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Abstract. We present a detailed study of roundoff errors in probabilistic
floating-point computations. We derive closed-form expressions for the
distribution of roundoff errors associated with a random variable, and
we prove that roundoff errors are generally close to being uncorrelated
with their generating distribution. Based on these theoretical advances,
we propose a model of IEEE floating-point arithmetic for numerical
expressions with probabilistic inputs and an algorithm for evaluating this
model. Our algorithm provides rigorous bounds to the output and error
distributions of arithmetic expressions over random variables, evaluated
in the presence of roundoff errors. It keeps track of complex dependen-
cies between random variables using an SMT solver, and is capable of
providing sound but tight probabilistic bounds to roundoff errors using
symbolic affine arithmetic. We implemented the algorithm in the PAF
tool, and evaluated it on FPBench, a standard benchmark suite for the
analysis of roundoff errors. Our evaluation shows that PAF computes
tighter bounds than current state-of-the-art on almost all benchmarks.

1 Introduction

There are two common sources of randomness in a numerical computation (a
straight-line program). First, the computation might be using inherently noisy
data, for example from analog sensors in cyber-physical systems such as robots,
autonomous vehicles, and drones. A prime example is data from GPS sensors,
whose error distribution can be described very precisely [2] and which we study in
some detail in Sect. 2. Second, the computation itself might sample from random
number generators. Such probabilistic numerical routines, known as Monte-Carlo
methods, are used in a wide variety of tasks, such as integration [34,42], opti-
mization [43], finance [25], fluid dynamics [32], and computer graphics [30]. We
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call numerical computations whose input values are sampled from some proba-
bility distributions probabilistic computations.

Probabilistic computations are typically implemented using floating-point
arithmetic, which leads to roundoff errors being introduced in the computation.
To strike the right balance between the performance and energy consumption
versus the quality of the computed result, expert programmers rely on either
a manual or automated floating-point error analysis to guide their design deci-
sions. However, the current state-of-the-art approaches in this space have pri-
mary focused on worst-case roundoff error analysis of deterministic computa-
tions. So what can we say about floating-point roundoff errors in a probabilistic
context? Is it possible to probabilistically quantify them by computing confidence
intervals? Can we, for example, say with 99% confidence that the roundoff error
of the computed result is smaller than some chosen constant? What is the dis-
tribution of outputs when roundoff errors are taken into account? In this paper,
we explore these and similar questions. To answer them, we propose a rigorous
– that is to say sound – approach to quantifying roundoff errors in probabilis-
tic computations. Based on this approach, we develop an automatic tool that
efficiently computes an overapproximate probabilistic profile of roundoff errors.

As an example, consider the floating-point arithmetic expression (X +Y )÷Y ,
where X and Y are random inputs represented by independent random variables.
In Sect. 4, we first show how the computation in finite-precision of a single arith-
metic operation such as X + Y can be modeled as (X + Y )(1 + ε), where ε is
also a random variable. We then show how this random variable can be computed
from first principles and why it makes sense to view (X + Y ) and (1 + ε) as inde-
pendent expressions, which in turn allows us to easily compute the distribution of
(X + Y )(1 + ε). The distribution of ε depends on that of X + Y , and we there-
fore need to evaluate arithmetic operations between random variables. When the
operands are independent – as in X + Y – this is standard [48], but when the
operands are dependent – as in the case of the division in (X + Y ) ÷ Y – this is a
hard problem. To solve it, we adopt and improve a technique for soundly bound-
ing these distributions described in [3]. Our improvement comes from the use of an
SMT solver to reason about the dependency between (X + Y ) and Y and remove
regions of the state-space with zero probability. We describe this in Sect. 6.

We can thus soundly bound the output distribution of any probabilistic com-
putation, such as (X +Y )÷Y , performed in floating-point arithmetic. This gives
us the ability to perform probabilistic range analysis and prove rigorous asser-
tions like: 99% of the outputs of a floating-point computation are smaller than a
given constant bound. In order to perform probabilistic roundoff error analysis
we develop symbolic affine arithmetic in Sect. 5. This technique is combined with
probabilistic range analysis to compute conditional roundoff errors. Specifically,
we over-approximate the maximal error conditioned on the output landing in the
99% range computed by the probabilistic range analysis, meaning conditioned
on the computations not returning an outlier.

We implemented our model and algorithms in a tool called PAF (for Prob-
abilistic Analysis of Floating-point errors). We evaluated PAF on the standard
floating-point benchmark suite FPBench [11], and compared its range and error
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analysis with the worst-case roundoff error analyzer FPTaylor [46,47] and the
probabilistic roundoff error analyzer PrAn [36]. We present the results in Sect. 7,
and show that FPTaylor’s worst-case analysis is often overly pessimistic in the
probabilistic setting, while PAF also generates tighter probabilistic error bounds
than PrAn on almost all benchmarks.

We summarize our contributions as follows:

(i) We derive a closed-form expression (6) for the distribution of roundoff errors
associated with a random variable. We prove that roundoff errors are gen-
erally close to being uncorrelated with their input distribution.

(ii) Based on these results we propose a model of IEEE 754 floating-point arith-
metic for numerical expressions with probabilistic inputs.

(iii) We evaluate this model by developing a new algorithm for rigorously bound-
ing the output range and roundoff error distributions of floating-point arith-
metic expressions with probabilistic inputs.

(iv) We implement this model in the PAF tool,1 and perform probabilistic range
and roundoff error analysis on a standard benchmark suite. Our comparison
with the current state-of-the-art shows the advantages of our approach in
terms of computing tighter, and yet still rigorous, probabilistic bounds.

2 Motivating Example

GPS sensors are inherently noisy. Bornholt [1] shows that the conditional prob-
ability of the true coordinates given a GPS reading is distributed according to a
Rayleigh distribution. Interestingly, since the density of any Rayleigh distribu-
tion is always zero at x = 0, it is extremely unlikely that the true coordinates lie
in a small neighborhood of those given by the GPS reading. This leads to errors,
and hence the sensed coordinates should be corrected by adding a probabilistic
error term which, on average, shifts the observed coordinates into an area of high
probability for the true coordinates [1,2]. The latitude correction is given by:

TrueLat = GPSLat + ((radius ∗ sin(angle)) ∗ DPERM), (1)

where radius is Rayleigh distributed, angle uniformly distributed, GPSLat is
the latitude, and DPERM a constant for converting meters into degrees.

A developer trying to strike the right balance between resources, such as
energy consumption or execution time, versus the accuracy of the computation,
might want to run a rigorous worst-case floating-point analysis tool to determine
which floating-point format is accurate enough to process GPS signals. This is
mandatory if the developer requires rigorous error bounds holding with 100%
certainty. The problem when analyzing a piece of code involving (1) is that the
Rayleigh distribution has [0,∞) as its support, and any worst-case roundoff error
analysis will return an infinite error bound in this situation. To get a meaningful
(numeric) error bound, we need to truncate the support of the distribution. The
most conservative truncation is [0,max ], where max is the largest representable
number (not causing an overflow) at the target floating-point precision format.
1 PAF is open source and publicly available at https://github.com/soarlab/paf.

https://github.com/soarlab/paf
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Table 1. Roundoff error analysis for the probabilistic latitude correction of (1).

Precision Max FPTaylor PAF 100% PAF 99.9999%

Absolute Meters

Double ≈10307 4.3e+286 4.3e+286 4.1e−15 4.5e−10

Single ≈1038 2.1e+26 2.1e+26 3.7e−06 4.1e−1

Half ≈104 2.5e−2 2.5e−2 2.4e−2 2667

In Table 1, we report a detailed roundoff error analysis of (1) implemented
in IEEE 754 double-, single-, and half-precision formats, with GPSLat set to
the latitude of the Greenwich observatory. With each floating-point format, we
associate the range [0,max ] of the truncated Rayleigh distribution. We compute
worst-case roundoff error bounds for (1) with the state-of-the-art error analyzer
FPTaylor [47] and with our tool PAF by setting the confidence interval to 100%.
As expected, the error bounds from the two tools are identical. Finally, we com-
pute the 99.9999% conditional roundoff error using PAF. This value is an upper
bound to the roundoff error conditioned on the computation having landed in
an interval capturing 99.9999% of all possible outputs. Column Absolute gives
the error in degrees and Meters in meters (1◦ ≈111km).

By looking at the results obtained without our probabilistic error analysis
(columns FPTaylor and PAF 100%), the developer might erroneously conclude
that half-precision format is the most appropriate to implement (1) because it
results in the smallest error bound. However, with the information provided by
the 99.9999% conditional roundoff error, the developer can see that the average
error is many orders of magnitude smaller than the worst-case scenarios. Armed
with this information, the developer can conclude that with a roundoff error of
roughly 40 cm (4.1e−1 ms) when correcting 99.9999% of GPS latitude readings,
working in single-precision is an adequate compromise between efficiency and
accuracy of the computation.

This motivates the innovative concept of probabilistic precision tuning, evolv-
ed from standard worst-case precision tuning [5,12], to determine which floating-
point format is the most appropriate for a given computation. As an example, let
us do a probabilistic precision tuning exercise for the latitude correction compu-
tation of (1). We truncate the Rayleigh distribution in the interval [0, 10307], and
assume we can tolerate up to 1e−5 roundoff error (roughly 1 m). First, we man-
ually perform worst-case precision tuning using FPTaylor to determine that the
minimal floating-point format not violating the given error bound needs 1022 man-
tissa and 11 exponent bits. Such large custom format is prohibitively expensive,
in particular for devices performing frequent GPS readings, like smartphones or
smartwatches. Conversely, when we manually perform probabilistic precision tun-
ing using PAF with a confidence interval set to 99.9999%, we determine we need
only 22 mantissa and 11 exponent bits. Thanks toPAF, the developer can provide
a custom confidence interval of interest to the probabilistic precision tuning rou-
tine to adjust for the extremely unlikely corner cases like the ones we described for
(1), and ultimately obtain more optimal tuning results.
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3 Preliminaries

3.1 Floating-Point Arithmetic

Given a precision p ∈ N and an exponent range [emin, emax] � {n | n ∈
N ∧ emin ≤ n ≤ emax}, we define F(p, emin, emax), or simply F if there is no
ambiguity, as the set of extended real numbers

F �
{

(−1)s2e

(
1 +

k

2p

)∣∣∣∣ s ∈ {0, 1}, e ∈ [emin, emax], 0 ≤ k < 2p

}
∪ {−∞, 0,∞}

Elements z = z(s, e, k) ∈ F will be called floating-point representable numbers
(for the given precision p and exponent range [emin, emax]) and we will use the
variable z to represent them. The variable s will be called the sign, the variable
e the exponent, and the variable k the significand of z(s, e, k).

Next, we introduce a rounding map Round : R → F that rounds to nearest
(or to −∞/∞ for values smaller/greater than the smallest/largest finite element
of F) and follows any of the IEEE 754 rounding modes in case of a tie. We will
not worry about which choice is made since the set of mid-points will always have
probability zero for the distributions we will be working with. All choices are thus
equivalent, probabilistically speaking, and what happens in a tie can therefore
be left unspecified. We will denote the extended real line by R � R∪ {−∞,∞}.
The (signed) absolute error function errabs : R → R is defined as: errabs(x) =

x−Round(x). We define the sets 
z, z� �
= {y ∈ R | Round(y) = Round(z)}. Thus

if z ∈ F, then 
z, z� is the collection of all reals rounding to z. As the reader will
see, the basic result of Sect. 4 (Eq. (5)) is expressed entirely using the notation

z, z� which is parametric in the choice of the Round function. It follows that
our results apply to rounding modes other that round-to-nearest with minimal
changes. The relative error function errrel : R \ {0} → R is defined by

errrel(x) =
x − Round(x)

x
.

Note that errrel(x) = 1 on 
0, 0� \ {0}, errrel(x) = ∞ on 
 − ∞,−∞� and
errrel(x) = −∞ on 
∞,∞�. Recall also the fact [26] that −2−(p+1) < errrel(x) <
2−(p+1) outside of 
0, 0�∪
−∞,−∞�∪
∞,∞�. The quantity 2−(p+1) is usually
called the unit roundoff and will be denoted by u.

For z1, z2 ∈ F and op ∈ {+,−,×,÷} an (infinite-precision) arithmetic oper-
ation, the traditional model of IEEE 754 floating-point arithmetic [26,39] states
that the finite-precision implementation opm of op must satisfy

z1 opm z2 = (z1 op z2)(1 + δ) |δ| ≤ u, (2)

We leave dealing with subnormal floating-point numbers to future work. The
model given by Eq. (2) stipulates that the implementation of an arithmetic
operation can induce a relative error of magnitude at most u. The exact size of
the error is, however, not specified and Eq. (2) is therefore a non-deterministic
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model of computation. It follows that numerical analyses based on Eq. (2) must
consider all possible relative errors δ and are fundamentally worst-case analyses.
Since the output of such a program might be the input of another, one should
also consider non-deterministic inputs, and this is indeed what happens with
automated tools for roundoff error analysis, such as Daisy [12] or FPTaylor [46,
47], which require for each variable of the program a (bounded) range of possible
values in order to perform a worst-case analysis (cf. GPS example in Sect. 2).

In this paper, we study a model formally similar to Eq. (2), namely

z1 opm z2 = (z1 op z2)(1 + δ) δ ∼ dist. (3)

The difference is that δ is now distributed according to dist, a probability distribu-
tion whose support is [−u, u]. In other words, we move from a non-deterministic
to a probabilistic model of roundoff errors. This is similar to the ‘Monte Carlo
arithmetic’ of [41], but whilst op. cit. postulates that dist is the uniform distri-
bution on [−u, u], we compute dist from first principles in Sect. 4.

3.2 Probability Theory

To fix the notation and be self-contained, we present some basic notions of
probability theory which are essential to what follows.

Cumulative Distribution Functions and Probability Density Func-
tions. We assume that the reader is (at least intuitively) familiar with the notion
of a (real) random variable. Given a random variable X we define its Cumulative
Distribution Function (CDF) as the function c(t) � P [X ≤ t]. If there exists a
non-negative integrable function d : R → R such that

c(t) � P [X ≤ t] =
∫ t

−∞
d(t) dt

then we call d(t) the Probability Density Function (PDF) of X. If it exists,
then it can be recovered from the CDF by differentiation d(t) = ∂

∂tc(t) by the
fundamental theorem of calculus.

Not all random variables have a PDF: consider the random variable which
takes value 0 with probability 1/2 and value 1 with probability 1/2. For this
random variable it is impossible to write P [X ≤ t] =

∫
d(t) dt. Instead, we will

write the distribution of such a variable using the so-called Dirac delta measure
at 0 and 1 as 1/2δ0 + 1/2δ1. It is possible for a random variable to have a PDF
covering part of its distribution – its continuous part – and a sum of Dirac
deltas covering the rest of its distribution – its discrete part. We will encounter
examples of such random variables in Sect. 4. Finally, if X is a random variable
and f : R → R is a measurable function, then f(X) is a random variable. In
particular errrel(X) is a random variable which we will describe in Sect. 4.

Arithmetic on Random Variables. Suppose X,Y are independent random
variables with PDFs fX and fY , respectively. Using the arithmetic operations we
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can form new random variables X +Y,X −Y,X ×Y,X ÷Y . The PDFs of these
new random variables can be expressed as operations on fX and fY , which can
be found in [48]. It is important to note that these operations are only valid if X
and Y are assumed to be independent. When an arithmetic expression containing
variable repetitions is given a random variable interpretation, this independence
can no longer be assumed. In the expression (X +Y )÷Y the sub-term (X +Y )
can be interpreted by the formulas of [48] if X,Y are independent. However, the
sub-terms X + Y and Y cannot be interpreted in this way since X + Y and Y
are clearly not independent random variables.

Soundly Bounding Probabilities. The constraint that the distribution of
a random variable must integrate to 1 makes it impossible to order random
variables in the ‘natural’ way: if P [X ∈ A] ≤ P [Y ∈ A], then P [Y ∈ Ac] ≤
P [X ∈ Ac], i.e., we cannot say that X ≤ Y if P [X ∈ A] ≤ P [Y ∈ A]. This
means that we cannot quantify our probabilistic uncertainty about a random
variable by sandwiching it between two other random variables as one would do
with reals or real-valued functions. One solution is to restrict the sets used in
the comparison, i.e., declare that X ≤ Y iff P [X ∈ A] ≤ P [Y ∈ A] for A ranging
over a given set of ‘test subsets’. Such an order can be defined by taking as ‘test
subsets’ the intervals (−∞, x] [44]. This order is called the stochastic order. It
follows from the definition of the CDF that this order can be defined by simply
saying that X ≤ Y iff cX ≤ cY , where cX and cY are the CDFs of X and Y ,
respectively. If it is possible to sandwich an unknown random variable X between
known lower and upper bounds Xlower ≤ X ≤ Xupper using the stochastic order
then it becomes possible to give sound bounds to the quantities P [X ∈ [a, b]] via

P [X ∈ [a, b]] = cX(b) − cX(a) ≤ cXupper
(b) − cXlower

(a)

P-Boxes and DS-Structures. As mentioned above, giving a random variable
interpretation to an arithmetic expression containing variable repetitions cannot
be done using the arithmetic of [48]. In fact, these interpretations are in general
analytically intractable. Hence, a common approach is to give up on soundness
and approximate such distributions using Monte-Carlo simulations. We use this
approach in our experiments to assess the quality of our sound results. However,
we will also provide sound under- and over-approximations of the distribution of
arithmetic expressions over random variables using the stochastic order discussed
above. Since Xlower ≤ X ≤ Xupper is equivalent to saying that cXlower

(x) ≤
cX(x) ≤ cXupper

(x), the fundamental approximating structure will be a pair of
CDFs satisfying c1(x) ≤ c2(x). Such a structure is known in the literature as
a p-box [19], and has already been used in the context of probabilistic roundoff
errors in related work [3,36]. The data of a p-box is equivalent to a pair of
sandwiching distributions for the stochastic order.

A Dempster-Shafer structure (DS-structure) of size N is a collection (i.e., set)
of interval-probability pairs {([x0, y0], p0), ([x1, y2], p1), .., ([xN , yN ], pN )} where∑N

i=0 pi = 1. The intervals in the collection might overlap. One can always
convert a DS-structure to a p-box and back again [19], but arithmetic operations
are much easier to perform on DS-structures than on p-boxes ([3]), which is why
we will use DS-structures in the algorithm described in Sect. 6.
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4 Distribution of Floating-Point Roundoff Errors

Our tool PAF computes probabilistic roundoff errors by conditioning the max-
imization of symbolic affine form (presented in Sect. 5) on the output of the
computation landing in a confidence interval. The purpose of this section is to
provide the necessary probabilistic tools to compute these intervals. In other
words, this section provides the foundations of probabilistic range analysis. All
proofs can be found in the extended version [7].

4.1 Derivation of the Distribution of Rounding Errors

Recall the probabilistic model of Eq. (3) where op is an infinite-precision
arithmetic operation and opm its finite-precision implementation:

z1 opm z2 = (z1 op z2)(1 + δ) δ ∼ dist.

Let us also assume that z1, z2 are random variables with known distributions.
Then z1 op z2 is also a random variable which can (in principle) be computed.
Since the IEEE 754 standard states that z1 opm z2 is computed by rounding the
infinite precision operation z1 op z2, it is a completely natural consequence of
the standard to require that δ is simply be given by

δ = errrel(z1 op z2)

Thus, dist is the distribution of the random variable errrel(z1 op z2). More gen-
erally, if X is a random variable with know distribution, we will show how to
compute the distribution dist of the random variable

errrel(X) =
X − Round(X)

X
.

We choose to express the distribution dist of relative errors in multiples of the
unit roundoff u. This choice is arbitrary, but it allows us to work with a dis-
tribution on the conceptually and numerically convenient interval [−1, 1], since
the absolute value of the relative error is strictly bounded by u (see Sect. 3.1),
rather than the interval [−u, u].

To compute the density function of dist, we proceed as described in Sect. 3.2
by first computing the CDF c(t) and then taking its derivative. Recall first from
Sect. 3.1 that errrel(x) = 1 if x ∈ 
0, 0� \ {0}, errrel(x) = ∞ if x ∈ 
 − ∞,−∞�,
errrel(x) = −∞ if x ∈ 
∞,∞�, and −u ≤ errrel(x) ≤ u elsewhere. Thus:

P [errrel(X) = −∞] = P
[
X ∈ 
∞,∞�]

P [errrel(X) = 1] = P
[
X ∈ 
0, 0�]

P [errrel(X) = ∞] = P
[
X ∈ 
 − ∞,−∞�]

In other words, the probability measure corresponding to errrel has three discrete
components at {−∞}, {1}, and {∞}, which cannot be accounted for by a PDF
(see Sect. 3.2). It follows that the probability measure dist is given by

distc + P
[
X∈
0, 0�]

δ1 + P
[
X∈
 − ∞,−∞�]

δ∞ + P
[
X∈
∞,∞�]

δ−∞ (4)
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Fig. 1. Theoretical vs. empirical error distribution, clockwise from top-left: (i) Eq.
(5) for Unif(2, 4) 3 bit exponent, 4 bit significand, (ii) Eq. (5) for Unif(2, 4) in half-
precision, (iii) Eq. (6) for Unif(7, 8) in single-precision, (iv) Eq. (6) for Unif(4, 5) in
single-precision, (v) Eq. (6) for Unif(4, 32) in single-precision, (vi) Eq. (6) for Norm(0, 1)
in single-precision.

where distc is a continuous measure that is not quite a probability measure
since its total mass is 1 − P [X ∈ 
0, 0�] − P [X∈
 − ∞,−∞�] − P [X∈
∞,∞�].
In general, distc integrates to 1 in machine precision since P [X ∈ 
0, 0�] is of
the order of the smallest positive floating-point representable number, and the
PDF of X rounds to 0 way before it reaches the smallest/largest floating-point
representable number. However in order to be sound, we must in general include
these three discrete components to our computations. The density distc is given
explicitly by the following result whose proof can already be found in [9].

Theorem 1. Let X be a real random variable with PDF f . The continuous part
distc of the distribution of errrel(X) has a PDF given by

d(t) =
∑

z∈F\{−∞,0,∞}
1
z,z�

(
z

1 − tu

)
f

(
z

1 − tu

)
u |z|

(1 − tu)2
, (5)

where 1A(x) is the indicator function which returns 1 if x ∈ A and 0 otherwise.

Figure 1 (i) and (ii) shows an implementation of Eq. (5) applied to the distri-
bution Unif(2, 4), first in very low precision (3 bit exponent, 4 bit significand) and
then in half-precision. The theoretical density is plotted alongside a histogram
of the relative error incurred when rounding 100,000 samples to low precision
(computed in double-precision). The reported statistic is the K-S (Kolmogorov-
Smirnov) test which measures the likelihood that a collection of samples were
drawn from a given distribution. This test reports that we cannot reject the
hypothesis that the samples are drawn from the corresponding density. Note
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how in low precision the term in 1
(1−tu)2 induces a visible asymmetry on the

central section of the distribution. This effect is much less pronounced in half-
precision.

For low precisions, say up to half-precision, it is computationally feasible
to explicitly go through all floating-point numbers and compute the density of
the roundoff error distribution dist directly from Eq. (5). However, this rapidly
becomes prohibitively computationally expensive for higher precisions (since the
number of floating-point representable numbers grows exponentially).

4.2 High-Precision Case

As the working precision increases, a regime changes occurs: on the one hand
it becomes practically impossible to enumerate all floating-point representable
numbers as done in Eq. (5), but on the other hand sufficiently well-behaved den-
sity functions are numerically close to being constant at the scale of an interval
between two floating-point representable numbers. We exploit this smoothness
to overcome the combinatorial limit imposed by Eq. (5).

Theorem 2. Let X be a real random variable with PDF f . The continuous part
distc of the distribution of errrel(X) has a PDF given by dc(t) = dhp(t) + R(t)
where dhp(t) is the function on [−1, 1] defined by

dhp(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
1−tu

emax−1∑
s,e=emin+1

∫ (−1)s2e(2−u)

(−1)s2e(1−u)
|x|

2e+1 f(x) dx |t| ≤ 1
2

1
1−tu

emax−1∑
s,e=emin+1

∫ (−1)s2e( 1
|t|−u)

(−1)s2e(1−u)
|x|

2e+1 f(x) dx 1
2 < |t| ≤ 1

(6)

and R(t) is an error whose total contribution |R|�∫ 1

−1
|R(t)|dt can be bounded by

|R| ≤ P [Round(X) = z(s, emin, k)] + P [Round(X) = z(s, emax, k)] +

3
4

( ∑
s,emin<e<emax

|f ′(ξe,s)ξe,s + f(ξe,s)| 22e

2p

)

where for each exponent e and sign s, ξe,s is a point in [z(s, e, 0), z(s, e, 2p − 1)]
if s = 0 and in [z(s, e, 2p − 1), z(s, e, 0)] if s = 1.

Note how Eq. (6) reduces the sum over all floating-point representable num-
bers in Eq. (5) to a sum over the exponents by exploiting the regularity of f .
Note also that since f is a PDF, it usually decreases very quickly away from 0,
and its derivative decreases even quicker and |R| thus tends to be very small and
|R| → 0 as the precision p → ∞.

Figure 1 shows Eq. (6) for: (i) the distribution Unif(7, 8) where large signif-
icands are more likely, (ii) the distribution Unif(4, 5) where small significands
are more likely, (iii) the distribution Unif(4, 32) where significands are equally
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likely, and (iv) the distribution Norm(0, 1) with infinite support. The graphs show
the density function given by Eq. (6) in single-precision versus a histogram of
the relative error incurred when rounding 1,000,000 samples to single-precision
(computed in double-precision). The K-S test reports that we cannot reject the
hypothesis that the samples are drawn from the corresponding distributions.

4.3 Typical Distribution

Fig. 2. Typical distribution.

The distributions depicted in graphs (ii), (v)
and (vi) of Fig. 1 are very similar, despite being
computed from very different input distributions.
What they have in common is that their input
distributions have the property that all signif-
icands in their supports are equally likely. We
show that under this assumption, the distribution
of roundoff errors given by Eq. (5) converges to
a unique density as the precision increases, irre-
spective of the input distribution! Since signifi-
cands are frequently equiprobable (it is the case for a third of our benchmarks),
this density is of great practical importance. If one had to choose ‘the’ canonical
distribution for roundoff errors, we claim that the density given below should be
this distribution, and we therefore call it the typical distribution; we depict it in
Fig. 2 and formalize it with the following theorem, which can mostly be found
in [9].

Theorem 3. If X is a random variable such that P [Round(X) = z(s, e, k0)] =
1
2p for any significand k0, then

dtyp(t) � lim
p→∞ d(t) =

{
3
4 |t| ≤ 1

2
1
2

(
1
t − 1

)
+ 1

4

(
1
t − 1

)2 |t| > 1
2

(7)

where d(t) is the exact density given by Eq. (5).

4.4 Covariance Structure

The result above can be interpreted as saying that if X is such that all man-
tissas are equiprobable, then X and errrel(X) are asymptotically independent
(as p → ∞). Much more generally, we now show that if a random variable X
has a sufficiently regular PDF, it is close to being uncorrelated from errrel(X).
Formally, we prove that the covariance

Cov(X, errrel(X)) = E [X.errrel(X)] − E [X]E [errrel(X)] (8)

is small, specifically of the order of u. Note that the expectation in the first
summand above is taken w.r.t. the joint distribution of X and errrel(X).

The main technical obstacles to proving that the expression above is small
are that E [errrel(X)] turns out to be difficult to compute (we only manage to
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bound it) and that the joint distribution P [X ∈ A ∧ errrel(X) ∈ B] does not have
a PDF since it is not continuous w.r.t. the Lebesgue measure on R

2. Indeed, it
is supported by the graph of the function errrel which has a Lebesgue measure
of 0. This does not mean that it is impossible to compute the expectation

E [X.errrel(X)] =
∫
R2

xut dP (9)

but it is necessary to use some more advanced probability theory. We will make
the simplifying assumption that the density of X is constant on each interval

z, z� in order to keep the proof manageable. In practice this is an extremely good
approximation. Without this assumption, we would need to add an error term
similar to that of Theorem 2 to the expression below. This is not conceptually
difficult, but it is messy, and would distract from the main aim of the following
theorem which is to bound E [errrel(X)], compute E [X.errrel(X)], and show that
the covariance between X and errrel(X) is typically of the order of u.

Theorem 4. If the density of X is piecewise constant on intervals 
z, z�, then

(
L − E [X] K

u

6

)
≤ Cov(X, errrel(X)) ≤

(
L − E [X] K

4u

3

)

where L =
∑
s,e

f((−1)s2e)(−1)s22e 3u2

2 and K =
emax−1∑

s,e=emin+1

∫ (−1)s2e(2−u)

(−1)s2e(1−u)
|x|

2e+1

f(x) dx.

If the distribution of X is centered (i.e., E [X] = 0) then L is the exact value of
the covariance, and it is worth noting that L is fundamentally an artifact of the
floating-point representation and is due to the fact that the intervals 
2e, 2e� are
not symmetric. More generally, for E [X] of the order of, say, 2, the covariance
will be small (of the order of u) as K ≤ 1 (since |x| ≤ 2e+1 in each summand).
For very large values of E [X] it is worth noting that there is a high chance
that L is also be very large, partially canceling E [X]. An illustration of this
is given by the doppler benchmark examined in Sect. 7, an outlier as it has an
input variable with range [20, 20000]. Nevertheless, even for this benchmark the
bounds of Theorem 4 still give a small covariance of the order of 0.001.

4.5 Error Terms and P-Boxes

In low-precision we can use the exact formula Eq. (5) to compute the error distri-
bution. However, in high-precision, approximations (typically extremely good)
like Eqs. (6) and (7) must be used. In order to remain sound in the implemen-
tation of our model (see Sect. 6) we must account for the error made by this
approximation. We have not got the space to discuss the error made by Eq. (7),
but taking the term |R| of Theorem 2 as an illustration, we can use the notion
of p-box described in Sect. 3.2 to create an object which soundly approximates
the error distribution. We proceed as follows: since |R| bounds the total error
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accumulated over all t ∈ [−1, 1], we can soundly bound the CDF c(t) of the error
distribution given by Eq. (6) by using the p-box

c−(t) = max(0, c(t) − |R|) and c+(t) = min(1, c(t) + |R|)

5 Symbolic Affine Arithmetic

In this section, we introduce symbolic affine arithmetic, which we employ to gen-
erate the symbolic form for the roundoff error that we use in Sect. 6.3. Affine
arithmetic [6] is a model for range analysis that extends classic interval arith-
metic [40] with information about linear correlations between operands. Sym-
bolic affine arithmetic extends standard affine arithmetic by keeping the coeffi-
cients of the noise terms symbolic. We define a symbolic affine form as

x̂ = x0 +
n∑

i=1

xiεi, where εi ∈ [−1, 1]. (10)

We call x0 the central symbol of the affine form, while xi are the symbolic
coefficients for the noise terms εi. We can always convert a symbolic affine form
to its corresponding interval representation. This can be done using interval
arithmetic or, to avoid precision loss, using a global optimizer.

Affine operations between symbolic forms follow the usual rules, such as

αx̂ + βŷ + ζ = αx0 + βy0 + ζ +
n∑

i=1

(αxi + βyi)εi

Non-linear operations cannot be represented exactly using an affine form. Hence,
we approximate them like in standard affine arithmetic [49].

Sound Error Analysis with Symbolic Affine Arithmetic. We now show
how the roundoff errors get propagated through the four arithmetic operations.
We apply these propagation rules to an arithmetic expression to accurately keep
track of the roundoff errors. Since the (absolute) roundoff error directly depends
on the range of a computation, we describe range and error together as a pair
(range: Symbol, êrr: Symbolic Affine Form). Here, range represents the
infinite-precision range of the computation, while êrr is the symbolic affine form
for the roundoff error in floating-point precision. Unary operators (e.g., rounding)
take as input a (range, error form) pair, and return a new output pair; binary
operators take as input two pairs, one per operand. For linear operators, the
ranges and errors get propagated using the standard rules of affine arithmetic.

For the multiplication, we distribute each term in the first operand to every
term in the second operand:

(x, êrrx) ∗ (y, êrry) = (x*y, x ∗ êrry + y ∗ êrrx + êrrx ∗ êrry)

The output range is the product of the input ranges and the remaining terms
contribute to the error. Only the last (quadratic) expression cannot be repre-
sented exactly in symbolic affine arithmetic; we bound such non-linearities using
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a global optimizer. The division is computed as the term-wise multiplication of
the numerator with the inverse of the denominator. Hence, we need the inverse
of the denominator error form, and then we can proceed as for multiplication. To
compute the inverse, we leverage the symbolic expansion used in FPTaylor [46].

Finally, after every operation we apply the unary rounding operator from
Eq. (2). The infinite-precision range is not affected by rounding. The rounding
operator appends a fresh noise term to the symbolic error form. The coefficient
for the new noise term is the (symbolic) floating-point range given by the sum
of the input range with the input error form.

Fig. 3. Toolflow of PAF.

6 Algorithm and Implementation

In this section, we describe our probabilistic model of floating-point arithmetic
and how we implement it in a prototype named PAF (for Probabilistic Analysis
of Floating-point errors). Figure 3 shows the toolflow of PAF.

6.1 Probabilistic Model

PAF takes as input a text file describing a probabilistic floating-point compu-
tation and its input distributions. The kinds of computations we support are
captured with this simple grammar:

t ::= z | xi | t opm t z ∈ F, i ∈ N, opm ∈ {+,−,×,÷}
Following [8,31], we interpret each computation t given by the grammar as a
random variable. We define the interpretation map �−� over the computation
tree inductively. The base case is given by �z(s, e, k)� � (−1)s2e(1 + k2−p)
and �xi� � Xi, where the real numbers �z(s, e, k)� are understood as constant
random variables and each Xi is a random input variable with a user-specified
distribution. Currently, PAF supports several well-known distributions out-of-
the-box (e.g., uniform, normal, exponential), and the user can also define custom
distributions as piecewise functions. For the inductive case �t1 opm t2�, we put
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the lessons from Sect. 4 to work. Recall first the probabilistic model from Eq.
(3):

x opm y = (x op y)(1 + δ), δ ∼ dist

In Sect. 4.1, we showed that dist should be taken as the distribution of the actual
roundoff errors of the random elements (x op y). We therefore define:

�t1 opm t2� � (�t1� op �t2�) × (1 + errrel(�t1� op �t2�)) (11)

To evaluate the model of Eq. (11), we first use the appropriate closed-form
expression Eqs. (5) to (7) derived in Sect. 4 to evaluate the distribution of the
random variable errrel(�t1� op �t2�)—or the corresponding p-box as described
in Sect. 4.5. We then use Theorem 4 to justify evaluating the multiplication oper-
ation in Eq. (11) independently—that is to say by using [48]—since the roundoff
process is very close to being uncorrelated to the process generating it. The
validity of this assumption is also confirmed experimentally by the remarkable
agreement of Monte-Carlo simulations with this analytical model.

We now introduce the algorithm for evaluating the model given in Eq. (11).
The evaluation performs an in-order (LNR) traversal of the Abstract Syntax
Tree (AST) of a computation given by our grammar, and it feeds the results
to the parent level along the way. At each node, it computes the probabilistic
range of the intermediate result using the probabilistic ranges computed for its
children nodes (i.e., operands). We first determine whether the operands are
independent or not (Ind? branch in the toolflow), and we either apply a cheaper
(i.e., no SMT solver invocations) algorithm if they are independent (see below) or
a more involved one (see Sect. 6.2) if they are not. We describe our methodology
at a generic intermediate computation in the AST of the expression.

We consider two distributions X and Y discretized into DS-structures DSX

and DSY (Sect. 3.2), and we want to derive the DS-structure DSZ for Z =
X op Y , op ∈ {+,−,×,÷}. Together with the DS-structures of the operands, we
also need the traces traceX and traceY containing the history of the operations
performed so far, one for each operand. A trace is constructed at each leaf of the
AST with the input distributions and their range. It is then propagated to the
parent level and populated at each node with the current operation. Such history
traces are critical when dealing with dependent operations since they allow us
to interrogate an SMT solver about the feasibility of the current operation, as
we describe in the next section. When the operands are independent, we simply
use the arithmetic operations on independent DS-structures [3].

6.2 Computing Probabilistic Ranges for Dependent Operands

When the operands are dependent, we start by assuming that the dependency is
unknown. This assumption is sound because the dependency of the operation is
included in the set of unknown dependencies, while the result of the operation is
no longer a single distribution but a p-box. Due to this “unknown assumption”,
the CDFs of the output p-box are a very pessimistic over-approximation of
the operation, i.e., they are far from each other. Our key insight is to use an
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Algorithm 1. Dependent Operation Z = X op Y

1: function dep op(DSX , op , DSY , traceX , traceY )
2: DSZ = list()
3: for all ([x1, x2], px) ∈ DSX do
4: for all ([y1, y2], py) ∈ DSY do
5: [z1, z2] = [x1, x2] op [y1, y2] � operation between intervals
6: [z′

1, z
′
2] = SMT.prune([z1, z2])

7: if SMT.check(traceX ∧ traceY ∧ [x1, x2] ∧ [y1, y2]) is SAT then
8: pZ = unknown-probability
9: else

10: pZ = 0

11: DSZ .append(([z′
1, z

′
2], pZ))

12: traceZ = traceX ∪ traceY ∪ {Z = X op Y }
13: return DSZ , traceZ

SMT solver to prune infeasible combinations of intervals from the input DS-
structures, which prunes regions of zero probability from the output p-box. This
probabilistic pruning using a solver squeezes together the CDFs of the output
p-box, often resulting in a much more accurate over-approximation. With the
solver, we move from an unknown to a partially known dependency between the
operands. Currently, PAF supports the Z3 [17] and dReal [23] SMT solvers.

Algorithm 1 shows the pseudocode of our algorithm for computing the proba-
bilistic output range (i.e., DS-structure) for dependent operands. When dealing
with dependent operands, interval arithmetic (line 5) might not be as precise
as in the independent case. Hence, we use an SMT solver to prune away any
over-approximations introduced by interval arithmetic when computing with
dependent ranges (line 6); this use of the solver is orthogonal to the one dealing
with probabilities. On line 7, we check with an SMT solver whether the current
combination of ranges [x1, x2] and [y1, y2] is compatible with the traces of the
operands. If the query is satisfiable, the probability is strictly greater than zero
but currently unknown (line 8). If the query is unsatisfiable, we assign a proba-
bility of zero to the range in DSZ (line 10). Finally, we append a new range to
the DS-structure DSZ (line 11). Note that the loops are independent, and hence
in our prototype implementation we run them in parallel.

After this algorithm terminates, we still need to assign probability values to
all the unknown-probability ranges in DSZ . Since we cannot assign an exact
value, we compute a range of potential values [pzmin

, pzmax
] instead. This com-

putation is encoded as a linear programming routine exactly as in [3].

6.3 Computing Conditional Roundoff Error

The final step of our toolflow computes the conditional roundoff error by com-
bining the symbolic affine arithmetic error form of the computation (see Sect. 5)
with the probabilistic range analysis described above. The symbolic error form
gets maximized conditioned on the results of all the intermediate operations
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Algorithm 2. Conditional Roundoff Error Computation

1: function cond err(DSS, errorForm, confidence)
2: allRanges = list()
3: for all DSi ∈ DSS do
4: focals = sorted(DSi, key = prob, order = descending)
5: accumulator = 0
6: ranges = Ø
7: for all ([x1, x2], px) ∈ focals do
8: accumulator = accumulator + px

9: ranges = ranges ∪ [x1, x2]
10: if accumulator ≥ confidence then
11: allRanges.append(ranges)
12: break
13: error = maximize(errorForm, allRanges)
14: return error

landing in the given confidence interval (e.g., 99%) of their respective ranges
(computed as described in the previous section). Note that conditioning only on
the last operation of the computation tree (i.e., the AST root) would lead to
extremely pessimistic over-approximation since all the outliers in the intermedi-
ate operations would be part of the maximization routine. This would lead to our
tool PAF computing pessimistic error bounds typical of worst-case analyzers.

Algorithm 2 shows the pseudocode of the roundoff error computation algo-
rithm. The algorithm takes as input a list DSS of DS-structures (one for each
intermediate result range in the computation), the generated symbolic error
form, and a confidence interval. It iterates over all intermediate DS-structures
(line 3), and for each it determines the ranges needed to support the chosen confi-
dence intervals (lines 4–12). In each iteration, it sorts the list of range-probability
pairs (i.e., focal elements) of the current DS-structure by their probability value
in a descending order (line 4). This is a heuristic that prioritizes the focal ele-
ments with most of the probability mass and avoids the unlikely outliers that
cause large roundoff errors into the final error computation. With the help of an
accumulator (line 8), we keep collecting focal elements (line 9) until the accumu-
lated probability satisfies the confidence interval (line 10). Finally, we maximize
the error form conditioned to the collected ranges of intermediate operations (line
13). The maximization is done using the rigorous global optimizer Gelpia [24].

7 Experimental Evaluation

We evaluate PAF (version 1.0.0) on the standard FPBench benchmark suite [11,
20] that uses the four basic operations we currently support {+,−,×,÷}. Many
of these benchmarks were also used in recent related work [36] that we compare
against. The benchmarks come from a variety of domains: embedded software
(bsplines), linear classifications (classids), physics computations (dopplers), fil-
ters (filters), controllers (traincars, rigidBody), polynomial approximations of
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functions (sine, sqrt), solving equations (solvecubic), and global optimizations
(trids). Since FPBench has been primarily used for worst-case roundoff error
analysis, the benchmarks come with ranges for input variables, but they do
not specify input distributions. We instantiate the benchmarks with three well-
known distributions for all the inputs: uniform, standard normal distribution,
and double exponential (Laplace) distribution with σ = 0.01 which we will call
‘exp’. The normal and exp distributions get truncated to the given range. We
assume single-precision floating-point format for all operands and operations.

To assess the accuracy and performance of PAF, we compare it with PrAn
(commit 7611679 [10]), the current state-of-the-art tool for automated analysis
of probabilistic roundoff errors [36]. PrAn currently supports only uniform and
normal distributions. We run all 6 tool configurations and report the best result
for each benchmark. We fix the number of intervals in each discretization to 50 to
match PrAn. We choose 99% as the confidence interval for the computation of our
conditional roundoff error (Sect. 6.3) and of PrAn’s probabilistic error. We also
compare our probabilistic error bounds against FPTaylor (commit efbbc83 [21]),
which performs worst-case roundoff error analysis, and hence it does not take
into account the distributions of the input variables. We ran our experiments in
parallel on a 4-socket 2.2 GHz 8-core Intel Xeon E5-4620 machine.

Table 2 compares roundoff errors reported by PAF, PrAn, and FPTaylor.
PAF outperforms PrAn by computing tighter probabilistic error bounds on
almost all benchmarks, occasionally by orders of magnitude. In the case of uni-
form input distributions, PAF provides tighter bounds for 24 out of 27 bench-
marks, for 2 benchmarks the bounds from PrAn are tighter, while for sqrt they
are the same. In the case of normal input distributions, PAF provides tighter
bounds for all the benchmarks. Unlike PrAn, PAF supports probabilistic output
range analysis as well. We present these results in the extended version [7].

In Table 2, of particular interest are benchmarks (10 for normal and 18 for
exp) where the error bounds generated by PAF for the 99% confidence interval
are at least an order of magnitude tighter than the worst-case bounds generated
by FPTaylor. For such a benchmark and input distribution, PAF’s results inform
a user that there is an opportunity to optimize the benchmark (e.g., by reducing
precision of floating-point operations) if their use-case can handle at most 1% of
inputs generating roundoff errors that exceed a user-provided bound. FPTaylor’s
results, on the other hand, do not allow for a user to explore such fine-grained
trade-offs since they are worst-case and do not take probabilities into account.

In general, we see a gradual reduction of the errors transitioning from uniform
to normal to exp. When the input distributions are uniform, there is a significant
chance of generating a roundoff error of the same order of magnitude as the worst-
case error, since all inputs are equally likely. The standard normal distribution
concentrates more than 99% of probability mass in the interval [−3, 3], resulting
in the long tail phenomenon, where less than 0.5% of mass spreads in the interval
[3,∞]. When the normal distribution gets truncated in a neighborhood of zero
(e.g., [0, 1] for bsplines and filters) nothing changes with respect to the uniform
case—there is still a high chance of committing errors close to the worst-case.
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Table 2. Roundoff error bounds reported by PAF, PrAn, and FPTaylor given uniform
(uni), normal (norm), and Laplace (exp) input distributions. We set the confidence
interval to 99% for PAF and PrAn, and mark the smallest reported roundoff errors for
each benchmark in bold. Asterisk (*) highlights a difference of more than one order of
magnitude between PAF and FPTaylor.

Benchmark Uniform Normal Exp FpTaylor

PAF PrAn PAF PrAn PAF

bspline0 5.71e−08 6.12e−08 5.71e−08 6.12e−08 5.71e−08 5.72e−08

bspline1 1.86e−07 2.08e−07 1.86e−07 2.08e−07 6.95e−08 1.93e−07

bspline2 1.94e−07 2.13e−07 1.94e−07 2.13e−07 2.11e−08 2.10e−07

bspline3 4.22e−08 4.65e−08 4.22e−08 4.65e−08 7.62e−12* 4.22e−08

classids0 6.93e−06 8.65e−06 4.45e−06 8.64e−06 1.70e−06 6.85e−06

classids1 3.71e−06 4.63e−06 2.68e−06 4.62e−06 7.62e−07 3.62e−06

classids2 5.23e−06 7.32e−06 3.85e−06 7.32e−06 1.46e−06 5.15e−06

doppler1 7.95e−05 1.17e−04 5.08e−07* 1.17e−04 4.87e−07* 6.10e−05

doppler2 1.43e−04 2.45e−04 6.61e−07* 2.45e−04 6.28e−07* 1.11e−04

doppler3 4.55e−05 5.12e−05 9.11e−07* 5.12e−05 8.95e−07* 3.41e−05

filter1 1.25e−07 2.03e−07 1.25e−07 2.03e−07 5.43e−09* 1.25e−07

filter2 7.93e−07 1.01e−06 6.13e−07 1.01e−06 2.90e−08* 7.93e−07

filter3 2.34e−06 2.86e−06 2.05e−06 2.87e−06 1.09e−07* 2.23e−06

filter4 4.15e−06 5.20e−06 4.15e−06 5.20e−06 4.61e−07 3.81e−06

rigidbody1 1.74e−04 1.58e−04 6.14e-06* 1.58e−04 4.80e−07* 1.58e−04

rigidbody2 1.96e−02 9.70e−03 5.99e-05* 9.70e−03 9.55e−07* 1.94e−02

sine 2.37e−07 2.40e−07 2.37e−07 2.40e−07 1.49e−08* 2.38e−07

solvecubic 1.78e−05 1.83e−05 6.84e−06 1.83e−05 2.76e−06 1.60e−05

sqrt 1.54e−04 1.54e-04 1.10e−06* 1.54e−04 2.46e−07* 1.51e−04

traincars1 1.76e−03 1.96e−03 8.26e−04 1.96e−03 4.50e−04 1.74e−03

traincars2 1.04e−03 1.36e−03 3.61e−04 1.36e−03 2.83e−05* 9.46e−04

traincars3 1.75e−02 2.29e−02 9.56e−03 2.29e−02 8.95e−04* 1.80e−02

traincars4 1.81e−01 2.30e−01 8.87e−02 2.30e−01 7.33e−03* 1.81e−01

trid1 6.01e−03 6.03e−03 1.58e−05* 6.03e−03 1.58e−05* 6.06e−03

trid2 1.03e−02 1.17e−02 2.42e−05* 1.17e−02 2.43e−05* 1.03e−02

trid3 1.75e−02 1.95e−02 6.80e−05* 1.95e−02 6.77e−05* 1.75e−02

trid4 2.69e−02 2.88e−02 2.64e−04* 3.03e−02 2.64e−04* 2.66e−02

However, when the normal distribution gets truncated to a wider range (e.g.,
[−100, 100] for trids), then the outliers causing large errors are very rare events,
not included in the 99% confidence interval. The exponential distribution further
compresses the 99% probability mass in the tiny interval [−0.01, 0.01], so the long
tails effect is common among all the benchmarks.
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Fig. 4. CDFs of the range (left) and error (right) distributions for the benchmark
traincars3 for uniform (top), normal (center), and exp (bottom).

The runtimes of PAF vary between 10 min for small benchmarks, such as
bsplines, to several hours for benchmarks with more than 30 operations, such
as trid4 ; they are always less than two hours, except for trids with 11 h and
filters with 6 h. The runtime of PAF is usually dominated by Z3 invocations,
and the long runtimes are caused by numerous Z3 timeouts that the respective
benchmarks induce. The runtimes of PrAn are comparable to PAF since they
are always less than two hours, except for trids with 3 h, sqrt with 3 h, and sine
with 11 h. Note that neither PAF nor PrAn are memory intensive.

To assess the quality of our rigorous (i.e., sound) results, we implement Monte
Carlo sampling to generate both roundoff error and output range distributions.
The procedure consists of randomly sampling from the provided input distribu-
tions, evaluating the floating-point computation in both the specified and high-
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precision (e.g., double-precision) floating-point regimes to measure the roundoff
error, and finally partitioning the computed errors into bins to get an approx-
imation (i.e., histogram) of the PDF. Of course, Monte Carlo sampling does
not provide rigorous bounds, but is a useful tool to assess how far the rigorous
bounds computed statically by PAF are from an empirical measure of the error.

Figure 4 shows the effects of the input distributions on the output and round-
off error ranges of the traincars3 benchmark. In the error graphs (right column),
we show the Monte Carlo sampling evaluation (yellow line) together with the
error bounds from PAF with 99% confidence interval (red plus symbol) and
FPTaylor’s worst-case bounds (green crossmark). In the range graphs (left col-
umn), we also plot PAF’s p-box over-approximations. We can observe that in the
case of uniform inputs the computed p-boxes overlap at the extrema of the out-
put range. This phenomenon makes it impossible to distinguish between 99% and
100% confidence intervals, and hence as expected the bound reported by PAF is
almost identical to FPTaylor’s. This is not the case for normal and exponential
distributions, where PAF can significantly improve both the output range and
error bounds over FPTaylor. This again illustrates how pessimistic the bounds
from worst-case tools can be when the information about the input distributions
is not taken into account. Finally, the graphs illustrate how the p-boxes and
error bounds from PAF follow their respective empirical estimations.

8 Related Work

Our work draws inspiration from probabilistic affine arithmetic [3,4], which aims
to bound probabilistic uncertainty propagated through a computation; a similar
goal to our probabilistic range analysis. This was recently extended to polyno-
mial dependencies [45]. On the other hand, PAF detects any non-linear depen-
dency supported by the SMT solver. While these approaches show how to bound
moments, we do not consider moments but instead compute conditional roundoff
error bounds, a concern specific to the analysis of floating-point computations.
Finally, the concentration of measure inequalities [4,45] provides bounds for (pos-
sibly very large) problems that can be expressed as sums of random variables,
for example multiple increments of a noisy dynamical system, but are unsuitable
for typical floating-point computations (such as FPBench benchmarks).

The most similar approach to our work is the recent static probabilistic
roundoff error analysis called PrAn [36]. PrAn also builds on [3], and inherits the
same limitations in dealing with dependent operations. Like us, PrAn hinges on
a discretization scheme that builds p-boxes for both the input and error distribu-
tions and propagates them through the computation. The question of how these
p-boxes are chosen is left open in the PrAn approach. In contrast, we take the
input variables to be user-specified random variables, and show how the distri-
bution of each error term can be computed directly and exactly from the random
variables generating it (Sect. 4). Furthermore, unlike PrAn, PAF leverages the
non-correlation between random variables and the corresponding error distribu-
tion (Sect. 4.4). Thus, PAF performs the rounding in Eq. (3) as an independent
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operation. Putting these together leads to PAF computing tighter probabilistic
roundoff error bounds than PrAn, as our experiments show (Sect. 7).

The idea of using a probabilistic model of rounding errors to analyze deter-
ministic computations can be traced back to Von Neumann and Goldstine [51].
Parker’s so-called ‘Monte Carlo arithmetic’ [41] is probably the most detailed
description of this approach. We, however, consider probabilistic computations.
For this reason, the famous critique of the probabilistic approach to roundoff
errors [29] does not apply to this work. Our preliminary report [9] presents some
early ideas behind this work, including Eqs. (5) and (7) and a very rudimentary
range analysis. However, this early work manipulated distributions unsoundly,
could not handle any repeated variables, and did not provide any roundoff error
analysis. Recently, probabilistic roundoff error models have also been investi-
gated using the concentration of measure inequalities [27,28]. Interestingly, this
means that the distribution of errors in Eq. (3) can be left almost completely
unspecified. However, as in the case of related work from the beginning of this
section [4,45], concentration inequalities are very ill-suited to the applications
captured by the FPBench benchmark suite.

Worst-case analysis of roundoff errors has been an active research area with
numerous published approaches [12–16,18,22,33,35,37,38,46,47,50]. Our sym-
bolic affine arithmetic used in PAF (Sect. 5) evolved from rigorous affine arith-
metic [14] by keeping the coefficients of the noise terms symbolic, which often
leads to improved precision. These symbolic terms are very similar to the first-
order Taylor approximations of the roundoff error expressions used in FPTay-
lor [46,47]. Hence, PAF with the 100% confidence interval leads to the same
worst-case roundoff error bounds as computed by FPTaylor (Sect. 7).
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Open Access This chapter is licensed under the terms of the Creative Commons
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which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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