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A B S T R A C T   

A novel nitrogen-rich amorphous porous organic polymer has been synthesized using a microwave-assisted 
process. Its high chemical stability, reusability and poor solubility enable the use of the porous polymer as a 
metal-free heterogeneous catalyst for C–C bond formation at ambient temperature under environmentally 
benign conditions.   

1. Introduction 

The Knoevenagel condensation reaction is a fundamentally impor
tant reaction for the formation of C–C bonds in organic synthetic 
chemistry [1]. These condensation reactions are generally conducted in 
organic solvents and are facilitated by a wide range of bases (e.g. 
ammonia, amines, etc.) [2]. In recent years, the high utility of the 
Knoevenagel condensation reaction was further promoted through the 
development of numerous catalysts to enhance reaction yields and 
shorten times [3–8]. Despite the appreciable variety of available cata
lysts and their efficiencies [9], however, the need to develop catalysts 
that enable fast access to condensation products in high yields under 
environmentally friendly conditions still persists [10–15]. We report 
herein the use of a readily accessible porous organic polymer (POP) as a 
cost efficient, stable and reusable catalyst for fast and high-yielding 
Knoevenagel condensation reactions under pH-neutral conditions in 
water and at room temperature. 

Porous organic polymers (POPs) are widely used materials for ap
plications in gas storage [16,17], separation sciences [18–21] and 

optoelectronics [22]. POPs are also extensively used as heterogeneous 
catalysts [20,23,24] owing to their high thermal and chemical (i.e. hy
drolytic) stability under extreme reaction conditions [25,26] and can, in 
terms of functionality, easily compete with other classes of emerging and 
established porous materials (e.g. metal-organic, covalent organic and 
zeolitic imidazolate frameworks) [27]. To enhance their catalytic 
properties, POPs are frequently doped with inorganic nanoparticles 
[28]. A recent study, for example, has shown that such doped, organic- 
inorganic hybrid catalysts enable Knoevenagel condensation reactions 
in water with remarkable efficiency [29]. 

2. Experimental section 

2.1. Synthesis of the AmPOP catalyst 

Stoichiometric amounts of melamine (252 mg, 2 mmol) and ter
ephthaloyl chloride (609 mg, 3 mmol) in DMSO (15 ml) with catalytic 
amounts of triethyl amine (0.5 ml) were placed in a round bottom flask. 
The obtained solution was refluxed under microwave condition at 420 
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W for about 2 h. The solid obtained was filtered and slurried in 30 ml 
MeOH, filtered and dried under vacuum. 

2.2. Mechanochemical Knoevenagel condensation reactions 

A mixture of an aromatic (or a heteroaromatic) aldehyde (1 mmol) 
and an active methylene compound (1 mmol) were added to a mortar 
along with the AmPOP catalyst (2.4 mol%). The mixture was ground at 
room temperature for the lengths of time shown in Schemes 2 and 3. 
Progress of the reaction was monitored by TLC, using an n-hexane:ethyl 
acetate (5:1) solvent mixture as eluent. The reaction mixture was then 
washed with ethanol and purified by recrystalisation from ethanol. 

2.3. Knoevenagel condensation reactions in an aqueous medium 

A mixture of an aromatic (or a heteroaromatic) aldehyde (1 mmol), 
an active methylene compound (1 mmol) and the AmPOP catalyst (2.4 
mol%) was added to a mixture of 5 ml of distilled water. The suspension 
was stirred at room temperature for the lengths of time shown in 
Schemes 2 and 3. The reaction progress was monitored by thin-layer 
chromatography using the above-mentioned eluent. After completion 
of the reaction, the aqueous solution was filtered and the solid was 
dissolved in ethanol. Again, the solution was filtered for removal of the 
catalyst from the reaction mixture, and purified by recrystalisation from 
ethanol to obtain the pure product. The characterization of products was 
performed using 1H NMR, 13C NMR, MS, powder and single-crystal X- 
ray diffraction. 

3. Result and discussion 

Our recent interest in porous organic materials led to the discovery of 
an amorphous POP that is decorated with amide functional groups 
(hereafter abbreviated with AmPOP). The AmPOP can be efficiently and 
rapidly synthesized in a condensation reaction involving melamine and 
terephthaloyl chloride under reflux conditions or through a microwave- 
assisted reflux process (see Supplementary Information, SI). Popular 
mechanochemical methods [26], such as neat grinding or liquid-assisted 
grinding, on the other hand, enabled the formation of the AmPOP, but 
the reactions did not reach completion even after four hours of manual 
milling. Powder X-ray diffraction and transmission small-angle X-ray 
scattering (SAXS) revealed that the AmPOP material consists of amor
phous particles that are 20 nm small, with radial size distributions (RSD) 
of 38.5%. Results of transmission electron microscopy (TEM) studies of 
the particle properties were also consistent with the results of the SAXS 
studies (Fig. 1) and revealed that the particles exhibit irregular mor
phologies. Surface area measurements, using the Bar
rett− Joyner− Halenda method, showed that the material exhibits pore 
sizes in the 15–70 Å diameter range and surface areas of 66–96 m2 g− 1 

(or 100–133 m2 g− 1, as determined by the Brunauer–Emmett–Teller 
method). The activated AmPOP was also shown to exhibit outstanding 
chemical stability upon exposure to a range of commonly utilized sol
vents (including water), as well as under acidic conditions (see SI, 
Fig. S7). The synthesis and the characterization of the AmPOP are 
detailed in the SI document. 

Further studies showed that the AmPOP can be used as metal-free 
heterogeneous catalyst with relatively low catalytic loadings (2.4 mol 
%) to facilitate Knoevenagel condensation reactions both in water and in 
solvent-free mechanochemical reactions. To the best of our knowledge, 

Fig. 1. Base-catalysed condensation of melamine (triaminotriazine) and terephthaloyl chloride to prepare the AmPOP catalyst under various reaction conditions 
(top); TEM images of AmPOP showing irregularly shaped particles under different magnifications (scale length 200 nm for bottom left; 50 nm for bottom right). 
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this study describes the first example of a metal-free amorphous organic 
polymer that acts as a highly efficient heterogeneous catalyst for C − C 
bond formation under solvent-free conditions. 

The general scheme for the studied Knoevenagel condensations in 
water, as well as under solvent-free manual grinding conditions, using 
AmPOP as catalyst is shown in Scheme 1. To establish the optimal re
action condition, an initial catalyst screen was conducted using an 
equimolar mixture of 4-chlorobenzaldehyde 1c and malononitrile 3 in 
water at neutral pH. Product 4c (Scheme 2) was obtained in 97% yield in 
presence of 2.4 mol% AmPOP after 50 min (Table 1, entry 4). Notably, 
the product was isolated in poor yields (10%) in the absence of catalyst 
(Table 1, entry 1) (see SI, Fig. S19). Further investigations showed that 
the use of smaller amounts of the catalyst (0.1–2.0 mol%) yields less 
product, while increasing the amount of the catalyst (to 3.8 mol%) did 
not further improve the yields. Using the optimal catalytic loadings of 
2.4 mol%, a subsequent solvent study showed that water is the most 
effective solvent for the Knoevenagel condensation at room temperature 
using the same model reaction (Table 1, entry 4, 9–14). The model re
action was then further studied to compare the effect of reaction time on 
the product yield. It was found that stirring at room temperature for 50 
min in water affords the best yields (Table 1, entry 4, 6–8). 

Once the most effective reaction conditions have been determined 
for the formation of compound 4c (Scheme 2), the scope and generality 
of the developed protocol was further tested by subjecting various re
actants in form of substituted aromatic and heteroaromatic aldehydes 
and active methylene compounds (viz. malononitrile, 5,5- 
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Scheme 1. General scheme for the AmPOP-catalysed Knoevenagel condensation reaction.  
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Scheme 2. Synthetic targets (top) and the 
obtained yields (an average of two runs) for 
compounds 4 and 5 using two different 
synthetic methods (bottom): stirring of the 
reactants in a round bottom flask at room 
temperature (A) and milling under solvent- 
free conditions (B). Method A: Aldehyde (1 
mmol), malononitrile (1 mmol), AmPOP 
catalyst (2.4 mol%), H2O (5 ml), room tem
perature stirring. Method B: aldehyde (1 
mmol), malononitrile (1 mmol), catalyst 
AmPOP (2.4 mol%), in an agate mortar and 
pestle for the above-mentioned times and in 
the absence of liquid additives. The per
centage yields are given for the isolated 
products.   

Table 1 
Screening of optimal reaction conditions (catalyst loading, solvent and reaction 
time). Reaction conditions unless specified otherwise: 4-chlorobenzaldehyde (1 
mmol), malononitrile (1 mmol), in each solvent (5 ml), room-temperature stir
ring. Yields are given for isolated materials.  

Entry Catalyst (mol%) Solvent Stirring time Yield of 4c (%)b 

1 0 H2O 5 h 10 
2 0.1 H2O 5 h 30 
3 2.0 H2O 2 h 80 
4 2.4 H2O 50 min 97 
5 3.8 H2O 50 min 97 
6 2.4 H2O 30 min 82 
7 2.4 H2O 40 min 87 
8 2.4 H2O 1.5 h 97 
9 2.4 THF 2.5 h 32 
10 2.4 CH3CN 2.5 h 10 
11 2.4 CH2Cl2 2.5 h 23 
12 2.4 CHCl3 2.5 h 22 
13 2.4 MeOH 2 h 65 
14 2.4 EtOH 1 h 93  
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dimethylcyclohexane-1,3-dione and 2,2-dimethyl-1,3-dioxane-4,6- 
dione) to the same reaction conditions (yields: 82–97%). Knoevenagel 
condensation reactions involving heterocyclic aldehydes (2a-2b) also 
gave excellent yields (yields for 5a and 5b: 92–98%) whereby no 
occurrence of a polymerization reaction was observed (Scheme 2) 
[30,31]. Reactions involving malononitrile and aryl aldehydes bearing 
electron-withdrawing or donating groups completed within 105 min to 
give the alkene product in high yields. 

The versatility of the investigated AmPOP-assisted Knoevenagel 
condensation reactions was further examined by expanding the range of 
suitable reactants to cyclic methylene derivatives (Scheme 3). The 
Knoevenagel condensation reaction was pursued under mild experi
mental conditions, namely through stirring of the reactants in water at 
room temperature and through solvent-free milling. All products were 
obtained under both reaction conditions in high yields (82–98%) and in 
short reaction times (45–120 min). In addition, the reaction of one mole 
equivalent of aldehydes (4-nitrobenzaldehyde 1b, 4-chlorobenzalde
hyde 1c and 3,5-dimethoxy benzaldehyde 1d) with a two mole equiv
alent of dimedone 6a resulted in the formation of Knoevenagel-Michael 
addition products (Scheme 3, 7b: 85%, 7c: 90% and 7d: 96%), similar to 
those reported by Rostamizadeh et. al [32], while reactions involving 
substituted aldehydes and Meldrum’s acid resulted in the formation of 
arylidene products with good to excellent yields (7e-7f & 8a-8b; 
87–98%). It is noteworthy that reactions pursued in stirred aqueous 
suspensions reached completion faster than those conducted under 
solvent-free mechanochemical conditions. This may be attributed to the 
faster diffusion rates of the reactants into the AmPOP in water, as 
compared to the diffusion of molecules through the AmPOP under 
solvent-free conditions. All products were characterized using 1H and 
13C NMR spectroscopy, MS (SI document, Fig. S19) and crystallographic 
methods (either single crystal or powder X-ray diffraction, PXRD) (SI 
document, Figs. S20-S29 and Table S2). In addition to the examples 

discussed above a few more Knoevenagel condensation products have 
been synthesized using AmPOP and discussed elsewhere [33]. PXRD was 
used as a characterizing tool to compare the products obtained using 
solvent-free milling with the respective products obtained from room 
temperature stirring (SI document, Figs. S21-S29). 

After completion of the reaction, the AmPOP catalyst was recovered 
quantitatively by dissolving the reaction mixture in ethanol and through 
subsequent separation of the virtually insoluble catalyst by filtration. 
The re-activation of the catalyst is achieved by soaking the recovered 
material in methanol, followed by drying under reduced pressure for one 
hour. The catalyst was shown to exhibit a slight decrease in surface area 
once recycled although no signs of chemical decomposition were 
detected (see SI, Fig. S14 and Table S1), thus indicating that the recy
cling procedure needs to be further optimised. The recyclability of 
AmPOP was evaluated using the standard reaction condition in presence 
of 4-chlorobenzaldehyde and malononitrile. The recycled AmPOP 
catalyst yielded compound 4c in no less than 85% within 60 mins once it 
was recycled up to five times (see SI, Fig. S18). 

4. Conclusions 

In conclusion, we have described the synthesis of a chemically stable 
porous organic polymer that effectively catalyses Knoevenagel 
condensation reactions of various substituted aromatic/ heteroaromatic 
aldehydes in very mild and environmentally benign experimental con
ditions in water and at room temperature. To the best of our knowledge, 
only a few reports [34,35] are available for porous organic polymer that 
catalyses Knoevenagel condensation reaction under metal-free and pH- 
neutral conditions in water. We also demonstrated that the condensa
tion reaction can be effectively catalysed with the polymer under 
solvent-free mechanochemical conditions. The high relevance and broad 
applicability of the Knoevenagel condensation reactions and the high 
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Scheme 3. Synthetic targets (above) and the 
obtained yields (an average of two runs) for 
compounds 7 and 8 using two different 
synthetic methods: stirring of the reactants 
in a round bottom flask at room temperature 
(A) and milling under solvent-free conditions 
(B). Method A: Aldehyde (1 mmol), cyclic 
active methylene compound (1 mmol for 7e- 
f, 8a-b; 2 mmol for 7b-d), catalyst AmPOP 
(2.4 mol%), H2O (5 ml), room temperature 
stirring; method B: Aldehyde (1 mmol), cy
clic active methylene compound (1 mmol for 
7e-f, 8a-b; 2 mmol for 7b-d), catalyst 
AmPOP (2.4 mol%), in agate mortar & pestle 
for above mentioned time period in absence 
of added liquid. The percentage yields are 
given for isolated products.   
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catalytic efficiency and recyclability of the polymeric catalyst offers the 
development of environmentally-friendly industrial processes relying in 
such type of chemical transformation. 
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We dedicate this work in memory of Prof. Israel Goldberg on his 
sudden demise. 
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ization of the AmPOP (ss-NMR, PXRD, Electron microscopy analysis, 
Spectroscopic analysis, Thermal analysis, Gas adsorption analysis); 
Catalysis Study of AmPOP and characterization of the Knoevenagel 
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