
Steerable3D: an ImageJ plugin for neurovascular enhancement in 3-D 
segmentation 

 

Paolo Miocchi1, Alejandra Sierra2, Laura Maugeri1, Eleonora Stefanutti1, Ali Abdollahzadeh2, 

Fabio Mangini1, Marta Moraschi3, Inna Bukreeva4, Lorenzo Massimi4,5, Francesco Brun4,6,, 

Jussi Tohka2, Olli Gröhn2, Alberto Mittone7,8 Alberto Bravin7,Federico Giove3, Alessia Cedola4 

& Michela Fratini1,4 * 

 

1IRCCS Fondazione Santa Lucia, Roma, Italy 

2A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland 

3Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma, Italy 

4Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, Roma, Italy 

5Department of Engineering and Architecture, University of Trieste, Trieste, Italy 

6Department of Medical Physics and Biomedical Engineering, University College London, 
Gower St, London WC1E 6BT, UK 

7European Synchrotron Radiation Facility (ESRF) , Grenoble, France 

8 CELLS ALBA SYNCHROTRON LIGHT SOURCE, Barcelona, Spain  

 

*Corresponding author: 

E-mail: michela.fratini@gmail.com (MF), paolo.miocchi@gmail.com (PM) 

Abstract 

Purpose: Medical image processing plays a fundamental role in the study of central nervous system, 

with important implications in the analysis of the neural and vascular networks relationships, as well 

as on pre-clinical investigations about neurodegenerative diseases. Nonetheless, the multi-scale 

nature of vessels and nerve fibres, the presence of background noise and of strong contrast 

inhomogeneities, still represent major obstacles to an accurate and computational efficient image 



segmentation.  

In this work we report the implementation of a three-dimensional Gaussian steerable filter tuned up 

for the enhancement of tubular structures in 3D images. 

Methods: Relevant tests of the filter application are presented, for both synthetic and high resolution 

Synchrotron X-ray Phase Contrast micro-Tomography (SxrPCµT) images of an ex-vivo mouse spinal 

cord (SC), with different sample preparations. 

Results: The filter response shows a strong amplification of the source image contrast-to-background 

ratio (CBR), independently of structures orientation. Such a result provides a great help in the 

extraction and rendering of entire three-dimensional (3D) neurovascular networks, even in the 

presence of a noisy background. After the filter application, the CBR ratio increases by a factor 

ranging from ~6 to ~60.  

Conclusion: The developed tool (Steerable3D) can generally facilitate the detection/segmentation of 

tiny blood vessels, connections, neuronal bodies and axonal fibers that were not clearly observable in 

non-filtered SxrPCµT images. Its systematic application could allow obtaining quantitative 

information from pre-clinical and clinical images. The Steerable3D tool is made publicly available as 

an open-source and user-friendly plugin for the ImageJ software platform. 
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Introduction 

The segmentation of vascular networks (VNs) in the central nervous system (CNS) is of crucial 

importance for clinical and pre-clinical image processing applications (see, e.g., [1] for a review on 

this subject). In particular, the three-dimensional (3-D) analysis (determination of crucial parameters 

such as density, distribution and continuity of vessels) of the VN (including its smallest capillaries), 

is one of the key issues in neurodegenerative diseases, such as multiple sclerosis [2-4], where 

pathologic neurovascular alterations have been regarded as a key process [2, 3]. In this framework, 

the knowledge of the relative spatial location of blood vessels with respect to neurons and axons is 

mandatory for improving our understanding of the effects of pathological processes. 

To this aim, a 3-D high-resolution micro-imaging technique is required to define the complex 

structure of the VN in the central nervous system. Magnetic resonance angiography, volumetric 

computed tomography [5] and conventional X-ray angiography [6] have been used to image the 

neural vasculature, but their low resolution is inappropriate for imaging small vessels (<20 µm). High-

resolution synchrotron tomography has been proposed for the complete 3D imaging of micro-VNs 

[6], yet a better contrast is achieved by imaging the phase modulation induced by an object in a 

coherent beam [7, 8]. This latter feature makes Synchrotron X-ray Phase-contrast micro-Tomography 

(SXrPCµT) a very attractive method to study weakly absorbing samples, such as the spinal cord 

vascular and neuronal network. In particular, SXrPCµT provides an excellent 3-D resolution allowing 

us to detect the arteries, veins, capillaries, neuronal cells and axonal fibers at the micron scale with 

no contrast agent [9, 10]. 

However, for the phase-contrast tomography data the use of no contrast agents makes vessels difficult 

to segment using intensity-based image processing approaches, such as choosing an appropriate 

threshold, because the intensity values of the vessels strongly overlap with those pertaining to other 

structures and to the background. In addition, the segmentation of VNs is seriously hampered by the 

presence of image noise and strong contrast inhomogeneities, as well as by the multi-scale nature of 

vessels and nerve fibres, which prevents from using size based automated recognition algorithms. For 



all these reasons, the development of a computationally efficient 3D segmentation tool for the 

vascular network is an extremely challenging task.  

In this respect, a large variety of methods have been set up, mostly of which relying on the 

morphological properties of “tubular structures”. Very simple vessel detection techniques were 

developed many years ago (based on global or locally adaptive thresholds developed in a more 

general context [11, 12]), and have been extensively used because of their conceptual simplicity and 

low computational cost. Their main drawback is the need of a careful fine-tuning in parameters 

selection to avoid inaccurate results. Recently, more sophisticated techniques have been introduced 

following an iterative approach in which, starting from a set of manually chosen “seed points”, the 

segmentation proceeds propagating towards peripheral branches by means of active contours [13], 

region growing [14, 15] and particle filtering or path tracing [16-19] thus exploiting the 

interconnected, “graph-like”, topological structure of vessels.  

However, a requisite building-block in such algorithms is the measure of tubular degree or 

‘‘vesselness’’, that is more commonly evaluated by means of Hessian-based methods. These rely on 

the eigenstate analysis of the Hessian, estimated from the second-order derivatives of local intensity 

levels, which can then be used to define a vesselness as a function of the eigenvalues [18, 20-22]. 

Nonetheless, in order to deal with the multi-scale nature of vascular structures, Hessian-based filters 

usually include a preliminary Gaussian convolution that has to be re-applied each time at the different 

scales. This tends to blur vessel boundaries, which could make scale selection inaccurate, especially 

close to bifurcations. To overcome this issue various authors proposed more sophisticated versions of 

this approach, such as bi-Gaussian pre-filtering [23] and oriented flux calculations at the boundary of 

localized circles (2-D) or spheres (3-D) with different radii (i.e. scales) [24, 25]. Unfortunately, these 

improvements imply a non-negligible computational extra-cost to pay for.  

Alternative techniques to enhance tubular structures include optimal edge detection [11] and steerable 

filters [26, 27]. Among these techniques, we chose to implement a Gaussian steerable filter [28] 

because it allows to achieve a good compromise between computational cost and features contrast 



enhancement. Indeed, this filter shows two important properties: i) it has an explicit scale parameter 

that allows us to optimize the filter response (FR) to take into account the multi-scale nature of 

vascular structures;and  ii) the filter convolution can be computed very efficiently for any arbitrary 

orientations thanks to the steerability property of Gaussian derivatives  [18] 

In this paper we describe an implementation of this filter within the ImageJ integrated graphical 

platform (https://imagej.net). ImageJ is a public domain and open-source image processing software 

tool whose main strengths are modularity, portability and computational efficiency [28]. For these 

reasons, we decided to implement it as a (publicly available and open-source) plugin that can be 

integrated in the platform. To our knowledge no 3-D steerable filters  are available as a plugin for 

ImageJ (see [27] for a 2-D implementation). Finally, we report on various filter quality tests applied 

to SXrPCµT mouse spinal cord images.  

Materials and methods 

Sample preparations 

We studied the spinal cord of healthy adult male C57BL/6J  mice (20–22ௗg, body weight).  

 We measured 12 spinal cord samples from ex-vivo adult male C57BL/6J mice(5-6 weeks old, weight 

21-28 g, Charles River). The animals were housed in a room (22 ± 1°C, 50%-60% humidity) with 12 

h light/dark cycle and free access to food and water. The samples were divided in four groups. One 

group was filled with physiological solution; another was perfused with MICROFIL®, a low-viscosity 

radio-opaque polymer (Flowtech, Inc., Carver, Massachusetts) well suited for vascularization studies; 

a third group was perfused with ethanol and the last one was perfused with paraformaldehyde (PFA). 

The detailed sample preparation protocol is reported in [29]. These experimental animal procedures 

was be carried out at the A.I.Virtanen Institute for Molecular Sciences at the University of Eastern 

Finland (Kuopio, Finland) and approved by the Animal Care and Use Committee of the Provincial 

Government of Southern Finland and performed according to the guidelines set by the European 

Community Council Directive 86/609/EEC. 



SXrPCμT measurements  

In-line SXrPCμT measurements were carried out at the I13-2 beamline of Diamond Light Source 

(Harwell Science and Innovation Campus, Oxfordshire, UK) and at the ID17 beamline of ESRF 

(Grenoble, France). At I13-2 tomographic images were collected using a pseudo-monochromatic 

X-ray beam with main peak at 14.7 keV and a system of magnification optics connected to a 

PCO.Edge 5.5 camera to get an affective pixel size of about 1.625 μm; the sample was located 70 cm 

far from the detector. At ID17 a monochromatic X-ray beam at the energy of 30 keV was used, in 

combination with a sample-detector distance of 2.0 m and a detection pixel size of 3.5 μm [30]. 

Phase retrieval was performed applying the single distance method proposed by Paganin [31] and all 

projections were processed and reconstructed using an open-source software tool SYRMEP Tomo 

Project [32]. We thus obtained a set of high-spatial resolution tomographic images, where the different 

grey levels are proportional to the electron density of the different tissues inside the sample.[7, 8]. 

The reconstructed volumetric images were analysed and filtered by means of ImageJ, using the home-

developed plugin as described below. 

For a proper comparison of the original volumetric images with the filtered ones we made a 2-D 

projection of their voxels. Let x and y be the horizontal and vertical axes, respectively, on the spinal 

cord axial plane, so that the z-axis lies along the images stack axis (i.e. perpendicular to the axial 

plane).  Each non-filtered volume of interest (VOI) was thus projected through the following steps: 

1) taking the “projected minimum” of the VOI. This was done by creating a 2-D image in which 

the grey level p of the generic pixel at (x, y) is given by 

   𝑝(𝑥, 𝑦) = min
ஸ௭ஸ

{𝑣(𝑥, 𝑦, 𝑧)}     (eq_1) 

where v(x, y, z) is the grey level of the VOI voxel at (x, y, z), with Z being the upper limit of 

the z coordinate (it coincides with the number of slices in the stack). 

2) Taking the “projected maximum” of the VOI (i.e. applying Eq eq_1, but with the “max” 

instead of the “min” operator). 

3) Summing (pixel-by-pixel) the image of step (1) (after inverting their grey levels) with the 



projected maximum of step (2). 

For grey scale “inversion” we mean the transformation of the grey level p of a pixel to M – p + m, 

with m and M being, respectively, the minimum and maximum grey level of the image (notice that 

the absolute value of the difference between the grey levels of any pixels pair is invariant under this 

transformation). 

Indeed, the projected minimum and maximum are commonly used to segment projected 

neurovascular network in images stack (see, e.g. ref. [2, 9]) because, on the one hand, the resulting 

dark pixels very likely come from vessels lumen and, on the other hand, cell bodies tend to give rise 

to bright pixels. Moreover, as we will see below, since in the filtered image the vessels’ pixels are 

brighter than the background, we transformed the dark vessels of the non-filtered image into bright 

objects by inverting the projected minimum, so to make the image more easily and visually 

comparable with the projected FR. The latter was obtained by doing only the “projected maximum” 

on the 3-D FR voxels. Indeed, the grey level in the FR can be regarded as a “vesselness” measure. 

 

The “Steerable3D” tool 

The 3-D segmentation of the VN, up to the capillary network (on ~5 μm of length-scale), makes the 

adoption of a computationally efficient filter in 3-D of crucial importance for medical application. 

For this reason, we implemented a filter based on 3-D Gaussian derivatives which allows to filter 

along any arbitrary orientation with a small computational extra-cost. The result of the filtering 

procedure – the FR – is obtained by the convolution of the image with the filter template (FT, see Fig. 

1). Specifically, the convolution consists in a weighted average of all the image pixels around a given 

one, with the weights given by the FT (see below). Moreover, the FT can be easily re-scaled so as to 

enhance vessels/fibres of different size (from ~1 to ~30 μm). 

The filter implementation was done as a form of an ImageJ (open-source) plugin that we called 

“Steerable3D” (S3D). It is based on the theoretical approach described by Schneider and colleagues 



[27] in which the adopted FTs are written as normalized derivatives of Gaussians, that is: 

 𝐺ெ,,
ఙ (�⃗�) = 𝜎ெ డಾషೌడೌష್డ್

డೣ
ಾషೌడ

ೌష್డ
್ 𝐺ఙ(|�⃗�|)      (eq_2) 

where the triplet (M, a, b), with M > 0,  0 a  M and 0 b a, identifies the template “order” and 

Gσ(x) is the gaussian with variance σ2 and zero mean. In Fig. 1, the form of the FT at various orders 

is illustrated. 

In addition to having an explicit and easily adjustable scale parameter (σ), this filter is “steerable” 

also in 3-D (as was demonstrated in [28], see also [26, 33]). Steerability is the property  whereby the 

convolution of an image with a rotated version of the FT can be expressed as a linear combination of 

various orders of the same FT without rotation (Fig. 1). In formal notation, given the FR, i.e. the 

convolution of the image I with the FT at the voxel �⃗�(𝑥, 𝑦, 𝑧), as 

 𝑓ெ,,
ఙ (𝐼, �⃗�) = ൫𝐼 ∗ 𝐺ெ,,

ఙ ൯(�⃗�),     (eq_3) 

then the convolution with the FT rotated in 3-D with a given elevation (θ) and azimuth (φ) angles 

(with respect to the axial, slice, xy plane, see Fig 2) can be written as 

 𝑓ெ,,
ఙ (𝐼, 𝑅�⃗�) = ∑ ∑ 𝑤ெ,,


ୀ

ெ
ୀ (𝜃, 𝜑)𝑓ெ,,

ఙ (𝐼, �⃗�)    (eq_4) 

where R=R(θ, φ) is the corresponding rotation matrix and  wij
,Ma,b (θ,φ)is a set of coefficients 

depending on the angles (Ref. [28], Sect. 2.1.2, for further details). As a consequence, for the sake of 

computational convenience and rapidity, the evaluation of the rotated FR can be done by using Eq. 

(eq_4) instead of the direct and much more computational expensive convolution (eq_3) re-evaluated 

at 𝑅�⃗�. In the plugin, the optimal orientation is found for each voxel as that giving the maximum FR 

among the responses corresponding to the angles: 

 
𝜃 = 𝜃ଵ, 𝜃ଵ + 𝛥𝜃, 𝜃ଵ + 2𝛥𝜃, … , 𝜃ଶ

𝜑 = 𝜑ଵ, 𝜑ଵ + 𝛥𝜑, 𝜑ଵ + 2𝛥𝜑, … , 𝜑ଶ
      (eq_5) 

where the angular bounds 0 ≤ θ1 < θ2 ≤ 90o, 0 ≤ φ1 < φ2   ≤ 360o, and the steps Δθ, Δφ can be given 

by the user (see next Section). Notice that only one half-space (with z ≥ 0) needs to be considered 

because all the FTs are invariant under the θ → – θ transformation.  



Results 

The S3D workflow 

The S3D plugin is written in Java and it is capable to run in parallel on multi-CPU computers thanks 

to the native multithreading mechanism of Java language. Since each thread can operate 

independently of each other on a subset of all the slices composing the 3-D stack, the computational 

parallelization can be done straightforwardly in both the calculation stages and the performance 

shows a good scalability (see Fig. 3 for a sketch of the tool workflow). 

S3D operates on 32-bit (single precision floating point) greyscale images, and therefore other types 

of images must be converted before being treated (ImageJ has an embedded conversion tool that is 

accessible through the Image -> Type menu path). Moreover, it needs 3-D images, thus a stack of 

2-D image slices must be loaded first. Then, the plugin can be launched and a GUI opens (Fig. 4). 

The user can first select whether to apply a “custom” FT order by giving the values for M, a and b, 

or to set a pre-defined FT. S3D provides three different pre-defined templates, namely: i) the “Edge” 

type that corresponds to (M, a, b) = (1,0,0) and yields an edge detector, ii) the “Ridge” type, with 

order (2,1,0), that gives a high response when a linear bright series of voxels is surrounded by darker 

voxels and iii) the order (2,0,0) that we name “Vessel” type because it yields a high response when a 

darker set of aligned voxels is confined within brighter “boundaries” (see Fig 1). The user can then 

set the “scale” parameter (corresponding to σ in Eq eq_2), as a length-scale parameter for the FT, as 

well as the angular limits and the steps used in the search for the optimal filter orientation (Fig. 4). 

When the “Run” button is pressed the plugin starts to calculate the filter convolution (without rotation, 

Eq eq_3) with the whole image. The progression of this stage is shown in the progress bar of the 

ImageJ main window (Fig. 3), along with the information on how many threads are being used in this 

calculation. After that, the searching for the optimal rotation angle is executed (applying Eq eq_4) 

while the progress bar and the number of threads are displayed also for this stage. At the end a new 

image stack is displayed containing the 3-D FR. Finally, notice that if the button “Draw template” is 



pressed, then the plugin will just display the chosen FT form; therefore only the filter order is taken 

into account in this case. 

Steerable3D testing and application 

As a first step, we applied S3D to simple synthetic images. In Fig. 5 B we can see a 3-D view of 

synthetic “vessels” represented by cylinders immersed in additive white noise (in Fig. 5 A the 

“vascular network” is reported without noise for illustrative purposes). The size of vessels was either 

2 or 8 voxels. In Fig. 5 C,D,E the FRs are reported for the “Vessel” FT (order 2,0,0) with scale 

parameter σ = 2, 4 and 8, respectively. We can see that the filter behaves as expected as it enhances  

the contrast between vessels walls and the (noisy) background. It is also apparent that the larger the 

scale the lower the noise level in the response but the greater the accuracy of vessel discrimination. 

To this respect, in Fig. 5 E it is worth noting that the cylinders appear dilated.  

As a realistic test of S3D, we examined SXrPCμT images. For the easiest comparison of the original 

volumetric images with the filtered ones, we made a 2-D projection of their voxels. Specifically, we 

took the “projected minimum” and the “projected maximum” of the VOI from the non-filtered image 

stack (as commonly done to segment projected VN [2, 9]). Then, we summed, pixel-by-pixel, the 

inverted grey levels of the former with those of the latter, where the inverted grey levels were 

calculated as previously described (ref. to sec. “SXrPCμT measurements) in order to turn dark pixels 

(which mainly correspond to vessel lumens) into bright ones. Finally, only the projected maximum 

was applied to the filtered VOI. 

In Fig. 6 A, we selected a small VOI in the central part of a stack of 100 greyscale slices of a mouse 

spinal cord injected with MICROFIL® (this sample was measured at ID17 with a pixel size of about 

3.5 micron)   

In Figs. 6 B,C we can see how in the S3D response of the VOI the blood vessels contrast is clearly 

enhanced against the background pixels, revealing more details and vascular network connections.  

The non-filtered projected image was obtained through the above-described procedures, while the FR 



projected in Fig. 6 C was obtained by doing only the “projected maximum” on the 3-D FR voxels. 

The image in Fig. 6 C was rendered in red and, finally, in Fig. 7 the FR is rendered in 3-D to appreciate 

the filtered vessels global structure. 

In Fig. 8 the same comparison between non-filtered and filtered images was done in the same spinal 

cord region, on samples without contrast agent but only perfused with PFA or ethanol (these samples 

were measured at I13 with a pixel size of 1.6 micron) used as fixative agents [29]. Also in this case 

the filter greatly improves the general visibility of both blood vessels and neural fibres in the white 

matter region (we notice how the nerve fibres visibility is especially enhanced in the ethanol perfused 

specimen, Figs. 8 C,D). 

The enhancement of the neurovascular system components that is apparent in the above-reported 

SxrPCμT images, can be rigorously quantified by measuring the contrast-to-background ratio (CBR, 

see. e.g., Ref. [34]). This can be defined as 

  𝑐X =
ௌXିX

|X |
    (eq_6) 

where the ‘X’ index represents the component – or detail – we are interested in, S X is the maximum 

grey level in the set of pixels within a region enclosing a significant part of that component and of 

the adjacent area (see, e.g., Fig. 8), and BX is the background level, determined  by taking the minimum 

grey level within the same region in which S X was taken (of course S X ≥ BX  by definition). In the 

following table 1, X=‘N’ stands for neural cell bodies, ‘V’ for blood vessels and ‘I’ for the whole 

image. 

We evaluated cX both in the non-filtered image and in the filter response (cX,FR), thus obtaining a sort 

of ‘filter gain’ defined as the ratio cX,FR/cX. This gain measures the “efficiency” of the filter 

application, i.e. how many times it increases the CBR of the relevant details with respect to their 

surroundings. Of course, care was taken to ensure that the same component and the same region were 

considered in both the filtered and non-filtered image to evaluate SX and BX. Resulting values are 

reported in Table 1. 

Another possible application of this filter is to provide support for grey matter (GM) segmentation in 



spinal cords. Indeed, the differences in the vascular network structure between GM and white matter, 

yields a substantially different response, as we can see in Fig. 9. It is evident that the GM is globally 

more clearly distinguishable in the projected maximum of the FR (Fig. 9 B) than in the projected 

maximum (Fig. 9 A) of the original non-filtered stack. In particular, the FR gives rise to a rather sharp 

region with a peculiar pixels “texture” corresponding to the GM region, which can thus be more easily 

segmented.  

Discussion 

In this work the implementation of “Steerable3D”, a 3-D steerable Gaussian filter for the visual 

enhancement of multi-scale neurovascular networks in 3D, is described and tested. The 

implementation is done in form of a publicly available, open-source and user-friendly plugin for the 

ImageJ modular software platform [35]. We preliminarily checked the filter response on a synthetic 

“vascular” image (represented by tubular structures) and we verified that S3D is able to extract and 

enhance the tubular features from the background. Moreover, we tested S3D on high-resolution 

SxrPCμT images of ex-vivo mouse spinal cord to show the performances of the filter under realistic 

conditions (differing in sample preparation, X-ray source and resolution). The tests confirm that S3D 

is able to significantly enhance the visibility of blood vessels, nerve fibres and neuronal cell bodies 

against the background voxels. This enhancement is confirmed by the comparison of the CBR (Eq 

[eq_6]) measured before and after the filter application.  

Values found for this ratio are listed in Table 1, where we can see that for blood vessels S3D can 

amplify the CBR ratio by a factor that ranges from ~6 to ~60, depending on the sample 

preparation/condition.  

The above mentioned CBR can be visually and qualitatively understood also by observing the 

distribution of grey levels in the image pixels, reported in Fig. 10. The surface plot depicted in the 

figure refers to PFA-perfused case images. On the z-axis the grey level of every pixel in (x, y) of the 

images in Figs. 8 A,B is reported. We can immediately see that the “ranges of peaks” are higher and 



sharper in the filtered image than in the non-filtered one, with respect to the surrounding “valleys” of 

the surface plot. The lower grey levels associated to neurons in the FR in this case can be explained 

by the relatively high resolution of the image that allows to better reproduce the “irregular” (“starred”) 

form of their soma, thus generating lower vesselness values in the FR. 

Conclusion 

In summary and conclusion, the “Steerable3D” (S3D) filter, was developed to enhance the visibility 

of multi-scale neurovascular networks in three-dimensional images. The tests, carried out on high-

resolution SxrPCμT images of ex-vivo mouse spinal cord, demonstrated that S3D can generally 

facilitate the detection/segmentation of smallest blood vessels, connections, neuronal bodies and 

axonal bundles that were not clearly observable in the non-filtered images.  

It is worth mentioning that in its present version, S3D does not exploit the information about the 

template orientation that the employed algorithm uses internally to search for the best local response. 

In a forthcoming version of the tool, we plan to use this information with a twofold aim: i) as a guide 

for a skeletonization procedure (the optimal angles naturally indicate the main vessel/fibre local 

orientation), ii) to help discriminating neuronal cell bodies from vessels and nerve fibres. Indeed, as 

illustrated in Fig. 8, also these cell bodies are enhanced by the filter. This is because neurons have a 

roughly ellipsoidal geometrical structure that resembles (on a certain scale) that of a small segment 

of a tubular structure. On the other hand, the distribution of the optimal filter orientation on the cell 

body surface is different from that on a real vessel segment. In particular, it is expected that the 

average of the unit vectors corresponding to orientations of detected structures should be substantially 

different in the two cases. Therefore, in the future we plan to use this feature to mask the filter 

response in such a way to discriminate vessel/fibres from neurons. 

Another promising line of application is the use of S3D as a ‘global’ segmentation tool for white/grey 

matter in SC. Indeed, the very different nerve fibres and blood vessels density in the two regions lead 

to a rather different filter global response, which appear as regions with a very different graphical 



“texture” (see Fig. 9), thus allowing to distinguish between each other much more easily than in the 

original non-filtered image. 

Finally, we remark the importance of having developed an open-source tool that can be easily 

extended/updated – also by contributors coming from the scientific community – in order to improve 

selectivity for the segmentation of the relevant features and to increase computational efficiency.  
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Table 

Table 1. Contrast-to-background ratios and filter gain. List of measured contrast-to-background 

ratios, and corresponding filter gain, for the images presented in this work (as labelled in the first 

column). The subscript ‘FR’ denotes the CBRs as determined on the FR maximum projected image. 

 

Figures cV,FR /cV cN,FR /cN cI,FR /cI Note 

6 B,C 56.1/3.35 = 17 n/a 40.9/5.99 = 6.8 Microfil® 

8 A,B 3.35/0.0572 = 57 1.94/0.0839 = 23 3.08/0.110 = 28 PFA perf. 

8 C,D 6.28/0.125 = 50 n/a 5.81/0.174 = 33 Ethanol perf. 
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Figure 1. Filter templates. From top to bottom: sagittal, coronal and axial central cross-sections of 

the filter templates for various orders (as labelled at the bottom) and without rotation. The size of 

each cross-section is 6σ. 



 

Figure 2. Filter 3D orientation. Elevation (θ) and azimuth (φ) determine the FT direction. The xy 

plane is parallel to each tomographic slice plane. 

 



 

Figure 3. Steerable3D workflow. Flowchart of the plugin working steps. 

 

 



 

 

Figure 4. Plugin GUI. ‘Elevation step’ refers to Δθ; ‘Azimuth step’: Δφ; ‘Elevation from’: 

1;‘Elevation to’: 2 ‘Azimuth from’: φ1  and ‘Azimuth to’: φ2  



 

Figure 5. Filtering a synthetic image. (A) Four synthetic “vessels” generated as cylinders of various 

size and orientation within a box of 140×140×60 pixels. They have either 8 or 2 voxels width. (B) 

The same as in (A) but with a white noise added with an average grey level equal to the grey level of 

the “vessels”; in this case a certain degree of transparency had to be set in the 3-D rendering to 

improve visibility. (C, D, E)  FT (2,0,0) responses of the (B) volumetric image using a scale σ = 2, 4, 

8, respectively. 



 

Figure 6. Filter test on a SxrPCμT image of a mouse spinal cord perfused with contrast agent.  

(A) Axial cross-section and a VOI with size 200×170×100 voxels (1 voxel size = 3.5 μm) enclosed 

in a yellow contour (the white scale bar is 150 micron). (B) Projection of the VOI of (A). (C) 

maximum projection of the S3D response stack (FT order 2,0,0 with σ = 2). The ramifications of the 

anterior (sulcal) artery are clearly visible. The green rectangles indicate the regions used to evaluate 

the CBR on a vessel (see text). Yellow ovals enclose a region in which a vessel discontinuity is 

revealed as only apparent by the FR contrast enhancement.  (scale bar in B and C is 30 micron) 



 

Figure 7. Filter response 3-D rendering.  Three-dimensional structure of the vascular network  in 

the volumetric FR (projected in Fig 6).  

 

 

 



 

 

Figure 8. Filter test on SxrPCμT images of a mouse spinal cord without contrast agent.  (A) 

Projected VOI (see text) with size 500×440×200 pixels (pixel size = 1.6 μm) in the same region as in 

Fig. 6 of a PFA perfused spinal cord. (B) Projected maximum of the FR stack of the VOI (FT order 

2,0,0 with σ = 2). (C), (D) The same as (A) and (B), respectively, but with ethanol perfusion. The 

yellow dashed curve roughly delimits white and grey matters. The small rectangular regions used for 



the CBR calculation on a vessel (green) and a neuron (blue) are also enlarged and reported. In (D) the 

dense neural fibres network appears to be resolved in the white matter region. (white scale bar 20 

micron) 

 

 

 

Figure 9. Filter response on grey/white matter. (A) Projected maximum of a 200 SxrPCμT slices 

stack of a mouse spinal cord. (B) Projected maximum of the S3D volumetric response of (A).  

 

 

Figure 10. Grey levels surface plot of the PFA perfused case. For each pixel at (x,y) in Figs 8A 

and 8B, the grey level is reported on the z-axis in the non-filtered and filtered plot, respectively.  



 


