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Abstract—In this letter, we design a resource allocation algo-
rithm for commmunications in millimeter wave (mmWave) mul-
ticast systems adopting multiple unmanned aerial vehicle (UAV)-
borne intelligent reflecting surfaces (IRSs). Considering the effect
of blockages of building, we jointly optimize the placement of
UAVs and the beamforming at the ground base station (BS)
and the passive beamforming at the IRSs for maximizing the
minimum rate of multiple user clusters. For handling the non-
convex optimization problem, we first employ the simulated an-
nealing (SA)-based hybrid particle swarm optimization (HPSO)
algorithm to design the deployment of UAVs for maximizing the
average minimum achievable rate. Then, we propose a penalty-
based block coordinated descent (BCD) algorithm to design the
active and passive beamforming for maximizing the instantaneous
minimum rate. Simulation results validate the efficiency of our
proposed joint optimization framework.

Index Terms—Intelligent reflecting surface, millimeter wave
communication, multicast communications, particle swarm opti-
mization.

I. INTRODUCTION

Millimeter wave (mmWave) communication has been re-
garded as a promising technology for beyond fifth-generation
(B5G) communications [1]. However, mmWave communica-
tion suffers from severe penetration losses and its performance
is susceptible to blockage [1]. Therefore, for improving reli-
ability, one way is to design effective relaying schemes for
establishing indirect line-of-sight (LOS) mmWave links to
mitigate the effect of blockages. Meanwhile, unmanned aerial
vehicle (UAV) communication has also received increasing
attention due to its flexible deployment. Compared with tra-
ditional terrestrial relay stations, UAVs can operate at high
altitudes for avoiding obstacles and establishing a strong LOS
link with ground network nodes [2].

Conventionally, relaying techniques operate in a half-duplex
(HD) manner that reduces spectral efficiency. Even if full-
duplex (FD) relaying techniques are adopted, the performance
of active relaying techniques still suffers from severe self-
interference and noise contamination [3]. Recently, intelligent
reflecting surface (IRS) has been proposed as a cost effective
alternative to existing communication systems. In particular, an
IRS is capable of customizing the communication environment
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smartly through adjusting the phase shifts of the incident
signals via a vast number of passive reflecting elements [4].
To further unlock its potential, the concept of UAV-borne
IRS has been proposed which aims to combine the benefits
of UAV and IRS communications. Since UAV-borne IRS
enjoys flexible deployment and a rich passive beamforming
gain, it has generated great interest recently [5]–[7]. However,
these works only considered unicast communications and their
results are not applicable to the case of multiple UAV-assisted
multicast communications. More importantly, the optimization
of the UAV’s deployment in those works did not take into
account the shadowing effect incurred by obstacles. Therefore,
existing results, e.g. [6], [7], on optimizing the deployment of
multiple UAVs cannot always establish strong LOS links for
mmWave communications.

In this letter, we consider UAV-borne IRS-aided mmWave
multicasting communications, where multiple UAV-borne IRSs
serve multiple user clusters. Considering the effect of block-
ages of building, we jointly optimize the analog beamforming
of the ground base station (BS), the passive beamforming of
the IRSs, and the deployment of multiple UAVs for maximiz-
ing the minimum achievable rate of multiple users. The design
problem is nonconvex due to the coupling among optimization
variables and the unit modulus constraints on the beamfomers.
To handle the challenges, we firstly derive an upper bound
of the average user’s rate to obtain a more tractable problem
formulation. Then, we propose a simulated annealing (SA)-
based hybrid particle swarm optimization (HPSO) to opti-
mize multiple UAVs’ placement for establishing an indirect
LOS link from the BS to multiple users that maximizes the
minimum achievable average rate. Once the UAVs’ positions
are obtained, we propose a penalty-based block coordinate
descent (BCD) algorithm to locate an efficient solution of
the joint beamforming design. Simulation results validate the
effectiveness of our proposed joint optimization framework.

Notations: (·)T , (·)∗, and (·)H denote the transpose, conju-
gate, and conjugate transpose of a vector, respectively. diag (a)
denotes a diagonal matrix whose diagonal elements are from
a. |·|, ||·||2, and ||·||F denote the complex modulus of the ele-
ment, the Euclidean norm of a vector, and the Frobenius norm
of a matrix, respectively. arctan(·) is the arctangent function.
E(·) is the expectation operator. Re(·) denotes the real part of
a complex-valued variable. ⊗ denotes the Kronecker product
operation. x ∼ CN (Λ,∆) denotes the circularly symmetric
complex Gaussian vector with mean vector Λ and covariance
matrix ∆. U [0, 1] and N [0, 1] represent a random variable
uniformly distributed of [0, 1] and a random variable normally
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Fig. 1. (a) UAV-borne IRS-aided mmWave multicast communications; (b)
illustration of buliding’s vertices.

distributed with mean 0 and variance 1, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
Fig. 1(a) shows a typical mmWave multicast communication

scenario, where a mmWave BS broadcasts a common signal to
K user clusters and the kth user cluster consists of Wk users.
However, due to the presence of buildings, the direct links
between the BS and multiple user clusters are blocked. As a
remedy, for establishing effective indirect LOS links from the
BS to the users, K UAV-borne IRSs are deployed to assist the
communication, where the kth IRS only serves the kth user
cluster. For ease of illustration, we denote the ith user of the
kth user cluster and the kth IRS as Uk,i and IRSk, respectively,
where k ∈ K, i ∈ Wk, K , {1, . . . ,K} ,Wk , {1, . . . ,Wk}.
In practical scenarios, user clusters are usually far apart from
each other. Considering the high path loss and blockage
effects, the signals reflected by other K − 1 UAV-borne IRSs
are neglected when considering the signal received at a user
cluster. Besides, since we consider multicast communication,
the reflected signals from other IRSs can only improve the
signal reception. In other words, the adopted assumption
establishes a system performance lower bound. On the other
hand, the BS is equipped with a single radio frequency (RF)
chain and a uniform linear array (ULA) employing N antennas
while each UAV-borne IRS is equipped with a uniform planar
array (UPA) employing M = Mx ×My elements. The signal
received at Uk,i is given by

yUk,i =
√
PhHk,iΘkGkfx+ nk,i, (1)

where x ∈ CN (0, 1) denotes the common signal transmitted
from the BS, P is the transmitted power, and nk,i ∈ CN (0, σ2)
is the received noise at Uk,i. In addition, hk,i ∈ CM×1

is the channel vector from UAV-borne IRSk to its user
Uk,i, and Gk ∈ CM×N denotes the channel matrix from
the BS to UAV-borne IRSk. Furthermore, f ∈ CN×1 is
the analog beamforming vector of the BS and the phase
shift matrix of UAV-borne IRSk is denoted by Θk =
diag

(
ψk,1e

jθk,1 , ψk,2e
jθk,2 , ..., ψk,Me

jθk,M
)
, where ψk,m ∈

[0, 1] and θk,m ∈ [0, 2π) denote the reflection amplitude
and phase shift of the mth element of UAV-borne IRSk,
respectively. Similar to [4], we consider an idealistic reflection
model, i.e., ψk,m = 1.

B. Channel Model

In this letter, similar to [5], we adopt the Rician fading
channel model, which is given by

Gk=
√
βB,k

(√
κB,k

κB,k + 1
GLOS
k +

√
1

κB,k + 1
GNLOS
k

)
, (2)

hk,i=
√
βk,i

(√
κk,i

κk,i + 1
hLOS
k,i +

√
1

κk,i + 1
hNLOS
k,i

)
, (3)

where βx,y , {x, y} ∈ {{B, k}, {k, i}} denotes the distance-
dependent path losses. Furthermore, GNLOS

k and hNLOS
k,i de-

note the non-LOS (NLOS) components with elements fol-
lowing CN (0, 1). κx,y denotes the Rican factors. Generally,
κx,y � 1 holds, since the LOS components GLOS

k and hLOS
k,i

dominate the NLOS channels of the BS-IRS and IRS-User
links.

As illustrated in Fig. 1(a), without loss of generality, the
BS locates at the origin and the coordinates of UAV-borne
IRSk are denoted by qk = (xk, yk, hk), with hk,min ≤
hk ≤ hk,max representing the UAV’s flight altitude constraint.
Besides, Uk,i’s position is denoted as (xUk,i, y

U
k,i, 0). The LOS

component of the channel matrix Gk can be expressed as

GLOS
k = e−j

2πdB,k
λ â(θk, φk)aH(φB,k), (4)

where dB,k denotes the transmission distance between the BS
and UAV-borne IRSk, φB,k = arctan hk√

x2
k+y2k

is the angle

of departure (AoD) of the signal from the BS to UAV-borne

IRSk, θk = arctan

√
x2
k+y2k
hk

and φk = arctan yk
xk

denote
the elevation and azimuth angles of arrival (AoA) for the
communication from the BS to UAV-borne IRSk, respectively.
In addition, a(φB,k) and â(θk, φk) represent the transmit array
response of the BS and the receive array response of UAV-
borne IRSk, respectively, which are given by

a(φB,k)=[1, e−j2π
d
λ sin(φB,k),· · ·, e−j2π(N−1) dλ sin(φB,k)]T ,

(5)

â(θk, φk)=[1, e−j2π
d
λΦk(θk,φk),· · ·, e−j2π dλ (Mx−1)Φk(θk,φk)]T

⊗ [1, e−j2π
d
λΩk(θk,φk),· · ·, e−j2π dλ (My−1)Ωk(θk,φk)]T , (6)

where Φk(θk, φk)
∆
= sin(θk) cos(φk), Ωk(θk, φk)

∆
=

sin(θk) sin(φk), and the antenna spacing d = λ
2 , λ is the

wavelength of the carrier. Similarly, the elevation and the
azimuth angles of the signal from UAV-borne IRSk to the

ith user are denoted by θ̂Uk,i = arctan

√
(xUk,i−xk)2+(yUk,i−yk)2

hk

and φ̂Uk,i = arctan
yUk,i−yk
xUk,i−xk

, respectively. Then, the LOS com-
ponent of the corresponding channel vector can be expressed
as

hLOS
k,i = e−j

2πdUk,i
λ â(θ̂Uk,i, φ̂

U
k,i), (7)

where dUk,i denotes the transmission distance between UAV-
borne IBSk and the ith user, and â(θ̂Uk,i, φ̂

U
k,i) is UAV-borne

IRSk’s array response.
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C. Problem Formulation

Since the BS can only acquire the instantaneous CSI cor-
responding to multiple UAV-borne IRSs through the channel
estimation after fixing their positions, following [8], the joint
deployment and beamforming optimization is decoupled into
the following two problems. The first problem is to optimize
the positions of the multiple IRSs based on the statistical CSI,
which can be formulated as

maximize
qk∈Ω

E (Rk,i) , (8)

where Ω denotes a feasible deployment area for UAVs. Be-
sides, the achievable rate of the ith user in kth cluster is

Rk,i , log2

(
1 +

P |hHk,iΘkGkf |2
σ2

)
. Then, after fixing the po-

sitions of UAVs, the BS can adopt existing channel estimation
techniques [9] to acquire the instantaneous CSI for facilitating
the joint optimization of the active and passive beamforming.
Then, the second problem can be formulated as

max
f ,Θk

(
min

k∈K,i∈Wk

Rk,i

)
(9a)

s.t. |Θk(m,m)| = 1,m = 1, · · · ,M, ∀k ∈ K, (9b)
|f(n)| = 1, n = 1, · · · , N. (9c)

Solving the above problems is challenging due to the non-
convexity of the deployment optimization and the coupling
between the active and passive beamforming in problem (9).

III. PROPOSED OPTIMIZATION ALGORITHM

In this section, we propose HPSO-based and BCD-based
algorithms to solve problem (8) and problem (9), respectively.

A. Deployment Optimization of Multiple UAV-borne IRSs

Since the analytical result of E (Rk,i) is difficult to obtain,
as an alternative, similar to [8], we resort to the upper bound
of E (Rk,i) which can be obtained with Jensen’s inequality.
The corresponding objective function becomes

E(Rk,i)≤f(qk),log2

1+
PNME

(
||diag(hHk,i)Gk||2F

)
σ2

 .

(10)

Furthermore, given that LOS links are much stronger than
NLOS links, we optimize the deployment of multiple IRSs
under the constraint that indirect LOS links from the BS to
multiple users can be established [6].

As shown in Fig. 1 (b), we approximate the shape of a
building by a cuboid with eight vertices, i.e., A ∼ H . Since
mmWave communications rely on synthesizing “pencil-like”
beams for compensating high path loss, we assume that there
is a direct mmWave link between two nodes when the line
connecting them is not blocked [6]. The judging criteria are
given as follows. First, the equation of the plane ABCD is
given as Mx+Ny+Oz+P = 0, where M = (yb−ya)(zc−
za) − (zb − za)(yc − ya), N = (zb − za)(xc − xa) − (xb −
xa)(zc−za), O = (xb−xa)(yc−ya)−(yb−ya)(xc−xa), P =
−(Mxa + Nya + Oza). Then, when hk,i is blocked by the

plane ABCD, there exists an intersection point between them.
The coordinates of the intersection point can be expressed as
(x, y, z) = (k(xk − xUk,i) + xUk,i, k(yk − yUk,i) + yUk,i, khk),

where k =
−(P+MxUk,i+Ny

U
k,i)

M(xk−xUk,i)+N(yk−yUk,i)+Ohk
. Furthermore, the

intersection point (x, y, z) should satisfy min(xa, xb, xc) ≤ x ≤ max(xa, xb, xc),
min(ya, yb, yc) ≤ y ≤ max(ya, yb, yc),
min(za, zb, zc) ≤ z ≤ max(za, zb, zc).

(11)

Since there are five faces formed by a building, when the link
has no intersection points with five faces, we can claim that
the building does not block the mmWave link.

However, the UAVs’ deployment optimization problem is
non-convex. Therefore, traditional convex optimization tech-
niques are not applicable. As an alternative, we propose a
HPSO-based heuristic algorithm [10] to optimize the deploy-
ment of multiple IRSs. In PSO, the solution of optimization
problem is called a “particle”. Each particle has an initial
position and a velocity to determine their next position. The
particles follow the current optimal particle and search in the
solution space until they converge to an efficient solution. The
position and velocity of tth particle at generation l are denoted
as Xl

t and Vl
t, respectively. Each particle’s best historical

position and the best historical position of the entire swarm
are denoted as Pt and Pg , respectively. The new velocity and
position for the next generation can be calculated by

Vl+1
t = wVl

t + c1r1(Pt −Xl
t) + c2r2(Pg −Xl

t), (12)

Xl+1
t = Xl

t + Vl+1
t , (13)

where w is the inertial factor, c1 and c2 are accelerated con-
stants, r1 and r2 are random numbers in the interval [0, 1]. For
handling a constrained optimization problem, traditional PSO
resorts to the penalty-based function method. However, its per-
formance is significantly affected by the penalty factor and the
optimal penalty factor is usually challenging to acquire. Hence,
we adopt a feasibility-based rule to update the solutions via an
iterative process of HPSO, which requires no penalty factor
and focuses on guiding the swarm into the feasible set [10].
In particular, the rule can be described as the following two
points: (1) Confronting with feasible solutions and infeasible
solutions, the former should be chosen; (2) Confronting with
two feasible solutions, the one which owns a higher objective
function value should be chosen. According to the feasibility-
based rule, Pt will be replaced by Xl+1

t under the following
two cases: 1) Pt is infeasible, but Xl+1

t is feasible; 2) Both
Pt and Xl+1

t are feasible and f(Xl+1
t ) > f(Pt).

Similarly, Pg is updated based on the rule above at each
iteration. Yet, there is a drawback of HPSO that the converged
result may be a local optimum. Therefore, the simulated an-
nealing method is utilized to escape from it [10]. In particular,
an SA-based search for Pg can be described as follows:

1) Let j = 1, P′g = Pg; 2) Calculate a new solution by
X′ = P′g + η × N(0, 1), where η denotes the step size;
3) Calculate the acceptable probability of a new solution,
p: (a) X′ is feasible but P′g is infeasible, p = 1; (b) Both
X′ and P′g are infeasible, p = 0; (c) X′ is infeasible but
P′g is feasible, p = 0; (d) Both X′ and P′g are feasible,
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Algorithm 1 Proposed Deployment Optimization Algorithm
1: Initialize G particles with random positions and velocities, Pt and Pg ; l = 0,
tl = t0, t0 = − fmax−fmin

ln(0.1)
, where fmax and fmin are the maximum and

minimum objective values of the solutions in the initial swarm [10], respectively.
2: Repeat
3: Update the positions and velocities by Eq. (12) and Eq. (13), respectively.
4: Update Pt and Pg .
5: Update Pg by SA-based search.
6: tl+1 = λtl, l = l + 1, where λ is the annealing rate.
7: Until the number of iteration reaches the maximum iteration number Lmax.

p = min{1, exp[(f(X′) − f(P′g))/tl]}, where tl is the an-
nealing temperature at generation l; 4) If p ≥ α which is a
random variable following U(0, 1), P′g = X′. 5) j = j + 1,
if j ≤ L, where L is number of iterations at each generation,
go to 2), else stop Pg = P′g .

B. Joint Active and Passive Beamforming Optimization

After obtaining the locations of the UAV-borne IRSs, we
jointly optimize the analog beamforming of the BS and
the passive beamforming of multiple IRSs to maximize
min {Rk,i}. By introducing an auxiliary variable r, the op-
timization problem can be reformulated as

maximize
r,f ,Θk

r (14a)

s.t. Rk,i ≥ r, ∀k ∈ K, i ∈ Wk, (9b), (9c). (14b)

The difficulty for solving the problem above lies in the
coupling between f and Θ in Rk,i and the unit-modulus
constraints. By introducing auxiliary optimization variables
Xk,i and the penalty factor ρ > 0, we propose a penalty-based
algorithm to address problem (14). In particular, problem (14)
can be rewritten as

minimize
r,f ,Θk,Xk,i

− r +
1

ρ

∑
k∈K

∑
i∈Wk

|hHk,iΘkGkf −Xk,i|2

s.t. log2

(
1 +

P |Xk,i|2

σ2

)
≥ r, ∀k ∈ K, i ∈ Wk, (9b),

(9c),hHk,iΘkGkf=Xk,i,∀k ∈ K, i ∈ Wk. (15)

We apply the BCD algorithm to obtain a stationary solution of
problem (15) by updating the optimization variables iteratively.
In particular, the optimization variables of (15) can be divided
into three blocks: 1) passive beamformers of multiple IRSs,
Θk; 2) analog beamforming vector of the BS, f ; 3) auxiliary
variables, r and Xk,i. Then, we optimize each block of
variables by fixing the other ones iteratively. In this regard,
the non-convex joint design problem can be decoupled into
the following three problems:

1) Fixing f , r, Xk,i, we first consider the optimization of the
passive beamformer of each UAV-borne IRS. By denoting vk
as a vector composed of the diagonal elements of Θk, we have
hHk,iΘkGkf = vHk dk,i where dk,i = diag(hHk,i)Gkf . Then,
the passive beamforming optimization can be formulated as

minimize
vk

∑
k∈K

∑
i∈Wk

|vHk dk,i −Xk,i|2

s.t. |vk(m)| = 1,∀m = 1, · · · ,M, ∀k ∈ K. (16)

Since the objective function is decomposable, multiple passive
beamformers can be optimized in parallel. In the following, we

Algorithm 2 Proposed Penalty-based BCD Algorithm
1: Given qk , Initialize f , r and Xk,i, set iteration number n = 1, 0 < θ < 1,
ρ(0)� 1 and ρmin � 1.

2: Repeat
3: Update passive beamformers of each UAV-borne IRS.
4: Update analog beamforming vector f of the ground BS.
5: Update auxiliary variables r and Xk,i, until the difference of the objective

function is less than ω̂.
6: Update ρ(n) = max(θρ(n− 1), ρmin), n = n+ 1.
7: Until the number of iteration reaches the maximum iteration number Nmax.

propose an iterative method to optimize vk. Specifically, by
fixing vk(m′),∀m′ 6= m,m′ ∈ M, where M , {1, . . . ,M},
we notice that the objective function of (16) with respect to
vk(m) can be written as

2Re{vk(m)um}+
M∑

m′ 6=m

M∑
n 6=m

R(m′, n)vk(m′)vHk (n)+C, (17)

where

um=
∑M

m′ 6=m
R(m,m′)vHk (m′)− b(m),

R=
∑

i∈Wk

dk,id
H
k,i,b =

∑
i∈Wk

dk,iX
H
k,i,

C=R(m,m)−2Re{
∑M

m′ 6=m
vk(m′)b(m′)}+

∑
k∈K
|Xk,i|2.

Fixing other phase-shifters, the value of (17) is minimized with
vk(m)=− u∗m

|um| ,∀m. Employing this strategy, we can optimize
vk(m) sequentially, until the convergence is achieved.

2) Fixing Θk, r, Xk,i, we then consider the optimization
of analog beamforming vector f , which is formulated as

minimize
f

∑
k∈K

∑
i∈Wk

|hHk,iΘkGkf −Xk,i|2, s.t.(9c).

Following the procedures given in [11], the problem above can
be handled by the manifold optimization algorithm.

3) Fixing Θk, f , the joint optimization of r and Xk,i can
be formulated as

minimize
r,Xk,i

− r +
1

ρ

∑
k∈K

∑
i∈Wk

|hHk,iΘkGkf −Xk,i|2 (18a)

s.t. log2

(
1 +

P |Xk,i|2

σ2

)
≥ r, ∀k ∈ K, i ∈ Wk. (18b)

However, problem (18) is nonconvex due to the non-convex
constraint (18b). To tackle this, we use the widely adopted
concave-convex procedure to approximate it by a sequence of
convex problems. In particular, a subset of constraint (18b) is
given by its first-order Taylor expansion as

−|Xk,i(l−1)|2 + 2Re(XH
k,i(l−1)Xk,i) ≥

(2r − 1)σ2

P
, (19)

where Xk,i(l−1) is the optimal solution of the convex approx-
imation problem at the (l− 1)th iteration of this subproblem.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
joint optimization algorithm. The network parameters are
given as follows. The carrier frequency is set as 28 GHz, path
loss β(D) is 61.4 + 20log10(D) dB [2], and Rician fading
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TABLE I
VERTICES OF MULTIPLE BUILDINGS.

Building I (5, 5, 0), (5, 15, 0), (-5, 15, 0), (-5, 5, 0)
(5, 5, 15), (5, 15, 15), (-5, 15, 15), (-5, 5, 15)

Building II (15, 15, 0), (15, 25, 0), (10, 25, 0), (10, 15, 0)
(15, 15, 18), (15, 25, 18), (10, 25, 18), (10, 15, 18)

Building III (30, 10, 0), (30, 20, 0), (20, 20, 0), (20, 10, 0)
(30, 10, 18), (30, 20, 18), (20, 20, 18), (20, 10, 18)
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Fig. 2. Convergence of proposed algorithms, (a) Alogrithm 1; (b) Alogrithm
2.

factors κB,k = κk,i = 30 dB. The noise power is set as
σ2= −110 dBm. As shown in Fig. 1, K = 3, Wk = 4,
hk,min = 20 m, hk,max = 50 m, the centers of three user
clusters are (0, 50), (30, 40), and (40, 30) respectively, and the
coordinates of vertices for each building are given in Table I.
For Algorithm 1, we set c1 = c2 = 2, G = 300, Lmax = 300,
L = 20, λ = 0.94, η = 0.001, and ω linearly decreases from
0.9 to 0.4 [10]. For Algorithm 2, we set θ = 0.9, ρmin = 10−5,
ω̂ = 10−3 and Nmax = 150. For showing the superiority of
Algorithm 2, we consider a baseline scheme to design the
beamformers, where the phase shifts of IRSs are aligned with
the channel vector of the farthest user in each user cluster, for
guaranteeing users’ fairness. Then, the baseline scheme firstly
optimizes the BS’s virtual full-digital beamforming vector f̂
to maximize the achievable minimum rate and recovers BS’s
analog beamforming f by minimizing ||f − f̂ ||2F .

Fig. 2 shows the convergence rate of our proposed algo-
rithms. We can find that the convergence rate of the proposed
Algorithms 1 and 2 remains almost unchanged for different
M and N showing our proposed algorithms enjoy an excellent
scalability. Fig. 3 shows the average minimum achievable rate
versus the number of IRS reflecting elements, M . From Fig. 3,
we observe that our proposed algorithm can achieve significant
performance gains compared with the baseline scheme due to
the proposed optimization framework. Besides, the minimum
achievable rate of K user clusters increases with the increasing
M , which is due to the increasing design degrees-of-freedom
(DoF) brought by increasing M . However, the increasing
rate decreases with the increasing M , which is due to the
channel hardening effects in the link from the BS to the
IRS. In contrast, the minimum achievable rate of the baseline
scheme keeps almost the same with increasing M , as its
information beam does not always align with the best direction
for improving the system performance.

V. CONCLUSIONS

This letter established a joint optimization framework to de-
sign the deployment of multiple UAV-borne IRSs, the passive
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Fig. 3. Average minimum achievable rate versus IRS reflecting elements, M .

beamforming, and the analog beamforming of the mmWave
BS for maximizing the minimum achievable rate of the UAV-
borne IRS-aided mmWave multicast communications. We first
decomposed the considered joint optimization problem into
the deployment optimization and the joint beamforming opti-
mization problems. Then, we proposed a HPSO-based heuris-
tic algorithm to optimize the deployment of multiple UAV-
borne IRSs for maximizing the achievable rate averaging over
the statistical CSI. After obtaining the positions of multiple
IRSs, we proposed a penalty-based BCD algorithm to jointly
optimize the beamformers of multiple UAV-borne IRSs and
the mmWave BS for maximizing the instantaneous minimum
achievable rate. Simulation results verify the efficiency of
our proposed joint optimization framework compared with a
baseline scheme.
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