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Testing covariance models 
for MEG source reconstruction 
of hippocampal activity
George C. O’Neill1*, Daniel N. Barry2, Tim M. Tierney1, Stephanie Mellor1, 
Eleanor A. Maguire1 & Gareth R. Barnes1

Beamforming is one of the most commonly used source reconstruction methods for magneto- and 
electroencephalography (M/EEG). One underlying assumption, however, is that distant sources are 
uncorrelated and here we tested whether this is an appropriate model for the human hippocampal 
data. We revised the Empirical Bayesian Beamfomer (EBB) to accommodate specific a-priori correlated 
source models. We showed in simulation that we could use model evidence (as approximated by 
Free Energy) to distinguish between different correlated and uncorrelated source scenarios. Using 
group MEG data in which the participants performed a hippocampal-dependent task, we explored 
the possibility that the hippocampus or the cortex or both were correlated in their activity across 
hemispheres. We found that incorporating a correlated hippocampal source model significantly 
improved model evidence. Our findings help to explain why, up until now, the majority of MEG-
reported hippocampal activity (typically making use of beamformers) has been estimated as 
unilateral.

Encephalographic functional neuroimaging modalities such as magneto- and electroencephalography (M/EEG) 
work on the principle of detecting an electromagnetic signature of synchronous neuronal currents in the brain, 
using sensors on or near the scalp of a participant. The estimation of electrical brain activity given the scalp 
level measurements is an ill-posed problem and requires additional assumptions or prior beliefs about how the 
data were generated. One such reconstruction method, beamforming, has enjoyed widespread use by the M/
EEG  community1–9.

Recent studies into the neural dynamics of memory have motivated numerous publications where hippocam-
pal function has been imaged non-invasively. One anomaly is that studies using functional MRI (fMRI) often 
report bilateral hippocampal  activations10–14, whereas source-level M/EEG studies typically report unilateral 
 activations9,15–17. A common link between many of the M/EEG studies is the reliance on beamformer methods.

Beamforming exploits the temporal covariance of recordings from a fixed array of sensors (such as set of 
magnetometers or electrodes) and tunes the sensitivity to successive anatomical locations, whilst attenuating all 
other interfering sources. This data-driven approach makes it a powerful, and noise robust, source reconstruction 
method, that has been widely used in clinical and cognitive  neuroscience4,18–23. However, the assumption behind 
beamformer source reconstruction is that sources are a priori uncorrelated. Consequently, there are well-known 
situations, such as the bilateral evoked response due to binaural auditory stimulation, in which source(s) are 
mislocalised or suppressed entirely. Here we hypothesise that it is this feature of beamforming that may explain 
why there is a discrepancy between the M/EEG and fMRI literature on the hippocampus.

Solutions to this correlated source problem have been forthcoming for many years, with a wide variety of 
approaches  published24–31. For a detailed history, Kuznetsova and colleagues provide a review of the literature 
within their own solution to the correlated source  problem31. One common approach is to collapse two distinct 
and hypothetically correlated sources into a single  source24,27, the problem being that as these sources are now 
correlated a priori, and all solutions (regardless of the underlying physiology) will reflect this. Although these 
solutions are practical in situations where such correlations are known to exist, it is difficult to determine when 
(or if) such measures are necessary when faced with novel paradigms or data.

In this study, we set out to use commonly available tools and methodology to explore data derived from a 
task known to engage the hippocampus. We made use of the Empirical Bayesian Beamformer  (EBB32) to explain 
competing models of MEG  data33. The advantage of this formulation is that different priors (or assumptions) 
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can be directly compared in terms of their model evidence (as approximated by Free  energy34,35). We show how 
model evidence directly reflected the poorer source reconstruction performance of the conventional EBB in the 
presence of correlated sources. We then demonstrate how it is possible to use different correlated and uncor-
related priors to directly test physiological hypotheses. We show this in simulation and then in an experimental 
dataset from a recent beamformer MEG  study16. We found that models based on correlated hippocampal priors 
provided a significantly more likely explanation of the MEG data. We also identified an issue specific to the ante-
rior hippocampi, which have highly correlated gain matrices and are therefore difficult to distinguish between 
using conventional cryogenic arrays.

Theory
A brief summary of empirical Bayesian source reconstruction. An M/EEG dataset, Y ∈ R

ns×nt 
from ns sensors and sampled over nt timepoints, generated from nj current dipoles distributed within the brain, 
can be described by the generative model

where J ∈ R
nj×nt is a matrix which comprising of the activity at each of the sources, L ∈ R

ns×nj is the gain, or 
lead field matrix, which contains the dipolar field patterns expected for a single source of for a given location 
and orientation, and ǫ ∈ R

ns×nt is the unexplained noise, typically modelled as a multivariate Gaussian distri-
bution with zero mean and covariance Qǫ . Source reconstruction aims to rearrange Eq. (1) such that, given a 
set of source locations and calculated lead fields, we can obtain J . Here we approached the problem within in 
a Bayesian, maximum a posteriori  framework33,36–38. Assuming J is a multivariate Gaussian process, with zero 
mean and covariance Qj , the source estimates can be expressed through Bayes’ theorem as

in other words, the distribution of sources which maximises the posterior p(J |Y) . The likelihood and prior are 
assumed to be multivariate Gaussian processes with zero-mean, such that,

whilst p(Y) is assumed to be constant. The derivation of Eq. (2) has been covered  previously38,39, but the end 
result is a source estimate of the form

In this expression the lead fields are analytically solved based on physical models of the  head40–43. The noise 
covariance matrix Qǫ ∈ R

ns×ns can be directly measured from an empty room recording, but is often assumed that 
noise from the sensors is independent and individually distributed (IID), such that Qǫ ∝ Ins where Ins ∈ R

ns×ns is 
an identity matrix. The source covariance matrix Qj ∈ R

nj×nj contains the priors or assumptions that differentiate 
source reconstruction methods from one  other44. For example, the minimum norm solution  (MNE45) assumes 
that all sources are considered independent and equiprobable (IID), such that Qj|IID = Inj .  EBB32 also assumes 
independent sources (off diagonal values of Qj|EBB are set to 0) but each diagonal element corresponds to the 
(beamformer estimated) variance of a single source. For a given source at a location/orientation θ

where Qy ∈ R
ns×ns is the sensor-level covariance matrix and lθ ∈ R

ns×1 is the corresponding lead field vector. 
Defining the vector p2 =

[
p21, . . . , p

2
nq

]
 , we finally generate the source covariance prior for beamforming

The correlated source empirical Bayesian beamformer (cEBB). Beamformers are known to per-
form poorly when the underlying current distribution contains distal correlated  sources6,24,25,46. Put simply, the 
signal from the partner source at a different location is seen as noise and suppressed. To counter this in our prior 
construction, we modified the lead field vector in Eq. (6) to define a source space where each dipole of interest is 
paired to another, each pair mapping to a single lead-field24. Here the modified variance term, p′2 for location θ is

(1)Y = LJ + ǫ,

(2)J = argmax
J
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p(Y |J)p(J)

p(Y)

]
.
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where ϕ is the location/orientation of the second source which correlates with the source at θ . Likewise, the 
variance at ϕ would be the same, i.e. p′2θ = p′2ϕ  . Consequently, this requires prior knowledge of where this second 
source is expected to be, but typically it is assumed to be the homolog in the contralateral hemisphere. We also 
note that not every source need to necessarily to be correlated with another, only within regions of interest if 
required. By concatenating all the variance measurements into one vector, p′2,  we generate our final covariance 
matrix

We note that technically we are still assuming independence between all sources, but here we adjust the 
sensitivity to sources in the prior that we would have otherwise missed with the standard EBB. Note also that 
the solution is the sum of the original EBB solution and the solution composed of correlated pairs. We briefly 
investigate the effects of using exclusively one formulation or the other in the “Supplementary Information”.

Methods
Simulations. We simulated MEG datasets based on three different scenarios in two different regions of the 
brain (one cortical region, Heschl’s gyri and one subcortical, the hippocampal regions).

(1) A single source generating a 20 Hz sinusoid of amplitude 10 nAm, located in the right hemisphere.
(2) Two uncorrelated sources, one a 20 Hz sinusoid of amplitude 10 nAm, located in the right hemisphere. 

The second source being a 10 Hz sinusoidal source of amplitude 10 nAm, located the homologous region 
in the left hemisphere.

(3) Two correlated, homologous sources in the left and right hemispheres, consisting of two 20 Hz sinusoids 
(of the same phase) at 10 nAm.

For illustrative purposes, a cartoon depiction of the simulations can be found later in Fig. 1A. In each of 
the three cases, sources were active for 1 s with a 6 s inter-trial-interval, for ten trials. All simulations were 
based on a 275-channel SQUID MEG system (CTF, Coquitlam, BC) set in a 3rd order synthetic gradiometer 
configuration. The locations of three fiducial coil positions (nasion, left and right preauricular) relative to the 
sensors were derived from a previous  experiment16. We used canonical rather than individual MRIs for source 
 reconstruction35,47. The source space was based on the template anatomical provided with SPM12 (https:// www. 
fil. ion. ucl. ac. uk/ spm), with cortical surfaces extracted from the boundary between the pial and white matter. 
These surfaces were downsampled, such that the 4096 vertices per hemisphere corresponded to the locations 
and the mesh vertex normals corresponded to the orientations of the dipoles in our source space (used for both 
the simulations and source reconstruction of the resultant data). In addition, a mesh corresponding to the hip-
pocampus was incorporated in the source  space48. The source space was then affine transformed (using 7 degrees 
of freedom) such that the anatomical fiducial locations of the template MRI were aligned to the locations of the 
fiducial coils relative the MEG sensor array. The lead fields for each of the other sources were generated using a 
single shell  model41, where the conductive model geometry was based on a convex hull mesh of the brain/CSF 
boundary, derived from the transformed template MRI. The SNR of simulations was varied, from 0 to − 40 dB 
in steps of 5 dB, sensor noise was sampled from a Gaussian distribution. Data were simulated within SPM12.

Experimental data. Twenty two native English speakers (14 female, aged 27 ± 7 [mean ± SD] years) par-
ticipated in a previously published  study16 that involved generating novel scene imagery, a task known to engage 
the hippocampus. The study was approved by the University College London Research Ethics Committee and all 
participants gave written informed consent.

(9)Qj|cEBB = Qj|EBB + diag
(
p′2

)
.

Figure 1.  Depiction and model evidence results of the simulations comparing Empirical Bayesian 
Beamforming (EBB) to correlated EBB (cEBB) inversions. (A) Cartoon diagram explaining the simulation 
types, in this case two sources placed in Heschl’s gyri were set to be either unilateral, uncorrelated or correlated 
bilateral. (B) Model evidence comparison between the correlated and uncorrelated beamformer priors for 
sources simulated in Heschl’s gyri. Positive values in model evidence indicate that correlated priors (cEEB) were 
more likely models compared to uncorrelated ones (EBB).

https://www.fil.ion.ucl.ac.uk/spm
https://www.fil.ion.ucl.ac.uk/spm
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The detailed paradigm and experimental considerations can be found in  elsewhere16 but a summary follows. 
On any one trial, participants were asked to either imagine a scene, a single isolated object floating against a white 
background, or count in threes from a specified number. The stimulus type (either, “scene”, “object” or “count-
ing”) was delivered via MEG-compatible earphones (3M, Saint Paul, MN). The participant closed their eyes and 
awaited the auditory cue of the scene (e.g. “jungle”) or object (e.g. “bottle”) to imagine, or the number to count in 
threes from (e.g. “sixty”). The participant then had 3000 ms to imagine or count until a beep indicated the trial 
was over. The participant then opened their eyes. Seventy-five trials of each condition were presented in a pseu-
dorandom order. Note for this investigation, we used all conditions together (i.e. no contrasts) for our analyses.

Data were collected using a 275-channel MEG system (CTF, Coquitlam, BC) at a 1200 Hz sample rate, with 
3rd order synthetic gradiometry applied. All participants wore three head position coils, placed on the nasion 
and left/right preauricular points of the head. These coils were energised prior and after each recording block to 
establish the locations of the sensors relative to these fiducial points. Trials were visually inspected for SQUID 
resets and extensive electromyographic artefacts, with trials containing either omitted from further analysis.

Source reconstruction. All source reconstruction was undertaken within SPM12’s DAiSS toolbox (https:// 
github. com/ spm/ DAiSS). The source space was again defined using a template MRI and its associate cortex/
hippocampal mesh as described in “Simulations”. Again, dipole locations were the defined as the mesh verti-
ces and orientation was set to the vertex normal of the mesh. The data covariance matrix Qy , was calculated 
using discrete-cosine-transform to filter the data, and decomposed into four temporal modes per trial prior to 
covariance calculation. For the simulations, data were filtered to the 1–48 Hz band. For the experimental data we 
selected the theta (4–8 Hz) band, as that has been frequently implicated in previous electrophysiological studies 
of the  hippocampus9,16,49–53.

The empirical Bayesian scheme involves the optimal weighting of the priors defined in the source covariance 
matrix Qj and an IID noise matrix Qǫ , to the original data covariance:

where �1 and �2 are non-negative hyperparameters that are estimated by maximising Free energy, F , (a lower 
bound for the model  evidence33) using a Variational Laplacian  estimator38, such that

where the prior and posterior distributions �, q(�) and p(�) are assumed to be multivariate Gaussians, such that

The mean ν and precision � of the priors are chosen to be uninformative, such that the q is a distribution with 
near-zero mean 

(
e−4

)
 and low precision (e−16

) to cover a wide parameter space. Note � is also a scaled identity 
matrix. The final optimized free energy (or model evidence) allows us to compare different models (i.e. different 
formulations of Qj ) of how the data were generated.

In the case of cEBB, we needed to specify different forms of Qj depending on which sources were correlated. 
One such prior was that all homologous source pairs in the two hemispheres were correlated, an assumption 
made when reconstructing the simulated data. For the experimental data, we also looked at priors containing 
correlated sources only in the hippocampi but not the cortex and vice versa. For locations where we did not 
expect correlated sources, we used the definition of source variance in Eq. (6) rather than Eqs. (8) and (9) when 
constructing the prior. From here a source weights matrix W ∈ R

ns×nj for all sources can be generated using

where each column represents a single source. If a source at location θ has a corresponding source weights vector 
wθ ∈ R

1×ns , then the reconstructed source power is

where Qfe ∈ R
ns×ns is the data covariance matrix filtered and epoched in to a sub-band and time window of 

choice.
In the empirical group analysis, we computed the power estimate (Eq. 17) across the cortical and hippocampal 

meshes. All power estimates were reconstructed onto a canonical mesh (transformed differently depending on 
the locations of the fiducial coils within the MEG sensor array) with source spacing of 5 mm on average. This 

(10)Qy
∼= �1Qǫ + L

(
�2Qj

)
LT ,

(11)� = [�1, �2],
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means that vertex N for each participant corresponds to approximately the same location in MNI space. Glass-
brain plots were used to depict this mesh in MNI coordinate space. These estimates were then smoothed (along 
the mesh) using a Green function as the smoothing  operator32, which gives a local coherence of about 10 mm. 
We choose 10 mm to allow for some intra-subject variability and to increase the sensitivity of the subsequent 
group statistics. We compared the EBB to various cEBB solutions through a paired t-test of the difference between 
these smoothed (surface based) power estimates. False Discovery Rate (FDR), as implemented in SPM12, was 
used to control the false positive rate.

Bayesian model comparison. For the simulations that consist of a single dataset, the best model is the 
one that has the highest model evidence. However, for group studies we may have one candidate model that 
shows large but random changes in model evidence across the group, or another model that displays modest but 
consistent improvements. Here, we employed a random effects  analysis54,55 to inform us which model was more 
likely or more frequent to prevail in a population. From the analysis, two omnibus statistics are useful for our 
purposes; first, if we have two competing models, m1 and m2 based on our group-level data G , we can calculate 
the protected exceedance probability (PXP; φ ) that one model would be picked over the other:

Within the calculation of φ , we also quantify the Bayesian Omnibus Risk (BOR) defined as the posterior probabil-
ity that model frequencies are  equal54. This could be considered analogous to the classical p-value in frequentist 
statistics such that BOR < 0.05 means that it is unlikely that the model frequencies are the same.

Results
We divide the results into three main sections. The first section demonstrates the basic principal of operation 
and the metrics we wished to use in a set of shallow source simulations; the simulation scenarios are familiar 
and have been explored in many other studies. In the second section, we specifically examined sources on the 
hippocampal envelope. We had not anticipated this, but for sources located at the anterior hippocampi, the 
limitations of MEG system sensitivity interacted with the inference we wished to make. Finally, we applied the 
machinery to data from empirical recordings designed to engage the hippocampus.

Shallow source simulations. We first examined three possible scenarios within Heschl’s gyri and nine dif-
ferent SNR levels in simulation. Figure 1B shows the differences in model evidence ( �F) for cEBB relative to EBB 
inverse models. Negative values indicate that the EBB solution was more likely than the cEBB. For a single simu-
lated source (Mono; red bars in Fig. 1B) we observed that the cEBB (correlated priors) model was a much less 
likely description of the data. These differences in model evidence are relatively constant between SNR values of 
− 15 dB to 0 dB ( �F ≈ −140 ), beyond which we see a reduction in the magnitude of differences as SNR worsens. 
Similarly, for two uncorrelated sources (blue bars in Fig. 1B) the EBB model provided a more likely description 
of the data ( �F = −46 at − 15 dB). However, in the case of two correlated sources (green bars in Fig. 1B), we 
noted an increase in model evidence when considering correlated source priors ( �F = 69 at − 15 dB). We also 
observed a failure to identify the correlated sources at SNRs lower than − 25 dB.

Figure 2 shows the spatial distributions of the source priors for three source inversions. The priors used were 
EBB, cEBB and, for comparison, an additional vanilla IID model (in which the source prior consisted of an iden-
tity matrix) is also shown. Again, these were based on the simulations in Heschl’s gyri (with an SNR = − 10 dB) for 
illustrative purposes. The IID model was not data dependent and so every source location had the same source 
variance a priori, whereas the beamformer models showed differing data-dependent source variance maps. For 
the mono simulations we noted that the EBB prior highlights only one source, whereas the cEBB prior projected 
that single source into both hemispheres. This projection can be faintly seen in Fig. 2 (marked with a dashed 
circle), but as the cEBB prior also included information from the EBB prior (it was the sum of the standard and 
modified priors) this effect was reduced. We investigate the effect of removing the standard EBB prior (from the 
sum) in the “Supplementary Information” (see Supplementary Figs. S2, S3). The priors for the dual (uncorrelated) 
simulations were topographically similar, whilst for the correlated sources, the priors’ topographies diverged. 
EBB estimated the largest source variance to be in the centre of the brain (and in medial areas of cortex) rather 
in either Heschl’s gyrus. Conversely, the cEBB prior estimated a variance distribution peaking around the loca-
tions of the simulated sources.

Figure 3 shows glass brain plots of oscillatory power estimates between 8 and 22 Hz (recall simulated sources 
were generated at either 10 or 20 Hz) during the stimulation period (0–1000 ms) for the three inverse models 
and the three simulation types at − 10 dB. The left most column, which has the power maps for the IID model, 
show that it localised the source(s), with power biased towards the most superficial cortical locations; a char-
acteristic of unnormalised MNE source  reconstructions56,57. The beamformer models for the non-correlated 
source simulations localised power with spatially similar profiles to each other, with their maximal power in 
each hemisphere close to their simulated locations (IID mean location error (MLE): 13.4 mm; EBB and cEBB 
MLE: 3.1 mm). Note that despite cEBB estimating variance in the contralateral hemisphere within its prior, the 
source was predominantly localised in the (correct) ipsilateral hemisphere. For the correlated source simula-
tions, we observed that the EBB model resulted in a quite different topography compared to cEBB; the power 
distribution more closely resembled the MNE power map for a correlated source model. cEBB in comparison, 
correctly localised both sources with less localisation error (EBB mean localisation error: 13.8 mm; cEBB mean 
localisation error: 3.8 mm). In summary, there are three main points to note in this figure. The IID was robust 
to the correlation structure in the data but tended to produce superficial source estimates. The EBB algorithm 
produced precise source estimates for uncorrelated sources but in the case of correlated sources failed gracefully, 

(18)φ1>2 = p(m1 > m2|G).
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producing an IID-type solution. Finally, the cEBB produced an accurate solution for the correlated scenario. It 
is interesting to note that the cEBB solution is asymmetric (Fig. 3) whereas the prior is symmetric (Fig. 2 and 
Supplementary Fig. S3). This highlights one the key differences between the EBB and standard beamformer solu-
tions (which would also be symmetric). Here we develop the prior Qj based on beamformer assumptions but the 
general solution (Eq. 16) is also determined by the data and the standard lead field matrix (with no additional 
covariance structure).

Hippocampal source simulations. The results of the hippocampal simulations are showing in Fig.  4. 
Panel A shows the model evidence from all three simulation scenarios across the 9 SNR levels for a pair of 
sources in the posterior of the hippocampal body (left plot) and the anterior hippocampus (right plot). In the 
hippocampal body, we observed very similar behaviour to that found in Hechl’s gyri. It correctly identified that 
the EBB was a more plausible model for single sources and the case of dual uncorrelated sources, with cEBB 
being awarded with better model evidence scores for the dual correlated sources. However, for sources in the 
anterior hippocampus (Fig.  4A, right panel), whilst there was a clear distinction between models when the 
underlying source was unilateral rather than bilateral, sources that were uncorrelated in simulation were more 
likely ( �F ≈ 10 for most SNR levels) under cEBB prior (i.e. our inference would suggest they were correlated). 
Figure 4B shows the spatial distribution of model evidence changes when comparing EBB to cEBB for dual 
uncorrelated sources with an SNR of − 10 dB. We observed that for the majority of the hippocampal sources 
the model evidence suggested that uncorrelated priors were (correctly) more likely, but toward the anterior we 
noted a transition to where the correlated model was incorrectly classified as more plausible. Figure 4C shows 
a binarised representation of the model evidence scores; blue areas are where EBB was correctly identified as 
the winning model, and the red areas where cEBB was favoured. This red zone, in which uncorrelated sources 
appeared as correlated, was exclusively in the anterior hippocampus. Figure 4D is a plot of the correlation of the 

Figure 2.  Spatial distributions of the source priors and reconstructed source power plotted onto glass brains 
for simulations within Heschl’s gyri. Results have been transformed into MNI space. The spatial distribution of 
the source priors, scaled relative to their maximum value for three inverse models, Minimum Norm Estimation 
(IID), Empirical Bayesian Beamforming (EBB) and correlated source Empirical Bayesian Beamforming 
(cEBB). The dashed circle highlights a case where cEBB will estimate variance of a non-existent source in the 
contralateral hemisphere due to the presence of a genuine source in the ipsilateral hemisphere.
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lead fields between homologous source pairs in the hippocampus. In the anterior hippocampus, the lead fields 
between a source and its homolog were highly (r > 0.7) correlated (i.e. occupied a very similar portion of MEG 
signal space).

Experimental data. In the previous sections we showed how model evidence can be used to select between 
different source covariance priors. The question we considered next was how best to describe data originating 
from the human hippocampus. We reanalysed data from Barry et al.16 using four different models: standard 
EBB using exclusively uncorrelated sources; cEBB with homologous correlated source pairs for the whole brain 
(across both hippocampi and cortex); cEBB with homologous pairs of correlated sources in the hippocampi 
only; cEBB with homologous pairs of correlated sources in the cortex but not hippocampi. Figure 5A shows the 
comparison between competing generative models used to describe data in the 4–8 Hz band in the 0–3000 ms 
window during all valid trials (across all conditions) for the cohort of 22  participants16. Positive values indicate 
a model is a more likely description of the data than EBB. The first model, where correlated sources could exist 
in either the cortex or the hippocampus, displayed the largest changes in model evidence compared to EBB 
(red bars; �F = 15 ± 32 [mean ± SD] across subjects) followed by restricting the correlated sources to the cortex 
(blue bars; �F = 13 ± 30), and the smallest changes by restricting correlations to just the hippocampi (green bars; 
�F = 5 ± 3). However, as is evident in Fig. 5A, not all the changes were positive. For the models that contained 
correlated cortical sources, 5/22 participants exhibited a reduction in model evidence, whereas for the model 
with the correlated sources existing in only the hippocampi, we observed increases in model evidence in all 22 
participants.

The next step was to determine the most likely model (or most frequently chosen model across the popula-
tion) using Bayesian model  selection54. Panel 5B shows the results of the pairwise exceedance probabilities, φ 
between all competing model combinations. Values above 0.5 (red squares) indicate that models labelled along 

Figure 3.  Spatial distributions of the reconstructed source power for unilateral, dual-uncorrelated and 
dual-correlated simulation scenarios (SNR = − 10 dB). When sources were uncorrelated, EBB and cEBB 
inversion models gave similar results, whereas in the presence of correlated sources, EBB power fell back onto 
a topography akin to IID. Although qualitatively cEBB reconstructs all three scenarios it is only objectively the 
best model (see model evidence scores in Fig. 1) for the dual-correlated sources. Results have been transformed 
into MNI space for visualisation purposes.
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the column are more likely than the model labelled along the row. We found that all models with correlated 
sources were more likely than the uncorrelated source model (top row, φ > 0.9 ) but, importantly, if the difference 
between two models was only that the hippocampi were correlated in one and not in the other, then the former 
model was most frequently chosen in all cases ( φ = 1 ). Figure 5C shows the Bayesian Omnibus Risk (BOR), the 
probability that there is no difference in how often a model would be chosen from across a population. All models 
involving correlated hippocampal sources were deemed distinct (BOR < 0.01) from those without.

Figure 6 shows the group-level FDR-corrected paired-T-contrasts comparing theta band power (4–8 Hz) 
between source estimates based on uncorrelated (EBB) source models and correlated models containing the 
hippocampus. Contrasting the correlated hippocampal source model to standard EBB (Fig. 6, left), we noted a 
bilateral increase in theta power reconstructed in the anterior hippocampus. The right column of Fig. 6 shows the 
contrast between EBB and the cortex-plus-hippocampus correlated model, where we also observed significant 
changes in power (p < 0.05; whole brain FDR corrected) in the anterior hippocampal regions and anterior/polar 
temporal cortices. We also observed significant clusters of increased reconstructed power in the occipital cortex.

Discussion
We have proposed a method to implement and test between different correlated source models in beamformer 
neuroimaging. This is possible within an empirical Bayes framework in which we can objectively quantify the 
likelihood of any particular model given the data. We applied this correlated source framework to experimental 

Figure 4.  Results of simulations within the hippocampus. (A) Model evidence scores of the three simulation 
scenarios across nine SNR steps for sources in the posterior of the hippocampal body (left) and anterior 
hippocampal (right). (B) Spatial map of the difference in evidence between cEBB to EBB models (cEBB-EBB) 
for a pair of uncorrelated sources with an SNR of − 10 dB. The changes were negative in most cases (i.e. an 
uncorrelated EBB was a more likely model) but in the anterior portion we observed that the correlated model 
was erroneously selected to be more likely. (C) A binarised map to show where the simulations correctly 
identified the underlying sources were uncorrelated (blue), and incorrectly suggested them to be correlated 
(red). (D) A map of the correlation of the lead fields between homologous source pairs in the hippocampi. Note 
the strong positive correlation between the anterior hippocampal pairs.
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MEG data to show, for the first time, that human hippocampal activity in a scene imagination paradigm is 
bilateral.

We revisited the Empirical Bayesian Beamformer (EBB) in simulation and demonstrated that (unlike normal 
beamformer solutions) it failed gracefully in the presence of correlated sources. This is because when covariant 
sources are suppressed, the EBB-prior becomes featureless, approximating a minimum-norm prior. We then 
introduced the cEBB variant in which the prior variance component consisted of a paired-correlated-source 
prior plus the standard EBB prior. This meant that the cEBB variant gave qualitatively similar and accurate 

Figure 5.  Evidence for four generative models of the experimental data set. (A) The changes in model evidence 
compared to EBB when differing elements of the model were allowed to be correlated: either all sources (red), 
only the cortical sources (blue) or hippocampal sources (green). (B) A random effects pairwise comparison of 
models in terms of protected exceedance probabilities (PXP; φ ). High values (red) indicated model 1 was more 
likely. (C) Bayesian Omnibus Risk (BOR), which quantifies how likely it is that a pair of models have the same 
frequency of occurrence across a group. Asterisks mark comparisons in which model frequencies were clearly 
different (BOR < 0.05). Note the colour-scale of the BOR values are on a log10 rather than linear scale.
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performance for both correlated and uncorrelated source pairs. Using unilateral, and bilateral correlated and 
uncorrelated cortical sources we showed how model evidence can be used to identify the most likely model for 
a given dataset. We observed similar performance for source configurations along the body of the hippocampi; 
however, our inference broke down at the anterior portion of the hippocampi. In this region, although we were 
able to distinguish between unilateral and bilateral sources, our analysis identified uncorrelated source pairs 
as correlated. It seems that this was due to the high correlation between the sensor-level profiles produced by 
the either of the anterior sources (see also Supplementary Fig. S4) rather than any other factor (such as source 
distance or dipole orientation). In other words, although spatially distinct, the anterior hippocampal portions 
occupy the same region in cryogenic MEG signal space. As approximately 50% of the variance in one source will 
automatically be explained by the other (due to the lead-field correlations), even uncorrelated sources appear as 
correlated from this viewpoint. It is, however, encouraging that the overlap of sensitivity was not so large that 
we were unable to distinguish unilateral from bilateral sources.

For the experimental data, we found that adding a bilaterally correlated hippocampal prior gave a consistent 
improvement in model evidence across the cohort (Fig. 5A). The random effects analysis suggested that this 
model was not only the most likely, but was clearly distinct from the classical beamformer/EBB solution to the 
problem (Fig. 5B,C). Furthermore, and perhaps more striking, we also observed a significant improvement in 
model evidence when adding a correlated hippocampus to an already correlated cortex. It is worth noting that 
in both these winning models, the hippocampal sources only account for 3.9% of the total source space, and 
these sources were in turn deep in the brain. Making use of the winning correlated-hippocampal model, we 
noted an increase in theta power in both hippocampi (Fig. 6, left panels) as compared to standard beamformer 
(EBB) estimates. Also, if we removed the hippocampal specificity and allowed correlation to exist across the 
whole brain (Fig. 6 right panels), the main power increases were once again observed in these regions. Note, 
however, that based on our simulations, and the anterior location of the hippocampal power change, we were 
unable to resolve whether these sources were correlated or not. The conservative conclusion is simply that the 
power changes are more likely bilateral than unilateral. In the “Supplementary Information” we investigate what 
particular properties of the modelled dipoles in the hippocampus might be driving this area of uncertainty on the 
anterior hippocampus. The results may determine whether potentially adding more anterior or inferior sensors, 
or even changing the sensor orientation may allow for better separation of these sources. We are currently looking 
into designs of on-scalp optically-pumped MEG (OP-MEG)  systems58 that might more effectively distinguish 
between these anterior hippocampal  portions59.

It is important to note that the correlated-cortex and whole-brain correlated models generated the largest 
absolute changes in model evidence (relative to the uncorrelated prior), however in 5/22 participants these 
changes were in the opposite direction. Based on the random effects analysis, these models were not significantly 
different from the standard EBB implementation. However, contrasting theta power compared to the EBB model 
still showed significant increases in power in parahippocampal, rhinal and temporal pole areas (Fig. 6). One 
explanation is that our anatomical model did not match reality: these data were all source reconstructed using 
a fitted template anatomical image, with canonical cortical and hippocampal meshes. We know this approach is 
robust and works well for volumetric  studies15–17,51,60–65 but it may well be that co-registration errors or individual 
anatomical variability mean that some hippocampal variance is explained by the cortical mesh or vice versa. 
Given the large cluster of significant power changes in bilateral temporal lobes, this seems likely. Even when the 
individual anatomy is available, we know that small errors in co-registration can undermine accurate forward 
 models66. The inconsistent improvements/reductions in model evidence could be attributed to forcing 96% of 

Figure 6.  Reconstructed theta band power based on hippocampal only (left panel) and whole-brain (right 
panel) correlated priors contrasted (paired T-test) against the uncorrelated source model. Left: Comparing 
uncorrelated to a model containing a correlated hippocampus, we noted a significant increase in theta-band 
(4–8 Hz) power over the anterior hippocampal areas. Right: Contrasting the whole-brain correlated model with 
the uncorrelated EBB solution. We observed bilateral anterior hippocampal clusters with significant increases in 
power in the parahippocampal, rhinal and temporal pole areas. Results have been tranformed into MNI space 
for visualisation purposes.
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the source space to be correlated in this scenario, when in reality a much smaller area is exhibiting correlated 
behaviour. As an aside, when using the whole-brain correlated model, we also observed a cluster of theta power 
located towards the visual cortex, which has been reported in similar paradigms in both  MEG17,67,68 and  fMRI69.

The key neuroscience finding from this investigation is that when provoked by an imagination paradigm, 
theta oscillations within the human hippocampus are bilateral. Our motivation was the discrepancy between 
functional activation results reported when using fMRI and MEG (with beamformers) to image similar tasks. 
fMRI experiments designed to engage the hippocampus often report bilateral  activation12,69,70, whereas there is 
typically a lateralisation to a single hippocampus in MEG. The experimental MEG data presented in the current 
study originated from a previous  experiment16 where the authors found theta band oscillatory activity localised 
to the left hippocampus and temporal lobe during scene imagination trials. A follow-up study, where scalp-
based OP-MEG was compared to conventional SQUID-MEG in the same paradigm showed left lateralised hip-
pocampal theta using SQUID-MEG, but right lateralised hippocampal activity using OP-MEG, despite the same 
participants being scanned in the two MEG  systems17. Finally, a recent MEG study investigating autobiographical 
memory recall reported lateralised activity in the left anterior  hippocampus15. The common link between these 
MEG studies is that their source reconstruction was performed using LCMV beamforming, the performance of 
which is impaired by distal correlated sources, or extended cortical  patches71 (which is what we effectively have 
with paired anterior hippocampal sources sharing over 50% variance between them). Indeed, moving away from 
scene-specific paradigms, and simply counting the number of MEG papers reporting hippocampal activity (see 
Supplementary Fig. S1), we found that 49/83 papers reported unilateral hippocampal activity, and of those that 
did, 39 used a source reconstruction method within the beamformer family of solutions. Conversely, only 11 
beamformer-type reconstructions led to reported bilateral activations in the hippocampus, but even in that case, 
one of these studies used modified beamformers to specifically image correlated  sources72.

To summarise, we have explored the possibility that the hippocampus or the cortex or both are correlated in 
their activity across hemispheres during an imagination paradigm. We found strong evidence that a correlated 
hippocampal (and uncorrelated cortical) model provided the best explanation of the data. These findings may 
have implications more generally, by helping to explain why, up until now, the majority of MEG-reported hip-
pocampal activity (typically making use of beamformers) has been estimated as unilateral.

Data availability
The EBB scheme with options for correlated sources is available within the DAiSS toolbox (https:// github. com/ 
spm/ DAiSS/), with an implementation directly within SPM12 arriving in a future update. The full pipeline to 
run and analyse the simulations is available at https:// github. com/ georg eonei ll/ EBBco rr. The experimental MEG 
data are available upon reasonable request—please contact EAM.

Received: 30 April 2021; Accepted: 17 August 2021

References
 1. O’Neill, G. C., Barratt, E. L., Hunt, B. A. E., Tewarie, P. K. & Brookes, M. J. Measuring electrophysiological connectivity by power 

envelope correlation: A technical review on MEG methods. Phys. Med. Biol. https:// doi. org/ 10. 1088/ 0031- 9155/ 60/ 21/ R271 (2015)
 2. Hillebrand, A. & Barnes, G. R. Beamformer analysis of MEG data. Int. Rev. Neurobiol. https:// doi. org/ 10. 1016/ S0074- 7742(05) 

68006-3 (2005).
 3. Jaiswal, A. et al. Comparison of beamformer implementations for MEG source localization. Neuroimage 216, 116797 (2020).
 4. Cheyne, D., Bostan, A. C., Gaetz, W. & Pang, E. W. Event-related beamforming: A robust method for presurgical functional map-

ping using MEG. Clin. Neurophysiol. 118, 1691–1704 (2007).
 5. Van Drongelen, W., Yuchtman, M., Van Veen, B. D. & Van Huffelen, A. C. A spatial filtering technique to detect and localize 

multiple sources in the brain. Brain Topogr. https:// doi. org/ 10. 1007/ BF011 91641 (1996).
 6. Van Veen, B. D., Van Drongelen, W., Yuchtman, M. & Suzuki, A. Localization of brain electrical activity via linearly constrained 

minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44, 867–880 (1997).
 7. Rizkallah, J., Amoud, H., Fraschini, M., Wendling, F. & Hassan, M. Exploring the correlation between M/EEG source-space and 

fMRI networks at rest. Brain Topogr. 33, 151–160 (2020).
 8. Sekihara, K., Nagarajan, S. S., Poeppel, D., Marantz, A. & Miyashita, Y. Reconstructing spatio-temporal activities of neural sources 

using an MEG vector beamformer technique. IEEE Trans. Biomed. Eng. https:// doi. org/ 10. 1109/ 10. 930901 (2001).
 9. Michelmann, S., Bowman, H. & Hanslmayr, S. The temporal signature of memories: Identification of a general mechanism for 

dynamic memory replay in humans. PLOS Biol. 14, e1002528 (2016).
 10. Stark, C. E. L. & Squire, L. R. FMRI activity in the medial temporal lobe during recognition memory as a function of study-test 

interval. Hippocampus 10, 329–337 (2000).
 11. Dalton, M. A., Zeidman, P., McCormick, C. & Maguire, E. A. Differentiable processing of objects, associations, and scenes within 

the hippocampus. J. Neurosci. 38, 8146–8159 (2018).
 12. Hassabis, D., Kumaran, D. & Maguire, E. A. Using imagination to understand the neural basis of episodic memory. J. Neurosci. 

27, 14365–14374 (2007).
 13. Buck, S., Bastos, F., Baldeweg, T. & Vargha-Khadem, F. A functional MRI paradigm suitable for language and memory mapping 

in pediatric temporal lobe epilepsy. Front. Neurol. https:// doi. org/ 10. 3389/ fneur. 2019. 01384 (2020).
 14. Chen, H.-Y., Gilmore, A. W., Nelson, S. M. & McDermott, K. B. Are there multiple kinds of episodic memory? An fMRI investiga-

tion comparing autobiographical and recognition memory tasks. J. Neurosci. 37, 2764–2775 (2017).
 15. McCormick, C., Barry, D. N., Jafarian, A., Barnes, G. R. & Maguire, E. A. vmPFC drives hippocampal processing during autobio-

graphical memory recall regardless of remoteness. Cereb. Cortex https:// doi. org/ 10. 1093/ cercor/ bhaa1 72 (2020).
 16. Barry, D. N., Barnes, G. R., Clark, I. A. & Maguire, E. A. The neural dynamics of novel scene imagery. J. Neurosci. 39, 4375–4386 

(2019).
 17. Barry, D. N. et al. Imaging the human hippocampus with optically-pumped magnetoencephalography. Neuroimage 203, 116192 

(2019).
 18. Carbo, E. W. S. et al. Dynamic hub load predicts cognitive decline after resective neurosurgery. Sci. Rep. 7, 42117 (2017).
 19. Hall, M. B. H. et al. An evaluation of kurtosis beamforming in magnetoencephalography to localize the epileptogenic zone in drug 

resistant epilepsy patients. Clin. Neurophysiol. 129, 1221–1229 (2018).

https://github.com/spm/DAiSS/
https://github.com/spm/DAiSS/
https://github.com/georgeoneill/EBBcorr
https://doi.org/10.1088/0031-9155/60/21/R271
https://doi.org/10.1016/S0074-7742(05)68006-3
https://doi.org/10.1016/S0074-7742(05)68006-3
https://doi.org/10.1007/BF01191641
https://doi.org/10.1109/10.930901
https://doi.org/10.3389/fneur.2019.01384
https://doi.org/10.1093/cercor/bhaa172


12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17615  | https://doi.org/10.1038/s41598-021-96933-0

www.nature.com/scientificreports/

 20. Gascoyne, L. E. et al. Changes in electrophysiological markers of cognitive control after administration of galantamine. NeuroImage 
Clin. 20, 228–235 (2018).

 21. Seymour, R. A., Rippon, G., Gooding-Williams, G., Sowman, P. F. & Kessler, K. Reduced auditory steady state responses in autism 
spectrum disorder. Mol. Autism 11, 56 (2020).

 22. Tierney, T. M. et al. Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function. 
Neuroimage 181, 513–520 (2018).

 23. Dijkstra, N., Ambrogioni, L., Vidaurre, D. & van Gerven, M. Neural dynamics of perceptual inference and its reversal during 
imagery. Elife https:// doi. org/ 10. 7554/ eLife. 53588 (2020).

 24. Brookes, M. J. et al. Beamformer reconstruction of correlated sources using a modified source model. Neuroimage 34, 1454–1465 
(2007).

 25. Quraan, M. A. & Cheyne, D. Reconstruction of correlated brain activity with adaptive spatial filters in MEG. Neuroimage https:// 
doi. org/ 10. 1016/j. neuro image. 2009. 10. 012 (2010).

 26. Dalal, S. S., Sekihara, K. & Nagarajan, S. S. Modified beamformers for coherent source region suppression. IEEE Trans. Biomed. 
Eng. 53, 1357–1363 (2006).

 27. Diwakar, M. et al. Dual-Core Beamformer for obtaining highly correlated neuronal networks in MEG. Neuroimage https:// doi. 
org/ 10. 1016/j. neuro image. 2010. 07. 023 (2011).

 28. Popescu, M., Popescu, E.-A., Chan, T., Blunt, S. D. & Lewine, J. D. Spatio-temporal reconstruction of bilateral auditory steady-state 
responses using MEG beamformers. IEEE Trans. Biomed. Eng. 55, 1092–1102 (2008).

 29. Moiseev, A., Gaspar, J. M., Schneider, J. A. & Herdman, A. T. Application of multi-source minimum variance beamformers for 
reconstruction of correlated neural activity. Neuroimage 58, 481–496 (2011).

 30. Kimura, T. et al. Inverse solution for time-correlated multiple sources using Beamformer method. Int. Congr. Ser. 1300, 417–420 
(2007).

 31. Kuznetsova, A., Nurislamova, Y. & Ossadtchi, A. Modified covariance beamformer for solving MEG inverse problem in the envi-
ronment with correlated sources. Neuroimage 228, 117677 (2021).

 32. Belardinelli, P., Ortiz, E., Barnes, G., Noppeney, U. & Preissl, H. Source reconstruction accuracy of MEG and EEG Bayesian inver-
sion approaches. PLoS ONE 7, e51985 (2012).

 33. Friston, K. et al. Multiple sparse priors for the M/EEG inverse problem. Neuroimage 39, 1104–1120 (2008).
 34. Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J. & Penny, W. Variational free energy and the Laplace approximation. 

Neuroimage https:// doi. org/ 10. 1016/j. neuro image. 2006. 08. 035 (2007).
 35. Henson, R. N., Mattout, J., Phillips, C. & Friston, K. J. Selecting forward models for MEG source-reconstruction using model-

evidence. Neuroimage 46, 168–176 (2009).
 36. Wipf, D. & Nagarajan, S. A unified Bayesian framework for MEG/EEG source imaging. Neuroimage 44, 947–966 (2009).
 37. Baillet, S. & Garnero, L. A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem. IEEE 

Trans. Biomed. Eng. 44, 374–385 (1997).
 38. López, J. D., Litvak, V., Espinosa, J. J., Friston, K. & Barnes, G. R. Algorithmic procedures for Bayesian MEG/EEG source recon-

struction in SPM. Neuroimage https:// doi. org/ 10. 1016/j. neuro image. 2013. 09. 002 (2014).
 39. Liu, A. K., Dale, A. M. & Belliveau, J. W. Monte Carlo simulation studies of EEG and MEG localization accuracy. Hum. Brain Mapp. 

16, 47–62 (2002).
 40. Sarvas, J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. https:// doi. org/ 

10. 1088/ 0031- 9155/ 32/1/ 004 (1987).
 41. Nolte, G. The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward 

calculation in realistic volume conductors. Phys. Med. Biol. 48, 3637–3652 (2003).
 42. Kybic, J. et al. A common formalism for the Integral formulations of the forward EEG problem. IEEE Trans. Med. Imaging 24, 

12–28 (2005).
 43. Huang, M. X., Mosher, J. C. & Leahy, R. M. A sensor-weighted overlapping-sphere head model and exhaustive head model com-

parison for MEG. Phys. Med. Biol. 44, 423–440 (1999).
 44. Mosher, J. C., Baillet, S. & Leahy, R. M. Equivalence of linear approaches in bioelectromagnetic inverse solutions. IEEE Workshop 

Stat. Signal Process. Proc. https:// doi. org/ 10. 1109/ SSP. 2003. 12894 02 (2003).
 45. Hämäläinen, M. S. & Ilmoniemi, R. J. Interpreting magnetic fields of the brain: Minimum norm estimates. Med. Biol. Eng. Comput. 

https:// doi. org/ 10. 1007/ BF025 12476 (1994).
 46. Sekihara, K., Nagarajan, S. S., Poeppel, D. & Marantz, A. Performance of an MEG adaptive-beamformer technique in the pres-

ence of correlated neural activities: Effects on signal intensity and time-course estimates. IEEE Trans. Biomed. Eng. 49, 1534–1546 
(2002).

 47. Mattout, J., Henson, R. N. & Friston, K. J. Canonical source reconstruction for MEG. Comput. Intell. Neurosci. https:// doi. org/ 10. 
1155/ 2007/ 67613 (2007).

 48. Meyer, S. S. et al. Using generative models to make probabilistic statements about hippocampal engagement in MEG. Neuroimage 
https:// doi. org/ 10. 1016/j. neuro image. 2017. 01. 029 (2017).

 49. Buzsáki, G., Lai-Wo, S. L. & Vanderwolf, C. H. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. Rev. 6, 139–171 
(1983).

 50. O’Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 
(1993).

 51. Pu, Y., Cheyne, D. O., Cornwell, B. R. & Johnson, B. W. Non-invasive investigation of human hippocampal rhythms using mag-
netoencephalography: A review. Front. Neurosci. https:// doi. org/ 10. 3389/ fnins. 2018. 00273 (2018).

 52. Goyal, A. et al. Functionally distinct high and low theta oscillations in the human hippocampus. Nat. Commun. 11, 2469 (2020).
 53. Lubenov, E. V. & Siapas, A. G. Hippocampal theta oscillations are travelling waves. Nature 459, 534–539 (2009).
 54. Rigoux, L., Stephan, K. E., Friston, K. J. & Daunizeau, J. Bayesian model selection for group studies—Revisited. Neuroimage https:// 

doi. org/ 10. 1016/j. neuro image. 2013. 08. 065 (2014).
 55. Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J. & Friston, K. J. Bayesian model selection for group studies. Neuroimage 

https:// doi. org/ 10. 1016/j. neuro image. 2009. 03. 025 (2009).
 56. Hauk, O., Wakeman, D. G. & Henson, R. Comparison of noise-normalized minimum norm estimates for MEG analysis using 

multiple resolution metrics. Neuroimage 54, 1966–1974 (2011).
 57. Lin, F. H. et al. Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm 

estimates. Neuroimage https:// doi. org/ 10. 1016/j. neuro image. 2005. 11. 054 (2006).
 58. Boto, E. et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 555, 657–661 

(2018).
 59. Tierney, T. M. et al. Mouth magnetoencephalography: A unique perspective on the human hippocampus. Neuroimage 225, 117443 

(2021).
 60. Liu, Y., Dolan, R. J., Kurth-Nelson, Z. & Behrens, T. E. J. Human replay spontaneously reorganizes experience. Cell 178, 640-652.

e14 (2019).
 61. Mills, T., Lalancette, M., Moses, S. N., Taylor, M. J. & Quraan, M. A. Techniques for detection and localization of weak hippocampal 

and medial frontal sources using beamformers in MEG. Brain Topogr. 25, 248–263 (2012).

https://doi.org/10.7554/eLife.53588
https://doi.org/10.1016/j.neuroimage.2009.10.012
https://doi.org/10.1016/j.neuroimage.2009.10.012
https://doi.org/10.1016/j.neuroimage.2010.07.023
https://doi.org/10.1016/j.neuroimage.2010.07.023
https://doi.org/10.1016/j.neuroimage.2006.08.035
https://doi.org/10.1016/j.neuroimage.2013.09.002
https://doi.org/10.1088/0031-9155/32/1/004
https://doi.org/10.1088/0031-9155/32/1/004
https://doi.org/10.1109/SSP.2003.1289402
https://doi.org/10.1007/BF02512476
https://doi.org/10.1155/2007/67613
https://doi.org/10.1155/2007/67613
https://doi.org/10.1016/j.neuroimage.2017.01.029
https://doi.org/10.3389/fnins.2018.00273
https://doi.org/10.1016/j.neuroimage.2013.08.065
https://doi.org/10.1016/j.neuroimage.2013.08.065
https://doi.org/10.1016/j.neuroimage.2009.03.025
https://doi.org/10.1016/j.neuroimage.2005.11.054


13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17615  | https://doi.org/10.1038/s41598-021-96933-0

www.nature.com/scientificreports/

 62. Luckhoo, H. et al. Inferring task-related networks using independent component analysis in magnetoencephalography. Neuroimage 
62, 530–541 (2012).

 63. Cousijn, H. et al. Modulation of hippocampal theta and hippocampal-prefrontal cortex function by a schizophrenia risk gene. 
Hum. Brain Mapp. 36, 2387–2395 (2015).

 64. Kaplan, R. et al. Medial prefrontal theta phase coupling during spatial memory retrieval. Hippocampus https:// doi. org/ 10. 1002/ 
hipo. 22255 (2014).

 65. van Lutterveld, R. et al. Oscillatory cortical network involved in auditory verbal hallucinations in schizophrenia. PLoS ONE 7, 
e41149 (2012).

 66. Troebinger, L. et al. High precision anatomy for MEG. Neuroimage 86, 583–591 (2014).
 67. Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C. & De Lange, F. P. Shared representations for working memory and mental imagery 

in early visual cortex. Curr. Biol. https:// doi. org/ 10. 1016/j. cub. 2013. 05. 065 (2013).
 68. Nishimura, K., Aoki, T., Inagawa, M., Tobinaga, Y. & Iwaki, S. Brain activities of visual thinkers and verbal thinkers: A MEG study. 

Neurosci. Lett. https:// doi. org/ 10. 1016/j. neulet. 2015. 03. 043 (2015).
 69. Clark, I. A., Kim, M. & Maguire, E. A. Verbal paired associates and the hippocampus: The role of scenes. J. Cogn. Neurosci. https:// 

doi. org/ 10. 1162/ jocn_a_ 01315 (2018).
 70. Zeidman, P., Mullally, S. L. & Maguire, E. A. Constructing, perceiving, and maintaining scenes: Hippocampal activity and con-

nectivity. Cereb. Cortex 25, 3836–3855 (2015).
 71. Hincapié, A.-S. et al. The impact of MEG source reconstruction method on source-space connectivity estimation: A comparison 

between minimum-norm solution and beamforming. Neuroimage 156, 29–42 (2017).
 72. Costers, L. et al. Spatiotemporal and spectral dynamics of multi-item working memory as revealed by the n-back task using MEG. 

Hum. Brain Mapp. 41, 2431–2446 (2020).

Acknowledgements
The Wellcome Centre for Human Neuroimaging is supported by a Centre Award from Wellcome (203147/Z/16/Z). 
Funding for this project derived from the Wellcome Collaborative Award (203257/Z/16/Z) and EPSRC (EP/
T001046/1) and the Quantum technology hub in sensing and timing (sub-award QTPRF02). Stephanie Mellor 
was funded through the EPSRC funded UCL centre for doctoral training (EP/L016478/1). Eleanor Maguire is 
supported by a Wellcome Principal Research Fellowship (210567/Z/18/Z).

Author contributions
The study was designed and conceived by G.O., T.T., S.M., E.M. and G.B. Data collection was performed by D.B. 
Analysis was performed by G.O. and G.B. Main manuscript was written by G.O., E.M. and G.B. Interpretation 
of results and manuscript review was all authors.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 96933-0.

Correspondence and requests for materials should be addressed to G.C.O.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1002/hipo.22255
https://doi.org/10.1002/hipo.22255
https://doi.org/10.1016/j.cub.2013.05.065
https://doi.org/10.1016/j.neulet.2015.03.043
https://doi.org/10.1162/jocn_a_01315
https://doi.org/10.1162/jocn_a_01315
https://doi.org/10.1038/s41598-021-96933-0
https://doi.org/10.1038/s41598-021-96933-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Testing covariance models for MEG source reconstruction of hippocampal activity
	Theory
	A brief summary of empirical Bayesian source reconstruction. 
	The correlated source empirical Bayesian beamformer (cEBB). 

	Methods
	Simulations. 
	Experimental data. 
	Source reconstruction. 
	Bayesian model comparison. 

	Results
	Shallow source simulations. 
	Hippocampal source simulations. 
	Experimental data. 

	Discussion
	References
	Acknowledgements


