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ABSTRACT  

Purpose of review  

The development of deep learning (DL) systems requires a large amount of data, 

which may be limited by costs, protection of patient information and low prevalence 

of some conditions. Recent developments in artificial intelligence techniques have 

provided an innovative alternative to this challenge via the synthesis of biomedical 

images within a DL framework known as Generative Adversarial Networks (GANs). 

This paper aims to introduce how GANs can be deployed for image synthesis in 

ophthalmology, and to discuss the potential applications of GANs-produced images.  

 

Recent findings  

Image synthesis is the most relevant function of GANs to the medical field, and it has 

been widely used for generating “new” medical images of various modalities. In 

ophthalmology, GANs have mainly been utilized for augmenting classification and 

predictive tasks, by synthesizing fundus images and OCT images with and without 

pathologies such as age-related macular degeneration and diabetic retinopathy. 

Despite their ability to generate high-resolution images, the development of GANs 

remains data intensive, and there is a lack of consensus on how best to evaluate the 

outputs produced by GANs.  

 

Summary  

Although the problem of artificial biomedical data generation is of great interest, 

image synthesis by GANs represents an innovation with yet unclear relevance for 

ophthalmology.  
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INTRODUCTION 

In the field of ophthalmology over the last few years, clinically applicable deep 

learning (DL) systems have been developed to detect different eye diseases, such 

as diabetic retinopathy (DR),[1-4] glaucoma,[3, 5] age-related macular 

degeneration(AMD),[6, 7] and retinopathy of prematurity (ROP) [8]. This has led to 

the real possibility that such DL systems may be implemented soon in appropriate 

clinical settings, such as in DR screening programs [9, 10]. 

 

Despite the substantial promise of DL, the development of a robust DL algorithm or 

system is data intensive, meaning that a large amount of data exhibiting 

representative variability (i.e., disease and normal) is required for the training and 

validation process [11]. The availability of such large datasets is often limited by the 

lack of corresponding clinical cohorts, the high costs of starting a primary data 

collection from baseline, and the need to protect the privacy of patients. Personal 

information of patients must be protected under rigorously controlled conditions and 

in accordance with the best research practices [12, 13]. Moreover, medical images 

are considered identifiable personal information and cannot be anonymized easily, 

and consent is difficult to obtain for large retrospective datasets [14-16]. In addition, 

annotated data of the more severe phenotypes of certain pathologies such as 

advanced glaucoma and neovascular or late AMD are often too uncommon in 

existing population studies to be useful for conducting DL analysis.  

 

Recent developments in DL have provided an innovative alternative to these 

challenges, by using generative adversarial networks (GANs) to artificially create 

new images based on smaller real image datasets. There is significant potential to 

generate a large number of images required to train, develop, validate and test new 

DL algorithms and systems.  

 

WHAT ARE GANS? 

GANs are a special type of neural network model based on a game theoretic 

approach, with the objective being to find Nash equilibrium between two networks: a 

generator and a discriminator (Figure 1). The idea is to sample from a simple 

distribution, like Gaussian, and then learn to transform this noise to a targeted data 

distribution, using universal function approximators such as convolutional neural 



networks (CNNs), by the adversarial training of generator and discriminator 

simultaneously. The generator model learns to capture the targeted data distribution, 

and the discriminator model estimates the probability that a sample comes from the 

targeted data distribution rather than the distribution generated by the generator. In 

other words, the task of generator is to generate natural looking images and the task 

of discriminator is to decide whether the image is fake or real. This can be thought of 

as a minimax two-player game, i.e. generator vs discriminator, where the 

performance of both the networks ideally improves over time iteratively. While the 

generator tries to fool the discriminator by generating images that appear as real as 

possible, the discriminator tries to not get fooled by the generator by improving its 

discriminative capability [17]. 

 

There are many ways to incorporate GANs in medical imaging tasks, such as 

segmentation,[18] classification,[19] detection,[20] registration,[21] image 

reconstruction[22] and image synthesis (Table 1)[23]. GANs have been used in 

research studies for generating medical images of various image modalities, 

including breast ultrasound,[24] mammograms,[25] computed tomography (CT),[26-

29] magnetic resonance images (MRI),[30] cancer pathology images,[31] and 

contrast agent-free ischemic heart disease images[32]. Moreover, GANs have been 

shown to be capable of cross modality image synthesis, such as generating MRI 

based on ultrasound[33] or CT[34, 35]. This paper focuses on the image synthesis 

aspect of GANs in ophthalmology via introducing different types of GANs, 

summarizing GAN models reported in the literatures of ophthalmology (Table 2), 

discussing the outcome measures for GANs, and evaluating the advantages and 

disadvantages of GANs.  

 

DIFFERENT TYPES OF GANS 

There are many different formulations of GANs,[36] which might firstly be 

categorized according to their objectives. While GANs have been employed to 

generate sequential data such as text, their most common usage has been in 

imaging tasks, including video. Within image processing, GANs have been employed 

to perform texture synthesis, super-resolution, object detection and image synthesis, 

all of which could have potential applications in medicine. GANs can be further 

defined by their features, the more prominent of which may be their neural 



architecture for generators and discriminators, their objective function, and their 

training procedure. Each of these components has undergone significant 

development since the introduction of GANs. For example, the conditioning of GANs 

referred as cGAN, on both the generator and discriminator would be demonstrated 

soon after their inception,[37] through the addition of a prior as input. Various 

objective functions have been proposed to address issues such as instability in 

training, some of the most prominent amongst of which include Wasserstein 

GAN,[38] which seeks to maintain a continuous distance when real and generated 

data distributions are disjoint, and LS-GAN,[39] which encourages the generated 

data distribution to be closer to the real distribution through the implementation of 

mean squared loss instead of log loss. PatchGAN[40] is proposed to run 

discriminators on patches or on images at different scales in order to improve the 

quality of image synthesis such as angiograph image synthesis. As for training 

procedure, individual learning rates for the discriminator and generator have been 

shown to converge to a local equilibrium [41]. 

 

Improving the quality of synthesized images at higher resolutions has been of 

particular interest for medical applications, which are often especially sensitive to 

subtle details within images. This has been enabled by innovations such as the 

progressive growing of the generator and discriminator with Progressive GAN 

(ProGAN),[42] orthogonal regularization with BigGAN,[43] and the extension of 

ProGAN with a number of incremental improvements such as a mapping network 

bilinear upsampling and block noise into StyleGAN [44]. It should be noted that many 

individual features of various GANs are possibly compatible, and may thus be 

combined into custom GAN architectures towards specific applications. 

 

GAN FOR IMAGE SYNTHESIS IN OPHTHALMOLOGY  

Fundus images  

Using generated vessel trees as an intermediate stage, Costa et al. were among the 

first few groups to deploy adversarial learning for building an end-to-end system for 

synthesizing retinal fundus images. This system was trained on a small data set of 

614 normal fundus images and tends to generate fixed outputs that are lack of 

diversity and pathological features [45]. Following this, various methods have been 

attempted to improve the quality and diversity of the synthetic fundus photos. Guibas 



et al. proposed a two-stage GAN pipeline by first generating synthetic retinal blood 

vessel trees and then translating these masks to photorealistic images. The synthetic 

images were used to train a U-net segmentation network, achieving similar F1-score 

as the network trained on real images [46]. Using direct mapping from manual 

tubular structured annotation back to a raw image, the model developed by Zhao et 

al. can synthesize multiple images with diversity using a dataset as small as 10 

training examples [47]. Yu et al. built a multiple-channels-multiple-landmarks pipeline 

using a combination of vessel tree, optic disc and optic cup images to generate color 

fundus photos, which produced superior images than single vessel-based approach 

[48]. 

 

Besides generating normal fundus images, GANs have been used to synthesize 

fundus photos of specific eye diseases, such as AMD, glaucoma, DR and ROP 

(Figure 2). Using over 100,000 color fundus photographs from the Age-Related Eye 

Disease Study (AREDS), Burlina et al. built two ProGAN models to synthesize 

referable (intermediate and/or advanced AMD) and non-referable AMD images 

respectively [49]. The outputs were realistic enough that two retinal specialists could 

not distinguish real images from the synthetic ones, with accuracy of 53.67% and 

59.50% respectively. Furthermore, the DL system trained on synthetic data alone 

showed comparable diagnostic performance to the algorithm trained on real images 

in detecting referable AMD (AUC of 0.92vs. AUC of 0.97). Diaz-Pinto et al. built a 

retinal image synthesizer and semi-supervised classifier for glaucoma detection 

using GANs on over 80,000 images. Their system was capable of generating 

realistic synthetic images with features of glaucoma and labelling glaucomatous 

images automaticallywith an AUC of 0.902 [50]. Furthermore, Zhou et al. report a DR 

fundus photo generator that can be directly deployed to train DR classifier, via 

modification with arbitrary grading and lesion information to synthesize high quality 

images [51]. Beers et al. trained a ProGAN model with 5,550 posterior pole retinal 

photographs of ROP, which could produce realistic fundus images of ROP. They 

evaluated the performance of a segmentation algorithm trained on synthetic images, 

reporting an AUC of 0.97 comparing to the segmentation maps from real images 

[52]. 

 

OCT 



Utilizing over 100,000 OCT images from eyes with balanced distribution of urgent 

referrals (choroidal neovascularization, diabetic macular edema) and non-urgent 

referrals (drusen and normal eyes), Zheng et al. built a ProGAN model to synthesize 

OCT images that are realistic to retinal specialists. The DL framework trained on 

synthetic OCT images achieved an AUC of 0.905 in classifying urgent and nonurgent 

referrals, which was non-inferior to the performance of the model trained on real 

OCT images (AUC = 0.937) [53]. Apart from synthesizing OCT images from scratch, 

GAN has been used to enhance the image quality of OCT scans via denoising. 

Using noisy images and corresponding high-quality images from one normal eye, Ma 

et al. built an image-to-image cGAN, enabling the competition of the generator and 

the discriminator to learn the underlying structure of the retina layers and to reduce 

OCT speckle noise. Despite the small training dataset, their model was capable of 

generalizing to images with low signal-to-noise (LSTN) ratio from pathological eyes 

and from different OCT scanners [54]. Similarly, using a small set of OCT images 

with high signal-to-noise (HSTN) ratio and LSTN ratio from the same eye of 28 

patients, Kande et al. equipped a GAN model with Siamese network to generate 

denoised spectra-domain OCT images that are closer to the ground truth images 

with HSTN ratio. The discriminator was designed to fool the generator to produce a 

denoised image via enabling extraction of the discriminative features from the HSNR 

patch and denoised patch by passing them through a twin network [55]. 

 

The image synthesis function of GANs could also be applied for predicting the post-

treatment OCT images of patients receiving anti-vascular endothelial growth factor 

(anti-VEGF). Utilizing 476 pairs of pre- and post-therapeutic OCT images of patients 

with neovascular AMD (nAMD) who received anti-VEGF treatment, Liu et al. 

proposed an image-to-image GAN model to generate predicted post-therapeutic 

OCT images based on their pre-therapeutic ones. Their GAN model achieved a 

sensitivity of 84% and specificity of 86% in predicting the post-treatment macular 

classification (wet or dry macula) [56]. Following this, Lee et al. trained a cGAN 

model to predict post-treatment OCT images in patients with nAMD receiving anti-

VEGF, using a larger dataset of 15,183 paired OCT B-scans from 241 patients [57]. 

This cGAN model was designed to predict the presence of four abnormal structures 

on post-treatment OCT, namely the intraretinal fluid, subretinal fluid, pigmented 

epithelial detachment, and subretinal hyperreflective material, with sensitivity and 



specificity ranging from 21.2-88.2% and 94.6-95.1% respectively. The predictive 

performance was enhanced after adding fluorescein angiography and indocyanine 

green angiography images to the training datasets. As a result of the low sensitivity, 

the authors concluded that this model is not suitable to be used as a screening tool 

and further work with a dataset of more variations is warranted. Although GAN 

synthesized retinal images have overall consistent appearance, generating realistic 

images with pathological retinal lesions remains as a challenge [58]. 

 

Other image modalities  

Recently, Tavakkoli et al. proposed a GAN model capable of producing fluorescein 

angiography (FA) from retinal fundus photographs, which was the first DL application 

to generate images from distinct modalities in ophthalmology [59]. Using pairs of FA 

and fundus images from 59 patients (30 with diabetic retinopathy, 29 normal) as the 

training dataset, they designed a multi-scale cGAN comprised of two generators and 

four discriminators. Their framework was able to produce FA images that are 

indistinguishable from real ones by three experts and are more accurate than the 

images produced by another two state-of-the-art cGAN models, as evidenced by 

significantly lower Fréchet Inception Distance and higher structural similarity 

measures. This cGAN technique may be a novel alternative to the invasive FA and 

the expensive OCT angiography with limited field of view. Furthermore, the ability to 

generate FA based on fundus photographs may improve the efficiency of tele-

medicine, in particular during the COVID-19 pandemic when in-clinic examinations 

becomes challenging [59].   

 

OUTCOME MEASURES FOR GANS 

Since GANs are generative models, the evaluation of their outputs – usually images 

– is not as straightforward as for discriminative models like classifiers, where the 

predicted label can simply be compared against the ground truth, in a supervised 

context. For GANs, the evaluation of their outputs may intuitively be based on human 

judgment of their “realness”, which in turn can be broadly considered in two aspects. 

Firstly, fidelity, in the sense that the generated samples are visually indistinguishable 

from real samples of the intended class. Fidelity in turn generally depends on various 

characteristics of the generated images, such as overall quality (being in-focus, etc.), 

demonstrating plausible object texture and structure, and so forth. Secondly, 



diversity, where the full range of variation of the intended class is generated. For 

example, if a GAN had been trained for cars, it would exhibit poor diversity if all 

images that it generated were of a particular car manufacturer or colour, despite the 

cars being otherwise realistic. When this happens, possibly due to the GAN’s 

generator fixating on some particularly plausible output, the GAN is said to undergo 

mode collapse. 

 

Many techniques have been proposed to evaluate GANs outputs, for both qualitative 

and quantitative measurements [60]. Qualitative methods may involve humans in 

inspecting and curating the generated images based on graders’ subjective 

decisions. This may be particularly appropriate in the biomedical domain, since it 

may not be easily articulated as to why some generated samples are not 

physiologically plausible. Quantitative methods on the other hand tend not to involve 

direct human intervention, and the most natural test would perhaps be through 

classifying the generated samples with a discriminative model trained on real 

samples. A popular generalization of this basic idea is the Inception Score (IS),[61] 

which uses an Inception v3 model pre-trained on ImageNet, to classify a set of 

generated images. The IS was claimed by its developers to be highly correlated with 

human judgment. However, due to its reliance on the ImageNet dataset, it has been 

noted to be possibly inappropriate when applied to GANs trained on other datasets, 

being overly sensitive to network weights, and insensitive to prior distribution over 

labels [62, 63]. 

 

The Fréchet Inception Distance [41] is perhaps among the most commonly used 

outcome metrics for GANs, and involves embedding generated images into a feature 

space expressed by an embedding layer of the Inception v3 model, estimating the 

mean and covariance for the embeddings of the generated and real data, and 

computing the Fréchet distance between these two Gaussians. This improves upon 

IS by being able to quantify mode dropping/collapse, but is still unable to recognize 

overfitting, as when the GANs reproduce samples from the training data [62]. To 

address this, qualitative measures such as comparing generated samples to their 

nearest neighbours in the training data, might be considered [60]. 

 



Additionally, generated synthetic images may be evaluated against the GAN training 

dataset of real images, to ensure that the synthetic images are not merely minimally-

adapted from the real data. Metrics such as the structural similarity index measure 

(SSIM) may be used to efficiently compare a sample of the generated data against 

the real images, in a pairwise manner [64]. 

 

ADVANTAGES AND DISADVANTAGES OF GANS 

GANs have gained recognition due to their various advantages over previous 

generative models. While other unsupervised generative models share the 

advantage of not requiring initial human annotation, GANs differ from deep graphical 

models in that they do not require careful architectural design, and further do not rely 

on Markov chains for sampling, unlike generative autoencoders [17]. This simplifies 

and generalizes the modelling process, which may be convenient for researchers 

primarily interested in medical applications. Empirically, recent GAN architectures 

have been favoured over alternative generative models for the fidelity of their 

generated high-resolution images. Moreover, while GANs do not promise inference 

capabilities, techniques have been developed to explore their encoded latent space 

[65]. In the medical domain, GANs have been proposed to augment existing 

datasets and help preserve patient confidentiality through the generation of 

additional samples, especially of rarer conditions [66, 67]. 

 

Nevertheless, GANs do still possess certain disadvantages. Other than the 

abovementioned possibility of mode collapse, GANs do not explicitly represent the 

generator’s distribution over the data, which is detrimental to model interpretability. 

However, this is also the case for other popular generative models. Also, GANs tend 

to be data intensive, in that the training data needs to sufficiently represent the 

desired underlying class. To give a concrete example, consider a GAN that is trained 

to generate “abnormal fundus images”, but its training data are almost entirely 

composed of diabetic retinopathy samples, with a few maculopathy samples, and 

next to no glaucoma examples. In this case, it is very unlikely that the GAN will be 

able to generate an acceptable diversity of glaucomatous images.This might be 

addressed to an extent through human-in-the-loop training (Figure 3), where human 

guidance is introduced to select acceptable synthetic data generated by the GAN, 

during the GAN training process. These selected synthetic images can then be used 



to augment both the training of the discriminator model, and the further fine-tuning of 

the GAN generator model itself. 

 

CONCLUSION AND FUTURE DIRECTION 

In conclusion, GANs offer a potential innovative solution to address a key challenge 

in the DL field for ophthalmology: that of limited access to large datasets. Of all the 

functions of GANs, image synthesis is the most relevant and explored by biomedical 

research. In ophthalmology, GANs are mainly utilized for synthesizing fundus images 

and OCT images with and without pathology such as AMD and DR. Although the 

unmet need of artificial biomedical data generation is of great interest, DL solutions 

such as GANs still face many challenges in the retinal image synthesis field. First, 

the development of GANs is data intensive, but how much data is considered 

sufficient to train GANs remains unknown, and the amount is likely to be task 

dependent. Second, although Inception Score and Fréchet Inception Distance have 

been commonly used for quantitative measurement of GANs outputs, current 

qualitative measurement for the outputs of GANs mainly relies on the subjective 

judgement of human. Therefore, an objective scale to evaluate the quality of 

synthetic images such as the realness may be proposed for comparison among 

different GAN models. Lastly, to test whether GANs could really be the solution to 

limited access to datasets, future research is warranted to evaluate if GANs 

generated images could augment the development of DL systems and to test the 

performance of synthetic image trained DL systems using independent datasets.   
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Functions of GAN Methods Examples  

Segmentation Use discriminator to count 
the adversarial losses 

Conditional GAN for 
segmenting myocardium 
and blood pool 
simultaneously on 
patients with congenital 
heart disease[18] 

Classification Use generator and 
discriminator as a feature 
extractor, or use 
discriminator as a 
classifier  

Use semi-supervised 
GAN for cardiac 
abnormality classification 
in chest X-rays[19] 

Detection Train discriminator to 
detect the lesions  

Use GAN to detect brain 
lesions on MRI[20] 

Registration Train generator to 
produce transformation 
parameters or the 
transformed images 

Use spatial 
transformation network to 
perform prostate MR to 
transrectal ultrasound 
image registration[21] 

Image reconstruction Use cGANs to tackle low 
spatial resolution, noise 
contamination and under-
sampling 

Use pix2pix framework 
for low dose CT 
denoising[22] 

Table 1: Other applications of GANs in medical imaging besides image synthesis[23] 
 

GAN 
models  

Year Target 
imaging 
modality 

Type of 
GANs 

Training 
datasets 

Outputs 

Costa et 
al.[45] 

2018 Fundus 
images 

Adversarial 
autoencoder, 
image-to-
image 
translation 

614 normal 
fundus 
images 

An end-to-end retinal image synthesis 
system with corresponding vessel 
networks 

Guibas 
et 
al.[46] 

2017 Fundus 
images 

Deep 
convolutional 
GAN 

40 pairs of 
retinal fundus 
images and 
vessel 
segmentation 
masks 

- F1 accuracy rating of 0.8877 and 
0.8988 forsynthetically trained and real 
image trained u-net respectively 
- Kullback-Leibler (KL)divergence 
score of 4.759 comparing the synthetic 
andreal images 

Zhao et 
al.[47] 

2018 Fundus 
images 

Tub-GAN 10 fundus 
images 

Able to synthesize multiple images with 
diversity despite a small training set 

Yu et 
al.[48] 

2019 Fundus 
images 

Cycle-GAN 101 fundus 
images (70 
glaucomatou
s eyes and 
31 normal 
eyes)  

Higher structural similarity index and 
peak signal-to-noise ratio than single 
vessel tree approach  



Burlina 
et 
al.[49] 

2019 AMD 
fundus 
images of 
AMD 

ProGAN 133,821 
AREDS 
fundus 
images 

- Accuracy of 53.67% and 59.50% in 
differentiating real from synthetic 
images  
- AUC of DLS trained on synthetic 
images alone: 0.9235 

Diaz-
Pinto et 
al.[50] 

2019 Glaucom
atous 
fundus 
images  

Deep 
convolutional 
GAN 

86,926 
fundus 
images  

- t-SNE plots showing that the 
synthesized images are closer to the 
real images than Costa’s method and 
semi-supervised DCGAN model  
- AUC of 0.9017 in detecting 
glaucomatous fundus images 

Zhou et 
al.[51] 

2020 DR 
fundus 
images 

DR-GAN 1,842 images - Accuracy of 65.8% in differentiating 
real from synthetic images 
- Accuracy of 90.46% in DR grading by 
the classifying model augmented with 
synthetic images 

Beers et 
al.[52] 

2018 Posterior 
pole 
retinal 
photogra
phs of 
ROP 

ProGAN 5,550 images AUC of 0.97 comparing to the 
segmentation maps from real images 

Zheng 
et 
al.[53] 

2020 OCT 
images 

ProGAN 108,312 OCT 
images  

- Accuracy of discriminating real versus 
synthetic OCT images: 59.50% and 
53.67% 
- AUC of 0.905 in detecting urgent 
referrals by DL system trained on 
synthetic data 

Liu et 
al.[56] 

2019 Post-
treatment 
OCT 
images 

Pix2pixHD 476 pairs of 
pre- and 
post-
therapeutic 
OCT images 

- sensitivity84% and specificity 86% in 
predicting the post-treatment macular 
classification 

Lee et 
al.[57] 

2021 Post-
treatment 
OCT 
images 

cGAN 15,183 paired 
OCT B-scans 
from 241 
patients 

Predicting Sensitivity Specificity 

Intraretinal 
fluid 

33.3% 95.1% 

Subretinal 
fluid 

21.2% 95.1% 

Pigmented 
epithelial 
detachment 

70.4% 94.6% 

Subretinal 
hyperreflecti
ve material  

76.5% 94.1% 

Tavakko
li et 
al.[59] 

2020 Generate 
FA from 
fundus 
images 

cGAN Pairs of FA 
and fundus 
images from 
59 patients 

Fréchet Inception Distance: 43 
Structural similarity measures: 0.67 

Table 2: the summary of studies using image synthesis function of GANs in 
ophthalmology  



 

 

Figure 1: General architecture of a GAN. The generator model and discriminator 

model are in competition with each other, with the generator model’s objective being 

to produce increasingly realistic synthetic images, and the discriminator model’s 

objective being to distinguish these synthetic images from real images 

 

a 
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Figure 2: GAN synthesized images (left) compared to real images (right) of DR (a) 

and AMD (b). The AMD images were preprocessed with macular segmentation.  

 

 

 

Figure 3: Human-in-the-loop training with a GAN. Human grader(s) arbitrate the 

generated synthetic data for realism, and the acceptable synthetic data is sampled 

together with real data to train an improved discriminator model 


