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Abstract—In this paper, we provide an overview of enabling
federated learning (FL) techniques over wireless networks. More
specifically, we present key techniques such as model compression,
quantization and sparsification that increase the training accuracy
of the distributed learning over the wireless medium. Next, the
joint FL, resource allocation and scheduling approach is presented,
which is identified in two types: a) both user and network assisted,
and b) network assisted only. More specifically, the proposed
FL-driven resource allocation and scheduling result in a joint
optimization problem, where resource allocation and scheduling
are jointly optimized. Finally, the simulation setup is described
and the obtained simulation results are discussed, while several
key enabling techniques are employed that further highlight the
achievable performance of enabling FL over wireless networks in
terms of training accuracy and loss.

Index Terms—Federated learning, wireless networks, resource
allocation, scheduling, simulation.

I. INTRODUCTION

Federated learning (FL) over wireless networks is a quite new
topic, which needs special attention since FL was not designed
to work over wireless medium. The new design challenge is
considered the efficient co-design of FL with wireless networks,
where the objective is to optimize the training accuracy of
the multiple users’ data. Towards this end, there are several
challenges already identified in [1] and [2]. For example,
radio resources play a key role on deploying FL over wireless
networks efficiently. In particular, FL should be considered over
wireless fading channels, where the low capacity of unreliable
links need to be efficiently managed through quantization
[3]. Other useful solutions are considered the accuracy-loss
correction and model compression [4]. Further, quantization [5]
and loss regularization techniques [6] aim to address the noisy
wireless medium by specifying the loss function in a different
way.

On the other hand, FL should take also into account resource
allocation and scheduling policies [7-9]. In such a case, a
joint solution must be provided given the fact that FL is
evolved over the time [10]. For example, the latency determined
by either considering learning accuracy or time and user’s
energy consumption is considered in case of FL over wireless
networks [11]. In general, a joint learning, resource allocation

and user selection optimization problem is formulated, where
the goal is to minimize the FL loss function [12]. In such a
joint optimization problem, the fast convergence of the overall
procedure is also critical [13]. Further, multichannel random
access is also considered for more efficient update uploading,
which is the key factor for implementing FL over wireless
transmissions [14].

It is evident from the literature above that enabling FL over
wireless networks should address several design challenges
in order to achieve high training accuracy and low loss. FL
requirements could vary from low computation solutions, e.g.
quantization, compression, and sparsification, to the design
of resource allocation and scheduling policies depending on
the application, e.g. smart city, intelligent transportation and
immersive experience [2],[4]. In this work, we provide an
overview and comparison of key techniques, which enable FL
running over wireless networks efficiently. Such an overview
has been not provided yet as made clear from the literature
above, where in [1] and [7] the authors discussed several open
issues without developing, simulating and comparing the most
important key techniques as provided below in this paper. More
specific, our contribution is considered to pledge the following
research elements. We first present the FL modeling over
wireless networks, which is used as the baseline to compare
with the key techniques. Next, we focus on the key techniques
such as the compression, quantization and sparsification, which
are able to attain low communication overhead. Finally, we
present a detailed co-design of the FL with resource allocation
and scheduling. The simulation setup of the multi-user FL over
a wireless network configuration is explained, which can be
met to different wireless applications such as mobile users or
Internet of Things (IoT) devices connected to a 5G network
for example. Simulation results are finally presented, which
highlight the achievable performance of the FL in case of
efficient co-design with wireless networks.

The rest of this paper is organized as follows. Section II
presents the FL model over wireless networks. Section III
presents key techniques to enable FL over wireless networks.
Section IV provides simulation setup and results, while Section
V concludes this work.978-1-7281-4490-0/20/$31.00 c© 2020 IEEE
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Fig. 1: Federated learning (FL) model over wireless networks.

II. FEDERATED LEARNING MODELING OVER WIRELESS
NETWORKS

A. Federated Learning Model

Fig. 1 depicts the model of FL over wireless networks.
In particular, user equipments (UEs) train their local model
independently. During this local training process, each model’s
weights and biases W are stimulated by the activation function
(A) and updated by the optimizer as a result of the loss function
f(·) minimization. A set of optimizers can be parameterized by
setting the learning rate η parameter, which defines the speed
by which the model adapts to the problem. The resulting trained
model parameters W are transmitted from the UE to the base
station (BS) through the transmitter (Tx) at the uplink (UL)
channel 1. In the sequel, the BS receives the W parameters
through the Rx and aggregates them in one global model
according to the following equation:

G(W ) =
1

M

M∑
i=0

wi, (1)

where M is the number of the UEs and wk+1
i are the trained

model parameters of the i-th UE. Thus, the resulting global
model G(W ) is an average of the UE parameters that par-
ticipate in the training process. Finally, the BS sends back
the global model G(W ) to the UEs through the Tx baseband
processing so that the next federated round to begin [3].

B. Frame Transmission for Federated Learning

Due to bandwidth limitations, the amount of available re-
sources is constrained and thus, each UE is not able to acquire

1The Tx is actually the baseband processing with the corresponding physical
(PHY) layer implementation.

TABLE I: Frames per federated round.

Bandwidth RB / Slot RB / Frame Frames / Federated round
1.4 MHz 6 120 8
3 MHz 15 300 7
5 MHz 25 500 6
10 MHz 50 1000 4
15 MHz 75 1500 2
20 MHz 100 2000 1

the necessary resource blocks (RBs) for the FL process. The
available RBs are allocated among the UEs that participate in
the FL process according to the employed resource allocation
scheme. To this end, each UE utilizes the allocated amount of
RBs that are used to pass the trained model parameters or any
other FL related information. Therefore, in case of FL over
wireless networking, a UE is able to transmit an amount of
information proportional to the amount of the allocated RBs.
To this end, the model parameters are mapped into the available
RBs and the radio frame is transmitted over-the-air to the BS.
Table I presents the amount of RBs per bandwidth configura-
tion and also the amount of frames required for the UEs to
transmit the model parameters to the BS with 10 UEs. Limited
bandwidth configurations may lead to resource competition and
hence, the amount of UEs that may participate in each federated
round will be limited too. To this end, scheduling policies are
employed to coordinate the UE participation for each FL round.
More specifically, such policies designate only a subset of UEs
to transmit their local model updates to the BS each round while
the rest of the UEs do not participate in the federated round.
The arrangement and the amount of transmitting UEs changes
each round according to the employed scheduling policy, as
discussed below.

III. ENABLING FEDERATED LEARNING OVER WIRELESS
NETWORKS

A. Compression, Quantization and Sparsification

The limited available bandwidth per UE is a major factor
that has a negative impact to the performance of the FL process
[1], [12]. As a result, a number of sub-channels with limited
capacity may lead to low accuracy and high convergence time
of the FL global model [15]. In order to address such a problem,
model quantization was devised, which compresses the size
of model parameters by using low precision representations
for their numerical entries [16]. Quantized models can be
used for the transmission of either global [17] or local model
parameters [18]. Further, sparsification [3] has been proposed,
which reduces the FL communication cost by transmitting only
a few parameters of a model [19], instead of broadcasting the
whole model. Model architecture compression has also been
considered [4], which removes some insignificant parameters
of the model and thus, shrinking its size without affecting the
overall accuracy [20].

Fig. 2 depicts the key techniques, which can be incorporated
in wireless networks. In particular, model compression (C) is
either applied directly to the model architecture and removes re-
dundant neuron connections or replaces certain model weights
with zeros in order to increase the sparsity of the weight matrix.
Model compression techniques are employed for either local
models (UE side) or global models (BS side) depending on
the FL requirements. On the other hand, quantization (Q) is
a technique that decreases the size of model weights without
removing any model parameters. To achieve this, quantizers
reduce the numerical precision of the weights by changing their
binary representation. The quantized weights require less bits as
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Fig. 2: Key techniques to enable FL over wireless networks.

a result of the information loss, which may also lead to loss of
accuracy for small neural networks. Further, sparsification (S)
is a very effective tool for reducing the size of the transmitted
model parameters. By using sparsification, a UE or BS may
omit to transmit certain model weights without decreasing the
FL accuracy. The amount and type of model weights, which are
excluded from the over-the-air transmission differs according to
the employed sparsification technique.

B. Joint Resource Allocation and Scheduling

Due to radio resource limitations, efficient UE scheduling
and resource allocation methods have been proposed in order
to coordinate the global model updates for each FL round [9].
To this end, authors in [9] and [10] formed a loss optimization
problem over UE scheduling, resource and power allocation
subject to the signal-to-noise-ratio (SNR) of the UE. Further,
in [3] and [16] authors formulated a loss optimization problem
over local dataset samples of the UEs, UE scheduling and
power allocation subject to the channel capacity and SNR of
the UE. Such solutions utilize each UE separately in order to
locally solve the corresponding optimization problem, while
the BS is used for updating the necessary parameters and for
broadcasting them to the UEs in order to calculate the solution.
In contrast, other techniques employ the BS only for solv-
ing the joint resource allocation and scheduling optimization
problem. More specific, in [13] and [21] the authors formed a
loss optimization problem over RB allocation and scheduling
and subject to the capacity and SNR of the uplink channel.
In [8], authors also form a loss optimization problem over
power allocation and subject to SNR, while in [11] and [22]
researchers employed a loss optimization problem over RB
and power allocation and subject to channel conditions such
as SINR and channel capacity. Further, previous work in [23]
authors optimized the loss function over the power and RB
allocation with respect to the channel state information (CSI)
reporting of the UEs. Given the solutions described above,
resource allocation and scheduling can be classified into the
two following categories:

1) UE and Network assisted resource allocation: UEs
and BS take decisions for the resource allocation and

scheduling in a cooperative way as in [9],[10]. We refer
to such techniques as resource allocation and scheduling
A (RAS-A).

2) Network assisted resource allocation: the BS manages
the resource allocation and scheduling without the UEs
participation as in [13], [15]. We refer to such techniques
as resource allocation and scheduling B (RAS-B).

Fig. 3a depicts the RAS-A technique for efficient FL appli-
cation. In particular, the UEs form and solve an optimization
problem noted as P1 with regards to a set of constraints. Specif-
ically, the P1 is formulated as a loss minimization problem
over the RB allocation, scheduling and subject to power [5]
allocation and learning rate [9], as follows :

P1 : argmin{f(wk+1
i ) =

1

Di

∑
i∈D

f(wk
i ), Di, η

k
i }, (2)

where f(wk+1
i ) is the loss function of the i − th UE for the

k+1 federated round, Di the local data set of the i-th UE and
ηki the local optimizer learning rate. As a result, by minimizing
the equation 2 in a federated way (i.e. with UE-BS cooperation)
the loss function of the model is also minimized. Under this
premise, each UE locally solves the P1 problem and dispatches
the learning rate ηki along with the P1 solution and the trained
model W to the BS. In the sequel, the BS aggregates the local
parameters into a global model G(W ) and updates the learning
rates of each UE according to the following formula [9]:

ηk+1
i =

t ∗ ηki
t+ 1

+

∑M
m=1{1, γki > θ}

t+ 1
, (3)

where k is the current federated round, θ is the SNR threshold
under which the ηki is updated, M is the total number of UEs
and γki is the SNR of the i-th UE as in [10],[16]. The BS also
calculates a vector ak+1

i which is used for the UE scheduling
process and corresponds to the following equation [3] [5]:

ak+1
i =

γk+1
i

hki (t)
, (4)

where hki (t)is the channel gains vector as in [5] from the
i-th UE to the BS during the k-th federated round. The
resulting ηk+1

i and ak+1
i values are broadcasted back to the

corresponding UEs along with the aggregated global model
G(W ). Each UE utilizes the new ηi values to minimize its
optimization function for the next federated round while the
new ai vector indicates whether the i-th UE should participate
on the next federated round. In this sense, the RB allocation and
scheduling problem is solved locally at each UE while the BS
assists this process by providing updates for the optimization
parameters. As a result, UEs with better SNR tend to converge
their local model faster compared to others due to the scaling
of the learning rate ηi.

Fig. 3b depicts the RAS-B technique, in which the BS only
manages the RB allocation of the UEs. In this case, the UE
dispatch the local loss function [13] gradient and the trained
model [22] to the BS. The BS in turn forms the following loss
minimization problem, noted as P2, over the RB allocation and
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Fig. 3: Joint FL, resource allocation and scheduling in wireless
networks.

scheduling subject to the uplink capacity, SNR [8] and UE loss
function:

P2 : argmin{Gk(w) =
1

DiM

∑
i∈M

∑
i∈D

f(wk
i ), γ

k+1
i , Cul},

(5)
where M is the total amount of participating UEs, γki is the
SNR of the i-th UE ,Cul the uplink channel capacity, f(wk

i

the loss function of the i-th UE. In Fig.3b, the BS solves
the P2 minimization problem and proceeds in aggregating the
local updates of the UEs which will have the highest impact
to the global model loss reduction[21]. Next, it broadcasts the
global model back to the UEs without transmitting any more
parameters related with the optimization problem. Finally, the
BS schedules and allocates RBs to the corresponding UEs
according to their contribution to the eq.(5) minimization. As a
result, the BS decides which UE to include on each federated
round and thus it designates the amount of RBs that will be
allocated to each device.

IV. SIMULATION SETUP AND RESULTS

A. Simulation Setup

In order to implement the FL training process, we use the
TensorFlow federated framework [24] in conjunction with the
Matlab tool. We employ the TensorFlow for the deployment
of the local training and the global aggregation techniques and
Matlab for UE scheduling, resource allocation and simulation
of the channel conditions under which the model parameters
are transmitted. For the FL model, we employ the VGG-16
convolution deep neural network and the MNIST dataset which
is composed of images of handwritten digits. The VGG-16
is a powerful DNN ideal for image classification and object

recognition tasks [25] while the MNIST dataset is often used
as a benchmark standard for the evaluation of machine learning
techniques [26]. For the wireless network, we develop both the
physical downlink shared channel (PDSCH) and the physical
uplink shared channel (PUSCH) using Matlab.

We implement the compression (C), quantization (Q) and
sparsification (S) FL techniques using the corresponding Ten-
sorFlow federated functions and the FL wireless networking
techniques through Python functions. More specifically, for
model compression, we employ a magnitude-based weight
pruning technique which trims out insignificant model weights
during the training process. For quantization, we opt to a
Float16 post-training methodology, which reduces the bit size
of the trained model weights to 16-bits. Regarding sparsification
S, we employ a weight clustering approach which reduces the
the number of unique weight values by grouping the weights
of each layer into clusters. For the wireless network, we utilize
both RAS-A and RAS-B techniques, which include the UE
and network assisted resource allocation and schemes. The
implementation is able to solve the two optimization problems,
i.e. P1 and P2.

B. Simulation Results

Fig. 4 depicts the accuracy over federated rounds for two
SNR values, i.e. 6dB and 7dB, after employing quantization,
sparsification, compression and regular (i.e. without C, Q or
S) FL solutions 2. We observe that the model compression
C outperforms the rest of solutions and also achieves high
accuracy (93%) under low SNR conditions. Further, quanti-
zation Q converges slower when compared to compression and
but it high accuracy (92%) at the end of the training process
when error-free transmission is considered. On the other hand,
this technique is more prone to loss of accuracy due to lower
SNR values, as its accuracy drops to 88% when SNR is 6dB.
Further, the sparsification technique appears to have the slowest
convergence rate and the lowest accuracy (84.4%), when the
SNR drops to 6dB. Finally, the regular solution (RAS-R)
performs very well under high SNR thresholds, as it does not
employ a lossy compression technique and thus, the model
parameters are transmitted uncompressed. We opt not to draw
the RAS-R accuracy for the 6dB SNR as it drops at very low
levels (44%) and cannot be properly illustrated in this figure.

Fig. 5 depicts the loss over federated rounds for different
SNR values. We observe an identical performance as shown
in 4, in reverse way though. The compression C technique
achieves the best loss minimization (0.22), followed the quan-
tization Q (0.23) and sparsification S (0.25) technique. A
key difference is that the loss convergence is very slow for
the sparsification S as the initial loss value is very high
compared to the others. The compression C technique achieves
the best performance as it successfully manages to eliminate
insignificant weights that do not affect the model loss. Hence,
it greatly reduces the amount of data transmitted over-the-air

2The regular FL is considered the one presented as a baseline FL model in
Sec.II.
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Fig. 4: Accuracy over federated round for different SNR values
in dB and C, S, Q and R FL implementations.

and thus, the amount of transmission errors is kept at low
levels. Similarly by employing the quantization Q technique,
the communication costs between the UEs and the BS are
greatly reduced as the quantized weights require significantly
less bit for representation when compared with unquantized
weights. The sparsification S technique also transmits lower
amount of data over-the-air, but is more prone to bit-errors.
This happens because the transmitted centroids contain values
related with a great number of weights, and thus a small error
on the transmitted centroid may affect the corresponding weight
data. The regular methodology is not depicted in the picture
under 6dB SNR, but it is outperformed by every other as it does
not employ any techniques for error resilience or compression
and thus, even a small bit error rate (BER) may significantly
affect the loss function value. Specifically, RAS-R loss levels
are 1.9 in the end of FL training process for 6dB SNR.

Fig. 6 depicts the accuracy over bandwidth for different UE
number and SNR values. In this figure we compare the RAS-
A and RAS-B techniques as described in section 3 that reflect
on the methodologies followed by the existing literature. We
observe that RAS-A performs better than RAS-B in general,
as it manages to exploit the available network resources more
efficiently while also depicting good BER resilience. RAS-A
achieves 94% accuracy while RAS-B achieves 93% with 20
UEs and error-free channel transmission. Further, when the
SNR drops to 6dB the RAS-A techniques manage to achieve
92% accuracy while the RAS-B solution accuracy drops to
88%. Also the amount of participating UEs plays an important
role as more UEs result in less network resource allocation
per UE. Under this premise, the RAS-A also outperforms
in bandwidth limited environments even when the amount
of UEs is high as they manage to coordinate efficiently the
scheduling and RB allocation process. The regular type of RAS
solution denoted as RAS-R performs better under high BW
configurations, where each UE may be allocated the required
RB for transmission but its accuracy drops very low when the
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RBs are limited. In Fig.6, the RAS-R achieves 36% accuracy
in 1.4MHz, 42% in 5MHz and 47% in 20MHz, which we
opt not to draw it in the figure for clarity reasons.

Fig. 7 plots the loss over bandwidth for different UE number
and SNR values. We observe that a high amount of UEs
and available bandwidth greatly contribute to the minimization
of loss function. On the contrary, the combination of limited
bandwidth environments with high amount of UEs lead to non
optimal loss minimization due to the limited resource sharing of
the UE. This problem is efficiently addressed by both RAS-A
and RAS-B solutions which manage to achieve low loss values
even under heavy resource constrains. We also observe that
RAS-A solutions perform better in high bandwidth channels
while RAS-B solutions perform very well in lower bandwidth
configurations. It is shown that RAS-A and RAS-B achieve 0.27
and 0.25 correspondingly for 20 UEs and 1.4 MHz bandwidth
while the loss values change to 0.22 and 0.25 in 20MHz.
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The SNR levels also affect the RAS-B more than the RAS-
A techniques due to the ability of RAS-A to adapt to worse
channel conditions. Finally, the RAS-R technique performs
very well under high bandwidth and SNR conditions but its
performance drops with lower SNR or when the UE resources
are limited. RAS-R achieves 1.9 loss for 20 UEs and 6dB under
1.4MHz bandwidth, 1.5 under 5MHz and 1.3 under 20MHz.

V. CONCLUSION AND FUTURE WORK

In this work, we presented an overview and comparison
of enabling techniques for FL over wireless networks. To
this end, we first presented a detailed model of FL over
wireless networks. Next, we presented key techniques such
as quantization, sparsification and compression mechanisms.
Moreover, we designed a joint optimization in order to provide
efficient resource allocation and scheduling assisted by both the
UE and the network or the network only. A simulation setup is
also explained and the obtained simulation results are demon-
strated in order to highlight and compare the performance of
each technique. In particular, the achievable performance is
presented in terms of training accuracy and loss by using the
key enabling techniques, which is compared with the regular
FL model. Our future work would be the design of an end-
to-end FL framework to enable high training accuracy for the
FL-aware future radio access networks.

REFERENCES

[1] S. Niknam, H. S. Dhillon and J. H. Reed, Federated Learning for Wireless
Communications: Motivation, Opportunities, and Challenges, IEEE Com-
mun. Magazine, vol. 58, no. 6, pp. 46-51, Jun. 2020.

[2] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang and M. Guizani, Reliable
Federated Learning for Mobile Networks, IEEE Wirel. Commun., vol. 27,
no. 2, pp. 72-80, Apr. 2020.

[3] M. M. Amiri and D. Gndz, Federated Learning Over Wireless Fading
Channels, IEEE Transactions on Wireless Communications, vol. 19, no. 5,
pp. 3546-3557, May 2020.

[4] Z. Zhao, C. Feng, H. H. Yang and X. Luo, Federated-Learning-Enabled
Intelligent Fog Radio Access Networks: Fundamental Theory, Key Tech-
niques, and Future Trends, IEEE Wireless Communications, vol. 27, no.
2, pp. 22-28, Apr. 2020.

[5] M. M. Amiri, D. Gunduz, S. R. Kulkarni, H. V. Poor, Convergence of Fed-
erated Learning over a Noisy Downlink, https://arxiv.org/abs/2008.11141,
Aug. 2020.

[6] F. Ang, L. Chen, N. Zhao, Y. Chen and W. Wang and F. Richard Yu,
Robust Federated Learning With Noisy Communication, IEEE Trans. on
Communications, vol. 68, no. 6, pp. 3452-3464, Jun. 2020.

[7] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, K. Huang, Toward an Intelligent
Edge: Wireless Communication Meets Machine Learning, IEEE Commu-
nications Magazine, vol. 58, no. 1, pp. 19-25, Jan. 2020.

[8] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor and S. Cui, ”A Joint
Learning and Communications Framework for Federated Learning over
Wireless Networks”, in arXiv, June 2019.

[9] H. H. Yang, Z. Liu, T. Q. S. Quek and H. V. Poor, ”Scheduling Policies
for Federated Learning in Wireless Networks,” in IEEE Transactions on
Communications, vol. 68, no. 1, pp. 317-333, Jan. 2020.

[10] M. M. Wadu, S. Samarakoon and M. Bennis, Federated Learning un-
der Channel Uncertainty: Joint Client Scheduling and Resource Alloca-
tion, 2020 IEEE Wireless Communications and Networking Conference
(WCNC), May 2020.

[11] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen and C. S. Hong,
Federated Learning over Wireless Networks: Optimization Model Design
and Analysis, IEEE INFOCOM - IEEE Conference on Computer Com-
munications, Paris, France, pp. 1387-1395, May 2019

[12] M. Chen, Z. Yang, W. Saad, Ch. Yin, H. V. Poor and Sh. Cui, Performance
Optimization of Federated Learning over Wireless Networks, 2019 IEEE
Global Communications Conference (GLOBECOM), Dec. 2019.

[13] H. T. Nguyen, V. Sehwag, S. Hosseinalipour, C. G. Brinton,
M. Chiang and H. V. Poor, Fast-Convergent Federated Learning,
https://arxiv.org/abs/2007.13137, Jul. 2020.

[14] J. Choi and S. R. Pokhrel, Federated Learning With Multichannel
ALOHA, IEEE Wirel. Communi. Letters, vol. 9, no. 4, pp. 499-502, Apr.
2020.

[15] R. Balakrishnan, M. Akdeniz, S. Dhakal and N. Himayat, Resource
Management and Fairness for Federated Learning over Wireless Edge
Networks, 2020 IEEE 21st International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC).

[16] M. M. Amiri and D. Gunduz, Machine Learning at the Wireless Edge:
Distributed Stochastic Gradient Descent Over-the-Air, 2019 IEEE Interna-
tional Symposium on Information Theory (ISIT), Jul. 2019.

[17] M. M. Amiri, D. Gunduz, S. R. Kulkarni and H. V. Poor,
Federated Learning With Quantized Global Model Updates,
https://arxiv.org/abs/2006.10672, Jun. 2020.

[18] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, S. Cui, Federated
Learning with Quantization Constraints, IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), May 2020.

[19] K. Yang, T, Jiang, Y. Shi and Z. Ding, Federated Learning via Over-the-
Air Computation, IEEE Transactions on Wireless Communications, vol.
19, no. 3, pp. 2022-2035, Mar. 2020.

[20] Y. He, X. Zhang and J. Sun, ”Channel Pruning for Accelerating Very
Deep Neural Networks,” 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, pp. 1398-1406, Dec. 2017

[21] M. Chen, H. V. Poor, W. Saad and Sh. Cui, Convergence Time Minimiza-
tion of Federated Learning over Wireless Networks, IEEE International
Conference on Communications (ICC), Jun. 2020.

[22] C. Dinh, N. H. Tran, M. N. H. Nguyen, C. S. Hong, W. Bao, A. Y. Zomaya
and V. Gramoli, Federated Learning over Wireless Networks: Convergence
Analysis and Resource Allocation, https://arxiv.org/abs/1910.13067, Mar.
2020.

[23] W. Shi, Sh. Zhou and Z. Niu, Device Scheduling with Fast Convergence
for Wireless Federated Learning, ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), Jun. 2020.

[24] TensorFlow federated framework, WebLink:
https://www.tensorflow.org/federated

[25] K. He, X. Zhang, S. Ren and J. Sun, ”Deep Residual Learning for
Image Recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778, June 2016.

[26] G. Patrini, A. Rozza, A. K. Menon, R. Nock and L. Qu, ”Making Deep
Neural Networks Robust to Label Noise: A Loss Correction Approach,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 2233-2241, July 2017.


