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Abstract
Biodiversity surveys are often required for development projects in cities that could affect
protected species such as bats. Bats are important biodiversity indicators of the wider
health of the environment and activity surveys of bat species are used to report on the
performance of mitigation actions. Typically, sensors are used in the field to listen to the
ultrasonic echolocation calls of bats or the audio data is recorded for post‐processing to
calculate the activity levels. Current methods rely on significant human input and
therefore present an opportunity for continuous monitoring and in situ machine learning
detection of bat calls in the field. Here, we show the results from a longitudinal study of
15 novel Internet connected bat sensors—Echo Boxes—in a large urban park. The study
provided empirical evidence of how edge processing can reduce network traffic and
storage demands by several orders of magnitude, making it possible to run continuous
monitoring activities for many months including periods which traditionally would not be
monitored. Our results demonstrate how the combination of artificial intelligence tech-
niques and low‐cost sensor networks can be used to create novel insights for ecologists
and conservation decision‐makers.

1 | INTRODUCTION

The Internet of Things (IoT) has emerged from
manufacturing and permeated across industries [1, 2]. The
proliferation of consumer products has driven an ever‐
increasing ecosystem of hardware and software which in
turn has increased applications in new and emerging forms of
connected environments. In combination with machine
learning, either run in the cloud or increasingly locally on the
thing itself, IoT and edge processing are making many once

manual tasks more automated, allowing us to shift focus and
skills to those that require a human touch.

This paper presents the application of embedded machine
learning in the ecological domain to investigate interventions
made in the built environment to support and maintain
biodiversity. The challenge was to take state‐of‐the art deep
learning based methods for monitoring bat activity [3] and
integrate that with emerging IoT technologies to broaden ac-
cess to that expertise. For example, the United Kingdom's Bat
Conservation Trust has the longest running systematic bat
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monitoring programme in the world utilising a network of
scientists and citizen volunteers [4]. However, it relies on a high
level of human input and currently utilises an equipment that is
financially beyond the means of citizen scientists. In section
two, we develop further the importance of this work within
the smart city sector. The goal of this research was to imple-
ment a low‐cost technical platform to give ecologists a better
insight into urban bat activity through continuous longitudinal
monitoring.

Utilising a novel IoT System‐on‐a‐Chip (SoC) platform the
project involved the design and development of state‐of‐the‐
art intelligent bat sensors, called Echo Boxes (Figure 1), that
combine the latest advances in edge computing and machine
learning. Each Echo Box works like ‘shazam for bats’, capable
of listening to audio from the environment and immediately
determining if bats are present and what species they are based
on their echolocation calls. The complex analytics (audio
processing and detection) that was previously undertaken in
the lab on a high‐performance machine was optimised to run
on a low power, resource‐constrained IoT device. A key goal
for the project was to conduct a longitudinal research to
investigate the challenges of specifying, installing, testing and
maintaining the infrastructure over many months [5, 6]. To
answer research questions about long‐term patterns of bat
behaviour and the potential for the technology to support
ecologists and other stakeholders, the real‐world deployment is
required to scale up in several ways. Multiple technically
complex Echo Box devices were required to work robustly and
reliably for an extended period of time unsupervised in an
outdoor environment where the technology would be
completely exposed to the elements. In addition to the scien-
tific and technical requirements, a key stakeholder goal of the
prototype was to support data‐driven policy‐making. The
research was conducted as part of a Smart Sustainable District
programme supported by the Mayor's office of a major capital

city. As such, we describe the outcomes of the stakeholder
engagement that helped to map the problem domain, set of
requirements for the smart bat sensing system, and where,
under the guidance of ecologists, the devices were installed to
monitor bat activity levels across a large urban park in the city.

Our contributions include (i) working with stakeholders to
identify application requirements for an urban sensing platform,
(ii) the application of state‐of‐the‐art machine learning tech-
niques on sensor nodes for the automatic detection and counting
of bat activity, (iii) continuous unattended monitoring of wildlife
activity in an urban environment over multiple years.

The rest of the paper is organised as follows. We start by
discussing the related work and requirements for the project
(Sections 2 and 3). We present the system itself including the
Echo Box bat sensors and the visualisation tool (Section 4). We
report the results from the initial deployment that spanned
several months (Section 5). Finally, we provide a broader dis-
cussion around the lessons learnt from successfully deploying
and running the technology longitudinally, how it has been used
by the ecologists to explore new patterns of data collection, and
how the data captured has been used by decision‐makers in the
park to validate their biodiversity mitigation plans (Section 6).

2 | BACKGROUND AND RELATED
WORK

The project was devised to bring together environmental re-
searchers, conservation organisations, ecological consultants/
practitioners, computer scientists and technologists to develop
an end‐to‐end open source system for monitoring bats. The
core research question was ‘how can technology provide more
granular bat activity data over time and support ecologists and
stakeholders in long‐term decision‐making?’ This multi‐
disciplinary research builds on three areas: (1) ecology

F I GURE 1 The smart bat sensor installed on the lamp column
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practices for conducting bat surveys; (2) technology application
in the field of ecology; and (3) latest advances in emerging
technologies such as the IoT and edge processing.

2.1 | Bat surveys

Bat surveys are important for conservation, for example, to
understand if bats are inhabiting an area, or how proposed
activities might affect them [7]. Bats are also considered to be
good indicator species reflecting the general health of the
surrounding natural environment [8]. Surveys are usually car-
ried out by contracted ecologists who follow standard prac-
tices. Typically, a survey lasts for several days and may also be
conducted periodically, perhaps every 6 months or more
often as required. Bats are nocturnal animals and use a high‐
frequency system called echolocation to navigate their envi-
ronment at night. Echolocation works in a similar way to so-
nar; bats make ultrasonic calls and listen to the returning
echoes in order to build up a sonic picture of their environ-
ment. Ecologists will capture these ultrasonic calls during
surveys, for example, to understand bat activity levels in an
area. Methods and tools used differ based on the aim of the
survey and the questions it should answer. Sometimes ecolo-
gists will visit the site at night with handheld bat detectors
to observe and listen to bats in real‐time or use handheld
ultrasonic recording devices to capture audio for later lab
analysis [4].

Other techniques involve static recording devices left on‐
site for nights at a time unsupervised or attaching ultrasonic
recording devices to cars to capture recordings over larger
areas [3]. Audio data from such devices is typically stored
locally, for example, on SD cards, and then collected by ecol-
ogists for lab analysis at the end of the recording period.
During lab analysis, software tools are commonly used to help
extract bat calls from audio recordings and some solutions also
incorporate machine learning models to help detect and clas-
sify bat species [9]. These systems are often closed‐sourced
commercial systems making it difficult to know how the al-
gorithms work and their true accuracy.

Data collection and analysis practices are rather manual
and time intensive. Depending on the duration and methods
used, site surveys can result in several Gigabytes of audio data
for analysis, from which knowledge must be extracted and
decisions made [10]. This can often take many weeks or even
months to complete for a single survey.

2.2 | Technology for ecology and
conservation

Technology has long played a role in ecology and conservation,
with audio‐visual devices such as camera traps and acoustic
monitors being commonplace [11–13]. However, emergent
technologies are also being adopted for biodiversity conserva-
tion and ecological surveys [14]. Acoustics have been used to
monitor a wide variety of species through their natural calls

ranging from infra‐sonic frequencies through to ultra‐sonic,
including birds [15], whales [16], insects [17] and of course bats.
As a consequence, intelligent audio analysis techniques using
machine learning algorithms have been developed in order to
process the sheer volumes of captured audio in the lab or on
cloud platforms. For example, the Bat Detective project devel-
oped deep learning tools to automatically identify bat acoustic
signals in recorded audio [18]. In fact, audio analysis is also being
applied to anthropogenic sounds to monitor human activity
across cities and identify significant events such as gunshots [19].

Remote imaging from satellites provides possibilities to
monitor large numbers of animals across huge areas [20, 21]. In
the Mediterranean, satellite images are being analysed by image
recognition techniques to monitor the movement of jellyfish
blooms [22]. Elsewhere, drones with on‐board cameras are
being used to automatically locate and count animals for survey
and conservation purposes [23], and even to collect and
analyse whale snot to determine the health of our oceans [24].
Latest camera technologies are also small and light enough to
be attached to animals themselves, so researchers can see
where they go and what they do, such as the routines and social
interactions of domestic pets [25].

IoT sensors and real‐time data are helping to protect wild
rhinos from poachers in South Africa in a collaboration be-
tween Cisco and local companies [26, 27]. The sensors can
track the animal's heart rate, with a sudden increase triggering
an early warning that poachers might be giving chase. Small 5‐g
GPS trackers have also been attached to Cuckoos to monitor
their migration paths across the world, with resulting data
showing that their migration route was a key factor in their
population decline [28].

2.3 | IoT and edge processing

The IoT has driven an explosion of Internet traffic and data
coming from non‐human connected things. In 2020, an esti-
mated 11 billion connected things were pushing data and
communicating via the Internet with 50 billion predicted for
2030 [29]. However, current innovation trends are pushing for
the ‘things’ to become smarter by embedding more intelligence
(e.g. machine learning models and data analytics) onto these
edge devices. Prior to recent innovations in SoC technologies,
this was not possible, but a new breed of SoC devices such as
the Pi zero [30], Google AIY kit [31] and Aaeon Up boards [32],
now mean that entire operating systems and machine learning
can be run on processing units smaller than a postage stamp.

This has opened the door to a next generation of IoT
solutions that are moving away from the more traditional
model of dumb sensor/actuator devices at the edge of the
network [33]. New models of distributed intelligence are
emerging across connected devices, and increased autonomy at
the edges of the network, with machine learning being
implemented on edge nodes themselves [34]. This move to-
wards more intelligent ‘things’ with much greater processing
power has been given many terms including Fog Computing,
edge processing or edge intelligence [35].
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The work presented here brings together the IoT, machine
learning and edge computing in a novel sensing system for
biodiversity bat monitoring and conservation. Continuous
acoustic monitoring of bats provides an ideal use case to bring
these three emergent technologies together. The longitudinal
study provides insights into the challenges of running and
managing high‐tech prototypes in the field, how their adoption
might impact on bat biodiversity monitoring and conservation
decision‐making, and also provides new insights on urban bat
activity.

3 | PROJECT REQUIREMENTS

To further understand current ecology practices, the challenges
faced and requirements that would inform the design and
deployment of the IoT bat sensing system, a 1‐day workshop
was conducted with a variety of stakeholders.

3.1 | Understanding stakeholder
requirements

Over 30 people attended the workshop from different sectors
and backgrounds including ecologists, park owners, land
managers and people who use the urban park. Workshop at-
tendees were given an overview of the project vision plus
initial outline plans for a novel bat sensing prototype,
including possible capabilities and likely constraints. Attendees
were then divided into interdisciplinary groups and a series of
questions were used as prompts to drive group discussion
around three main themes: (1) current challenges, (2) data and
(3) impacts. During each round of discussions, comments were
captured on post‐it notes and analysed for recurring and
emergent outcomes. These outcomes are described under each
theme below.

3.1.1 | Theme 1—Current challenges

Stakeholders talked of a data paradox surrounding current
biodiversity bat surveys. They described how after each sur-
vey they have too much data to process in a timely manner
but still too little data over time and space to gain necessary
insights or make informed long‐term decisions. Surveys may
last a few days but are typically only carried out once every
6 months, so although they produce huge amounts of data,
the data only provides a very small snapshot of bat activity
over time.

This emerged as particularly problematic for stakeholders
when trying to determine if previous decisions and mitigation
strategies are effective. Regardless of the huge effort required
by ecologists to collect and analyse survey data, some referred
to resulting decisions as being little more than guesswork.
Several participants also stated that some survey data did not
get analysed due to its sheer volume and lack of resources.
Related to this, participants also talked of the challenges of

using such sparse data to advise other stakeholders. For
example, consultant ecologists need to advise site managers on
the best course of action to take from a biodiversity perspec-
tive with little or no evidence to prove whether their sugges-
tions are working. This creates a trust issue between ecologists
and stakeholders and the potential for mitigation measures to
be overlooked or misinterpreted.

3.1.2 | Theme 2—Data

Across all stakeholders there was much enthusiasm about the
potential for the bat sensing prototype to provide more real‐
time and granular streams of data. A key requirement from
many was that such data would be presented in a spatial and
temporal manner with interactive maps being the most com-
mon suggestion. Stakeholders also talked of putting the data
into context by being able to overlay bat activity data
with other data streams such as sound, temperature and light
levels—all of which have a known impact on bat activity.

The potential of having interactive maps driven by real‐
time data, or even static map‐based visuals, also appealed to
many attendees for influential reasons. They believed that more
eye‐catching images would make it easier to capture the
attention and interest of senior management and decision‐
makers. As such, there was little appetite for data to be pre-
sented in more traditional forms such as spreadsheets or
graphical reports. As one consultant stated, he typically had
very little time to put his point across to seniors and other
stakeholders and needed impactful visual support that would
do the talking for him.

In a similar thread, many workshop attendees saw the
potential of the prototype to make the data more publicly
accessible, and how this could help boost awareness and in-
terest in biodiversity and bats from the wider public. Example
suggestions included using the data to create new experiences
for park visitors, to improve outreach activities such as citizen
science, to educate the public on the importance of bats and
biodiversity, and to generally create more interest and buzz
around the urban park.

3.1.3 | Theme 3—Impacts

Workshop attendees agreed that the proposed technology had
the potential to disrupt the field of acoustic biodiversity
monitoring and greatly change the current practice. However,
this provoked many interesting questions and touch points.
One of the most common was the question of data accuracy
given the potential ‘black box’ nature of the bat sensing pro-
totype incorporating machine learning algorithms, and how
details of algorithmic confidence levels would be made trans-
parent. Ecologists stated that they currently only use bat data
with a confidence level of >85%.

The real‐time potential of the proposed prototype was a
surprise to many stakeholders. Current survey and data analysis
practices can result in a latency of many weeks or months
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between data collection and completed processing. The pos-
sibility to reduce this to seconds was a revelation to some.
However, it highlighted a key point that true real‐time streams
of bat data were not necessary and that near real‐time with
some latency was perfectly acceptable.

In terms of impact potential, stakeholders were in agree-
ment that the proposed prototype would finally give them a
way of measuring the effectiveness of mitigation strategies. The
unprecedented level of granular data across time and space
would enable them to identify patterns and trends in bat ac-
tivity levels that could indicate positive or negative results.

3.2 | Design requirements

The technical aim of this project was to develop a novel bat
sensing system that could continuously monitor bat activity
across a large urban area through audio capture and analysis.
Based on this and the workshop outcomes, the following set of
design requirements was identified.

3.2.1 | Robust and reliable

The developed technology was required to operate sufficiently
well in order to allow ecologists to answer long‐term questions
about bat activity levels across the park and the usefulness of
the novel technology. This meant that the Echo Boxes needed
to operate and gather data for at least several months, and
ideally as long as possible. In addition, there are financial costs
associated with the installation of devices across the park which
were covered by park stakeholders in this case. However, this
meant that they were also keen to see long‐term operation in
return. It was unlikely that researchers would be able to phys-
ically access installed Echo Box devices after deployment, since
the intended locations were 4 m above ground on lamp posts.
Only certified engineers could access such heights with cherry‐
pickers and extra costs would be incurred if the devices needed
to be retrieved for repairs or modifications.

As such, software systems needed to run indefinitely
without crashing or running out of memory. Hardware com-
ponents needed to operate reliably without overheating or
becoming damaged, and therefore a weatherproof, protective
enclosure was critical. However, since ultrasonic audio data was
being captured from the environment, the enclosure still was
required to allow the undistorted recording of sound waves
while keeping internal instruments dry.

3.2.2 | Always on, always connected

The system needed to provide granular data over time to
address key research questions on supporting ecologists and
stakeholders in long‐term decision‐making and determining
the efficacy of mitigation strategies. As such, it was desirable
that the system would constantly monitor the environment for
baactivity, pushing new results or data as and when available.

Therefore, the sensors needed to always be powered and
connected to a network. A free park‐wide WiFi network pro-
vided a solution for connectivity, plus lamp posts situated all
across the park could provide high mounting points for the
boxes and a constant power supply. However, the sensors
needed to handle WiFi and power outages without major data
loss or reconfiguration.

3.2.3 | Audio analysis

Bats use sound to navigate and communicate, and the calls they
make can be used to determine their species and behaviour.
The system was required to process audio data in order to
reduce the manual burden on ecologists. However, as is typical
when recording audio to identify bats, it was important that the
sensors would capture the full spectrum of sound up to the
very high ultrasonic frequencies that bats use to echolocate.
This would mean dealing with very large amounts of high
frequency audio data. If the sensors were to simply capture this
data and push it all to the cloud it would put huge demands on
network transfer and cloud storage.

As such, it was deemed more desirable to implement the
concept of edge computing to do all processing of the audio
on the sensor devices themselves. Using this concept in the bat
sensors would result in only nominal results data being trans-
ferred across the network and stored in the cloud, thus greatly
reducing demands. However, this would also mean that all
audio processing would occur on the sensor devices them-
selves without the oversight of an expert. As such it was
desirable that the algorithms could be configured to only re-
turn results with high confidence.

3.2.4 | Data visualisation

Developing and deploying the intelligent sensors and gener-
ating a live stream of bat data is unprecedented in the field of
ecological monitoring. However, if there was no means to view
the live data, the usefulness of the system and its potential
impacts would be greatly diminished. As such, it was critical
that the system also included a visualisation tool to display the
data over time and space (as requested by workshop attendees).
The tool was intended for a broad audience including park
stakeholders, ecologists and the wider public as it was hoped
that it could also help attract more volunteers and raise the
agenda of urban bat life and conservation work.

4 | TECHNICAL DEPLOYMENT

The IoT bat sensing system has several component parts
including 15 acoustic sensors called Echo Boxes, a backend
data platform and APIs hosted by a third‐party cloud service,
and a visualisation website that shows live bat data streaming
from all 15 sensors deployed across the Olympic Park.
Figure 2a shows the overall system architecture.
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4.1 | Echo Box acoustic sensor

The Echo Boxes are made from weatherproof enclosures
housing an Intel Edison with Arduino breakout board, a
Dodotronic Ultramic 192k microphone, plus other power
supply components so they can run off lamp posts in the park
(Figure 3).

To create the weatherproof enclosure, we adapted an IP‐
rated box that provided a tough, waterproof basis. A hole was
cut in the front of the box to accommodate the long ultrasonic
microphone and a custom‐made insert was created through a
three‐step process of 3D printing, silicone mould‐making and
casting resin. Given the intended outdoor location of the en-
closures, it was necessary to use a tough plastic resin that would
not degrade over time, unlike 3D printing materials could.
However, an initial 3D printed shape provided a flexible means
to create the desired form for the silicon mould and resin cast.

The Echo Box sensors run on a mains power supply which
is provided by the lamp posts on which they are mounted

across the park and to transmit data they connect to a free
public WiFi network provided by the park owners. Figure 2b
illustrates the internal architecture of each Echo Box sensor.

The Intel Edison provides a Linux environment on which
the Echo Box software, written in Python source code, is run
as a system service. A local MongoDB provides on‐board
storage in case an unexpected network or cloud platform
outage means that bat data cannot be properly uploaded to
cloud storage. The database provides enough local storage to
handle up to one week's worth of bat data and automatic
upload processes regularly attempt to upload any locally held
data to the cloud platform. To identify bats and their species
from audio, the following process flow happens on each Echo
Box, as illustrated in Figure 4.

Firstly, the ultrasonic microphone on each device captures all
audio from the environment up to 96 kHz (the Nyquist fre-
quency of the microphones). Most bats calls occur at frequencies
above 20 kHz (the limit of human hearing) so are undetectable by
the human ear or more traditional microphones. Secondly, the

F I GURE 2 System architecture including the (a) overall system and (b) Echo Box architecture

F I GURE 3 Components inside an Echo Box
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recorded audio is chunked into three‐second samples and stored
as a series of. wav files. Each three‐second. wav file is 1.1 MB in
size due to the large amount of full‐spectrum audio it contains
(everything up to 96 kHz). Thirdly, each three‐second. wav file is
converted into a spectrogram using the Discrete Fast Fourier
Transform. The spectrogram allows one to visualise what sound
looks like by showing the amplitude of sounds across frequencies
over time. Bat calls can clearly be seen on the spectrogram as
bright ‘hockey‐stick’‐shaped patterns (indicating a loud noise) at
high frequencies (see Figure 5).

By converting the sound into a spectrogram image, we
change the analysis challenge from a signal processing task to
an image processing task. As such, we can then utilise deep
learning modes typically used in computer vision, called
Convolutional Neural Networks (CNNs), to process the image
and classify patterns that resemble bat calls. Firstly, a CNN
detection algorithm scans the spectrogram to identify indi-
vidual bat calls. Only calls with a likelihood of 95% or more are
logged as a detection and proceed to the next stage for species
classification. Secondly, a species classification CNN is applied
to individual bat calls to look at their shape in more detail and
determine what species they most likely are [15]. Both detec-
tion and species classification algorithms have been trained on
a database of over 50 k tagged bat calls and while high accu-
racies (95%+) are already achieved for detection, work con-
tinues to improve the more challenging species classification
algorithm to similar levels of accuracy. Following bat detection

and species classification, results are immediately pushed to a
cloud data platform for storage and open access, and the raw
audio recording. wav file is deleted. The entire process flow
takes 6 s to process a 3‐s audio file on the Echo Box.

4.2 | Cloud data platform

A third‐party hosted cloud data platform is used to collect and
manage the results data from the Echo Box sensors. The
platform provides MQTT [36] support for data upload from
the sensors, and to enable external applications to register for
bat detection notifications. A REST API is also available to
handle data queries, for example, from visualisation websites.
IoT communication security and API scalability are handled by
the platform.

4.3 | Visualisation website

A visualisation website [37] was designed around an interactive
map of the urban park that allows users to explore bat activity
data across time and space (Figure 6). The location of each
Echo Box is indicated on the map surrounded by a red circle to
show how many bat calls were detected by that sensor during
the previous night. Alternatively, if one were to view the
website during the night, it is possible to watch bat calls being

F I GURE 4 The Echo Box process flow

F I GURE 5 Spectrogram showing bat calls as bright ‘hockey‐stick’ shapes
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detected in real time and the red circles growing accordingly.
Additionally, the user can click on any sensor to see more
details of recent bat detections along a timeline (shown in
right‐hand segment of Figure 6, width of the line shows
number of calls within that minute), plus details of the sensor
location and bat activity levels for the past 10 nights.

4.4 | Sensor deployment locations

The deployment locations of the sensors across the park were
determined using a method called Random Stratified Sampling.
This is a commonly used method for determining bat moni-
toring locations in surveys across large areas. The survey site is
overlaid with a grid and classified into habitats. Then a random
algorithm assigns monitoring locations across the site grid
based on the percentage of each habitat that the site contains
(Figure 7). For example, if the site contains a large amount of
open water habitat then a greater number of monitoring sites
will be randomly located in this habitat. When defining the
location of the 15 Echo Box sensors in the park, the random
algorithm sometimes assigned them to locations with no
nearby lamp post for power supply. In such cases we located
the sensor to an adjacent grid square with the same habitat and
an available lamp post.

5 | RESULTS

Overall, the deployment of the bat sensing system has been
insightful and successful, both in realising the design re-
quirements outlined above and addressing the research ques-
tions it was intended to help answer. The sensors were
originally installed in May 2017 with the initial intention of
remaining for 3 months; however, they still remain operational
and in situ over 4 years later at the request of park stakeholders
due to unprecedented levels of continuous bat data.

There have been inevitable downtimes due to the scaled‐up
and integrated nature of the deployment, with the impact of
public WiFi interruptions, power outages and third‐party cloud
service downtimes. As such, the results and trends presented in
this section are analysed from the initial 4 months of the
deployment using reliable continuous data from 12 out of 15
sensors (data from additional months are available and
continue to be used for trend analysis).

These real‐world complications and challenges provide
practical lessons learned for ambitious technology field de-
ployments. Most significantly, the importance of lab testing and
emulating the deployment environment when attempting to
recover from failures. For example, in the park, the Echo Box
sensors were only physically accessible by certified engineers
with cherry pickers and requiring them to do so would incur

F I GURE 6 Screenshot of bat data visualisation website showing activity levels across the park and bat call detections at sensor 7 during the course of a night
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large financial costs. Therefore, once the sensors were installed
it was undesirable for researchers to require physical access to
them again. As one researcher commented, ‘we might as well
be sending them to the moon’. Critical measures were put in
place allowing researchers to access and control the sensors
remotely via the SSH connection in line with the park's WiFi
security schemes. Researchers also followed a self‐termed
Apollo 13 strategy for recovery from failures during lab
testing. Once a device failure occurred, the researchers tried to
perform all necessary operations for recovery without physi-
cally touching the Echo Box or using any tools that would not
be available to them in the park. As such, researchers refrained
from plugging USB cables into serial ports to interact with
devices or pushing hardware reset buttons, or power‐cycling
the boxes—all options that would not be available to them
once the Echo Boxes were deployed in the park. This simple
scheme proved to be extremely powerful for subsequent suc-
cessful deployment and provided a bat sensing system that was
robust enough and reliable enough to address scientific and
stakeholder aims of the project.

5.1 | Bat activity levels

Over a period between June and October 2017, over 300,000
bat calls were detected across the 12 devices with an average of
7000 calls per evening and a peak of 20,000+ calls in one
evening. Stakeholders are delighted that the data suggests a
strong and healthy population of bats across the park, vali-
dating the financial investments made to reduce impacts from

the nearby construction and to create a positive, natural habitat
in an urban space that fosters biodiversity.

In terms of data volumes, calculations across the same
period showed that the 12 devices typically generated 180 GB
of raw audio data every day. However, due to on‐board ma-
chine learning and edge analysis of the raw audio data, this was
reduced to only 2.1 MB of detection and species data sent to
the cloud every day—providing huge savings in terms of
network and storage demands.

Preliminary analysis of the detection and species data
shows consistent patterns of bat activity in line with the ex-
pectations of ecology experts. These patterns occur when the
bats emerge to hunt and when they are most active in different
habitats during the night. The data also shows how bat activity
levels drop significantly in bad weather and then peak soon
after as hungry bats make up for the hunting time lost. Species
detection is also in line with expected norms. The Pipistrellus
pipistrellus is the most common British bat and species clas-
sification results over 4 months of data that strongly aligns with
this across all habitats in the park (Figure 8).

The second most classified genus is Nyctalus which is also in
line with ecologist expectations. However, species classification
is more experimental and challenging due to less reliable tagged
datasets. Work continues to optimise the CNN algorithms used
in the Echo Boxes for species classification, and the bat sensing
system of 15 Echo Box sensors deployed provides a real‐world
test bed in the ongoing research. In addition to expected re-
sults that help to confirm the validity of the audio analysis, the
data has also presented several trends in bat activity that have
given new and valuable insights to ecologists.

F I GURE 7 Random stratified sampling of the park with overlaid grid squares and algorithmically assigned sensor locations (red dots) based on habitat
percentages
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5.2 | Artificial roost usage

Bat activity levels detected by Echo Boxes have been good
across different habitats in the park; however, sensor 7
consistently detected significantly more bat calls than all other
sensors combined, typically registering 90% of nightly bat calls.
This sensor is located beside water—a typical hunting ground
for bats—but crucially it is also right next to a bridge with
artificial bat roosts underneath. The roosts were installed by
park operators with the intention to attract bats, however, it
can often take bats a long time to find roosts and make use of
them, if ever. Park ecologists were surprised by the high levels
of activity at sensor 7 and believe it suggests that the artificial
roosts under the bridge are well used. This is a brand new
insight and a very positive outcome which again validates in-
vestments in fostering biodiversity (Figure 9).

As one senior ecologist commented:

These are simply incredible stats and so consis-
tent on numbers by vicinity to give [a] clear view
on [the] health of [the] bat population feeding/
living in Lee valley. This tool will make such a

positive impact to support ecological surveys and
studies for sensitive development, pre‐ and post‐
build monitoring and most importantly, measure
[the] benefit of mitigation and enhancement
actions.

5.3 | October activity levels

As the weather turns colder bat activity tends to reduce and
hence ecologists are unlikely to perform surveys beyond
September. However, the 12 sensors in the park detected a
huge unexpected spike in activity levels during the month of
October, as illustrated in Figure 10.

Ecologists have postulated that this spike is due to more
vigorous hunting by bats to fill up on food just prior to hi-
bernation. This increased activity prompts the question of
whether the current bat survey practices should persist longer
into the autumn months. Since surveys typically stop in
September such activity spikes have not been captured before,
however, with continuous monitoring, such as that provided by

F I GURE 8 Detected species by sensor and
habitat

F I GURE 9 Graph of average bat detections per sensor, and artificial bat roosts under the park bridges

180 - GALLACHER ET AL.



the Echo Boxes, previously unseen activity data from
throughout the year is now available.

6 | DISCUSSION

This project targeted to deliver on ambitious technical, scien-
tific and stakeholder aims. Despite the technical complexity of
the developed infrastructure the system has remained robust
enough and reliable enough to answer scientific questions on
bat activity and support stakeholder visions of future data‐
driven conservation. The longitudinal deployment of a novel
bat sensing system with IoT, machine learning and edge
computing enabled observations of bat activity is not typically
seen by the research community. Since the network of devices
was permanently deployed and the cost of running the system
is minimal, the researchers were able to run observations
during periods when they traditionally would not have moni-
tored activity since it was either not cost effective or the
anticipated value would have been minimal (e.g. no point in
monitoring over winter since the bats will be hibernating). The
continuous deployment meant that novel insights were
observed during periods such as October when more bat ac-
tivity was observed than anticipated.

The nature of the type of data collected and therefore the
design of the system initially split the opinion amongst the
researchers. Discussion centred on a bias towards keeping all
raw data to validate results amongst the experienced bat
research community, versus capturing the events only and, by
implication, trusting in the classification algorithms. Whilst the
functionality existed to capture and store all raw audio events,
this was only used for debugging, testing of the classifications,
and validating the performance of the system when updates to
the classification algorithms were implemented. This shift from
capturing and storing all data as audio files marked up with

meta‐data to events only was critical to being able to techni-
cally deliver a platform that would handle high‐frequency
acoustic data and work over months of operation in the
field. It still remains an open challenge to select the type of data
to be discarded; however, since there will typically be outliers
such as rare bat calls which would be useful for contribution
into the legacy training database or for verification purpose
such as legal requirements to verify the observed events.

The data visualisation tools developed supported the vali-
dation of the system by the ecologists. Fusing bat count data
and environment data from the park in spatial and temporal
domains enabled visualisations of activity over a longer than
usual period for the ecologists and provided the tools for
discussion around the behaviours being observed. This
approach both supported communication between the ecolo-
gists and equally importantly with other non‐specialist stake-
holders in the project (e.g. developers responsible for
investment in the bat roosts).

The ability to visualise the data easily also helped identify
false positives in the data such as bat activity during daylight
hours (when bats use their vision rather than echo location)
and resulted in the observation of anomalies such as gardening
equipment having similar, but distinctive, audio patterns. The
ability to identify, refine and update the learning algorithms
based on improved in situ knowledge is critical to the longer‐
term use of these techniques in different environments.

7 | CONCLUSIONS AND FUTURE
WORK

A perfect storm of technology innovation has presented new
opportunities for digital transformation across many industries.
In this paper, we described how we brought together emergent
technologies such as the IoT, deep machine learning and edge

F I GURE 1 0 Graph of average bat calls per
night from June to October 2017
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computing to develop a novel system for continuously moni-
toring bats over a large urban area. The research addresses
technical, scientific and stakeholder goals.

Technically, we have demonstrated the possibility to run
complex signal processing and deep machine learning on SoC
devices in a near real‐time manner. We have also provided an
empirical evidence of how edge processing can reduce network
traffic and storage demands by orders of magnitude, making it
possible to run continuous monitoring activities centred on
capturing large volumes of raw acoustic (and possibly also
visual) data.

The data and insights delivered by the IoT bat monitoring
system have proved very useful to ecologists and other
stakeholders alike. They have raised questions on whether bat
surveys should continue further into the autumn months, and
have helped to validate the financial investments made by park
operators and developers alike for mitigation and enhance-
ment. Additionally, from a scientific perspective, the sensors
remain in the park at stakeholders' request as a real‐world test‐
bed for the continued iterative improvement and validation of
classification algorithms.

Finally, the deployment has brought to the fore many
fundamental questions and discussions on data management,
edge processing patterns, reliability and accountability. This ties
to a broader rhetoric on the often ‘black box’ nature of ma-
chine learning. However, the deployment has also pressed
many traditionalists to question initial assumptions that all raw
data must be stored and persisted, and has opened more
nuanced thinking and discussion on the benefits and trade‐offs
that emergent technologies bring.

Future work includes the development of more efficient
deep networks to reduce the overall power draw of the system,
more robust evaluation of the deep learning models in the
context of species classification, investigation of the feasibility
of using an open source hardware for example, Raspberry Pi,
and application of the system for monitoring other taxonomic
groups.
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