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Abstract

An efficient computational method to perform fully atomistic mixed quantum/classical

non-adiabatic molecular dynamics in nano-scale organic semiconductors is presented and

its implementation discussed. The methodology is termed fragment orbital-based surface

hopping (FOB-SH) and rests on a DFT-parametrized tight-binding representation of the

Hamiltonian (updated on-the-fly along the molecular dynamics) as well as an efficient cal-

culation of nuclear gradients to propagate the coupled electron-nuclear dynamics. Common

algorithmic extensions to the original surface hopping algorithm, such as the adjustment of

the velocities along the non-adiabatic vectors upon successful non-adiabatic transitions and

a decoherence correction, allow FOB-SH to reach total energy conservation, detailed balance

and internal consistency. Further improvements and optimizations applied to FOB-SH to

deal with a high density of electronic states characterizing condensed phase systems are dis-

cussed. Trivial crossing detection and a removal of decoherence correction-induced spurious

charge transfers are particularly important for accurate dynamics and the convergence of

charge carrier mobility and wavefunction delocalization with increasing system size. The ap-

plication of FOB-SH to the calculation of charge mobilities and transport mechanism across

the 2D high-mobility planes of experimentally well-known molecular crystals is presented.
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1 Introduction

Many physical processes require a theoretical treatment that goes beyond the Born-Oppenheimer

or adiabatic approximation. Photophysical processes, photochemical reactions, electron and

exciton transfer are well-known examples. Over the past few decades a plethora of different

non-adiabatic dynamics methods have been developed and the choice depends, as usual,

on the particular question under investigation and, in particular, on the size of the system

under study.1–3 Fully quantum dynamical methods treating both electrons and nuclei at the

quantum level are available, e.g. multi-configuration time-dependent Hartree (MCTDH)4

and its multi-layer version,5,6 or full multiple spawning (FMS).7 These methods can give ac-

curate results for small photoactive molecules. For larger systems approximations have to be

made but they can often be improved, sometimes systematically. A common approximation

is the classical treatment of the nuclei leading to so-called mixed quantum-classical non-

adiabatic molecular dynamics methods (MQC-NAMD), where the electronic wavefunction

is propagated quantum mechanically in the time dependent potential of the classical nuclei.

Ehrenfest dynamics8 and Fewest Switches Surface Hopping9–12 are prominent examples, and

another method, the classical limit13 of exact factorization14 has quietly joined the team in

recent years.

MQC-NAMD methods still require relatively efficient solvers for the electronic structure

problem, e.g. time-dependent density functional theory (TDDFT).15,16 While the combi-

nation of MQC-NAMD with TDDFT offers a powerful approach for the study of the pho-

tophysics and chemistry of medium-sized systems, typically molecules or small clusters of

molecules in the gas phase, it becomes too expensive for large nano-scale or condensed phase

materials. Here one usually resorts to quantum mechanics/molecular mechanics (QM/MM)

or a QM/continuum embedding methodology where MQC-NAMD/TDDFT is only done in

the QM region. Such embedding approaches are often very useful but they are only suitable

in situations where the electronic excitation is relatively local, i.e. confined to one or a few

molecules. There are, however, very important electronic processes that are not, or cannot
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a priori be assumed to be local. In that case all parts of the system need to be treated as

electronically active and a separation into QM and MM parts is no longer possible. Examples

are charge and exciton transport as well as exciton dissociation in organic materials with

very little structural and energetic disorder. Such materials are of interest for next genera-

tion organic field effect transistors, solar cells and light emitting diodes. Another example is

electron transport across biomolecular junctions where the charge mediating orbitals may be

delocalized over the whole biomolecule and, in addition, the coupling to the electrode needs

to be included at the QM level.

Several cost-effective strategies have been devised to deal with such scenarios. Some

of the most promising are the use of density-functional tight-binding (DFTB) methods

(e.g. self-consistent charge/density functional tight binding (SCC-DFTB)17,18) and other

semiempirical electronic structure methods (e.g. Pariser-Parr-Pople (PPP) Hamiltonians19

and fragment molecular orbital methods (FMO)20), which significantly reduce the computa-

tional complexity while maintaining reasonable accuracy. Depending on the problem under

investigation, the atomic resolution can be given up altogether and non-adiabatic dynamics

is done for a few selected nuclear degrees of freedom in combination with model electronic

Hamiltonians, e.g. Holstein-Peierl Hamiltonian for charge transport.21,22

Our group has recently developed a semiempirical all-atom MQC-NAMD method termed

fragment orbital-based surface hopping (FOB-SH), that is geared towards highly efficient

time propagation of charge carriers or excitons in “soft” nano-scale materials and biomolecules.

The FOB-SH methodology rests on a DFT-parametrized tight-binding representation of the

electronic Hamiltonian that is updated on-the-fly along the MQC molecular dynamics tra-

jectory to incorporate local and non-local electron-phonon couplings and their fluctuations.

This approach enables fast (yet sufficiently accurate) calculation of the important quantities,

such as site energies, electronic couplings and related nuclear gradients, in condensed matter

systems subject to strong thermal fluctuations. Polaronic and localization/delocalization of

charges and excitons are paramount to accurately describe transport properties and wave-
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function delocalization, are naturally included in this description. Until now we have applied

FOB-SH to charge transport in organic crystals and we will frequently refer to this problem

when explaining our methodology in subsequent sections. Yet, FOB-SH provides a general

framework that can be relatively straightforwardly extended to exciton transport and exciton

dissociation to charge carriers, which is currently a work in progress.

In Section 2 we will introduce the tight-binding molecular orbital representation of the

electronic Hamiltonian used in FOB-SH, exemplified on π−conjugated organic molecules,

and explain the efficient calculation of the matrix elements, site energy and electronic cou-

pling, respectively. In Section 3 we introduce the working equations of fewest switches surface

hopping and present expressions for all the quantities needed to do FOB-SH dynamics, in-

cluding non-adiabatic coupling elements and vectors, hopping probability and nuclear forces

on the manifold of electronic states. To keep the presentation not too cumbersome with

regard to technical details, we shall refer to our recent publications23–28 for some derivations.

Important properties that any surface hopping molecular dynamics simulations should fulfil

are defined including energy conservation, detailed balance and internal consistency. In Sec-

tion 4 we present the tricks of the trade, improvements to Tully’s original fewest switches

surface hopping algorithm, that make FOB-SH work. These are trivial crossing detection, de-

coherence correction and treatment of decoherence-correction induced spurious (long-range)

charge transfer. In this section we also explain how we could speed-up our original imple-

mentation at virtually no loss in accuracy. This enabled us to carry out FOB-SH simulation

of charge transport in very large systems of more than 1,000 organic molecules (≈100,000

atoms) and to converge charge mobility, as described in Section 5. In this section we also

briefly explain the new picture of charge transport in organic crystals that has emerged

from FOB-SH simulations. In Section 6 we conclude with an outlook on ongoing and future

extensions of FOB-SH.
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2 Coarse-graining of electronic structure

2.1 Hamiltonian and basis set

The electronic structure of typical organic semiconductors exhibits narrow bands across

the entire Brillouin zone and a minimal band dispersion. In fact, the interaction between

different molecular sites of the system (electronic coupling) is usually small, in the range

of 10-200 meV. By analysing a set of 40,000 molecular semiconductors extracted from the

Cambridge Structural Database (CSD), it was recently found in Ref.29 that the median

energy separation between HOMO and HOMO-1 energy levels is 0.66 eV (i.e. much larger

than typical electronic coupling values). Hence, it is possible to conclude that band energies

do not overlap effectively and that the electronic Hamiltonian constructed in the space of

the relevant frontier orbitals of the molecules forming the crystal e.g. highest occupied

molecular orbital (HOMO) for hole transport (or lowest unoccupied orbital (LUMO) for

electron transport), φk, is expected to give a good approximation to the true band structure

of the highest valence (or lowest conduction band).30–32 As an example we show the rubrene

crystal in Figure 1(A), where the HOMO band state of the crystal (Figure 1(C)) closely

resembles a linear combination of HOMO orbitals of single molecules (Figure 1(B)): the

molecular identity is preserved in the crystal.

These considerations motivate the use of simplified one-particle electronic Hamiltonians

for hole or excess electron transport,

H =
∑
k

εk|φk〉〈φk|+
∑
k 6=l

Hkl|φk〉〈φl| (1)

where, φk=φk(R(t)) is the orthogonalized HOMO (LUMO) of molecule k for hole (electron)

transport, R(t) are the time-dependent nuclear coordinates, εk=Hkk(R(t)) is the site energy,

that is, the potential energy of the state with the hole (excess electron) located at site k

and Hkl =Hkl(R(t)) is the electronic coupling between φk and φl. All Hamiltonian matrix
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elements, i.e. site energies and couplings, depend on the nuclear coordinates which, in turn,

depend on time, R=R(t) as determined by the nuclear dynamics (see Section 3).

The orthogonalized basis, {φl}, used to represent the Hamiltonian in Eq. 1, is obtained

via Löwdin orthogonalization of the non-orthogonal orbital basis, {ϕk}, whose elements are

the HOMO (LUMO) orbitals of isolated fragments (calculated as explained in Section 2.2),

φl(R) =
M∑
k=1

Tklϕk(R) (2)

where Tkl =
[
S−1/2

]
kl

, with S the overlap matrix of the fragment orbital basis set (with

elements [S]kl ≡ S̄kl = 〈ϕk|ϕl〉). The efficient calculation of the overlap matrix and associated

orbital reconstruction along FOB-SH dynamics will be presented in Section 2.2.

2.2 Site energies and electronic couplings

A cornerstone of the FOB-SH is an efficient computation of the electronic tight-binding

Hamiltonian in Eq. 1 (and related forces acting on the atoms of the system).23 The Hamil-

tonian matrix elements are effectively evaluated at each step along the dynamics by using a

combination of parametrized force-field and approximate electronic coupling computations.

This avoids explicit expensive electronic structure calculations and allows the simulation

of charge transport in realistic nano-scale systems over relatively long (picoseconds) time

scales. In particular, the diagonal elements Hkk = 〈φk|H|φk〉, are calculated via force-field

energy contribution where the molecule k is charged and all the other M − 1 molecules

are neutral (with M total number of molecules whose orbitals contribute to form a basis

for Eq. 1). The force-field parameters for the charged state are suitably parametrized to

reproduce the intramolecular reorganization energy from DFT calculations as done, e.g., in

Refs.27,33 for several OSs. The off-diagonal elements Hkl = 〈φk|H|φl〉, that correspond to

the electronic coupling matrix elements, are calculated using the recently developed analytic

overlap method (AOM).34
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The AOM relies on two assumptions: (i) a linear relationship between off-diagonal Hkl

and the overlap S̄kl (overlap between the projected (non-orthogonal) fragment orbitals into

Slater-type functions) and (ii) an analytical expression to calculate S̄kl (see below). The

AOM coupling is written as:

Hkl = CS̄kl (3)

C is a fitting parameter and can be obtained by correlating the overlap S̄kl against DFT

calculations, e.g. scaled fragment orbital DFT (sFODFT)35–37 as done in Refs.,27,34 or

wavefunction-based methods.38 AOM allows the calculation of Hkl for a cost several orders

of magnitude lower than explicit electronic structure calculations.34

In the first step of the parametrization of AOM couplings, the (non-orthogonal) molecular

frontier orbital, ϕk is obtained by DFT calculation on an isolated molecule (HOMO is used

for hole transfer and LUMO for electron transfer). This orbital is then projected on a

minimum Slater basis of p orbitals with optimized Slater decay coefficients as proposed in

Ref.34 For π−conjugated systems, it is usually sufficient to include only one optimized Slater

p−orbital per atom contributing to π−conjugation, in this case:

ϕk =
atoms∑
i∈k

cpπ,ipπ,i (4)

where i runs over all π−conjugated atoms in molecule k and pπ,i is the Slater type orbital p on

atom i, cpπ,i is the corresponding (normalized) expansion coefficient obtained by projection

of the DFT molecular frontier orbital. In this minimum Slater basis the overlap between the

(non-orthogonal) HOMO (LUMO) orbitals (ϕk, ϕl) of two monomers forming a dimer, S̄kl, is

calculated analytically and is very fast due to the small number of basis functions involved:

S̄kl = 〈ϕk|ϕl〉 =
atoms∑
i

atoms∑
j

cpπ,icpπ,j〈pπ,i|pπ,j〉. (5)

The overlap 〈pπ,i|pπ,j〉 can be calculated extremely efficiently using the analytic formulas
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provided by Mulliken.39

The second step in the AOM procedure involves the calculation of electronic couplings to

use as a reference for the parametrization of C on a set of molecular dimer geometries along

MD. We note in passing that the results presented therein are obtained by using reference

couplings from sFODFT calculations.35–38,40 Importantly, good linear correlation in Eq. 3

between S̄kl and Hkl from sFODFT was found for different organic molecules27,34 and the

HAB7- database for electronic couplings.38

Possible shortcomings of AOM arise from the fact that, although atomic orbitals compris-

ing the HOMO (LUMO) follow the motion of the atoms during the dynamics, the expansion

coefficients in Eq. 5 are otherwise frozen. However, some checks indicated that this is a

very good approximation, especially for rigid molecules, where orbitals are stable against

intermolecular vibrations. To improve reconstruction of the orbitals along the dynamics,

for example for flexible molecules, AOM could be supplemented with more sophisticated

interpolation schemes (e.g. machine-learning techniques), nowadays used to develop a new

generation of force-fields.41,42

The quality of the coarse-grained Hamiltonian in Eq. 1 (supplemented with sFODFT

and AOM couplings) can be assessed by comparing the density of its eigenstates (DOS)

against the DOS obtained from Kohn-Sham DFT band structure calculations.28 To this

end, a static electronic Hamiltonian (with zero site energies all coupling the same in a given

direction) of the form of Eq. 1 is constructed and diagonalized for the high-mobility plane

of rubrene, comprised of 5,000 sites and using the atomic coordinates from the experimental

crystal structure. Notably, we find that the DOS of sFODFT and AOM Hamiltonians

(dashed red and green lines respectively) in Figure 1(D) are in good agreement with the

results from standard band structure calculations (performed on the crystallographic unit

cells with k-point sampling as explained in Ref.28) with regards to both peak positions and

bandwidth, thus attesting to the reliability of the Hamiltonian in Eq. 1. When thermal

disorder is included through the fluctuations of the Hamiltonian matrix elements along finite
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temperature trajectories, the DOS becomes much broader (data in solid green lines) and

the sharp band edges change into smooth tails, while the asymmetry in the DOS is still

clearly visible. Temperature-related volume increases (not taken into account here) can

partly reverse this situation and could lead to a decrease in the band width.

The typical asymmetry in the DOS of a given OS is a direct consequence of the coupling

sign relationship characterizing the Hamiltonian of the two dimensional herringbone layer

plane.43,44 This relative sign of the electronic couplings for different crystal pair directions is

of particular importance for the correct description of the electronic band dispersion of OS

solids and, thus, for electronic transport properties and band states delocalization.44 For a

more detailed discussion on why the sign combination is essential for the charge transport

dynamic we refer to Refs.28,43,44 It is important to point out that, in DFT calculations the

relation between electronic coupling Hkl and overlap S̄kl is commonly antisymmetric for OSs,

i.e. C is negative in AOM. When performing excess electron transport from FOB-SH, the site

energies obtained from the force-field correspond to electronic energy levels, hence the sign

of C is the same sign as in DFT calculations, C < 0. For hole transport dynamics, the site

energies obtained from the force-field correspond to hole energy levels and therefore the sign

of C obtained from DFT calculations needs to be inverted in FOB-SH simulations, C → −C

(see also Refs.28,43). Consequently, along FOB-SH dynamics the energy levels for both excess

electron and hole transport are consistently populated according to exp[−Ei/(kBT )] where

Ei are the excess electron or hole energy levels.28

3 FOB-SH: basic equations

3.1 Electronic propagation

The surface hopping (SH) method uses a swarm of totally independent classical trajectories

propagated with the velocity-Verlet algorithm and representing a nuclear wavepacket (see

Figure 2 for a scheme of the FOB-SH algorithm). Each trajectory carries a wavefunction,
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Ψ(t). In the FOB-SH approach the hole (excess electron) is described by a time-dependent

1-particle wavefunction, Ψ(t), expanded in the same orthogonal orbital basis, {φl}, that is

used to represent the Hamiltonian in Eq. 1,

Ψ(t) =
M∑
l=1

ul(t)φl(R(t)), (6)

where ul are the expansion coefficients. Insertion of Eq. 6 in the time-dependent Schrödinger

equation gives the time-evolution of the charge carrier wavefunction in the valence (conduc-

tion) band,

i~u̇k(t) =
M∑
l=1

ul(t) (Hkl(R(t))− i~dkl(R(t))) (7)

where Hkl are the Hamiltonian matrix elements computed as explained in Section 2.2 and

dkl=〈φk|φ̇l〉 are the non-adiabatic coupling elements (NACEs) of the localized orbital basis.

As those NACEs are generally very small compared to the Hamiltonian elements,28 we refer

to this basis as diabatic. Hkl and dkl terms can be calculated at t and then at t+ ∆t when

the nuclear positions have been updated by the first half of the velocity-Verlet algorithm.

The expansion coefficients of the charge carrier wavefunction in the diabatic basis, uk, are

propagated according to Eq. 7 from time t to t+∆t in N steps of length δt (with N=5 in our

simulations) using the fourth-order Runge-Kutta algorithm. At each electronic integration

time step m, the Hkl and dkl elements are linearly interpolated between t and t + ∆t,

Hkl(t+mδt) = Hkl(t) + [Hkl(t+ ∆t)−Hkl(t)](mδt/∆t) for m = 1, ..., (∆t/δt), and similarly

for dkl.
23

The dkl in the diabatic basis can, in practice, be evaluated using the AOM approach from

the overlap S̄kl, Eq. 5, as detailed in Ref.23–25 and briefly explained here. In particular, they

are related to the NACEs in the non-orthogonal basis, {ϕk} (d′kl = [D′]kl = 〈ϕk|ϕ̇l〉) by,

dkl =
[
T†D′T

]
kl

+
[
T†SṪ

]
kl
, (8)
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Both D′kl and Ṫ are obtained from finite difference between t and t+∆t (note that T = S−1/2,

where S is formed by S̄kl = 〈ϕk|ϕl〉). If Eq. 8 allows the calculation of dkl terms and to

integrate exactly Eq. 7, we will show in Section 4.6 that neglecting them gives essentially

the same dynamics but for much smaller simulation cost. This is somewhat expected as

the dkl (NACEs in the diabatic basis) are always small with a smooth evolution along the

entire dynamics. Avoiding the calculation of dkl, means bypassing a matrix-matrix-matrix

multiplication (Eq. 8) at each nuclear time step and it permits a speed-up of almost a factor

of 1.5 compared to the usual interpolation scheme when the system size reaches more than

a thousand molecules (see Section 4.6).

3.2 Non-adiabatic transitions

When the electronic propagation is completed, the core of any method based on SH is

the choice of the active adiabatic potential energy surface (PES) Ea on which the nuclei

evolve and the inclusion of the feedback from the electronic dynamics onto the nuclear

motion. The energy of the active PES a is Ea =
[
Had
]
aa

, with Had = U†HU and U the

unitary transformation matrix that diagonalizes H in the diabatic representation to Had in

the adiabatic representation (eigenvectors basis).

In Tully’s approach,9 the active surface is decided in two steps: (i) a tentative new state

is chosen via a stochastic process and (ii) the energy conservation requirement is applied to

determine whether the change of active state is energetically possible. At step (i), the tenta-

tive new state is chosen with a probability gja(t), where gja(t) are the hopping probabilities

calculated at each timestep t between the active surface and all the other states j:

gja = −
2Re(c∗jcad

ad
ja)

|ca|2
∆t (9)

where dad
ja =

〈
ψj|ψ̇a

〉
are the adiabatic NACEs. They are calculated from the diabatic
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NACEs (dkl ≡ [D]kl) and the transformation matrix U,

dad
ja =

[
U†DU

]
ja

+
[
UU̇
]
ja
. (10)

The adiabatic coefficients cj are the expansion coefficients of the electronic wavefunction in

the adiabatic basis, {ψi}, ψi =
∑M

k=1 Ukiφk, namely,

Ψ(t) =
M∑
i=1

ci(t)ψi(R(t)). (11)

The probability to remain on state a is simply gaa = 1−
∑

j 6=a gja. After the calculation of

the probabilities gja all states j 6= a, a random number is drawn to decide whether a hop can

be attempted to a new state n. If so, the following condition should hold to ensure energy

conservation,

Etot(R) = Ta(R) + Ea(R) = Tn(R) + En(R) (12)

where Ea and En are the potential energies and Ta and Tn are the nuclear kinetic energies

before and after the hop. To ensure Eq. 12 is satisfied, the only quantity that can be adapted

is the nuclear kinetic energy (and thus the nuclear velocities) after the hop, Tn = Ta+Ea−En.

Based on the theoretical work of Pechukas45 and Herman,46 Tully prescribes to adjust the

velocity component in the direction of the non-adiabatic coupling vectors (NACVs) dad
I,an =

〈ψa|∇Iψn〉.9 But if there is not enough kinetic energy along the NACVs to satisfy Eq. 12,

the hop is rejected, the active state remains state a and the velocity components along the

NACVs direction are reversed47 (see Section 4.1 for a discussion on the accuracy of this

adjustment).

To apply the NACV-oriented adjustment in the FOB-SH framework, we derived in Ref.24

an exact expression for the adiabatic NACVs (dad
I,ij) in terms of the corresponding diabatic

NACVs, the nuclear gradient of H and the diabatic to adiabatic transformation matrix (U).
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Namely,

dad
I,ij =

1

Ej − Ei
[U†(∇IH)U]ij + [U†DIU]ij (13)

where Ej and Ei are adiabatic energies. We also showed that the last term in Eq. 13 is numer-

ically small and can be ignored, which has led to the efficient “Fast NACV” approximation

(see Section 4.1).

3.3 Forces and nuclear equation of motion

We now turn to the propagation of the nuclei along the molecular dynamics and to the force

calculation (see the related box in Figure 2). In the SH algorithm, the nuclei evolve on one

adiabatic energy surface Ea chosen as described in Section 3.2. The nuclear force acting on

nucleus I, FI,a = −∇IEa is obtained from the Hellmann-Feynman theorem as

FI,a = −〈ψa|∇IH|ψa〉 = −
[
U†(∇IH)U

]
aa

(14)

= −
∑
k,l

[
U†
]
ak

[∇IH]kl [U]la

= −
∑
k

|Uka|2 [∇IH]kk −
∑
k 6=l

UkaUla [∇IH]kl

where [∇IH]kl = ∇I 〈φk|H|φl〉. We refer to our previous paper24 for an explicit derivation

of Eq. 14. Importantly, the nuclear forces on a given adiabatic state a obtained in Eq. 14

consist of a linear combination of the diagonal forces (∇IHkk which are the forces related

to the classical force-field potentials Hkk), and off-diagonal forces on the diabatic states

(∇IHkl = C∇I S̄kl which are obtained using AOM). The weighting UkaUla is proportional to

the projection of the active adiabatic states on the diabatic states. It therefore incorporates

the effect of wavefunction delocalization on the adiabatic forces.

These forces permit the update of the nuclear positions with the second half of the ve-

locity Verlet and carry on the dynamics at the next nuclear time step (see Figure 2). As the

number of atoms in the system and the number of off-diagonal elements increase, the calcu-
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lation of the off-diagonal gradients of the Hamiltonian becomes the time-limiting step. To

reduce this computational cost, we have introduced a multiple time step algorithm (MTS).28

In particular, all the gradients ∇IHkl, with k 6= l, are updated only every N MD time steps

and kept unchanged between two updates. N must be chosen to be small enough to repro-

duce the time oscillations of the off-diagonal gradients well. Since the electronic couplings in

OSs generally fluctuate with an oscillation period of ≈ 1 ps,48 one can expect the gradients

of the couplings to oscillate on the same time scale. It is worth mentioning that similar

MTS approaches are often used in MD codes to efficiently speed-up different parts of the

computation.49,50 The quality of this algorithm will be assessed in Section 4.6. Unfortu-

nately, the same approach cannot be applied to the diagonal gradients without biasing the

whole dynamics, as the site energies fluctuate in the order of the aromatic carbon stretching

frequencies (≈ 20− 30 fs).

3.4 Adiabatic populations and internal consistency

Tully’s hopping probability (Eq. 9) was designed to ensure, for a two-states model system,

that –within the fewest number of switches– the population of an adiabatic potential energy

surface is equal to the amplitude of the corresponding adiabatic wavefunction. However, the

energy conservation criteria leads to rejecting some hops along the dynamics (so-called frus-

trated hops). Without any correction, the electronic wavefunction will over-populate excited

states that are high in energy and therefore unreachable for the classical nuclei. In addition

to the presence of frustrated hops, that are necessary to maintain detailed balance and en-

ergy conservation, a more fundamental problem affecting SH is the overcoherent propagation

of the off-diagonal elements of the density matrix (i.e., the coherence terms c∗i cj) along the

classical trajectory.51 In reality, after leaving an avoided crossing where the adiabatic states

mix, the center and/or the phase of each wavepackets evolving on different potential energy

surfaces should diverge in phase space, decreasing the wavefunction coherence. This effect

is not taken into account in standard SH where the coherence terms remain finite.
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This yields the so-called SH internal inconsistency, i.e. a divergence between Ψ(t) and

ψa(t). Importantly, due to this internal inconsistency, two different adiabatic populations

coexist in the SH algorithm, the quantum amplitude averaged over many trajectories,

P ad−wf
i (t) =

1

Ntraj

traj∑
n=1

|cin(t)|2 (15)

and the surface population,

P ad−surf
i (t) =

1

Ntraj

traj∑
n=1

δi,an(t) , (16)

where an(t) is the index of the active state at time t of the trajectory n, and δi,an(t) = 1 if the

state i is the active state a on which the nuclear dynamics is running at time t. The internal

inconsistency of SH leads to a divergence of these two adiabatic populations. For this reason,

as illustrated in Figure 2, before propagating the nuclear dynamics further, a decoherence

correction (DC) is applied to attenuate the inconsistency between adiabatic wavefunction

and surface populations as explained in Section 4.4.

3.5 Mobility calculation and inverse participation ratio

Solving Eq. 7, gives the charge carrier wavefunction as a function of time, Ψ(t). This gives

access to key dynamical properties: the mobility tensor (Eq. 17), the extent of localization

or delocalization (Eq. 20) of the charge carrier as a function of time and the mechanism by

which the charge carrier moves within the material. The charge mobility can be expressed

as a 2nd rank tensor using the Einstein relation,

µαβ =
eDαβ

kBT
(17)

where α(β) represent Cartesian coordinates, x, y, z. e is the elementary charge, kB the

Boltzmann constant and T the temperature. The diffusion tensor components, Dαβ, is
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defined as the time derivative of the mean squared displacement (MSD) along the nine

Cartesian components (MSDαβ),

Dαβ =
1

2
lim
t→∞

dMSDαβ(t)

dt
(18)

We note that different definitions of MSD have been used in the literature for the cal-

culation of charge mobility from explicit wavefunction propagation depending on whether

the center of charge motion (termed MSDcoc in Ref.25), the spreading of the wavefunction

(termed MSDvar in Ref.25) or both effects at the same time (termed MSD), are considered

(these different approaches have been compared and discussed in Refs.25,27). We concluded

that MSDcoc and MSD lead to the same diffusion coefficient, while MSDvar will always lead

to a null diffusion coefficient and mobility in the case of finite size polarons. In particular,

MSD (which is our recommended definition24) is defined as the expectation value of the

operator [(α− α0,n)(β − β0,n)],

MSDαβ(t) =
1

Ntraj

Ntraj∑
n=1

〈Ψn(t)|(α− α0,n)(β − β0,n)|Ψn(t)〉 (19)

In Eq. 19, Ψn(t) is the time-dependent charge carrier wavefunction in FOB-SH trajectory n,

α(β) are the Cartesian coordinates, α0,n(β0,n) are the initial positions of the center of charge

in trajectory n, α0,n=〈Ψn(0)|α|Ψn(0)〉, and the square displacements are averaged over Ntraj

FOB-SH trajectories.

A common measure to describe the delocalization of the charge carrier wavefunction Ψ(t)

is the inverse participation ratio (IPR),

IPR(t) =
1

Ntraj

Ntraj∑
n=1

1
M∑
k=1

|uk,n|4(t)

. (20)

The IPR value corresponds to the number of molecules the wavefunction is delocalized over.
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With a simple calculation one can show that a wavefunction (of a single trajectory) fully

localized on a single molecule gives an IPR of 1, while a wavefunction homogeneously delo-

calized over N molecules gives an IPR of N .

4 FOB-SH: technical details

A plethora of variants have appeared in the literature1,2,12,52,53 to systematically improve the

standard SH method and to ensure that crucial requirements such as energy conservation,

thermal Boltzmann population of the adiabatic states (i.e. detailed balance) and internal

consistency are satisfactorily achieved. Common issues such as the correct rescaling of the

velocities after a successful hop (related to the energy conservation and detailed balance)

and the decoherence correction (DC) (necessary to attain internal consistency) have been

largely investigated.1,51,54–60 Yet several questions, especially in relation to the effect of the

DC on the equilibrium properties and charge mobilities of condensed phase systems were,

until recently, almost unexplored.1,22,25,26

In relation to the simulation of large systems with a high density of states, SH presents

another less known shortcoming: the presence of trivial crossings hampering the solution of

the electronic Schrödinger equation and causing unphysical long-range charge transfers (i.e.

charge transfer events between states localized far away in space).21,22,61–63 We will discuss

this problem and possible solutions to restore the correct dynamics in Section. 4.3

Only very recently, we have discovered in Ref.26 that along with these trivial crossing

events, an additional source of spurious long-range charge transfers comes from the common

DC schemes applied to SH. Wang and coworkers64 independently reported the same issue

in their simulations. We will discuss the problem in Section 4.5 and we will explain that,

if not removed, the decoherence-induced spurious long-range charge transfer (DCICT) will

render any mobility calculation and the dynamics erroneous. We will also discuss a possible

correction algorithm for this problem, called spurious (long-range) charge transfer correction
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(SCTC).25,26

Finally, all semiclassical approaches, like SH, do not account for nuclear quantum effects

that are particularly important at low temperatures, such as zero-point energy and tunnel-

ing. We will not discuss this problem in any depth in this contribution, since soft organic

semiconducting materials are generally characterized by slow and low-frequency vibrations,

that can to some extent be approximated by classical dynamics at least at room tempera-

ture.32 Nevertheless, we refer the interested reader to our recent work about a possible way

of including nuclear quantum effects in FOB-SH hole transfer simulations by combining it

with ring-polymer molecular dynamics (RPMD).65

Table 1: Importance of various improvements for accurate properties.

Energy Detailed Internal
Improvements conservation balance consistency Mobility IPR

Velocity rescaling XX XX - XX XX
Velocity reversal - - X - -

Decoherence correction - - XX XX XX
Spurious charge

- - - XX X
transfer correction
Trivial crossings

X X - XX X
detection

XX, the correction is very important for a given property. X, the correction is
reasonably important for a given property. − the correction has no effect on a
given property. The best FOB-SH set-up includes all the above corrections.

In what follows we discuss the application of the aforementioned improvements to the

FOB-SH approach and their impacts on energy conservation, detailed balance, internal con-

sistency for an accurate dynamics and transport properties such as mobility and IPR. A

summary about the importance of each of these algorithms on different properties is given

in Table 1 and it will be commented in the next Sections. The best FOB-SH set-up will

then be used for the calculation of mobility in real nano-scale systems and comparison with

experiments in Section 5.

In the following, we will show results for two different classes of systems. On the one hand,

an atomistic OS model made of a dimer of ethylene-like molecules (ELMs) Figure 3(A), which
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have the same geometry as real ethylene molecules, but whose couplings and site-energies

were chosen to explore the wide range of physical behaviours present in realistic materials.

On the other hand, we consider real applications to relevant organic semiconducting crystals

that are well-characterized by experiments (e.g. anthracene in Figure 4(A)). For a discussion

on simulation details and system set-up we refer to our previous works.24,25,27

4.1 Energy conservation after a successful hop

As prescribed by Tully,9,66 whenever a surface hop occurs the velocities must be adjusted in

the direction of the non-adiabatic coupling vectors (NACVs), dad
I,an = 〈ψa|∇Iψn〉, between

the adiabatic electronic states in order to conserve energy cf. Eq. 12. In FOB-SH the

calculation of the NACVs is done according to Eq. 13. The energy drift in FOB-SH is

≈ 10−7 − 10−8 Ha ps−1 QMatoms−1, which is good compared to the drift of standard ab-

initio molecular dynamics (≈ 10−5 Ha ps−1 atoms−1), albeit still larger than that in normal

MD with standard force-field (10−12 Ha ps−1 atoms−1 (e.g. with CP2K software49,50) due to

the presence of surface hops along the dynamics.

The adjustment of the velocities, not only allows the conservation of energy, but it per-

mits one to attain detailed balance.12,24 We compare the effect of velocity adjustment along

the NACVs (Eq. 13) with an alternative commonly used, isotropic rescaling, where the ve-

locities are all rescaled by the same value κ =
√

1− En−Ea

Ta
, for the excited state population

of the ELM dimer system. The results are reported in Figure 3(B). The excited state sur-

face population (Eq. 16) follows the exact Boltzmann population for all the coupling values

investigated when the NACV adjustment (blue line) is applied, whereas the same popula-

tion diverges from the correct result when the isotropic rescaling is used (red line) as too

many hops are allowed.24 A detailed discussion of this behaviour is given in Ref.24 We also

found that Tully’s suggestion47 to reverse velocity after an unsuccessful hop slightly improves

internal consistency (see Table 1).24
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4.2 Stable electronic propagation in the diabatic basis

We highlight here that, in contrast with common SH approaches in which both the electronic

and the nuclear equation of motion are often solved in the adiabatic basis (due to the

fact that energy and forces are a common output of electronic structure calculations),16

in FOB-SH only the nuclear propagation is carried out in the adiabatic basis while the

electronic propagation is solved in the diabatic site basis (see Section 3.1). This has some

advantages, most notable is the fact that, at avoided crossings, the adiabatic NACE, dad
ji , can

be strongly peaked (because of the strong mixing of the adiabatic PESs). Thus, they could

be easily missed unless the nuclear time step is chosen to be very small. This could lead to

serious trivial crossing artefacts as we will point out in Section 4.3. By contrast, the NACEs

between the diabatic states, dkl, remain by definition small and negligible at avoided crossings

ensuring a more stable and accurate propagation.67,68 This practical advantage has led to the

development of “local diabatization” in quantum chemical applications of SH.67,68 At each

nuclear time step, the adiabatic states obtained from quantum chemistry are transformed to a

diabatic basis in which the electronic wavefunction is propagated, followed by transformation

back to the adiabatic basis. The first transformation is not needed in the FOB-SH approach

as the Hamiltonian is directly constructed in a diabatic basis. Nevertheless, an additional

issue comes from the fact that, although the electronic propagation is accurately carried out

in the diabatic basis taking advantage of the smoothness of the NACEs, the probability to

hop (Eq. 9) is still calculated in the adiabatic basis where NACEs peak in avoided crossing

regions, in some cases causing trivial crossings that can easily go undetected and other

important consequences. In Section 4.3, we will discuss approaches to overcome these issues.

4.3 Trivial crossings and state-tracking

Trivial or unavoided crossings occur when two (or more) adiabatic potential energy surfaces

with vanishing couplings cross between subsequent time steps. This causes a change in the

state ordering that, if undetected, gives rise to serious problems: continuation of the nuclear
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dynamics on an incorrect active state, discontinuity in the nuclear forces deteriorating energy

conservation, erroneous calculation of time derivatives, especially dad
ji , deteriorating excited

state population and detailed balance, and most seriously in the context of charge transport,

spurious and unphysical long-range charge transfer events between spatially distant states

of similar energy.25,26 The problem is magnified in the case of large systems with hundreds

or more electronic states as e.g. in organic semiconductors, where adiabatic states very close

in energy may be localized and spatially distant (hence have a small derivative coupling).

Different solutions have been proposed to deal with this issue: state-tracking algorithms

between subsequent time-steps,61,66 reduction of the state space involved in the transfer,21

improved interpolation of the dad
ji terms69 or improved hopping probabilities.70 For example,

the self-consistent fewest-switches SH (SC-FSSH) proposed by Wang and Prezhdo70 intro-

duces a simple self-consistency test to the calculation of the hopping probability from the

current state to the energetically closest state. Trivial unavoided crossings are detected as a

significant discrepancy between the summation of probabilities to hop from the current state

to all other states according to the SH prescription, and the value of the effective change in

population of the current state evaluated at the same time interval.

In our previous work we found this correction to be quite effective in improving detailed

balance, energy drift and allowing for a larger time-step in a small 2-state ELM dimer

system.24 However for larger system with a higher density of states, where more than two

states may cross with each other, SC-FSSH alone could not completely solve the trivial

crossing problem.26 Therefore, we adopted a combination of the SC-FSSH and a tracking

procedure for the identity of the states along the dynamics to more effectively tackle this

problem in large systems.25–28,33 In particular, a map M between the adiabatic states j at

time t and adiabatic states i at time t−∆t with a maximum overlap criteria is built. First,

the overlap Oij is calculated as,

Oij = 〈ψi(t−∆t)|ψj(t)〉 . (21)
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For each state j = l, the state il with the maximum overlap, |Oill| = maxi|Oil| is identified.

If |Oill| > 1 − ε (ε is a constant set to 0.1), the state l at time t is mapped with state

il at time t − ∆t, M(l) = il. After that step, all remaining states j = k at time t that

could not be mapped to states at t − ∆t (since |Oik | < 1 − ε for all unmapped states i)

are arranged by index (i.e. by increasing adiabatic energy) and mapped onto one another.

As the function map M is a bijection between states at t and states at t −∆t, the reverse

map M−1 (that associates states at t − ∆t with states at t) is easily found. We can track

the index of the active state at t, knowing its value at t −∆t, at =M−1(at−∆t). This step

allows one to change the index of the active state without hopping. The correct hopping

probability (Eq. 9), that requires the adiabatic NACEs (Eq. 10) and in particular the second

term
[
U†U̇

]
ja

is finally determined.25,26

We note at this point that the tracking procedure is essential to converge the MSD

(and therefore the charge mobility) with system size (see Table 1). This is exemplified in

Figure 4(C) and (D) for an embedded chain of anthracene molecules in a crystal (different

colors represent the MSD for different chain lengths). When the state-tracking is switched

on (Figure 4(C)), the MSDs are identical for the different chain lengths (except for the

chain with 12 molecules where the MSD is slightly below the MSD of longer chains as the

diffusive charge starts to feel the non-periodic boundary and to bounce back at the end

of the chain).25 On the other hand, when the state-tracking is switched off (Figure 4(D)),

the MSDs for different chain lengths reach a plateau in a few femtoseconds that depends

on the size of the system (i.e., the larger the system the larger the plateau value). In that

uncorrected case, the numerous missed trivial crossings yield an unphysical, ultrafast and

stochastic motion of the charge along the chain.

4.4 Decoherence correction

A well known problem of SH is the overcoherence of the electronic wavefunction51,53,55 (see

Section 3.4). Adopting a decoherence correction (DC) is fundamental to reach good in-
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ternal consistency between surface and wavefunction population and to avoid unphysical

delocalization of the wavefunction.

We have thoroughly investigated the effect of the decoherence corrections on transport

properties (such as mobility and IPR) and equilibrium properties (such as energy conserva-

tion, detailed balance of the adiabatic states) as well as internal consistency in our previous

works.25,26 We have explored in detail: different flavours of collapsing approaches in which the

electronic wavefunction is reset to the active state whenever a given criteria is fulfilled;55,60

the exponential damping approach where the damping time, τia, (also referred to as de-

coherence time) can be calculated solely using energies, within the notorious energy-based

decoherence correction (EDC) scheme51,56 as τia = ~
|Ei−Ea|

(
C0 + E0

Ta

)
and choosing empirical

parameters (C0, E0), or using forces, within the force-based decoherence (FDC) scheme.58

The latter decoherence time is more rigorous but also more expensive (see Ref.25). Finally

we have investigated the stochastic damping approach, which rely on random numbers to

determine whether the wavefunction should be collapsed onto the active state.71 We found

that generally damping approaches give better equilibrium properties (and internal consis-

tency) than instantaneous collapsing schemes and the results are reasonably independent on

the specific damping time.25,26

These effective damping algorithms consist of rescaling the adiabatic coefficients of all

except the active (subscript “a”) adiabatic electronic states (i 6= a)56 as:

ci → ci exp(−∆t/τia) (22)

The coefficient for state a, ca, is scaled appropriately to ensure norm conservation.51 Beside

the EDC and FDC decoherence times already mentioned, a further simplification of the

former allows one to define a, parameter free, Heisenberg principle-related decoherence time:

τia = ~/|Ei − Ea| (referred herein as EDC for simplicity as it corresponds to the choice of

C0 = 1 and E0 = 0).
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The impact of the decoherence on the internal consistency is shown in Figure 3(C), by

means of defining the RMSEi =
(

1
T

∫ T
0

dt
(
P ad−surf
i (t)− P ad−wf

i (t)
)2
)1/2

as a measure of the

goodness of the internal consistency criteria. Without decoherence there is no longer internal

consistency at any coupling value (red line). While FDC (dark orange line) and EDC with

Heisenberg decoherence time (blue line) give similar results. In Figure 4(B), we show results

for hole transport in a larger system (i.e. anthracene embedded chain, Figure 4(A)) as a

function of state index. First we note that there is no longer internal consistency when the

decoherence correction is switched off: the quantum population (Eq. 15), dashed red line, is

almost the same for all electronic states, which corresponds to an infinite temperature for the

electronic subsystem, the infamous problem of the original Ehrenfest and SH methods.12 As

a consequence, the polaron size (IPR) and the mobility are strongly overestimated because

most of the high lying electronic states that are now occupied are more delocalized than the

lower lying states (see Figure 1(E) for the extension of the adiabatic states as a function of

energy). In this uncorrected case, the IPR and charge mobility will also be size-dependent,

an unphysical feature, whereas when DC is included the quantum population (dotted blue

line) follows the surface population (solid blue), and both these populations agree with the

correct Boltzmann population (dashed green line). For all these reasons it is of utmost

importance to apply a decoherence correction, otherwise the energy level population and the

charge transport dynamics becomes unphysical (see Table 1).

4.5 Decoherence correction-induced spurious long-range charge

transfer

In small systems with only a few electronic states surface hops between localized but spa-

tially distant electronic states are unlikely due to the small NACEs (entering the probability

Eq. 9). In large systems with a high density of electronic states the probability for a single

transition is still small, but since many of these transitions are attempted, they are more

likely to take place (because of the stochasticity of the surface hopping algorithm). If such
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unlikely transitions occur, the active adiabatic electronic state is reassigned from an adiabatic

wavefunction localized in one region of space, say ψ′a(t), to another adiabatic wavefunction

localized in a different region of space, ψa(t+∆t). While such transitions are not an artefact

of the SH algorithm per se, the problem is that the decoherence correction (DC), Eq. 22,

tends to quickly collapse the charge carrier wave function (Eq. 6) from Ψ′ ≈ ψ′a to Ψ ≈ ψa.

This results in unphysical long-range charge transfer and yields charge mobilities that in-

crease with system size. This is shown in Figure 4(D), when the correction for the so-called

decoherence-induced spurious long-range charge transfer correction (SCTC) is switched off

(together with the state-tracking procedure) the MSD no longer converges with increasing

chain length.

The SCTC is implemented using a simple three-step strategy:26 (i) at each timestep, an

“active” region that encloses 99 % of the electronic density |Ψ(t)|2 is determined, (ii) the

DC is applied and (iii) any change of diabatic population ∆|ul|2 outside the active region is

reset to zero, while the diabatic populations inside the active region are scaled accordingly

to preserve the norm. Consequently, the wavefunction Ψ(t) propagates physically (i.e. ac-

cording to the time-dependent Schrödinger equation) towards the adiabatic wavefunction on

the new surface, and not near-instantaneously (i.e. unphysically) via the DC. In practice,

SCTC amounts to a local DC within the active region, while outside the active region the

diabatic populations remain unchanged. All decoherence-induced spurious charge transfers

(DCICTs) are removed while DC is still applied at each time step. Note that the propaga-

tion of the wave function according to Eq. 7 remains unaffected by the presence of the active

region.

4.6 Code speed-up and cost

An efficient multiple time step (MTS) algorithm as well as the possibility of neglecting the

NACEs in the diabatic basis, dkl, in the electronic propagation have been introduced before

in Sections 3.3 and 3.1 respectively. Here we validate the quality of these two important
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algorithmic optimizations for charge transport in a large 2D crystal of anthracene with

378 molecules forming the active plane and we assess their impacts on the efficiency of

the code.28 We run 600 trajectories, 1 ps long with a 0.1 fs nuclear time step for different

combinations with increasingly optimized FOB-SH. The different combinations are: “FULL”

which represents the complete calculation in which the diabatic NACEs, dkl, are evaluated

at each nuclear time step (as in Eq. 8) and linearly interpolated when solving the electronic

equation of motion, Eq. 7, and the MTS algorithm is inactive; “no dkl” in which these NACEs

are neglected and the MTS is still inactive; “MTS+dkl” in which the MTS algorithm is

activated and the off-diagonal gradients are updated only every 100 MD time steps (namely,

every 10 fs using a 0.1 fs MD time step), and “MTS+no dkl”, in which NACEs are not

calculated and the MTS algorithm is activated.

Importantly in Figure 5(A-C) we show that the number of (successful and rejected) hops,

the mobilities along a and b crystallographic directions of the herringbone layer of anthracene

and the IPR, all remain virtually unchanged (within statistical errors) when going from

“FULL” scheme to “MTS+no dkl” (the latter being the most approximate). As expected,

upon activation of the MTS algorithm the energy conservation decreases from 2.1 × 10−8

to 6.0 × 10−7 Ha/ps/atoms, but it remains well below the typical energy conservation of

ab − initio MD of about 10−5 Ha/ps/atoms. Figure 5(D) illustrates the big advantage of

“MTS+no dkl” optimization: a significant speed-up of the FOB-SH code (almost factor of 3

when the system becomes larger than a thousand molecules). This makes the code capable of

affording almost twice as large a system at the same computational cost without sacrificing

the accuracy of the actual dynamics and to propagate around a ps/day in systems with

several tens of thousands atoms.
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5 Charge mobilities in nano-scale organic semiconduc-

tors

We present here the application of FOB-SH to the calculation of room temperature charge

mobility tensors across the 2D herringbone planes of a series of experimentally well-known

molecular organic crystals for which reliable experimental mobilities have been measured.

The OSs investigated are 1,4-bis(4-methylstyryl)benzene (pMSB-h+), naphthalene (NAP-

h+), anthracene (ANT-h+), perylene (PER-e−), rubrene (RUB-h+) and pentacene (PEN-h+)

The appendix -h+ and -e− is used to distinguish between hole and electron transfer systems

and the crystallographic direction of the transport in the a − b mobility plane is also given

(note that for perylene mobility is shown along the perpendicular direction to this plane as

well). Simulation details and system set-ups are given in Ref.28

In Figure 6 we report the convergence of charge mobilities along the different crystallo-

graphic directions obtained from the Einstein relation (Eq. 17) and the wavefunction delo-

calization (or polaron size) in the form of average IPR (Eq. 20), as a function of number of

molecules in the 2D herringbone layer of the investigated OSs and time step. It is worth

noting at this point that there is an excellent agreement between polaron size calculated

from FOB-SH, which gives an IPR of about 17-18 molecules in pentacene, and data based

on experimental electron spin resonance data (ESR) for the same system, which estimates

a polaron extension of 17 molecules at 290 K,72 also with other experimental measurements

that point to charge carriers localized over a few molecules.73–75 On a more technical note,

we point out that the good convergence of mobility and IPR with system size as well as

with time step implies that spurious long-range charge transfer due, for example, to trivial

crossings have been largely eliminated.

The computed converged charge mobilities are shown against the experimental mobilities

in Figure 7(A) for the different systems (data in blue). They are in excellent agreement with

experiment or within the experimental uncertainty, with typical deviations of less than a
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factor of two for mobilities spanning three orders of magnitude. Importantly, traditional

hopping and band models (data in green and red, respectively) fail to provide a uniformly

good description of charge transport in different regimes (e.g. localized or delocalized) for

the OSs investigated. The hopping results are obtained by solving the master equation

with a Marcus-like rate as described in Ref.,28 while the band theory data are taken from

the literature with references given in Ref.27 In contrast, FOB-SH describes all relevant

transport regimes accurately and seamlessly bridges the gap between small polaron hopping

and band transport. We also note that the mobilities obtained from FOB-SH simulation for

the full 2D plane28 are by a factor of 2-3 higher than the corresponding values obtained from

calculations on 1D chains27 This is in line with the finding of Fratini et al. who concluded

that 2D systems with isotropic couplings exhibit higher mobilities than anisotropic systems

and noting that the 1D models are perfectly anisotropic.44

Local and non-local electron-phonon coupling fluctuations have a profound impact on

the delocalization of the states and the subsequent formation of a polaronic charge state

extended over several molecules in the most conductive crystals, and thus on the charge

dynamics.27,28 In this regard, in Figure 7(B) we show, for the highly conductive rubrene

crystal, that thermal intra-band excitations (exemplified by the active state index, a, black

dashed line) from modestly delocalized band edge states, up to 5 nm or 10-20 molecules

in this system, to highly delocalized tail states, up to 10 nm or 40-60 molecules, give rise

to short bursts of the charge carrier wavefunction that drives the spatial displacement of

the polaron. This results in carrier diffusion and mobility (note the correlation between the

peaks of the dashed black line and the solid blue IPR line). We refer to these wavefunction

displacements, that are at the heart of the transport mechanism in OSs, as “diffusive jumps”

and we show one of such wavefunction jump in Figure 7(C-E).28 These findings reconcile the

experimental view of a coexistence between delocalized and localized carriers in OSs76 and

give insights into the actual charge carrier dynamics in these materials.
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6 Conclusion and Outlook

In conclusion, we have described a powerful and computationally efficient non-adiabatic

molecular dynamics simulation methodology termed fragment-orbital based surface hopping

(FOB-SH). This approach allows us to propagate a 1-particle approximation of the charge

carrier wavefunction in large nano-scale systems (100-1,000 molecules) at a rate of about

1 ps/day on a single compute core. Moreover, since SH trajectories are independent, par-

allelization is trivial and the different trajectories are farmed on several computer cores.

Our implementation conserves total energy and approximately fulfils detailed balance and

internal consistency in the presence of a high density of states. This is possible thanks to im-

portant extensions to the original SH algorithm, namely a correction for missing electronic

decoherence, detection of trivial crossings and removal of decoherence correction-induced

spurious charge transfer. If any one of these corrections is not included, the charge mobility

diverges with system size for different physical reasons. We have also reported the calcula-

tion of the full 2D charge mobility tensors for six organic crystals and briefly discussed the

real-time dynamics of the charge carriers.

Based on these findings, a number of avenues for further research are currently being

explored in our laboratory and they will hopefully provide further advance in the field of

nano-scale optoelectronic organic materials. With regards to charge transport simulations,

we believe that FOB-SH is now efficient and accurate enough to gain fresh insight into

structure-mobility relationships of organic semiconductors. For instance, we are interested

to understand how different solid-state morphologies of one and the same molecule (crystal,

thin film, amorphous), how interfaces between crystalline and amorphous domains and how

crystal defects (e.g. Schottky or line dislocations) impact the charge carrier propagation.

Another important goal currently being tackled in the group is the use of FOB-SH as

a tool for the discovery of high-mobility OSs. Scaffolding and conformational locking of

conjugated molecules are expected to boost mobility and efficiency of OSs (as predicted by

us in Ref.27 by artificially freezing the thermal fluctuations of the electronic coupling). A
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recent experimental study on rubrene reported a strong, anisotropic enhancement of the

mobility under compressive strain,77 which might be regarded as an alternative way to

improve charge mobility. Molecular simulations will play a key role in understanding the

relationship between strain and mobility at an atomistic level. Such knowledge might open

up ways to use the mechano-electric response as a new means of enhancing the mobility in

organic materials.

Finally, the main goal in the future is to extend FOB-SH to simulate the electronic

processes occurring in excitonic solar cells: exciton transport, exciton dissocation into charge

carriers and charge recombination. Such simulations will be free of the many limiting model

assumptions of Golden-rule rate theories (e.g. Marcus or Marcus-Levich-Jortner) that are

hard to justify in the context of excitonic solar cells. For instance, these rate theories assert

thermal equilibrium on the ultrafast time scales involved, small electronic perturbations

which are clearly incompatible with the relatively large electronic couplings in many organic

semiconductors and strong localization of excitons and charges. We are currently extending

the FOB-SH formalism to increase the state space of the tight-binding DFT Hamiltonian

to include charge separated states as well as singlet Frenkel excited states. The future of

FOB-SH is bright!
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Figure and Table captions

Figure 1: (A) a− b high mobility planes for rubrene crystal. The crystallographic directions
along a, b, c are shown in red, green and blue. Panels (B) and (C) show a representative
DFT HOMO orbital of a single rubrene molecule and the HOMO band state of a perfect
crystal. (D) Normalized density of states (DOS) of the HOMO band of rubrene. DOS for
sDFT (dashed black), sFODFT (dashed red) and AOM (dashed green) are calculated for
the static crystal structure as described in the text. DOS for AOM (300 K), indicated with
solid green lines, are computed from Hamiltonians extracted from a representative FOB-SH
trajectory and including the effect of thermal disorder. The latter DOS are smoother than
the DOS of the static (frozen) Hamiltonian, due to the fluctuations of electronic couplings
and site energies. (E) Displays 2D histograms correlating the delocalization of the band
states, quantified by the inverse participation ratio IPR (Eq. 8 in Ref.28), and their energies.
Dashed red lines are used to indicate time averages of the band active state energy Ea and the
active state delocalization IPRa, with a being the active state index. Double white arrows
indicate the thermally accessible (valence) band tail regions for the excess hole or electron.
(A), (D), (E) Adapted from Ref.28 Copyright 2020 Wiley Online Library.

33



Figure 2: Scheme of the FOB-SH (fragment orbital-based surface hopping) algorithm. Dif-
ferent colors represent improvements of the algorithm necessary to fulfil: trivial crossings
detection, detailed balance and energy conservation and internal consistency. RK: Runge-
Kutta algorithm, AOM: Analytic overlap method, SC-FSSH: self-consistent surface hopping,
FSSH: fewest switches surface hopping, NACV: non-adiabatic coupling vectors, SCTC: Spu-
rious charge transfer correction, MSD: mean squared displacement, IPR: inverse participation
ratio. Adapted from Ref.25 Copyright 2019 Royal Society of Chemistry.
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Figure 3: (A) Graphical representation the two fragment orbitals for an ELM dimer and
adiabatic energy surfaces against site energy difference. Three electronic coupling values are
indicated with different colours (red 100 meV, blue 50 meV, green 2 meV), reorganization
energy λ = 100 meV in each case. Corresponding diabatic curves are given in dashed black
lines. (B) Influence of the rescaling prescription used to ensure energy conservation on
excited state population for different diabatic electronic couplings. “Isotropic” results use
the isotropic rescaling as described in the text. “Fast NACV” and “total NACV” refer to
rescaling along the direction of the NACV, Eq. 13. In the former case, NACVs are calculated
neglecting the second term on the RHS of Eq. 13, while in the latter case all terms in Eq. 13
are considered. Error bars are shown for our default option (fast NACV) and represent
standard deviations over five independent blocks of 200 trajectories. Error bars for the exact
population (calculated from free energy surfaces as in Ref.24) indicate standard deviation over
three blocks of 20 ps. Adapted from Ref.24 Copyright 2017 American Institute of Physics
(AIP). (C) Internal consistency (in the form of RMSE between surface and wavefunction
populations) as a function of coupling strength. Two well-known electronic decoherence
corrections (DCs) are compared: damping of adiabatic electronic populations with force-
based (FDC) damping time and energy-based with Heisenberg decoherence times (EDC)
against no DC. Adapted from Ref.25 Copyright 2019 Royal Society of Chemistry.
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Figure 4: Supercell and electronically active chain along the b direction for anthracene. A
snapshot of a polaron with typical delocalization over three molecules is shown. Adapted
from Ref.25 Copyright 2019 Royal Society of Chemistry. (B) Importance of decoherence
correction for the charge transport in FOB-SH hole transport trajectories for anthracene
crystal, wavefunction (Eq. 15) and surface (Eq. 16) population with DC (data in blue) and
without DC (dashed red). In the latter case the electronic eigenstates (also denoted adia-
batic states) are almost equally populated, i.e. the electronic temperature tends to infinity.
Adapted from Ref.27 Copyright 2019 Springer Nature content. (C) and (D) Importance of
state reordering and spurious charge transfer correction in FOB-SH simulations of hole trans-
port along embedded chains of anthracene molecules. MSD (Eq. 19) for hole transport with
chain lengths as indicated (12, 24, 36 and 48 molecules). Adapted from Ref.25 Copyright
2019 Royal Society of Chemistry.
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Figure 5: Different algorithmic optimizations (“FULL”, “no dkl”, “MTS+dkl”, “MTS+no
dkl”) are compared for anthracene 2D crystal. (A) Average number of successful and re-
jected hops for 600 trajectories. (B) and (C) represent, respectively, the mobilities along the
eigendirections and average IPR. (D) On the lest vertical axis time taken in (s) to complete
a nuclear time step as a function of total number of molecules in the system on a single CPU
core, on the right vertical axis time of ps done per day (assuming 0.1 fs time step). The inset
shows the overhead of the “‘MTS+no dkl” compared to a standard MD run in CP2K. Pro-
cessor used for the timing: Intel(R) Xeon(R) x86 64 CPU E5-2687W v4 3.00GHz. Adapted
from Ref.28 Copyright 2020 Wiley Online Library.

37



Figure 6: Convergence of charge mobility (A), (B) and IPR (C), (D) for the investigated
OSs with respect to number of molecules and the MD nuclear time step, respectively. The
experimental estimate for polaron size of pentacene is indicated by dashed green lines in (C)
and (D).72 Adapted from Ref.28 Copyright 2020 Wiley Online Library.
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Figure 7: (A) Computed versus experimental charge mobilities for the investigated OSs.
Charge mobilities from FOB-SH (data in blue) are taken from Ref.28 and obtained by av-
eraging the MSD of the charge carrier wavefunction (t) over at least 300 trajectories and
inserting the corresponding diffusion tensor component in the Einstein relation (Eq. 17).
Statistical error bars indicate the standard deviations over 3 independent blocks of at least
100 trajectories. Predictions from band theory calculations are taken from the literature
(data in red, see Ref.27 and references therein). Charge mobilities from a small polaron
hopping model (data in green) are obtained by solving a chemical Master equation for near-
est neighbour hopping in the specified direction using semi-classical electron transfer rates
(see Ref.28). As a guide to the eye, perfect agreement is indicated by a thick solid line
and deviations in mobility by a factor of 2 by thin dotted lines. (B) Correlation between
IPR (blue line) and active state index, a, (dashed black line) for a representative FOB-SH
trajectory on a large rubrene crystal. Horizontal dashed blue line represents the average
polaron size (average IPR) over many trajectories. Panels (C)-(E) depict a representative
“diffusive jump” of the charge carrier wavefunction Ψ(t) resulting in drift velocity and charge
mobility. Initially the polaron is of average size, about 5 nm (C); upon thermal excitation
it extends to about 10 nm (D) and finally re-localizes at a position about 5 nm apart from
the original position (E). For comparison, the unit cell of rubrene is schematically indicated
in (D). Adapted from Ref.28 Copyright 2020 Wiley Online Library.
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Abbreviations

AOM Analytic Overlap Method

CSD Cambridge Structural Database

DC Decoherence Correction

DCICT Decoherence Correction-Induced Spurious Charge Transfers

DFT Density Functional Theory

DFTB Density-Functional Tight-Binding

DOS Density Of States

EDC Energy-based Decohererence time

ELM Ethylene Like Molecule

ESR Electron Spin Resonance

FDC Force-based Decoherence Correction

FOB-SH Fragment Orbital-Based Surface Hopping

sFODFT Scaled Fragment Orbital DFT

FMO Fragment Molecular Orbital

FMS Full Multiple Spawning

SH Fewest Switches Surface Hopping

HOMO Highest Occupied Molecular Orbital

IPR Inverse Participation Ratio

LUMO Lowest Unoccupied Molecular Orbital

MCTDH Multi-Configuration Time-Dependent Hartree
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MD Molecular Dynamics

MM Molecular Mechanics

MQC Mixed Quantum-Classical

MSD Mean Squared Displacement

MTS Multiple Time Step algorithm

NACE Non-Adiabatic Coupling Element

NACV Non-Adiabatic Coupling Vector

NAMD Non-Adiabatic Molecular Dynamics

OSs Organic Semiconductors

PES Potential Energy Surface

PPP Pariser-Parr-Pople

QM Quantum Mechanics

RK Runge-Kutta algorithm

RPMD Ring-Polymer Molecular Dynamics

RMSE Root Mean Square Error

SC-FSSH Self Consistent Fewest Switches SH

SCTC Spurious Charge Transfer Correction

TDDFT Time Dependent Density Functional Theory

41



References

(1) B. Smith and A. V. Akimov, J. Phys.: Condens. Matter, 2020, 32, 073001.

(2) T. R. Nelson, A. J. White, J. A. Bjorgaard, A. E. Sifain, Y. Zhang, B. Nebgen,

S. Fernandez-Alberti, D. Mozyrsky, A. E. Roitberg, and S. Tretiak, Chem. Rev., 2020,

120, 2215.

(3) F. Agostini and B. F. E. Curchod, Wiley Interdisciplinary Reviews: Computational

Molecular Science, 2019, e1417.

(4) G. A. Worth, H.-D. Meyer, H. Koppel, L. S. Cederbaum, and I. Burghardt, Int. Rev.

Phys. Chem., 2008, 27, 569.

(5) M. Huix-Rotllant, H. Tamura, and I. Burghardt, J. Phys. Chem. Lett., 2015, 6, 1702.

(6) O. Vendrell and H.-D. Meyer, J. Chem. Phys., 2011, 134, 044135.

(7) B. F. E. Curchod and T. J. Mart́ınez, Chem. Rev., 2018, 118, 3305.

(8) P. Ehrenfest, Z. Phys., 1927, 45, 455457.

(9) J. C. Tully, J. Chem. Phys., 1990, 93, 1061.

(10) J. C. Tully, Nonadiabatic dynamics, In Modern methods for multidimensional dynamics

computations in chemistry. World Scientific, 1998, 34-72.

(11) J. C. Tully, Mixed Quantum-Classical Dynamics: mean-field and surface-hopping In

Classical and Quantum Dynamics in Condensed Phase Simulations , World Scientific,

1998, 489-514.

(12) J. C. Tully, J. Chem. Phys., 2012, 137, 22A301.

(13) S. K. Min, F. Agostini, I. Tavernelli, and E. K. Gross, J. Phys. Chem. Lett., 2017, 8,

3048.

42



(14) A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett., 2010, 105, 123002.

(15) L. Wang, R. Long, and O. V. Prezhdo, Annu. Rev. Phys., 2015, 66, 549.

(16) R. Crespo-Otero and M. Barbatti, Chem. Rev., 2018, 118, 7026.
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