fading for the interference

results in a scaling factor to be applied to the typical NLOS contribution in order

to account the LOS for the desired power.

In particular, referring to Conjecture 2, the typical full NLOS SCDP terms

in (5.13) and (5.14) have to be scaled, respectively, by

lim
k→∞

[
exp

(
2µ2

Lµ
2

µ2σ2
L + σ2

P

)
σ2

P

σ2
P + µ2σ2

L

]
= exp

(
2µ2

L

σ2
L + σ2

P

)
σ2

P

σ2
P + σ2

L

, (5.26)

lim
k→∞

[
exp

(
kr̄−α(r̄−α + 1)

kr̄−α + k + 1

)
k + 1

kr̄−α + k + 1

]
=

exp (r̄−α)

r̄−α + 1
. (5.27)

By means of Conjecture 1 and Conjecture 2, we are able to understand the

SCDP results for k ∈ [0,∞].
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Some intuitions over the effects of LOS wireless links on the SCDP can be

attained at this point. The LOS contribution from the cooperating edge nodes in

(5.18) can be easily proved to be upper-bounded by the particular case in (5.26),

with the same result standing for (5.21) and (5.27). However, the term (5.26)

can be considered, especially under a UDN scenario, by the case that all the

cooperating nodes experience LOS links. Thus, from (5.26), we can write

exp

(
2µ2

L

σ2
L + σ2

P

)
σ2

P

σ2
P + σ2

L

≤ 1

2
exp

((
µL

σL

)2
)∣∣∣∣∣

σ2
P→σ

2
L

. (5.28)

It can be seen that the latest upper-bound on the LOS contribution from the

set of cooperating nodes is exponentially dependent on the ratio of the received

amplitude-to-power attenuation from the cooperating nodes. This quantity is

therefore highly sensible on the chosen path-loss model. The result from Conjec-

ture 2 works as an upper-bound over the received LOS desired power. Therefore,

we will employ this quantity in subsequent sections to investigate the gap for a

full NLOS network derived in Conjecture 1. Similar conclusions can be attained

for what concerns the LOS contribution from the MBS, with the particular case

for k →∞ employed as an upper-bound of the desired signal power.

5.3.4 Extension to Double-Slope Path-Loss Model

In this chapter, a single-slope path-loss model is considered for simplicity. However,

an extension to double or multi-slope path-loss model can be attained with minor

changes applied to the previous derivations. To provide some guidelines to achieve

this result, we consider a double-slope path-loss model. Consider the difference

of path-loss coefficients as ∆α = αnL − αL, where αnL and αL stand respectively

for the NLOS and LOS links. To introduce a double-slope path-loss in our model,

it is necessary to change the scaling factor in (5.5) to (r−∆α − r−∆α + 1
k+1

) and

to include this term inside the sum for the cooperating edge nodes with an LOS

wireless link. As a result, we can decouple the derivation as a full NLOS and LOS

contributions, as previously obtained.
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5.4 Numerical Results

In this section, numerical results are illustrated to demonstrate the validity of our

SCDP approximation under various network parameters. The results are obtained

by employing a UC probabilistic caching strategy and the baseline network values

are reported in Table 5.2.

Variable Value Description

λS 5× 10−4 [unit/m2] Initial caching node density

λM 10−6 [unit/m2] Upper caching node density limit

λU 10−4 [unit/m2] Total number of users

R 25 [m] Radius of CSA

P S 26 [dBm] Transmitting power at the edge node

PM 43 [dBm] Transmitting power at the edge node

W −174 [dBm] Thermal noise power

F 20 Wordbook size

M 3 Cache size

υ 1 Skewness factor content popularity

α 3 Path-loss coefficient

B 40 [MHz] Bandwidth

ρ 2 [Mbps] Target bit-rate

Kmax
f 3 Maximum number of cooperating edge nodes

Table 5.2: The network parameters.

5.4.1 Validation against λS

In Fig. 5.2, results are provided to compare the target SCDP with the proposed

approximation in (5.15), against the edge node density λS. For comparison, the

results for a full Rayleigh network together with Conjecture 1 have been in-

cluded to give an estimation of the existing gap between full NLOS and mixed

Rayleigh/Rician networks. Results show that the proposed approximation matches

with the exact result of the case of a full Rayleigh network when k = 0. With a

higher probability to encounter LOS links, results begin to see some gaps between
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Figure 5.2: Target and approximated SCDP against λS.

the SCDP approximation and the exact result for σ > 0, as λS increases. However,

the proposed approximation is largely accurate for the entire range of λS.

5.4.2 Validation against Rician k-factor

The power ratio between the LOS component and the shadowed multi-paths plays

an important role when addressing the SCDP. In Fig. 5.3, the target and ap-

proximated SCDP are investigated for different values of the Ricean k-factor. An

initial increasing trend can be noticed as the Rician k-factor is incremented until

the SCDP measure converges. As the k-factor increases the desired power bene-

fits from the contribution from the cooperating nodes until it balances with the

destructive contribution of the interferers. From Fig. 5.3, it can be observed that

the results for Conjecture 2 stand on higher values than the associated target

and approximated SCDP measures, over the whole considered domain of k-factor

values. As discussed in Section 5.3.3, the expression for Conjecture 2 is an up-

per limit of the LOS contribution for both the target and approximated SCDP.

Further, the obtained values for Conjecture 2 are not dependent on the increase
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Figure 5.3: Target and approximated SCDP against Rician k-factor.

of the k-factor, because calculated for k → ∞. It can be seen, that for better

SINR conditions, a smaller gap between the target and approximated SCDPs is

obtained, revealing higher accuracy of the proposed approximation when better

transmitting conditions are experienced.

5.4.3 Effective Bandwidth and User Density

In our network model, user density has a crucial impact on the available frequency

bands and possibly our approximation. Our model catches the number of simul-

taneous content transmission through the terms ρ̄S
f and ρ̄M

f in (5.1). Therefore,

a study of how the proposed approximation performs according to the available

bandwidth for each content transmission is essential. As the transmission to the

typical user occurs if the request is previously cached, each edge node has a max-

imum of M simultaneous content requests that can be simultaneously performed.

In Fig. 5.4, we illustrate the SCDP against λU. As expected, it can be seen that

a decrease of the overall performance is experienced, as a consequence of the in-

creasingly higher number of simultaneous content transmissions. The reduction of
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Figure 5.4: Target and approximated SCDP against λU.

the available bandwidth for the single content transmission is observed to slightly

increase the gap among the proposed approximation and the target SCDP.

5.4.4 Maximum Number of Cooperating Nodes

Cooperation among nodes has been indicated as a promising strategy to achieve

the performance standards of future mobile networks. It is important to have our

proposed approximation to be as tight as possible as the maximum number of co-

operating nodes increases. In general, due to the overhead necessary to synchronise

JT, a maximum number of cooperating SBS edge nodes is generally fixed. In the

following, we consider an increased radius for the content searching ball B(0, R) of

R = 35 [m] and SBS density of λS = 10−3 such that the average number of coop-

erating nodes for content f stands as E
[∣∣φS

f ∩ (B(0, R))
∣∣] = pfλ

SπR2 ≈ 5.77. The

numerical results are given in Fig. 5.5. We see that our proposed approximation

follows the target measure, especially at higher σ. When low values of Kmax are

considered, it is more likely that some nodes that can potentially take part to the
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Figure 5.5: Target and approximated SCDP against maximum number of cooperating
edge nodes.

content delivery are not included in the cooperating set of edge nodes but, in some

cases, are considered as additional interferers. This reason is behind the increase

of SCDP against Kmax. On top of it, the results highlight the role of σ in terms

of SCDP performance and the gap. As Kmax increases, the higher probability of

experiencing LOS wireless links for higher σ values results in higher SCDP per-

formance and gives a smaller gap with its target SCDP. Therefore, under better

SINR conditions an higher increase of SCDP is expected, and a smaller gap is ex-

perienced, highlighting the better level of accuracy of the proposed approximation.

A saturation of SCDP performance at higher values of Kmax indicates the balance

between desired and interfering power and is due to the chosen average number of

cooperating nodes for content f .

5.4.5 The Proposed Approximation against σ

The intensity of σ gives an indication of the percentage of LOS wireless links

over the elements of a snapshot of φS. Also, as an indicative point of view, the
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higher the σ the better the SINR conditions because the closer SBSs experience

LOS wireless links. The results show that the gap between the proposed SCDP

approximation and its target is smaller as σ increases. Since at higher σ the gap is

reduced, the generation of the gap has to be linked to the nature of the wireless link

of the cooperating nodes, and in particular, regardless of whether the majority of

them experience LOS wireless links with their associated receiver, better levels of

accuracy of our proposed approximation are seen. This analysis reveals the trade

off between performance and experienced gap in our simulations, showing that for

better SCDP performance and thus better SINR values, a better approximation

can be achieved.

5.5 Conclusions

In this chapter, an accurate approximation for a two-tier mixed Rayleigh/Rician

small-scale channel faded UDN with non-coherent JT has been proposed and vali-

dated through numerical results. In particular, a scaling factor to SCDP to account

for Rician channel power fading in closed form is derived, which then permits our

analysis to SCDP for the mixed fading UDN with LOS and NLOS links with any

arbitrary LOS probability function and a dual-slope path-loss model. The results

in Section 5.4 revealed that the proposed de-conditioning technique over the LOS

contribution is highly suitable to match the target SCDP. However, the employed

procedure allows to simplify the tractability of the target SCDP, unlocking some

insights over the contribution of LOS wireless links. As a direct consequence,

the proposed approximation can be employed to extend existing Rayleigh limited

mobile networks to a more general small-scale channel modeling.
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Conclusions

Network densification unlocked unprecedented improvements toward the objective

of meeting the expected 1000-fold growth in traffic demand, bridging the gap with

future requests of network capacity. However, the unconstrained massive deploy-

ment of network nodes can turn out to be destructive in terms of QoS performance,

or extremely expensive in terms of energy consumptions. The presented work is an

extensive investigation over nodes idling strategies, resource management at the

network edge and analytical findings which help exploit future UDNs.

6.1 Summary of the Thesis Outcomes

The contributions of the presented work can be summarised into three main im-

provements.

In Chapter 3, a sub-optimal resource management policy is obtained which

maximises the average users’ SCDP. A network binning design has been utilised

to allow the derivation of local SCDP measures, which is then combined to ob-

tain a global SCDP evaluation. The overall analysis has been conditioned on the

event of the presence of a copy of the request being cached within the CSA. This

conditioning factor has forced the analysis on a set of novel interpretations of the

network. First, an updated probabilistic content caching design is elaborated and

validated by means of empirical analysis. Also, a zero truncated Poisson pmf is

utilised to model the distribution of the edge caching nodes based on the condi-
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tioning event. Due to the non-existence of a closed-form for CoMP transmitting

techniques, Jensen’s inequality has been resorted to provide a lower-bound of the

target SCDP. The lower-bound is maximised over the content caching probabilities

and caching node density. The introduced degree of freedom of network choices,

i.e., the possibility to model its active edge caching nodes, allows new understand-

ing on optimal choices for UDNs. It has been observed that when more demanding

transmitting conditions are experienced, the network prefers to concentrate its lim-

ited edge resources to favour the local area from which the maximum contribution

to the SCDP is given. The numerical results from the optimisation of the SCDP

have shown that over-densification can be harmful to the network performance

metric while being extremely expensive when a huge number of nodes is deployed.

The interference saturation at the network’s edge results in a bottleneck for the

network performance when over-densification is accounted. In some cases, a lower

SCDP is acceptable with the intention not to deteriorate neighbouring content

transmissions, thus providing an overall benefit to the set of users. The proposed

approach has been shown to be able to discretise among distinct content gener-

ating densities, providing local sets of solutions which maximise a global SCDP

metric.

Having acknowledged the influence of the SCDP maximization over the local

network resource management policies, the successive work has extended the role

of the edge node density to strike the optimal balance between performance and

efficiency. Chapter 4 emphasises the importance of a more accurate definition for

the network EE, by considering the expected value of the random ratio between

the SCDP and energy consumption within the CSA. In particular, as a closed

form of the metric exists with respect to the edge node density, some fundamen-

tal results over the MCP have been discussed. Numerical simulations have been

compared between the updated proposed definition of network EE against the typ-

ically considered interpretation from the literature. The MCP is then proved to

stand as a lower-bound of the density which maximises the network SCDP. This

permits to define a fundamental distance between the densities, which is then used

to describe the energy expenses to move from the most efficient network state to

the best performing state.

In Chapter 5, the final main contribution from this work lies in a tight and
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scalable approximation for including LOS wireless links under a cooperative trans-

mitting scheme. The approach can be easily extended to a non-cooperative sce-

nario and to any arbitrary LOS thinning function. A suitable approximation is

proposed which results from separating the components of the single contribut-

ing elements of the SCDP and dropping their dependencies to be considered as

independent random variables. This allows closed-form solutions to previously

intractable equations, unlocking insights associated to the LOS contribution to a

full NLOS mobile wireless network. The technique also allows great scalability, as

it can be utilised to extend current literature to a more general scenario.

6.1.1 Overview of Parameters’ Choice for Numerical Sim-

ulations

In this section, the choices over the adopted network parameters to obtain sim-

ulations’ results are discussed. The section focuses on a set of quantities which

are indicated to have a considerable impact on the obtained numerical values.

These decisions are herein analysed, with their effect on the obtained performance

commented in detail.

• Available Bandwidth for Contents Transmission: The available band-

width for content transmission B can be observed to change across the pre-

sented work. In Chapter 3, a bandwidth of B = 100 [MHz] is considered,

while the adopted values of available frequency bands stand at B = 30 [MHz]

and B = 40 [MHz] in Chapter 4 and Chapter 5 respectively. A wider fre-

quency spectrum for simulations in Chapter 3 is necessary to simultaneously

accommodate a larger number content requests. If lower values of B were

considered, the lack of resources would have not allowed to perform multiple

concurrent transmissions, representing a serious bottleneck to the network

performance. It is important to highlight that the upper-bound for the num-

ber of simultaneously transmitted contents is set to correspond to the cache

size, i.e. M = 3, with the bandwidth uniformly partitioned among the re-

quests. This allows each content delivery to be performed over approximately

33 [MHz], which is coherent with the simulation choices in Chapter 4 and

Chapter 5. Moreover, given the high density for users considered in Chapter
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3, the case of having M requests to be simultaneously accommodated occurs

to be most likely situation incurred by the network nodes. As a conclusion,

the choice of making use of a wider spectrum for transmission in Chapter 3

ensures the coherence of the outcomes across the work.

• Wordbook Size: The wordbook size F can be noticed to vary between

Chapter 3 and Chapter 5. The choice of this parameter in Chapter 3 has been

greatly affected by the computational complexity involved with the search

of the sub-optimal strategy. Differently, the wider workbook size in Chapter

5 is allowed by the low complexity of the objective function. As a result

of having more contents, the optimisation algorithm is able to partition the

network resources more precisely, thus improving the observed performance.

In other words, the optimisation is allowed to refine the search of the optimal

value of the objective function, improving the overall results. It is expected

that an improved solution can be obtained from Chapter 3 when a wider

wordbook is considered.

• Network Node Density: The employed SBS density λS is also seen to be

changed across the thesis work. In Chapter 3, the optimisation is allowed

to adjust local node density within a range of values whose upper-bound is

controlled by a fixed value, i.e. 0 ≤ λS
n ≤ λ̄S. The choice of the intensity

of upper-bound has been made to encourage cooperation among nodes and

study its detrimental effects on the overall performance. Setting a lower

intensity of the upper-bound would not allow to conclude over the benefit

of idling a portion of caching helpers. In Chapter 5 the focus lies on the

experienced channel power gain, as a combination of LOS and NLOS links

and a lower network node density is considered. Conversely, if higher values

for λS were accounted, an increase in the likelihood of LOS wireless links

would be seen. As a consequence of that, the presented results would be

skewed towards a setup with a strong dominance of LOS links, which does

not allow to conclude over the validity of the presented derivations. It is

important to highlight that the work in Chapter 5 can be easily extended

to the case of higher node density, as indicated by the analysis conducted in

Section 5.3.3.
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6.2 Further Developments

There are future directions that deserve further effort.

• Extension to a multi-objective metric (Chapter 3): Multi-objective

optimisation problems involve more than one objective function to be opti-

mised simultaneously. Typically, a single solution which returns the optimal

value for all the considered objective functions is not possible. To find a

trade-off between the conflicting objective functions is the aim of this exten-

sion of the work. Future research efforts will focus on obtaining the set of

Pareto optimal solutions, which would greatly improve the understanding of

how different metrics increase at the expenses of concurrent objective func-

tions. This direction of the future work will therefore address the metrics

elaborated in this thesis, i.e. SCDP and EE, and introduce additional per-

formance indicators such as time latency and channel capacity. When the

costs of fetching a generic content are correctly introduced, the inclusion of

MBSs would provide more insights on the optimal network policy of usage

of its limited network resources.

• Relaxation assumption of proposed EE (Chapter 4): The hypothesis

of fully active SBS accounted to derive a closed-form to the EE metric can

be relaxed to include idled nodes which contribute much less to the overall

energy consumptions. The optimal ratio of active and idled edge network

tier’s nodes can be therefore improved. This however comes at the cost of a

more complex objective function.

• Extension of obtained results with LOS approximation (Chapter 5):

The obtained numerical values from the optimizations of the utility func-

tions in Chapter 3 and Chapter 4 can be updated with the introduction of

the proposed approximation for the LOS contribution given in Chapter 5.

Intuitively, as iterative solutions have been employed in both chapters, the

introduction of the new scaling coefficient to the objective function can easily

be applied.
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Figure 6.1: Users’ activity urban area of Milan.

• Application of reinforcement learning techniques: The derivation of

closed-form expressions of the network metrics are limited to the simplest

models. Thus, it is often unfeasible to generate optimal strategies for a wide

set of initial network parameters and a relevant effort has been spent by

academia to address the problem of time-varying optimal strategies [86–88].

Hence, the introduction of machine learning techniques can provide on-line

solutions to chase the time-varying optimal network resource management

policy. In this thesis, we considered some network’s parameters to be fixed

with respect to time. This assumption could be made as the investigations

herein discussed focused on finding optimal solutions for a particular state

of the network. However, it is true that parameters, e.g., content popularity

and content generating density are functions of time over longer time frames.

Unsupervised learning has recently attracted great attention from scientific

literature [89–92]. As preliminary study of the problem, the data-set [93] has

been considered and the number of internet connections performed over the
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urban area of Milan are reported in Fig. 6.1 for four representative one-hour

ranges on the day 1st November 2013. The number of internet connections

in [93] are provided with the precise coordinates in latitude and longitude

of the vertices of the binned urban area, whose side length is approximately

235 [m]. The dynamic content generation process for a 20× 20 bins network

can be seen to be remarkably dynamic from Fig. 6.1. The study of evolving

solutions is an interesting development, to investigate optimal strategies over

time which can be learned through local and independent observation of the

environment, performed by each node of the UDN tier.

Multi-agent learning has attracted great interest due to recent improvements

which allowed its application for a variety of different tasks [94–96]. Authors

in [97] made use of a multi-agent setup to optimise a centralised metric that

estimates the joint action-value function as a non-linear combination of the

per-agent values, conditioned on local observations of the environment. The

problem in [97] can be adapted to cache-enabled wireless networks. Network

nodes can be considered as independent decision-making agents that interact

with the environment by means of the establishment of user-node associations

and consecutive content transmission. The initial steps for the application of

multi-agent learning to cache-enabled networks are described in the following.

A set of K agents is defined as an instance of a PPP φS. Time is split into

time-frames, at the begin of which the agents take one out of three possible

choices, after having performed a local and independent observation of the

environment. The set of possible agent’s choices is defined by

1. action 0 (normal activity): the edge node keeps its hardware com-

ponents active as content requests are expected. When an hit-cache

occurs, the edge node delivers the required contents to the UE.

2. action 1 (update current cache): the set of cached contents can become

obsolete over time. The agent, i.e. the caching node, refers to the closest

MBS to update its local memory with new contents. When selecting

this action, the edge node behaves as a UE, consuming the network

resources for a future benefit.
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Figure 6.2: The multi-agent reinforcement learning architecture, where the agent net-
work is composed by a combination of multilayer perceptron, gated recur-
rent networks and a probabilistic ε-greedy decision making process.

3. action 2 (sleep mode): low activity of the surrounding environment

can trigger this choice, with the edge node that turns off its hardware

components to consume the less possible amount of power.

The k-th SBS’s observation of the environment, i.e. τk, is now described as a

collection of historical information gathered within a fixed time-horizon To.

More rigorously, the vector τk is formed by

1. Content requests’ hit-cache ratio within the time-horizon To,

2. Content requests’ missed-cache ratio within the time-horizon To,

3. Approximation of user density λ̂U
k , i.e. number of received content requests

To×SBS activity region
,

4. Approximation of active SBS density λ̂S
k, i.e. time spent performing action 0

To
,

5. Last chosen action, i.e. uk,t−1.

The whole set of quantities to describe the current state of the environment

can be easily obtained by each agent, without the need of extra links for

communication among nodes. An overall knowledge of the network state

can be obtained at the MBS level. Namely, when action 1 is selected, the
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collected information from the agent is sent to the associated MBS, from

which a regional state of the environment can be determined.

The neural network consists of two main components: (i) the agent architec-

ture, which generates the agent’s approximation of its action-value function,

i.e. Qk, and (ii) a mixing network, in charge of performing the approxima-

tion of the agents’ collective actions-value function, i.e. Qtot. The design of

the integrated network components is presented in Figure 6.2.

The agents learn by means of the back-propagation of the gradients which

operate to minimize a loss function. For improved convergence, it is required

to make use of a target network, which systematically updates its weights

and keeps them constant for an arbitrary number of iterations, and a replay

memory, which stores the historical experience of the network. Given θ the

matrix which contains the current weights of the neural network and θ−

which stores the weights of the target neural network, a standard option for

the loss function is

L(θ) =
D∑
d=1

[
(yd −Qtot(τd,ud; θ))

2] (6.1)

where yd = rd + γmaxu′ Qtot(τ
′,u′; θ−), with D, γ and rd which stand as

the sampling batch size from the replay memory, the learning rate and the

evaluation of the reward respectively, with maxu′ Qtot(τ
′,u′; θ−) that returns

the maximum value of the sampled action-value function and finally with τ ′,

u′ that stand respectively as the collective agents’ observations and actions

relative to the successive state of the environment. The design of the reward

function is a complicated task which greatly impacts the agents’ learning.

The overall work presented in this thesis is intended to further develop the un-

derstanding of future ultra-dense mobile networks through a series of analytical

findings supported by empirical validations. The intention is that this work will

be useful for telecommunications engineers to achieve always better results toward

the out-of-reach goal of infinite capacity.
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A.1 Proof of Theorem.7

The proposed Jensen’s lower bound is conditioned on a set of random variables

as shown in (3.23). Due to independence between the interference power and the

desired signal power, we can work out the expected value in (3.23) by separately

deriving the following two independent terms

ϕI
n,f

(
λS, pn,f

)
= EIn,f [In,f +W ] , (A.1a)

ϕD
n,f

(
λS
n,pn

)
= E {rn,k}k∈φn,f ,

Kn,f ,Ξn,f

[
2
ρΞn,f
B − 1∑Kn,f
k=1 r

−α
n,k

]
. (A.1b)

For what concerns (A.1a), the derivation of (A.2) is reported to articulate the

expected value on the variables we need to average out. Hence,

EIn,f [In,f +W ] = E
{hn,k}∀k,

{rn,k}∀k,

φ̄n,−f , φ̃i

 ∑
k̄∈φ̄n,−f

∣∣hn,k̄∣∣2 r−αn,k̄ +
N∑
i 6=n

ωi
∑
k̃∈φ̃i

∣∣hi,k̃∣∣2 r−αi,k̃
+W.

(A.2)

For simplicity we will now refer to n̄ to indicate the random cardinality of the

set of interfering caching nodes that have not cached the f -th content within

the n-th CSA whose mean is E
[
φ̄n,−f

]
= µ̄n,f = λS

n(1 − pn,f )4d
2, see (3.4b).

Similarly, ñi stands for the set of interferers for the i-th CSA such that i 6= n and

E[φ̃i] = µ̃i = λS
i 4d

2 as per (3.4c).
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As a result, we obtain from (A.2) that

EIn,f [In,f +W ] = En̄,hn,rn
[
n̄ |hn|2 r−αn

]
+

N∑
i 6=n

ωi Eñi,hi,ri
[
ñi |hi|2 r−αi

]
+W, (A.3)

where the subscripts k̄ and k̃ have been dropped for conciseness as long as the

independence of the terms of both sums allows to consider each term of the sums

independently.

It is known that the distribution of the squared absolute value of a circular

symmetric Gaussian random variable writes as an exponential distribution exp(1).

Also, it is easy to see that the expected value for the standard exponential random

variable |h|2 results to be
∫∞

0
x exp(−x) dx = 1. Thus, we can uncondition (A.3)

with respect to the link distances and cardinalities of the two sets as

ϕI
n,f

(
λS, pn,f

)
= EIn,f [In,f +W ] = µ̄n,f J̄(n) +

N∑
i 6=n

ωiµ̃iJ̃(i) +W, (A.4)

where 
J̄(n) =

1

4d2

(∫∫
Dn\B0

(x2 + y2)−α/2 dxdy + π

)
,

J̃(i) =
1

4d2

∫∫
Di

(x2 + y2)−α/2 dxdy,

(A.5)

where B0 denotes the circle of unit radius centered at the UCL under investigation.

As such, we have averaged out all the random variables previously highlighted

in (A.2) and therefore retrieved the expected value in (A.1a).

From Section 3.3.2, we define the user-load of a set of jointly cooperating

caching nodes Kn,f at the n-th UCL for content f as

Ξn,f = max{ξn,f,1, ξn,f,2, . . . , ξn,f,Kn,f}. (A.6)

We can write the pmf of Ξn,f in terms of the user-load perceived by the single

caching node ξn,f as

Pr(Ξn,f = m) = Fξn,f (m)Kn,f − Fξn,f (m− 1)Kn,f ,
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where we have the number of cooperating nodes Kn,f whose mean is E[φn,f ] =

µn,f = λS
npn,f4d

2 as per (3.4a). Therefore, we can work out (A.1b) as

E
{rn,k}k∈φn,f

,

Kn,f ,Ξn,f

[
2
ρΞn,f
B − 1∑Kn,f
k=1 r

−α
n,k

]

= E{rn,k}k∈φn,f ,Kn,f

[
M∑
m=1

2
ρm
B − 1∑Kn,f
k=1 r

−α
n,k

Pr(Ξn,f = m)

]

= E{rn,k}k∈φn,f ,Kn,f

[
M∑
m=1

2
ρm
B − 1∑Kn,f
k=1 r

−α
n,k

(
Fξn,f (m)Kn,f − Fξn,f (m− 1)Kn,f

)]

= E{rn,k}k∈φn,f ,Kn,f

[∫ ∞
0

e−t
∑Kn,f
k=1 r−αn,k dt

M∑
m=1

(2
ρm
B − 1)

(
Fξn,f (m)Kn,f − Fξn,f (m− 1)Kn,f

)]

= E{rn,k}k∈φn,f ,Kn,f

∫ ∞
0

Kn,f∏
k=1

e−tr
−α
n,k dt

M∑
m=1

(2
ρm
B − 1)

(
Fξn,f (m)Kn,f − Fξn,f (m− 1)Kn,f

)
a
= EKn,f

[
M∑
m=1

(2
ρm
B − 1)×

∫ ∞
0

Jn(t)Kn,f
(
Fξn,f (m)Kn,f − Fξn,f (m− 1)Kn,f

)
dt

]
b
=

M∑
m=1

(2
ρm
B − 1)

∫ ∞
0

Θ(t,m) dt,

(A.7)

where Θ(t,m) is defined as

Θ(t,m) =
∞∑

Kn,f=1

Jn(t)Kn,f
(
Fξn,f (m)Kn,f − Fξn,f (m− 1)Kn,f

)
×

µ
Kn,f
n,f

(eµn,f − 1)Kn,f !
.

(A.8)

Regarding (A.7), (a) follows from averaging over the link distance and (b)

follows from averaging over the ZTP distribution of the set of the cooperating

nodes. It is easy to see that for Kn,f = 0, we have

Jn(t)0(Fξn,f (m)0 − Fξn,f (m− 1)0)
µ0
n,f

(eµn,f − 1)0!
= 0.

Therefore, we can express the sum over Kn,f to simply start from 0. This allows
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us to write the unconditioning part over Kn,f as a series for exponential functions.

Thus, we get

Θ(t,m) =
1

eµn,f − 1

∞∑
Kn,f=0

[(
µn,fFξn,f (m)Jn(t)

)Kn,f
Kn,f !

−
(
µn,fFξn,f (m− 1)Jn(t)

)Kn,f
Kn,f !

]

=
1

eµn,f − 1

(
eµn,fFξn,f (m)Jn(t) − eµn,fFξn,f (m−1)Jn(t)

)
.

(A.9)

By substituting (A.9) into (A.7), ϕD
n,f (λ

S
n,pn) is finally defined as

ϕD
n,f

(
λS
n,pn

)
= E{rn,k}k∈φn,f ,Kn,f ,Ξn,f

[
2
ρΞn,f
B − 1∑Kn,f
k=1 r

−α
n,k

]
=

M∑
m=1

(
e
ρm
B − 1

)∫ ∞
0

Θ(t,m) dt

=
1

eµn,f − 1

∫ ∞
0

M∑
m=1

(2
ρm
B − 1)

(
eµn,fFξn,f (m)Jn(t) − eµn,fFξn,f (m−1)Jn(t)

)
dt.
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B.1 Proof of (4.4)

The proposed metric is dependent on a set of network parameters. In the following,

the de-conditioning process is analysed to derive an analytical form of the metric.

The probability of the SINR ratio to be higher than a threshold can be directly

obtained as

Pr

 P S |h|2 r̄−α∑|I|
i=0 P

S |hi|2 r−αi +
∑|Ī|

ī=0
P S |hī|2 r−αī +

∑|IM|
m=0 P

M |hm|2 r−αm +W
> ρ̃


= e

− ρ̃

PSr̄−α

(∑|I|
i=0 P

S|hi|2r−αi +
∑|Ī|
ī=0

PS|hī|
2r−α
ī

+
∑|IM|
m=0 PM|hm|2r−αm +W

)
,

given that |hi|2 ∼ exp (1). Additionally, as long as the expected value of the

channel power gain of the link of the desired information source is independent on

the energy expenses of the performance metric, it can be independently performed
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as indicated. Consequently, from (4.3) it can be obtained that

G = ρ
(

1− e−λSπR2
)
E

e
− ρ̃

PSr̄−α

(∑|I|
i=0 P

S|hi|2r−αi +
∑|Ī|
ī=0

PS|hī|
2r−α
ī

+
∑|IM|
m=0 PM|hm|2r−αm +W

)
∑|I|+1

i=0 eA


= ρ

(
1− e−λSπR2

)
Er̄

EI,r
 1

(|I|+ 1)

|I|∏
i=0

1

1 + ρ̃r̄αr−αi

∣∣∣∣∣r̄
 e− ρ̃W r̄α

PS

eA
×

EĪ,|h|2,r

[
e
− ρ̃r̄

α

PS

(∑|Ī|
ī=0

PS|hī|
2r−α
ī

)∣∣∣∣∣r̄
]

︸ ︷︷ ︸
LĪ( ρ̃r̄

α

PS )

EIM,|h|2,r

e− ρ̃r̄αPS

(∑|IM|
m=0 PM|hm|2r−αm

)∣∣∣∣∣r̄


︸ ︷︷ ︸
LIM

(
ρ̃r̄αPM

PS

)


,

(B.1)

where the random variables are grouped with the intention to exploit the Laplacian

functionals of the outer CSA and upper MBS tier interference, the inner CSA

interference is arranged with the energy expenses term successively averaged out,

the small-scale channel fading for the inner CSA interferences averaged out as

|h|2 ∼ exp(1) and the interfering contribution from the set of nodes I is finally

described as a product of functions given the independent property for PPP. The

obtained three expected values are conditioned on the user-node distance r̄ and

they are independently averaged out in the following. The expected value over the

inner CSA interfering point process is further developed as

EI,r

 1

(|I|+ 1)

|I|∏
i=0

1

1 + ρ̃r̄αr−αi

∣∣∣∣∣r̄
 a

= EI

 1

(|I|+ 1)

|I|∏
i=0

Er
[

1

1 + ρ̃r̄αr−αi

] ∣∣∣∣∣r̄


b
= EI

 ∞∑
i=0

(
λSπ(R2−r̄2)
π(R2−r̄2)

2π
∫ R
r̄

r
ρ̃r̄αr−α+1

dr
)i

i!(i+ 1)
e−λ

Sπ(R2−r̄2)

∣∣∣∣∣r̄


c
=

[
e

2πλS
∫R
r̄

r
ρ̃r̄αr−α+1

dr − 1

2πλS
∫ R
r̄

r
ρ̃r̄αr−α+1

dr
e−λ

Sπ(R2−r̄2)

∣∣∣∣∣r̄
]
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where (a) comes from the independence of the PPP, (b) is from the de-conditioning

over r and by introducing the pmf of the random number of nodes and (c) is given

that the sum over the size of the interfering set lies into a closed form given the

geometric series
∑∞

i=0
ai

i!(i+1)
= ea−1

a
. The Laplace functional LĪ is obtained as

LĪ
(
ρ̃r̄α

P S

)
= EĪ,r,|h|2

[
e
− ρ̃r̄

α

PS

(∑|Ī|
ī=0

PS|hī|
2r−α
ī

)]
a
= EĪ

[
Ī∏
ī=0

Er,|h|2
[
e−ρ̃r̄

α|h|2r−α
]]

b
= EĪ

[
Ī∏
ī=0

Er
[

1

1 + ρ̃r̄αr−α

]]
c
= exp

(
−2πλS

∫ ∞
R

[
1− 1

1 + ρ̃r̄αr−α

]
r dr

)
,

where (a) is derived from the independence property for a PPP, (b) is the result

of averaging out the small-scale Rayleigh distributed fading distributed and (c)

stands as the pgfl of the interfering process φĪ . For what concerns LIM , we have

LIM

(
ρ̃r̄αPM

P S

)
= EIM,r,|h|2

[
e
− ρ̃r̄

α

PS

(∑|Ī|
ī=0

PM|hī|
2r−α
ī

)]

= exp

(
−2πλM

∫ ∞
0

[
1− 1

1 + PM

PS ρ̃r̄αr−α

]
r dr

)
,

which follows from the same steps of LĪ (s). We can now de-condition the metric

from the random distance of the associated node. By integrating over the distri-

bution of the link distance from the typical user to its closest network’s node, i.e.,
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f (r̄) = 2πr̄λS exp
(
−λSπr̄2

)
, it can be achieved

G
(
λS
)

= ρ
2πλS

eA

(
1− e−λSπR2

)
×∫ R

1

r̄e−λ
Sπr̄2LĪ

(
ρ̃r̄α

P S

)
LIM

(
ρ̃r̄αPM

P S

)
e

2πλS
∫R
r̄

r
1+ρ̃r̄αr−α dr − 1

2πλS
∫ R
r̄

r
1+ρ̃r̄αr−α

dr
e−λ

Sπ(R2−r̄2)e−
ρ̃W r̄α

PS dr̄

= ρ
2π

eA

(
1− e−λSπR2

)
×∫ R

1

r̄LĪ
(
ρ̃r̄α

P S

)
LIM

(
ρ̃r̄αPM

P S

)
e

2πλS
∫R
r̄

r
1+ρ̃r̄αr−α dr − 1

2π
∫ R
r̄

r
1+ρ̃r̄αr−α

dr
e−λ

SπR2

e−
ρ̃W r̄α

PS dr̄,

(B.2)

which finally writes as the intended performance metric in (4.4).

B.2 Proof of Theorem 8

It is straight forward to acknowledge the existence of solution (i) directly from

(4.5). The extended form of ∂G
∂λS (0) can be written as an infinite sum of zero

valued functions as

∂G
∂λS

(0) = ρ
2π

eA

∫ R

1

r̄
e−

ρ̃W r̄α

PS

ξ1 (r̄)
LM

(
PMρ̃r̄α

P S

)
[0] dr̄ = 0.

Hence, (i) is proved. For ease of illustration, (4.5) is re-arranged to convert the

search of zeros in ∂G
∂λS

(
λS
)

to the examination of the intersecting points of two

functions Ψ1(λS) and Ψ2(λS), defined as

∂G
∂λS

(
λS
)

= 0→ Ψ1(λS) = Ψ2(λS)→∫ R

1

ψ(r̄, λS)
[(
πR2 + ξ2 (r̄)

)
− eξ1(r̄)λS (

πR2 + ξ2 (r̄)− ξ1 (r̄)
)]

dr̄

=

∫ R

1

ψ(r̄, λS)e−λ
SπR2

[(
2πR2 + ξ2 (r̄)

)
− eξ1(r̄)λS (

2πR2 + ξ2 (r̄)− ξ1 (r̄)
)]

dr̄,

(B.3)
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with

ψ(r̄, λS) = r̄
e−

ρ̃W r̄α

PS

ξ1 (r̄)
LIM

(
PMρ̃r̄α

P S

)
e−λ

S(πR2+ξ2(r̄)).

Three different density driven behaviours for the functions Ψ1(λS) and Ψ2(λS)

can be detected. Specifically, both integrals assume positive values, as it can be

observed from (4.7), for λS ∈ [0, λ−) where λ− is a threshold such that λ− > 0.

Within a finite range of values λS ∈ [λ−, λ+], the resulting integrals Ψ1(λS) and

Ψ2(λS) stand as a combination of either positive and negative contributions. When

λS ∈ (λ+,∞), the integrals are infinite sums of negative terms, thus resulting in

negative values for Ψ1(λS) and Ψ2(λS). For what concerns Ψ1(λS), these regions

are defined by the function

λΨ1 (r̄) =
ln
(

πR2+ξ2(r̄)
πR2+ξ2(r̄)−ξ1(r̄)

)
ξ1 (r̄)

(B.4)

from which the following density thresholds can be obtained as

λ−Ψ1
= minλΨ1 (r̄) =

ln
(

πR2+ξ2(r̄)
πR2+ξ2(r̄)−ξ1(r̄)

)
ξ1 (r̄)

∣∣∣∣∣∣
r̄=R−

,

λ+
Ψ1

= maxλΨ1 (r̄) =
ln
(

πR2+ξ2(r̄)
πR2+ξ2(r̄)−ξ1(r̄)

)
ξ1 (r̄)

∣∣∣∣∣∣
r̄=1

,

in such a way that the integration of Ψ1(λS) is positive for λS < λ−Ψ1
and negative

for λS > λ+
Ψ1

. The same conclusions can be attained for Ψ2(λS) by considering the

function

λΨ2 (r̄) =
ln
(

2πR2+ξ2(r̄)
2πR2+ξ2(r̄)−ξ1(r̄)

)
ξ1 (r̄)

(B.5)

with the following thresholds

λ−Ψ2
= minλΨ2 (r̄) =

ln
(

2πR2+ξ2(r̄)
2πR2+ξ2(r̄)−ξ1(r̄)

)
ξ1 (r̄)

∣∣∣∣∣∣
r̄=R−

,
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λ+
Ψ2

= minλΨ2 (r̄) =
ln
(

2πR2+ξ2(r̄)
2πR2+ξ2(r̄)−ξ1(r̄)

)
ξ1 (r̄)

∣∣∣∣∣∣
r̄=1

.

The proof of the decreasing monotonic trend of λΨ1 (r̄) and λΨ2 (r̄) is shown in

Appendix B.6. It is straight-forward to notice that

λΨ1 (r̄) ≥ λΨ2 (r̄)→
ln
(

πR2+ξ2(r̄)
πR2+ξ2(r̄)−ξ1(r̄)

)
ξ1 (r̄)

≥
ln
(

2πR2+ξ2(r̄)
2πR2+ξ2(r̄)−ξ1(r̄)

)
ξ1 (r̄)

∀r̄ ∈ [1, R) ,

where the equality holds for r̄ = R and with the direct consequence that λ−Ψ1
≥

λ+
Ψ2

> λ−Ψ2
. This leads to the conclusion that Ψ1(λS) represents a strict upper-

bound for Ψ2(λS) in the range 0 < λS < λ−Ψ1
. As a direct result, no stationary

point for G lies within 0 < λS < λ−Ψ1
. The following limits hold

lim
λS→∞

Ψ1(λS) = 0−,

lim
λS→∞

Ψ2(λS) = 0−.
(B.6)

Note that Ψ2(λS) tends to zero more rapidly than Ψ1(λS), allowing us to conclude

that Ψ2(λS) stands as an upper-bound for Ψ1(λS) for higher λS. With that, the

infinite solution (ii) can be seen directly from (B.6) as the two functions can be

arbitrarily close to each other when λS increases. Since the change of upper-

bounding function occurs from lower to higher density values, it is valid to say

that the two functions have a minimum of one intersection point and that it lies

within λ−Ψ1
< λS < ∞. From λS = λ−Ψ1

, we can increase λS until a solution λ† is

found such that

Ψ1(λ†) = Ψ2(λ†).

Based on the fact that λ−Ψ1
≥ λ+

Ψ2
> λ−Ψ2

it is legitimate to state that the in-

tersection point λ† occurs with Ψ1(λ†) < 0 and Ψ2(λ†) < 0. More specifically,

given λ† > λ+
Ψ2

, it is known from the previous analysis that Ψ2(λ† + ε) < 0,

for any ε > 0. With this in mind, it is necessary and sufficient to prove that∣∣Ψ2(λ† + ε)
∣∣ < ∣∣Ψ1(λ† + ε)

∣∣ for ε ∈ [0,∞) such that it can be concluded that

Ψ1(λ†) and Ψ2(λ†) have one only intersection within λ−Ψ1
< λS < ∞. In other

words, proving that
∣∣Ψ2(λ† + ε)

∣∣ < ∣∣Ψ1(λ† + ε)
∣∣ for ε ∈ [0,∞) would indeed con-
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firm Ψ2(λ† + ε) is an upper-bound of Ψ1(λ† + ε) from λS ∈
[
λ†,∞

)
. Hence,

Ψ1

(
λ† + ε

)
=

∫ R

1

ψ(r̄, λ† + ε)
[(
πR2 + ξ2 (r̄)

)
− eξ1(r̄)(λ†+ε) (πR2 + ξ2 (r̄)− ξ1 (r̄)

)]
dr̄

=

∫ R

1

ψ(r̄, λ†)e−ε(πR
2+ξ2(r̄))

[(
πR2 + ξ2 (r̄)

)
− eξ1(r̄)(λ†+ε) (πR2 + ξ2 (r̄)− ξ1 (r̄)

)]
dr̄

and

Ψ2

(
λ† + ε

)
=∫ R

1

ψ(r̄, λ† + ε)e−(λ†+ε)πR2
[(

2πR2 + ξ2 (r̄)
)
− eξ1(r̄)(λ†+ε) (2πR2 + ξ2 (r̄)− ξ1 (r̄)

)]
dr̄

= e−επR
2

∫ R

1

ψ(r̄, λ†)e−λ
†πR2

e−ε(πR
2+ξ2(r̄))


(πR2 + ξ2 (r̄))−

eξ1(r̄)(λ†+ε) (πR2 + ξ2 (r̄)− ξ1 (r̄))−

πR2
(
e(λ†+ε)ξ1(r̄) − 1

)
 dr̄

= e−(ε+λ†)πR2

∫ R

1

ψ(r̄, λ†)e−ε(πR
2+ξ2(r̄))

 (πR2 + ξ2 (r̄))−

eξ1(r̄)(λ†+ε) (πR2 + ξ2 (r̄)− ξ1 (r̄))

 dr̄

︸ ︷︷ ︸
Ψ1(λ†)

− e−(ε+λ†)πR2

∫ R

1

ψ(r̄, λ†)e−ε(πR
2+ξ2(r̄))πR2

(
1− e(λ†+ε)ξ1(r̄)

)
dr̄,

which leads to
∣∣Ψ2(λ† + ε)

∣∣ < ∣∣Ψ1(λ† + ε)
∣∣, for any ε > 0, concluding that one

unique solution lies within λS ∈
[
λ−Ψ1

,∞
)
, i.e., (iii).
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B.3 Proof of (4.10)

From the conditioned analytical SCDP, we obtain

GSCDP
(
λS
)

=
(

1− e−λSπR2
)
E

e− ρ̃

PSr̄−α

(∑|I|
i=0 P

S|hi|2r−αi +
∑|Ī|
ī=0

PS|hī|
2r−α
ī

+
∑|IM|
m=0 PM|hm|2r−αm +W

)
a
=
(

1− e−λSπR2
)
×

Er̄

EI+Ī,r,|h|2

[
e−ρ̃r̄

α
∑I+Ī
i=0 |hi|

2r−αi

∣∣∣∣r̄]︸ ︷︷ ︸
LI+Ī(ρ̃r̄α)

EIM,r,|h|2

[
e−

PMρ̃r̄α

PS

∑|IM|
m=0 |hm|

2r−αm

∣∣∣∣r̄
]

︸ ︷︷ ︸
LIM

(
PMρ̃r̄α

PS

)
e−

ρ̃

PSr̄−α
W

 ,
(B.7)

where in (a) the inner and outer CSA interferers are considered as a single PPP,

and the interference contributions are expressed as the Laplace functionals of the

SBS and MBS tiers. Regarding LI+Ī (s), it can be retrieved as

LI+Ī (s) = EI+Ī,r,|h|2

[
e
−s
(∑|I+Ī|

ī=0
|hī|

2r−α
ī

)]
a
= EI+Ī

|I+Ī|∏
ī=0

Er,|h|2
[
e−s|h|

2r−α
]

b
= EI+Ī

|I+Ī|∏
ī=0

Er
[

1

1 + sr−α

]
c
= exp

(
−2πλS

∫ ∞
r̄

[
1− 1

1 + sr−α

]
r dr

)
,

where (a) is derived from the independence property for a PPP, (b) is the result

of averaging out the small-scale Rayleigh distributed fading, whose power gain is

a standard exponential random variable |h|2 ∼ exp(1) and (c) stands as the pgfl

of the interfering process φI+Ī . For what concerns LIM , we have

LIM (s) = EIM,r,|h|2

e−s
(∑|IM|

ī=0
|hī|

2r−α
ī

) = exp

(
−2πλM

∫ ∞
0

[
1− 1

1 + sr−α

]
r dr

)
,
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which follows from the same steps in the derivation of LI+Ī (s). By integrating over

the distribution of the link distance from the typical user to its closest network’s

node, i.e., f (r̄) = 2πr̄λS exp
(
−λSπr̄2

)
, we have

GSCDP
(
λS
)

=
(

1− e−λSπR2
)∫ R

1

2πr̄λSe−λ
Sπr̄2LI+Ī (s)

∣∣∣
s=ρ̃r̄α

LIM (s)
∣∣∣
s=PMρ̃r̄α

PS

e−
ρ̃W r̄α

PS dr̄

= 2πλS
(

1− e−λSπR2
)∫ R

1

r̄e−λ
S(πr̄2+ξ3(r̄))LIM (s)

∣∣∣
s=PMρ̃r̄α

PS

e−
ρ̃W r̄α

PS dr̄,

with ξ3 (r̄) = 2π
∫∞
r̄

[
1− 1

1+ρ̃r̄αr−α

]
r dr.

B.4 Theorem 8 applied to GSCDP

The derivative of the metric GSCDP
(
λS
)

is simply obtained as

∂GSCDP

∂λS

(
λS
)

= 2π

∫ R

1

r̄e−
ρ̃W r̄α

PS LIM

(
PMρ̃r̄α

P S

)(
e−λ

S(πr̄2+ξ3(r̄)) − e−λS(πR2+πr̄2+ξ3(r̄))
)
dr̄−

2πλS

∫ R

1

r̄e−
ρ̃W r̄α

PS LIM

(
PMρ̃r̄α

P S

) (πr̄2 + ξ3 (r̄)) e−λ
S(πr̄2+ξ3(r̄))−

(πR2 + πr̄2 + ξ3 (r̄)) e−λ
S(πR2+πr̄2+ξ3(r̄))

 dr̄,

(B.8)

where ξ3 (r̄) = 2π
∫∞
r̄

[
1− 1

1+ρ̃r̄αr−α

]
r dr. It is easy to notice from (B.8) that

the first solution (i) does not hold, i.e., ∂GSCDP

∂λS (0) > 0, concluding the stationary

points can be found for λS > 0. The problem of finding the zeros of the derivative

is translated to the search of the intersections by defining ΨSCDP
1 and ΨSCDP

2 as

∂GSCDP

∂λS

(
λS
)

= 0→ ΨSCDP
1

(
λS
)

= ΨSCDP
2

(
λS
)
→∫ R

1

r̄e−
ρ̃W r̄α

PS LIM

(
PMρ̃r̄α

P S

)(
e−λ

S(πr̄2+ξ3(r̄)) − e−λS(πR2+πr̄2+ξ3(r̄))
)
dr̄ =

λS

∫ R

1

r̄e−
ρ̃W r̄α

PS LIM

(
PMρ̃r̄α

P S

) (πr̄2 + ξ3 (r̄)) e−λ
S(πr̄2+ξ3(r̄))−

(πR2 + πr̄2 + ξ3 (r̄)) e−λ
S(πR2+πr̄2+ξ3(r̄))

 dr̄,

(B.9)
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where it can be noted ΨSCDP
1

(
λS
)
≥ 0, ∀λS ∈ [0,∞). The following function

detects the density driven behaviour of ΨSCDP
2

(
λS
)

λΨSCDP
2

(r̄) = ln

(
πR2 + πr̄2 + ξ3 (r̄)

πr̄2 + ξ3 (r̄)

)
1

πR2
, (B.10)

from which the following thresholds can be obtained

λ−
ΨSCDP

2
= minλΨSCDP

2
(r̄) = ln

(
πR2 + πr̄2 + ξ3 (r̄)

πr̄2 + ξ3 (r̄)

)
1

πR2

∣∣∣∣
r̄=R

,

λ+
ΨSCDP

2
= maxλΨSCDP

2
(r̄) = ln

(
πR2 + πr̄2 + ξ3 (r̄)

πr̄2 + ξ3 (r̄)

)
1

πR2

∣∣∣∣
r̄=1

,

in such a way ΨSCDP
2

(
λS
)
< 0 for λS ∈

[
0, λ−

ΨSCDP
2

)
and ΨSCDP

2

(
λS
)
> 0 for

λS ∈
(
λ+

ΨSCDP
2

,∞
)

. The monotonic decreasing trend of λΨSCDP
2

(r̄) with respect to

r̄ is demonstrated in Appendix B.7. Given the expressions for λ−
ΨSCDP

2
and λ+

ΨSCDP
2

,

it can be concluded that the intersection in (B.9) lies within λ+
ΨSCDP

2
≤ λ̄? < ∞.

From λS = λ+
ΨSCDP

2
we can increase λS until a solution λ† is found

ΨSCDP
1

(
λ†
)

= ΨSCDP
2

(
λ†
)
.

It is legitimate to state that the intersection point λ† occurs with ΨSCDP
1 (λ†+ε) > 0

and ΨSCDP
2 (λ†+ ε) > 0 for ε ∈ [0,∞), since λ† > λ+

ΨSCDP
2

. The following limits hold

lim
λS→∞

ΨSCDP
1

(
λS
)

= 0+,

lim
λS→∞

ΨSCDP
2

(
λS
)

= 0+,
(B.11)

with ΨSCDP
1

(
λS
)

attaining the zero more rapidly than ΨSCDP
2

(
λS
)
. From (B.11),

the solution (ii) can be easily observed as the two functions get arbitrarily close to

each other as λS is increase. From the previous analysis we know that ΨSCDP
1

(
λS
)

is an upper-bound for ΨSCDP
2

(
λS
)

when 0 < λS < λ+
ΨSCDP

2
. With this in mind,

it is necessary and sufficient to prove that
∣∣ΨSCDP

1 (λ† + ε)
∣∣ < ∣∣ΨSCDP

2 (λ† + ε)
∣∣ for

ε ∈ [0,∞) such that it can be concluded ΨSCDP
1 (λ†) and ΨSCDP

2 (λ†) have one only
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intersection within λ+
ΨSCDP

2
< λS <∞. Hence,

ΨSCDP
1

(
λ† + ε

)
= e−ε

∫ R

1

r̄e−
ρ̃W r̄α

PS LIM

(
PMρ̃r̄α

P S

)(
e−λ

†(πr̄2+ξ3(r̄)) − e−λ†(πR2+πr̄2+ξ3(r̄))
)
dr̄

= e−εΨSCDP
1 (λ†),

and

ΨSCDP
2

(
λ† + ε

)
=
(
λ† + ε

) ∫ R

1

r̄e−
ρ̃W r̄α

PS LIM

(
PMρ̃r̄α

P S

) (πr̄2 + ξ3 (r̄)) e−(λ†+ε)(πr̄2+ξ3(r̄))−

(πR2 + πr̄2 + ξ3 (r̄)) e−(λ†+ε)(πR2+πr̄2+ξ3(r̄))

 dr̄

= λ†e−ε
∫ R

1

r̄e−
ρ̃W r̄α

PS LIM

(
PMρ̃r̄α

P S

) (πr̄2 + ξ3 (r̄)) e−λ
†(πr̄2+ξ3(r̄))−

(πR2 + πr̄2 + ξ3 (r̄)) e−λ
†(πR2+πr̄2+ξ3(r̄))

 dr̄

+ εe−ε
∫ R

1

r̄e−
ρ̃W r̄α

PS LIM

(
PMρ̃r̄α

P S

) (πr̄2 + ξ3 (r̄)) e−λ
†(πr̄2+ξ3(r̄))−

(πR2 + πr̄2 + ξ3 (r̄)) e−λ
†(πR2+πr̄2+ξ3(r̄))

 dr̄

= e−εΨSCDP
2

(
λ†
) (

1 +
ε

λ†

)
.

Knowing that, by assumption, equality holds ΨSCDP
1 (λ†) = ΨSCDP

2 (λ†), it can be

obtained ∣∣e−εΨSCDP
1 (λ†)

∣∣ < ∣∣∣e−εΨSCDP
2

(
λ†
) (

1 +
ε

λ†

)∣∣∣
1 <

∣∣∣(1 +
ε

λ†

)∣∣∣ ,
given that ε

λ†
> 0. It is demonstrated that one unique solution lies within λ+

ΨSCDP
2

<

λ̄? <∞, i.e., (iii).

B.5 Proof of Theorem 9

Using Theorem 8 for GSCDP
(
λS
)
, we have λ̄? > λ+

ΨSCDP
2

> λ−
ΨSCDP

2
. It can be

demonstrated that λΨSCDP
2

≥ λΨ2 , (where λΨSCDP
2

is from (B.10) and λΨ2 is derived
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from (B.5)) so

ln

(
πR2 + πr̄2 + ξ3 (r̄)

πr̄2 + ξ3 (r̄)

)
1

πR2
≥ ln

(
πR2 + ξ2 (r̄)

πR2 + ξ2 (r̄)− ξ1 (r̄)

)
1

ξ1 (r̄)(
πr̄2 + ξ3 (r̄)

πR2 + πr̄2 + ξ3 (r̄)

)−ξ1(r̄)

≥
(
πR2 + ξ2 (r̄)− ξ1 (r̄)

πR2 + ξ2 (r̄)

)−πR2

,

which follows from knowing ξ1 (r̄) > 0 ∀r̄ ∈ [1, R) and by applying the exponential

function on both sides. As the exponent of the left hand-side can be upper-bounded

as ξ (r̄) ≤ π(R2 − r̄2), it is necessary to prove that

(
πr̄2 + ξ3 (r̄)

πR2 + πr̄2 + ξ3 (r̄)

)−π(R2−r̄2)

≥
(
πR2 + ξ2 (r̄)− ξ1 (r̄)

πR2 + ξ2 (r̄)

)−πR2

(
πR2 + πr̄2 + ξ3 (r̄)

πr̄2 + ξ3 (r̄)

)−πr̄2

≥
(
πR2 + πr̄2 + ξ3 (r̄)

πR2 + ξ2 (r̄)

)−πR2

,

where some terms been simplified given that πR2 + ξ2 (r̄) − ξ1 (r̄) = πr̄2 + ξ3 (r̄).

Moreover, knowing that πR2 + ξ2 (r̄) > πr̄2 + ξ3 (r̄) ∀r̄ ∈ [1, R), the inequality

holds and thus the upper-bound λΨSCDP
2

≥ λΨ2 is strictly valid ∀r̄ ∈ [1, R) with the

equality standing at r̄ = R.

The direct consequence of this upper-bound is that, given λ̄? > λ+
ΨSCDP

2
>

λ+
Ψ2

, both Ψ1

(
λΨSCDP

2
(r̄)
)
< 0 and Ψ2

(
λΨSCDP

2
(r̄)
)
< 0, previously defined in

(B.3). Consequently, it is necessary to prove the condition
∣∣∣Ψ2

(
λΨSCDP

2
(r̄)
)∣∣∣ <∣∣∣Ψ1

(
λΨSCDP

2
(r̄)
)∣∣∣ to demonstrate that the intersection ΨSCDP

1

(
λ̄?
)

= ΨSCDP
2

(
λ̄?
)

occurs for λ̄? > λ?. The indicated condition is easily satisfied if Ψ2

(
λΨSCDP

2
(r̄)
)

stands as an upper-bound of Ψ1

(
λΨSCDP

2
(r̄)
)

. To begin with, we write

Ψ1

(
λΨSCDP

2
(r̄)
)

=

∫ R

1

ψ(r̄)

(
πR2 + πr̄2 + ξ3 (r̄)

πr̄2 + ξ3 (r̄)

)πR2+ξ2(r̄)

πR2

×(πR2 + ξ2 (r̄)
)
−
(
πR2 + πr̄2 + ξ3 (r̄)

πr̄2 + ξ3 (r̄)

)− ξ1(r̄)

πR2 (
πR2 + ξ2 (r̄)− ξ1 (r̄)

) dr̄,

(B.12)
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Ψ2

(
λΨSCDP

2
(r̄)
)

=

∫ R

1

ψ(r̄)

(
πR2 + πr̄2 + ξ3 (r̄)

πr̄2 + ξ3 (r̄)

)πR2+ξ2(r̄)

πR2
(
πR2 + πr̄2 + ξ3 (r̄)

πr̄2 + ξ3 (r̄)

)−1

×(2πR2 + ξ2 (r̄)
)
−
(
πR2 + πr̄2 + ξ3 (r̄)

πr̄2 + ξ3 (r̄)

)− ξ1(r̄)

πR2 (
2πR2 + ξ2 (r̄)− ξ1 (r̄)

) dr̄,

(B.13)

with

ψ(r̄) = r̄
e−

ρ̃W r̄α

PS

ξ1 (r̄)
LIM

(
PMρ̃r̄α

P S

)
.

From (B.12) and (B.13), it is necessary and sufficient for the integrand function of

Ψ2

(
λΨSCDP

2
(r̄)
)

to be a lower-bound of the integrand function of Ψ1

(
λΨSCDP

2
(r̄)
)

to validate the inequality on the absolute values of the two function. This occurs

for(2πR2 + ξ2 (r̄)
)
−
(
πR2 + πr̄2 + ξ3 (r̄)

πr̄2 + ξ3 (r̄)

)− ξ1(r̄)

πR2 (
2πR2 + ξ2 (r̄)− ξ1 (r̄)

)( πr̄2 + ξ3 (r̄)

πR2 + πr̄2 + ξ3 (r̄)

)

>

(πR2 + ξ2 (r̄)
)
−
(
πR2 + πr̄2 + ξ3 (r̄)

πr̄2 + ξ3 (r̄)

)− ξ1(r̄)

πR2 (
πR2 + ξ2 (r̄)− ξ1 (r̄)

) ,
which after some straight-forward steps, it is equivalent to the following inequality

πR2

1−
(
πR2 + πr̄2 + ξ3 (r̄)

πr̄2 + ξ3 (r̄)

)− ξ(r̄)

πR2

( πr̄2 + ξ3 (r̄)

πR2 + πr̄2 + ξ3 (r̄)

)
> 0. (B.14)

It is easy to see (B.14) always holds as the product of three non-negative compo-

nents.
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B.6 Proof of Monotonic Decreasing Trend for

λΨ1 (r̄) and λΨ2 (r̄)

Consider the derivative performed over generic functions

∂

∂r̄

(
ln

(
f (r̄)

g (r̄)

)
1

h (r̄)

)
=

h(r̄) ∂
∂r̄
f(r̄)

f(r̄)
− ln

(
f(r̄)
g(r̄)

)
∂
∂r̄
h (r̄)− h(r̄) ∂

∂r̄
g(r̄)

g(r̄)

h (r̄)2 . (B.15)

It is straight-forward to observe that (B.15) is always negative whether the follow-

ing inequality holds

h (r̄)

(
∂
∂r̄
f (r̄)

f (r̄)
−

∂
∂r̄
g (r̄)

g (r̄)

)
< ln

(
f (r̄)

g (r̄)

)
∂

∂r̄
h (r̄) . (B.16)

The left side of the expression (B.16) is expressed with the terms of λΨ1 (r̄) and

the following result is obtained

ξ1 (r̄)

(
∂
∂r̄
ξ2 (r̄)

πR2 + ξ2 (r̄)
−

∂
∂r̄
ξ2 (r̄)

πR2 + ξ2 (r̄)− ξ1 (r̄)
+

∂
∂r̄
ξ1 (r̄)

πR2 + ξ2 (r̄)− ξ1 (r̄)

)
,

where it is easy to notice

ξ1 (r̄)

(
∂
∂r̄
ξ2 (r̄)

πR2 + ξ2 (r̄)
−

∂
∂r̄
ξ2 (r̄)

πR2 + ξ2 (r̄)− ξ1 (r̄)

)
< 0,

given ξ1 (r̄) > 0 and ∂
∂r̄
ξ2 (r̄) > 0. With this in mind, the focus is now on the right

side of the expression (B.16) to stand as a positive quantity, with the residual term

from (B.6) included as

∂

∂r̄
ξ1 (r̄)

(
ln

(
πR2 + ξ2 (r̄)

πR2 + ξ2 (r̄)− ξ1 (r̄)

)
− ξ1 (r̄)

πR2 + ξ2 (r̄)− ξ1 (r̄)

)
> 0, (B.17)

such that, given ∂
∂r̄
ξ1 (r̄) < 0, the inequality holds when

ln

(
πR2 + ξ2 (r̄)

πR2 + ξ2 (r̄)− ξ1 (r̄)

)
− ξ1 (r̄)

πR2 + ξ2 (r̄)− ξ1 (r̄)
< 0.
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The logarithmic function can be upper-bounded as ln(x) ≤ x−1√
x

. Therefore, (B.17)

can be considered to be satisfied whether the following is true

ξ1(r̄)
πR2+ξ2(r̄)−ξ1(r̄)√

πR2+ξ2(r̄)
πR2+ξ2(r̄)−ξ1(r̄)

− ξ1 (r̄)

πR2 + ξ2 (r̄)− ξ1 (r̄)
< 0

which is easy to notice it is true since√
πR2 + ξ2 (r̄)

πR2 + ξ2 (r̄)− ξ1 (r̄)
> 1.

To fully complete this proof it is necessary to demonstrate the assumptions ∂
∂r̄
ξ1 (r̄) <

0 and ∂
∂r̄
ξ2 (r̄) > 0. To demonstrate the decreasing slope of ξ1 (r̄), Leibniz integral

rule is resorted and the following result is achieved

∂

∂r̄
ξ1 (r̄) = − r̄

1 + ρ̃
−
∫ R

r̄

αρ̃rα+1r̄α−1

(1 + ρ̃r̄αr−α)2 dr < 0 ∀ r̄,

which can be easily seen to always stand negative value. The same technique can

not be applied to compute the derivative of ξ2 (r̄) as the integral function has an

infinite upper bound. Given r̄1 < r̄2, it can be written

ξ2 (r̄1)− ξ2 (r̄2) = 2π

∫ ∞
R

[
1− 1

ρ̃r̄α1 r
−α + 1

]
r dr − 2π

∫ ∞
R

[
1− 1

ρ̃r̄α2 r
−α + 1

]
r dr

= 2π

∫ ∞
R

[
1− 1

ρ̃r̄α1 r
−α + 1

]
r −

[
1− 1

ρ̃r̄α2 r
−α + 1

]
r dr

= 2π

∫ ∞
R

ρ̃r−α+1 (r̄α1 − r̄α2 )

(ρ̃r̄α2 r
−α + 1) (ρ̃r̄α1 r

−α + 1)
dr < 0, ∀ r̄1 < r̄2,

which confirms ξ2 (r̄) is a strictly monotonic increasing function for r̄. The same

study of function can be easily extended to λΨ2 (r̄), with the same final conclusions.
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B.7 Proof of Monotonic Decreasing Trend for

λΨSCDP
2

(r̄)

The derivative of λΨSCDP
2

(r̄) is

∂

∂r̄
λΨSCDP

2
(r̄) =

∂
∂r̄ (πR2+πr̄2+ξ3(r̄))
πR2+πr̄2+ξ3(r̄)

−
∂
∂r̄ (πr̄2+ξ3(r̄))
πr̄2+ξ3(r̄)

πR2
, (B.18)

such that λΨSCDP
2

(r̄) is monotonic decreasing when the numerator in (B.18) is

negative. Therefore, the monotonic decreasing slope of λΨSCDP
2

(r̄) depends on the

condition

(πr̄2 + ξ3 (r̄)) ∂
∂r̄

(πR2 + πr̄2 + ξ3 (r̄))− (πR2 + πr̄2 + ξ3 (r̄)) ∂
∂r̄

(πr̄2 + ξ3 (r̄))

(πR2 + πr̄2 + ξ3 (r̄)) (πr̄2 + ξ3 (r̄))
< 0.

Given that (πR2 + πr̄2 + ξ3 (r̄)) > 0 and (πr̄2 + ξ3 (r̄)) > 0, the focus is now on

the sign of the numerator such that

(
πr̄2 + ξ3 (r̄)

) ∂
∂r̄

(
πR2 + πr̄2 + ξ3 (r̄)

)
−
(
πR2 + πr̄2 + ξ3 (r̄)

) ∂
∂r̄

(
πr̄2 + ξ3 (r̄)

)
< 0(

πr̄2 + ξ3 (r̄)
)(

2πr̄ +
∂

∂r̄
(ξ3 (r̄))

)
−
(
πR2 + πr̄2 + ξ3 (r̄)

)(
2πr̄ +

∂

∂r̄
(ξ3 (r̄))

)
< 0(

πr̄2 + ξ3 (r̄)
)
−
(
πR2 + πr̄2 + ξ3 (r̄)

)
= −πR2 < 0,

from which it can be concluded that λΨSCDP
2

(r̄) is strictly monotonic decreasing

with a constant rate.
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C.1 Decoupling Interfering Terms

Given two PPPs defined over the same portion of space which refer to the received

power from LOS and NLOS terms, φL and φnL respectively, the resulting interfering

power can be developed as the summation of a term which refers to the whole

received power as if no differentiation is conducted on the kind of wireless link and

a second term which takes into account the contribution from the LOS term. In

particular, the LOS contribution is dependent to the power of full NLOS network.

That is,

InL + IL =
∑
i∈φnL

|hi|2 r−αi +
∑
i∈φL

|h′i|
2
r−αi

=
∑
i∈φnL

(X2 + Y 2)r−αi +
∑
i∈φL

((
√

2σhX + µh)
2 + (
√

2σhY )2)r−αi

=
∑
i∈φnL

(X2 + Y 2)r−αi +
∑
i∈φL

(2σ2X2 + 2σ2
hY

2 + 2
√

2µhσhX + µ2
h)r
−α
i

=
∑
i∈φnL

(X2 + Y 2)r−αi +
∑
i∈φL

((1− 1 + 2σ2
h)(X

2 + Y 2) + 2
√

2µhσhX + µ2
h)r
−α
i

a
=
∑
i∈φ

(X2 + Y 2)r−αi︸ ︷︷ ︸
I

+
∑
i∈φL

(
− k

k + 1
(X2 + Y 2) +

2
√
k

k + 1
X +

k

k + 1

)
r−αi︸ ︷︷ ︸

∆IL|I

,

where (a) comes from substituting the values of σh and µh with the k-factor and

from re-arranging the terms of the two sums. The obtained derivation stands as
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the separated contributions from a full NLOS network I and the contribution given

by its LOS components ∆IL|I.
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[56] Ejder Baştuǧ, Mehdi Bennis, Marios Kountouris, and Mérouane Debbah.

Cache-enabled small cell networks: Modeling and tradeoffs. EURASIP Jour-

nal on Wireless Communications and Networking, 2015(1):1–11, 2015.

[57] Junliang Ye, Xiaohu Ge, Guoqiang Mao, and Yi Zhong. 5G ultradense net-

works with nonuniform distributed users. IEEE Transactions on Vehicular

Technology, 67(3):2660–2670, 2017.

[58] Antonis Gotsis, Stelios Stefanatos, and Angeliki Alexiou. Ultradense net-

works: The new wireless frontier for enabling 5g access. IEEE Vehicular

Technology Magazine, 11(2):71–78, 2016.

[59] 3GPP. Technical specification group radio access network; evolved universal

terrestrial radio access (e-utra); further advancements for e-utra physical layer

aspects. Technical report, 3GPP TS 36.211, version 12.9.0, Release 124, 2016.

[60] Gaurav Nigam, Paolo Minero, and Martin Haenggi. Coordinated multipoint

joint transmission in heterogeneous networks. IEEE Transactions on Com-

munications, 62(11):4134–4146, 2014.

[61] Gaurav Nigam, Paolo Minero, and Martin Haenggi. Coordinated multipoint in

heterogeneous networks: A stochastic geometry approach. In IEEE Globecom

Workshops (GC Wkshps), pages 145–150. IEEE, 2013.

[62] P. Lin, K. S. Khan, Qingyang Song, and A. Jamalipour. Caching in heteroge-

neous ultradense 5G networks: A comprehensive cooperation approach. IEEE

Vehicular Technology Magazine, 14:22–32, 2019.

161



REFERENCES

[63] GJ Foschini, K Karakayali, and RA Valenzuela. Coordinating multiple

antenna cellular networks to achieve enormous spectral efficiency. IEE

Proceedings-Communications, 153(4):548–555, 2006.

[64] Larry Armijo. Minimization of functions having lipschitz continuous first

partial derivatives. Pacific Journal of mathematics, 16(1):1–3, 1966.

[65] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge

university press, 2004.

[66] Yuzhou Li, Yu Zhang, Kai Luo, Tao Jiang, Zan Li, and Wei Peng. Ultra-dense

hetnets meet big data: Green frameworks, techniques, and approaches. IEEE

Communications Magazine, 56(6):56–63, 2018.

[67] Yuan Wu, Li Ping Qian, Jianchao Zheng, Haibo Zhou, and Xuemin Sher-

man Shen. Green-oriented traffic offloading through dual connectivity in fu-

ture heterogeneous small cell networks. IEEE Communications Magazine,

56(5):140–147, 2018.

[68] Jaesung Park and Heejung Byun. Autonomous transmission power decision

strategy for energy efficient operation of a dense small cell network. Wireless

Communications and Mobile Computing, 2018, 2018.

[69] Yanzan Sun, Han Xu, Shunqing Zhang, Yating Wu, Tao Wang, Yong Fang,

and Shugong Xu. Joint optimization of interference coordination parameters

and base-station density for energy-efficient heterogeneous networks. Sensors,

19(9):2154, 2019.

[70] Xiaofei Wang, Athanasios V Vasilakos, Min Chen, Yunhao Liu, and

Ted Taekyoung Kwon. A survey of green mobile networks: Opportunities

and challenges. Mobile Networks and Applications, 17(1):4–20, 2012.

[71] Sofie Lambert, Prasanth Ananth, Peter Vetter, Ka-Lun Lee, Jie Li, Xin Yin,

Hungkei Chow, Jean-Patrick Gelas, Laurent Lefèvre, Dominique Chiaroni,
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