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Abstract—COVID-19 has claimed more 106 lives and resulted
in over 40 × 106 infections. There is an urgent need to identify
drugs that can inhibit SARS-CoV-2. In response, the DOE
recently established the Medical Therapeutics project as part
of the National Virtual Biotechnology Laboratory, and tasked
it with creating the computational infrastructure and methods
necessary to advance therapeutics development. We discuss
innovations in computational infrastructure and methods that
are accelerating and advancing drug design. Specifically, we
describe several methods that integrate artificial intelligence and
simulation-based approaches, and the design of computational
infrastructure to support these methods at scale. We discuss
their implementation and characterize their performance, and
highlight science advances that these capabilities have enabled.

I. INTRODUCTION

Considering the universe of about 1068 possible compounds
to traverse for effective drugs, there is an immediate need for
more efficient and more effective frameworks for early stage
drug discovery [1]. In silico drug discovery is a promising but
computationally intensive and complex approach. There is a
critical need to improve in silico methodologies to accelerate
and select better lead compounds that can proceed to later
stages of the drug discovery protocol at the best of times; it
is nothing short of a societal and intellectual grand challenge
in the age of COVID-19.

A fundamental challenge for in silico drug discovery is the
need to cover multiple physical length- and timescales, while
spanning an enormous combinatorial and chemical space. In
this complex landscape, no single methodological approach
can achieve the necessary accuracy of lead compound selection
with required computational efficiency. Multiple methodolog-
ical innovations that accelerate lead compound selections
are needed. These methods must in turn, be able to utilize
advanced and scalable computational infrastructure.

The primary objective of this paper is to describe the
scalable computational infrastructure developed to support
innovative methods across diverse and heterogeneous plat-
forms. It discusses four distinct workflows, their computational
characteristics, and their implementation using abstractions
and RADICAL-Cybertools middleware building blocks. It
discusses diverse types of computational capabilities required,
the sustained and high watermark performance and scale.

These capabilities provide the computational fabric of the
US-DOE National Virtual Biotechnology Laboratory in com-
bination with resources from the EU Centre of Excellence in
Computational Biomedicine. To provide a sense of the impact
and scale of operations: these methods and infrastructure are
being used to screen over 4.2 billion molecules against over
a dozen drug targets in SARS-CoV-2. So far, over a 1000
compounds have been identified and experimentally validated,
resulting in advanced testing for dozens of hits. The campaign
used several million node-hours across diverse HPC platforms,
including TACC Frontera, Livermore Computing Lassen, ANL
Theta (and associated A100 nodes), LRZ SuperMUC-NG, and
ORNL Summit to obtain scientific results.

This paper is organized as follows: In §2 we outline the
computational campaign, and describe the constituent scien-
tific methods and their computational properties. Put together,
the collective impact of these methods on drug discovery
process is greater than the sum of the individual parts. In §3
we discuss core middleware building blocks used to develop
the computational infrastructure. We describe the design and
implementation to support diverse workflows that comprise
the campaign over multiple heterogeneous HPC platforms.
The following section discusses the performance character-
istics and highlights the necessary extensions to overcome
challenges of scale and system-software fragility. We conclude
in §5 with diverse measures of scientific impact towards
therapeutic advances by highlighting science results emanating
from using these methods and infrastructure for a mission-
oriented sustained computational campaign.

II. COMPUTATIONAL CAMPAIGN

The campaign for discovering new ‘hits’ (i.e., viable drug-
like small molecules), and optimizing these hits to viable lead
molecules (i.e., that show potential to inhibit viral activity)
consists of two iterative loops (Fig. 1). In ensemble docking
programs (Sec. II-A), small molecules are ‘docked’ against
ensembles of conformational states determined from a partic-
ular COVID-19 protein target. This is followed by a coarse-
grained free-energy estimation (ESMACS-CG) to determine
if the docked molecule and the protein target of interest can
indeed interact (Sec. II-C). ESMACS–CG samples limited
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relevant conformational states, outputs from ESMACS–CG
into ML-driven enhanced sampling methods (Sec. II-B), are
taken through a further fine-grained refinement of the bind-
ing free-energy (ESMACS-FG; Sec. II-C). The outputs from
ESMACS–FG are fed into a machine learning (ML) surrogate
for docking, which allows us to quickly estimate whether a
given molecule can indeed bind to the COVID-19 protein
target. Simultaneously, a secondary iterative loop is developed
for a subset of compounds that show promising results from
ESMACS-CG, where certain functional groups of promising
hits are optimized for protein-target interactions using TIES
— a method of lead optimization (Sec. II-D).

Ensemble 
Docking

ESMACS 
CG

ESMACS
FG

ML-driven 
Enhanced 
Sampling

ML Docking 
Surrogate

Hit to Lead 
Loop

TIES ML Docking 
Surrogate

Ensemble 
Docking
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 Loop

Leads Selected

Fig. 1. The computational campaign to advance COVID-19 therapeutics has
two coupled loops: drug candidates go through four stages in the Hit-to-Lead
loop; a small set of drugs are selected for the Lead Optimization loop. We
focus on the following methods: Ensemble Docking, both coarse-grained (CG)
and fine-grained (FG) ESMACS, ML-driven Enhanced Sampling and TIES.

A. Computational Protein-Ligand Docking

Protein-ligand docking is a computational pipeline of ligand
3D structure (conformer) enumeration, exhaustive docking
and scoring, and pose scoring. The input requires a protein
structure with a designed binding region, or a crystallized
ligand from which a region can be inferred, as well as a
database of molecules to dock in SMILES format — a compact
representation of a 2D molecule.

To take the 2D structures to 3D structures ready for
structural docking, proteinization and conformer generation is
performed using Omega–Tautomers and, if stereochemistry is
not specified, enantiomers are enumerated prior to conformer
generation [2]. Typically, tautomers and enantiomers are enu-
merated for the incoming proposed analog or perturbation to
the previous ligand. Conformer generation is performed on
the ensemble of structures, generating 200-800 3D conformers
for every enantiomer and reasonable tautomer generated. Once
the set of 3D structures are enumerated from the 2D smiles,
each one is docked against the pocket and scored. The best
scoring pose is returned along with its ChemGauss4 score from
exhaustive rigid docking [3].

B. ML-Driven Enhanced Sampling

Machine learning tools quantify statistical insights into the
time-dependent structural changes a biomolecule undergoes
in simulations [4], identify events that characterize large-
scale conformational changes at multiple timescales, build
low-dimensional representations of simulation data captur-
ing biophysical or biochemical information, use these low-
dimensional representations to infer kinetically and energeti-

cally coherent conformational sub-states, and obtain quantita-
tive comparisons with experiments.

Recently, we developed convolutional variational autoen-
coders (CVAE) that automatically reduce the high dimension-
ality of MD trajectories and cluster conformations into a small
number of conformational states that share similar structural,
and energetic characteristics [5]. We apply these approaches
on the ESMACS and TIES simulations, outlined shortly. We
also used CVAE to drive adaptive simulations for protein
folding, and demonstrated that adaptive sampling techniques
can provide at least an order of magnitude speedup [6].
These approaches provide acceleration of “rare” events —
important to study protein-ligand interactions, while leveraging
supercomputing platforms [6].

C. Hit-to-Lead Optimization

Hit-to-Lead (H2L) is a step in the drug discovery process
where promising lead compounds are identified from initial
hits generated at preceding stages. It involves evaluation of
initial hits followed by some optimization of potentially good
compounds to achieve nanomolar affinities. The change in free
energy between free and bound states of protein and ligand,
also known as binding affinity, is a promising measure of the
binding potency of a molecule, and is used as a parameter for
evaluating and optimizing hits at H2L stage.

We employ the enhanced sampling of molecular dynamics
with approximation of continuum solvent (ESMACS) [7]
protocol, for estimating binding affinities of protein-ligand
complexes. It involves performing an ensemble of molecular
dynamics (MD) simulations followed by free energy estima-
tion on the conformations so generated using a semi-empirical
method called molecular mechanics Poisson-Boltzmann Sur-
face Area (MMPBSA). The free energies so calculated for
the ensemble of conformations are analyzed in a statistically
robust manner yielding precise free energy predictions for any
given complex. This is particularly important given the fact
that the usual practice of performing MMPBSA calculations
on conformations generated using a single MD simulation does
not give reliable binding affinities. Consequently, ESMACS
predictions can be used to rank a large number of hits based
on their binding affinities. ESMACS is able to handle large
variations in ligand structures, and hence is very suitable for
H2L stage where hits have been picked out after covering
a substantial region of chemical space. The information and
data generated with ESMACS can also be used to train a ML
algorithm to improve its predictive capability.

D. Lead Optimization

Lead Optimization (LO) is the final step of pre-clinical drug
discovery process. It involves altering the structures of selected
lead compounds in order to improve their properties such as
selectivity, potency and pharmacokinetic parameters. Binding
affinity is a useful parameter to make in silico predictions
about effects of any chemical alteration in a lead molecule.
However, LO requires theoretically more accurate (without
much/any approximations) methods for predictions with high



confidence. In addition, relative binding affinity of pairs of
compounds which are structurally similar are of interest,
rendering ESMACS unsuitable for LO. We employ ther-
modynamic integration with enhanced sampling (TIES) [8],
which is based on an alchemical free energy method called
thermodynamic integration (TI) [9] which fulfill conditions
for LO. Alchemical methods involve calculating free energy
along a non-physical thermodynamic pathway to get relative
free energy between the two end-points. Usually, the alchem-
ical pathway corresponds to transformation of one chemical
species into another defined with a coupling parameter (λ),
ranging between 0 and 1. TIES involves performing an en-
semble simulation at each λ value to generate the ensemble of
conformations to be used for calculating relative free energy.
It also involves performing a robust error analysis to yield
relative binding affinities with statistically meaningful error
bars. The parameters such as the size of the ensemble and
the length of simulations are determined keeping in mind the
desired level of precision in the results [8].

III. COMPUTATIONAL INFRASTRUCTURE

We use the term “task” to indicate a stand-alone process that
has well-defined input, output, termination criteria, and dedi-
cated resources. For example, a task can indicate an executable
which performs a simulation or a data processing analysis,
executing on one or more nodes. A workflow is comprised
of tasks with dependencies, whereas a workload represents a
set of tasks without dependences or whose dependencies have
been resolved. Thus, the tasks of a workload could, resources
permitting, be executed concurrently.

A. RADICAL-Cybertools Overview

RADICAL-Cybertools (RCT) are software systems devel-
oped to support the execution of heterogeneous workflows and
workloads on one or more high-performance computing (HPC)
infrastructures. RCT have three main components: RADICAL-
SAGA (RS) [10], RADICAL-Pilot (RP) [11] and RADICAL-
Ensemble Toolkit (EnTK) [12].

RS is a Python implementation of the Open Grid Forum
SAGA standard GFD.90, a high-level interface to distributed
infrastructure components like job schedulers, file transfer
and resource provisioning services. RS enables interoperability
across heterogeneous distributed infrastructures.

RP is a Python implementation of the pilot paradigm
and architectural pattern [13]. Pilot systems enable users to
submit pilot jobs to computing infrastructures and then use
the resources acquired by the pilot to execute one or more
workloads. Tasks are executed concurrently and sequentially,
depending on the available resources. RP can execute single
or multi core tasks within a single compute node, or across
multiple nodes. RP isolates the execution of each tasks into
a dedicated process, enabling concurrent execution of hetero-
geneous tasks. RP offers three unique features compared to
other pilot systems on HPC systems: (1) concurrent execution
of heterogeneous tasks on the same pilot; (2) support of all

the major HPC batch systems; and, (3) support of more than
twelve methods to launch tasks.

EnTK is a Python implementation of a workflow engine, de-
signed to support the programming of applications comprised
of ensembles of tasks. EnTK executes tasks concurrently or se-
quentially, depending on their arbitrary priority relation. Tasks
are grouped into stages and stages into pipelines depending
on the priority relation among tasks. Tasks without reciprocal
priority relations can be grouped into the same stage; tasks
that need to be executed before other tasks have to be grouped
into different stages. Stages are grouped into pipelines and, in
turn, multiple pipelines can be executed either concurrently
or sequentially. EnTK uses RP, allowing the execution of
workflows with heterogeneous tasks.

B. Supporting Multiple Task Execution Modes

Workflows 1–4 (§II) have different tasks types and perfor-
mance requirements that, in turn, require different execution
approaches. We discuss three pilot-based task execution frame-
works that we developed to support the execution of workflows
1–4. We provide a brief comparison of the three approaches.

1) Execution Mode I: RAPTOR: RP can execute a special
type of task, called “worker”, that can interpret and execute
Python functions. We used this feature to implement a RP-
based master/worker framework called RAPTOR (RAdical-
Pilot Task OveRlay), to distribute multiple Python functions
across multiple workers. RAPTOR enables parallel execution
of those functions while RP implements capabilities to code
both master and worker tasks, and to schedule their execution
on the HPC resources acquired by submitting a job.

Fig. 2a illustrates the implementation of RAPTOR on Sum-
mit. Once RP has acquired its resources by submiting a job
to Summit’s batch system, RP bootstraps its Agent (Fig. 2a-1)
and launches a task scheduler and a task executor (Fig. 2a-
2). RP Scheduler and RP Executor schedule and launch one
or more masters on one the compute nodes (Fig. 2a-3) via
either JSRUN [14] or PRRTE [15]. Once running, each master
schedules one or more workers on RP Scheduler (Fig. 2a-
4). Those workers are then launched on more compute nodes
by RP Executor (Fig. 2a-5). Finally, each master schedules
function calls on the available workers for execution (Fig. 2a-
6), load-balancing across workers to obtain maximal resource
utilization. The only change needed to use RAPTOR on other
machines is a switch of the launch method for the master and
worker tasks, e.g., on Frontera, from JSRUN to srun.

2) Execution Mode II: Using multi-DVM: RP supports
diverse task launch methods, depending on the availability of
specific software systems on the target resources. On Summit,
Frontera and Lassen at the Lawrence Livermore National Lab-
oratory, RP supports the use of the Process Management Inter-
face for Exascale (PMIx) and the PMIx Reference RunTime
Environment (PRRTE) [15]. PMIx is an open source standard
that provides methods to interact with system-level resource
managers and process launch mechanisms. PRRTE provides a
portable runtime layer that users can leverage to launch a PMIx
server. PRRTE includes a persistent mode called Distributed
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Fig. 2. Pilot-based task execution frameworks implemented using RADIAL-Pilot.

Virtual Machine (DVM), which uses system-native launch
mechanisms to bootstrap an overlay runtime environment,
which can be used to launch tasks via the PMIx interface.

One advantage of using PRRTE/PMIx to place and launch
stand-alone tasks on thousands of compute nodes, is that
they allow for using multiple concurrent DVMs. This enables
partitioning of the task execution over multiple, independent
sub-systems, reducing the communication and coordination
pressure on each sub-system. This improves performance and
resilience to PRRTE/PMIx implementation fragility.

Fig. 2b shows the integration between RP and PRRTE/PMIx
on Summit. RP bootstraps its Agent (Fig. 2b-1) and, different
from the RAPTOR implementation described in Fig. 2a, Agent
launches a set of DVMs, each spanning multiple compute
nodes (Fig. 2b-2). Agent also uses ssh to execute one or more
RP Executor on one or more compute nodes (Fig. 2b-3). Once
the DVMs and executors become available, RP schedules tasks
on each executor (Fig. 2b-4). Each executor then uses one or
more DVMs to place and then launch those tasks (Fig. 2b-5).

3) Execution Mode III: Flux: PRRTE/PMIx introduce a
variety of overheads [16]) and their current implementations
are still fragile, especially when scheduling more than 20,000
tasks on more than 32 DVMs. Overheads and fragility lead
to low resource utilization and unrecoverable failures. For
these reasons, RP also supports the use of Flux [17] as
an alternative system to schedule, place and launch tasks
implemented as stand-alone processes. Fig. 2c illustrates the
integration between RP and Flux. After bootstrapping (Fig. 2c-
1), RP launches Flux (Fig. 2c-2) and schedules tasks on it
for execution (Fig. 2c-3). Flux schedules, places and launches
tasks on Summit’s compute nodes via its daemons (Fig. 2c-4).
RP Executor keeps track of task completion (Fig. 2c-5), and
communicates this information to RP Scheduler, based upon
which RP Scheduler passes more tasks to Flux for execution.

C. DeepDriveMD

To support the requirements of ML-driven enhanced sam-
pling (§II-B), we developed DeepDriveMD [6] to employ
deep learning techniques, pre-trained models and tuned hy-
perparameters in conjunction with molecular dynamics (MD)
simulations for adaptive sampling. Specifically, DeepDriveMD
couples a deep learning (DL) network — called convolutional

variational autoencoder (CVAE)) — to multiple MD simu-
lations, to cluster MD trajectories into a small number of
conformational states. Insights gained from clustering is used
to steer the ensemble MD simulations. This may include either
starting new simulations (i.e., expanding the pool of initial
MD simulations), or killing unproductive MD simulations (i.e.,
simulations stuck in metastable states).

DeepDriveMD supports the following computational ap-
proach: (1) use an ensemble of MD simulations to generate
initial MD data; (2) a ‘training’ run consisting of a ML
algorithm; (3) an ‘inference’ step where novel starting points
for MD are identified; and (4) spawn new MD simulations.
DeepDriveMD is built upon EnTK, uses RP for advanced
resource management, and is extensible to other learning
methods and models, as well as other MD coupling schemes.
The current implementation of DeepDriveMD utilizes Tensor-
flow/Keras (with Horovod for distributed data parallel training)
and PyTorch. Typically, a run of DeepDriveMD requires 20
nodes on Summit.

D. Heterogeneous Task Placement

Depending on the task launch method, RP places tasks on
specific compute nodes, cores and GPU (Figs. 2a and 2b).
This placement allows for efficient scheduling of tasks on
heterogeneous resources. When scheduling tasks that require
different amounts of cores and/or GPUs, RP keeps tracks of the
available slots on each compute node of its pilot. Depending
on availability, RP schedules MPI tasks within and across
compute nodes and reserves a CPU core for each GPU task.

Currently, RP supports four scheduling algorithms: contin-
uous, torus, noop and flux. Continuous is a general purpose
algorithm that enables task ordering, task colocation on the
same or on different nodes, based on arrival order or explicit
task tagging. Torus is a special-purpose algorithm written to
support BlueGene architectures, noop allows to pass single or
bulk tasks keeping track only of their execution state, and flux
delegates scheduling to the Flux framework.

RP opens a large optimization space for specific scheduling
algorithms. For example, our continuous scheduler prioritizes
tasks that require large amount of cores/GPU so to max-
imize resource utilization. This could be further extended
with explicit clustering or by including information about the
execution time of each task.



These capabilities are used to concurrently execute WF3 and
4 (§II-C and §II-D), reducing time-to-solution and improving
resource utilization at scale. WF3 and WF4 capture ESMACS
and TIES respectively, which are both MD-based protocols to
compute binding free energies. Both protocols involve multiple
stages of equilibration and MD simulations of protein-ligand
complexes. Specifically, ESMACS protocol uses the OpenMM
MD engine on GPUs, while the TIES protocol uses NAMD
on CPUs. Leveraging RP’s capabilities, we merge these two
“workflows” into an integrated hybrid workflow with hetero-
geneous tasks which utilize CPU and GPU concurrently.

Fig.3 is a schematic where OpenMM simulations are tasks
placed on GPUs, while NAMD simulations are MPI multicore
tasks on GPUs. Given that one compute node on Summit
has 6 GPU and 42 CPU, we are able to run 6 OpenMM
tasks in parallel which need 1 GPU and 1 CPU each. For
optimal resource utilization, we assign the remaining 36 CPU
to 1 NAMD task. NAMD tasks run concurrently on CPU
with the OpenMM tasks running on GPU for heterogeneous
parallelism (HP). In order to achieve the optimal processor
utilization, CPU and GPU computations must overlap as
much as possible. We experimentally evaluate heterogeneous
parallelism in §IV-C.Heterogeneous Task Placement in RADICAL Cybertools

GPU GPU GPU GPU GPU GPU

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU
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Fig. 3. Using RP’s heterogeneous task placement: WF3 is comprised of
OpenMM which runs on GPUs; WF4 uses NAMD which runs on CPUs. A
hybrid workflow combines WF3 and WF4, concurrently using the CPUs and
GPUs of the same Summit node. This increases node utilization significantly.

IV. PERFORMANCE CHARACTERIZATION

A. WF1: Ensemble Consensus Docking

Compared to physics-based simulation methods, docking is
a relatively inexpensive computational process. To increase the
reliability of docking results, multiple docking protocols for
the same ligand set and protease are preferred over individual
docking scores. WF1 uses OpenEye and Autodock-GPU. The
former is executed on x86 architectures (e.g., Frontera); the
latter on GPUs (e.g., Summit).

For each of the identified receptor sites, WF1 iterates
through a list of ligands and computes a docking score for that
ligand-receptor pair. The score is written to disk and is used as
filter to identify ligands with favorable docking results (score
and pose). The docking call is executed as a Python function in
OpenEye, and as a self-contained task process in AutoDock-
GPU. In both cases, the RAPTOR framework (§III-B1, Fig.2a)
is used for orchestration.

The duration of the docking computation depends on the
type of CPU (OpenEye) or GPU (AutoDock-GPU) used, and
the computational requirements of each individual receptor.
We measure the docking time (seconds) and docking rate
(docks/hr) of three use cases: (1) production runs for NVBL-
Medical Therapeutics campaigns; and runs for largest achiev-
able size on (2) Frontera and (3) Summit. Table I summarizes
the parameterization and results of the experiments we per-
formed for each use case.

WF1 assigns one pilot for each receptor to which a set
of ligands will be docked. Within each pilot, one master
task is executed for every ≈100 nodes. Each master iterates
at different offsets through the ligands database, using pre-
computed data offsets for faster access, and generating the
docking requests to be distributed to the worker tasks. Each
worker runs on one node, executing docking requests across
the CPU cores/GPUs of that node.

1) Use Case 1: We assigned each of the 31 receptors to
a single pilot — that is an independent job submitted to the
batch-queue. Due to the different batch-queue waiting times,
at most 13 concurrent pilots executed concurrently. With 13-
way pilot concurrency, the peak throughput was ≈ 17.4 ×
106 docks/hr. To keep an acceptable load on Frontera’s shared
filesystem, only 34 of the 56 cores available were used.

(a) (b)

Fig. 4. WF1, Use Case 1: Distribution of docking runtimes for the receptor
with the (a) shortest and (b) longest average docking time out of the 31
receptors analyzed. The distributions of all 31 receptors have a long tail.

Figs. 4a and 4b show the distribution of docking times for
receptors with the shortest and longest average docking time,
using the Orderable-zinc-db-enaHLL ligand database.
All receptors are characterized by long-tailed docking time
distributions. Across the 31 receptors, the min/max/mean
docking times are 0.1/3582.6/28.8 seconds (Tab. I), posing
a challenge to scalability due to the communication and
coordination overheads. The long tail distributions necessitates
load balancing across available workers to maximize resource
utilization and minimize overall execution time.

We addressed load balancing by: (i) communicating tasks
in bulk so as to limit the communication frequency and
therefore overhead; (ii) using multiple master processes to
limit the number of workers served by each master, avoiding
bottlenecks; (iii) using multiple concurrent pilots to partition
the docking computations of the set of ligands.

Figs. 5a and 5b show the docking rates for the pilots
depicted in Figs. 4a and 4b respectively. As with dock time dis-
tributions, the docking rate behavior is similar across receptors.
It seems likely that rate fluctuations depend on the interplay



TABLE I
WF1 USE CASES. FOR EACH USE CASE, RAPTOR USES ONE PILOT FOR EACH RECEPTOR, COMPUTING THE DOCKING SCORE OF A VARIABLE NUMBER

OF LIGANDS TO THAT RECEPTOR. OPENEYE AND AUTODOCK-GPU IMPLEMENT DIFFERENT DOCKING ALGORITHMS AND DOCKING SCORES, RESULTING
IN DIFFERENT DOCKING TIMES AND RATES. HOWEVER, RESOURCE UTILIZATION IS >=90% FOR ALL USE CASES.

Use Platform Application Nodes Pilots Ligands Utilization Docking Time [sec] Docking Rate [×106 docks/hr]
Case [×106] min max mean min max mean

1 Frontera OpenEye 128 31 205 89.6% 0.1 3582.6 28.8 0.2 17.4 5.0
2 Frontera OpenEye 3850 1 125 95.5% 0.1 833.1 25.1 16.0 27.5 19.1
3 Summit AutoDock-GPU 1000 1 57 ≈95% 0.1 263.9 36.2 10.9 11.3 11.1

(a) (b)
Fig. 6. WF1, Use Case 2: (a) Distribution of docking time and (b) docking
rate for a single receptor and 125× 106 ligands. Executed with 31 masters,
each using ≈128 compute nodes/4352 cores on Frontera.

of machine performance, pilot size, and specific properties of
the ligands being docked, and the target receptor. We measure
a min/max docking rate of 0.2/17.4 × 106 docks/hr with a
mean of 5 × 106 docks/hr (Tab. I).

(a) (b)
Fig. 5. WF1, Use Case 1: Docking rates for the receptor with (a) shortest,
and (b) longest average docking time.

2) Use Case 2: Fig. 6a shows the distribution of dock-
ing times of approximately 125 × 106 ligands from the
mcule-ultimate-200204-VJL library to a single recep-
tor using OpenEye on Frontera. The distribution has a min/max
of 0.1/833.1 seconds and a mean of 25.1 seconds (Tab. I).

Fig. 6b shows the docking rate for a single pilot with 3850
compute nodes and 130,900 cores. Compared to Use Case
1, the rate does not fluctuate over time. After peaking at ≈
27.5×106 docks/hr, the rate stabilizes at ≈ 18×106 docks/hr
until the end of the execution (Tab. I). Note that this run was
terminated by Frontera’s batch system at the end of the given
walltime, thus Fig. 6b does not show the “cool down” phase.

Use Case 2 reached 95.5% core utilization but, as men-
tioned, we were able to utilize only 34 of the 56 node cores
due to filesystem performance limitations.

3) Use Case 3: Figure 7a shows the distribution of
the docking times of ≈ 57 × 106 ligands from the
mcule-ultimate-200204-VJL database to a single re-
ceptor using AutoDock-GPU on Summit. The distribution has
a min/max/mean of 0.1/263.9/36.2 seconds (Tab. I). The max
docking time is shorter than both Use Case 1, Fig. 6a and

(a) (b)
Fig. 7. WF1, Use Case 3: (a) Distribution of docking time and (b) docking
rate for a single receptor and 57 × 106 ligands. Concurrently executed on
Summit with a 6000 GPUs pilot.

Use Case 2, Fig. 4, but the mean is longer. As observed, those
differences are likely due to specific properties of the docked
ligands and the target receptor.

Fig. 7b shows the docking rate for a single pilot with 1000
compute nodes, i.e., 6000 GPUs. Different from Use Case 1
and 2, the rate peaks very rapidly at ≈ 11× 106 docks/hr and
maintains that steady rate until the end of the execution. Cool
down phase is also very rapid. We do not have enough data to
explain the observed sustained dock rate. As with Use Case
2, we assume an interplay between the scoring function and
its implementation in AutoDock-GPU and specific features of
the 57 × 106 docked ligands.

Different from OpenEye on Frontera, AutoDock-GPU bun-
dles 16 ligands into one GPU computation in order to effi-
ciently use the GPU memory, reaching an average docking
rate of 11.1 × 106 docks/hr (Tab. I). Currently, our profiling
capabilities allow us to measure GPU utilization with 5%
relative error. Based on our profiling, we utilized between 93
and 98% of the available GPU resources.

B. WF2: ML-Driven Enhanced Sampling

WF2 is an iterative pipeline composed of 4 stages. After
the first iteration of the 4 stages is completed, if outliers
were found, the next iteration starts simulating those outliers;
otherwise the simulation continues from where it stopped in
the previous iteration. The pipeline stops after a predefined
number of iterations.

We measured RCT overhead and resource utilization of
WF2 to identify performance bottlenecks. We define RCT
overhead as the time spent not executing at least one task.
For example, the time spent bootstrapping environments before
tasks execution, communicating between EnTK and Rab-
bitMQ (RMQ), or between EnTK and RP while workloads
wait to execute. Resource utilization is the percentage of time
when resources (CPUs and GPUs) are busy executing tasks.



The blue bars in Fig. 8 show RCT overheads for the first
version of WF2 and how RCT overheads grew with the
number of iterations. WF2 may require a variable number of
iterations. Thus, our goal was to reduce RCT overhead, and
importantly, to make it invariant of the number of iterations.

An initial analysis suggested multiple optimizations of
WF2: some of these involved improving the deep learning
model and the outlier detection of DeepDriveMD, others
required improving RCT. For the latter, we improved the com-
munication protocol between EnTK and RMQ, and we reduced
the communication latency between EnTK and RMQ. We
avoided sharing connections to RMQ among EnTK threads,
reduced the number of concurrent multiple connections and
reused communication channels whenever possible.

Fig. 8 (orange) shows the combined effects of improving
DeepDriveMD and EnTK communication protocol. Overheads
were reduced by 57% compared to Fig. 8 (blue) but they were
still growing with the number of iterations. We moved our
RMQ server to Slate, a container orchestration service offered
by OLCF. That reduced the communication latency between
EnTK and RMQ, as shown in Fig. 8 (green). This allowed
RCT overheads to be invariant up to 8 WF2 iterations.
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Fig. 8. RCT overhead reduction with improved WF2, EnTK and RabbitMQ.

Fig. 9 depicts resource utilization for different (internal)
RCT states as a time-series. “Yellow, light blue and Green
space” represents unused resources; “dark” represents resource
usage. Fig. 9 shows resource utilization of WF2, when exe-
cuting four pipeline iterations on Summit with 20, 40, and
80 compute nodes. Note that most of the unused resources are
CPU cores that are not needed by WF2. Overall, we measured
91%, 91%, 89% GPU utilization respectively. Across scales,
Fig. 9 shows differences in the execution time of some of
the pipeline stages but no relevant increase of the time spent
without executing at least one task.

Fig. 9. WF2 Resource Utilization: 20 nodes (left), 40 nodes (center), and 80
nodes (right).

C. Hybrid Workflows Using Heterogeneous Tasks

WF3 and WF4 are computationally intensive methods that
cost several orders of magnitude more node-hours per ligand
than WF1 [18]. As discussed in §III-D, WF3 and WF4 both
compute binding free energies, but have workloads com-
prised of distinct tasks: GPU-based OpenMM, and CPU-based
NAMD tasks respectively. Merging WF3 and WF4 into a
single hybrid workflow allowed us to improve resource uti-
lization by employing RP’s unique capability of concurrently
executing distinct tasks on CPU cores and GPUs. We evaluated
that capability by measuring: (i) RCT overhead (as defined
previously) as a function of scale; (ii) scalability as a function
of problem and resource size; and (iii) resource utilization.

Fig. 10 compares RCT overhead to workflow time to
completion (TTX) on 32 nodes for different tasks counts, rep-
resenting different production workflow configurations. TTX
in Fig. 10(c) illustrates concurrent execution of GPU and CPU
tasks. The modest increase in TTX compared to Fig. 10(b) is
likely due to interference from sharing resources across tasks
(Fig. 3), and some scheduler inefficiency. A careful evaluation
and optimization will form the basis of further investigation.
Fig. 10(d) plots the TTX for the Hybrid-LB scenario when the
number of WF3 and WF4 tasks are selected to ensure optimal
resource utilization. The number of WF3 tasks completed in
Fig. 10(d) is twice the number of WF3 tasks completed in
Fig. 10(c), with no discernible increase in TTX.
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Fig. 10. RCT Overhead in Hybrid Workflows.

Fig. 11 depicts RCT resource utilization for the configu-
rations of Fig. 10(c) and Fig. 10(d). As with Fig. 9, “green
space” represents unused resources; “dark space” represents
resource usage. WF3 and WF4 have 4 and 3 stages respec-
tively, which can be discerned from black bars. Fig. 11(b)
shows greater dark space and thus resource utilization than
Fig. 11(a), representing greater overlap of tasks on GPUs
and CPUs due to workload sizing. Both have higher resource
utilization than configurations in Fig. 10(a) and (b) due to
concurrent CPU and GPU usage.

Fig. 12 shows the scalability of hybrid workflows with
load balance enabled and up to 22640 tasks on 128 compute
nodes on Summit. The left two panels show the comparison
between 5660 GPU tasks and 5660 heterogeneous tasks (5400
GPU tasks + 260 CPU tasks). Note that RCT overhead
is invariant between homogeneous and heterogeneous task
placements, and with proportionately increasing workloads
and node counts (i.e., weak scaling).

In Figs. 10 and 12, RCT overhead varies from 3.8% to
11.5% of TTX but it should be noted that task runtimes



Fig. 11. RCT Resource Utilization in Hybrid Workflows.
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Fig. 12. RCT Overhead in Hybrid Workflows at Scale.

for these experiments are significantly shorter than those of
production runs. RCT overhead arises from state transitions
and data movements and is essentially invariant of task run-
times, which are reproduced with fidelity in our experiments.
Thus, in production runs, RCT overhead is a significantly less
proportion of TTX.

Scaling WF3–4: Driven by science results (§ V), and that
WF3 & 4 are the “slowest” per ligand [18], we need to increase
the number of nodes and improve reliability across multiple
platforms. We preview results for WF3; experience with WF4
and hybrid WF3–4 execution will be reported subsequently.

We performed initial test runs using the multi-DVM execu-
tion mode described in §III-B2, Fig. 2b, and observed that
executions were stable with each DVM running on < 50
nodes and executing < 200 tasks. Beyond that, we observed
interruptions or connectivity losses between executors and
DVMs. Further investigation will establish the causes of those
limits and possible solutions for higher scalability.

We run WF3–CG on 1000 compute nodes (+1 node for
RTC), executing 6000 1-GPU tasks on 32 concurrent DVMs.
Each DVM spawned ≈32 nodes and executed up to 192 tasks.
Fig. 13 shows the utilization of the available resources across
different stages of the execution. The pilot startup time (blue)
is longer than when using a single DVM [16], mainly due to
the 336 seconds spent on launching DVMs which, currently,
is a sequential process. Each task requires time to prepare the
execution (purple), which mainly includes time for scheduling
the task on a DVM, construct the execution command, and
process placement and launching by the DVM. The scheduling
process takes longer than with a single DVM as it requires to
determine which DVM should be used. Further, the construc-
tion of the execution command includes a 0.1s delay to let

DVM finalize the previous task launching. As each operation
is done sequentially per RP executor component, the 0.1s delay
accounts for 600s alone.

Fig. 13. RCT utilization for WF3–CG using multi-DVM.

As with the other WF3–4 experiments, we reduced task
runtimes to limit resource utilization while faithfully repro-
ducing RCT overhead. In Fig. 13, Exec Cmd (task runtime)
would be 10 times longer for a production run. Thus, the
overheads introduced by using multiple DVMs would have
a lesser impact on the overall resource utilization.

We also run WF3–CG on 2000 compute nodes (+1 node for
RCT), doubling task and DVM number compared to the run
with 1000 nodes. At that scale, we observed three main issues:
(i) DVM startup failure; (ii) an internal failure of PRRTE;
and (iii) lost DVM connectivity. The majority of tasks were
successfully completed (11802 out of 12000), but those issues
prevented RCT to gracefully handle their termination.

Given the current fragility of PRRTE/PMIx, we are investi-
gating executing WF3 with the RP/Flux integration described
in §III-B3, Fig. 2c. Tab. II summarizes results for our initial
test. Performance are comparable to RCT using a single-
dvm, reducing the overheads measured with the multi-dvm
implementation. We experienced no failures, and are now
working on deeper integration to further scale our tests. If
the current results hold at higher scales, we plan to use the
RP/Flux integration to run the WF3–4 pipeline in production
on both Summit and Lassen.

V. SCIENTIFIC RESULTS

The previous section characterized the performance of the
scalable HPC and AI infrastructure developed to support
campaigns to advance COVID-19 therapeutics. Constituent
workflows embody a diverse range of computational char-
acteristics. Tab. III summarizes the heterogeneous platforms
utilized, and maps them to specific workflows supported. Put
together, the campaign has utilized 2.5×106 node-hours on
these platforms to support: (i) docking ∼1011 ligands with a
peak docking rate of up to 40×106 docks/hr; (ii) thousands
of AI-driven enhanced sampling simulations; (iii) computed
binding free energies on ∼105 ligand-protein complexes, in-
cluding 104 concurrently. In addition to “raw” scale, individual
workflow components demonstrate 100× to 1000× scientific
improvement over traditional methods.



TABLE II
WF3 USE CASE. TEST RUNS WITH RP/FLUX INTEGRATION (§ III-B3, FIG. 2C).

Use Case Platform # Nodes # Tasks # Failed Tasks Flux Resource Utilization Task Scheduling Rate Execution Time

WF3 Lassen 128 512 0 88% 14.21 t/s 6m

TABLE III
HPC PLATFORMS USED FOR THE COMPUTATIONAL CAMPAIGN. TO MANAGE THE COMPLEXITY ARISING FROM HETEROGENEITY WITHIN AND ACROSS

PLATFORMS, REQUIRES MIDDLEWARE ABSTRACTIONS AND DESIGN.

HPC Platform Facility Batch Node Architecture Workflows Max # nodes
System CPU GPU utilized

Summit OLCF LSF 2 × POWER9 (22 cores) 6 × Tesla V100 WF1-4 2000
Lassen LLNL LSF 2 × POWER9 (22 cores) 4 × Tesla V100 WF2,3 128
Frontera TACC Slurm 2 × x86 64 (28 cores) — WF1 3850
Theta ALCF Cobalt 1 × x86 64 (64 cores) — WF1 256
SuperMUC-NG LRZ Slurm 2 × x86 64 (24 cores) — WF3-4 6000 (with failures)
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Fig. 14. Root mean square fluctuation of ADRP protein and 5 bound ligands,
illustrating that different ligands induce different conformational changes
in ADRP. The inset highlights the RES based on the ML-based surrogate
model, showing a clear trend in improving the number of downstream
calculations needed for finding n compounds in subsequent rounds of the
iterative workflow.

The scalable infrastructure provides unprecedented quantita-
tive impact, but also unique qualitative insight, that builds upon
information multiple workflows, an example of which we now
preview. ML models used to predict docking scores are inher-
ently focused on predicting the ranking of small molecules that
potentially bind to and interact stably with the protein target
of interest (e.g., ADRP, as presented here). We utilize ML
models to accurately rank-order a library of ligands in terms
of predicted ranked score, using the regression enrichment
surface (RES) technique to examine how well the ML models
act as a surrogate for the scoring function [19]. The RES
plot (Fig. 14 inset) shows the surrogate model efficiency for
detecting true top ranking molecules given a fixed allocation
of predicted hits. For instance, if the computing budget allows
n number of downstream simulations for inferred molecules
of interest, the vertical line representing n on the x-axis of
the plot shows the fraction of the real top scoring compound
distribution captured. Thus, the RES informs the number of
top-scoring compounds needed to adequately cover chemical
space of ADRP-specific molecules.

Once a potential set of compounds predicted to bind to
ADRP are identified using the RES technique, we characterize

Fig. 15. Correspondence between docking score (ChemGauss4/OpenEye)
versus binding free energy using ESMACS-FG for ADRP. Although, the
correlation is low, ESMACS-FG acts as an effective filter for compounds that
have high affinity to ADRP (e.g., compounds labeled 1625, 183 and 1235.)

how stably they interact with ADRP. We use DeepDriveMD
(WF2) to study a small subset of compounds that potentially
interact with the primary binding site of ADRP1. To char-
acterize the stability, we chose to examine the root mean
square fluctuation (RMSF) analysis of the backbone Cα atoms
for the apo/ligand-free form of the ADRP protein, which
shows decreased fluctuations in the location of its backbone
atoms compared to its holo/ ligand-bound counterpart. The
ligand-bound protein undergoes higher RMSF fluctuations
due to ligand-induced conformational changes, with notable
displacements of a few residues such as Asp18-Val20, Asn54-
Thr67, and His82. While these residues are not in direct
contact with the ligand, the binding pocket structural changes
causes a ripple effect on downstream residues in the protein.

We then use ESMACS (WF3) to predict which candidates
bind tightly (Fig. 15). For instance, compound 1625, has high
affinity to ADRP from both ESMACS as well as docking (in-
dicated by the ChemGauss4 docking score and the ESMACS–
FG binding free energy values), indicating favorable interac-
tions. TIES (WF4) is used to refine such interactions between
the protein and ligand: we performed TIES on 19 compound
transformations, which entails mutating the original compound
to new ligands with the goal of improving binding affinity. We

1Although we studied over 200 compounds, we present results from the top
five compounds that interact with ADRP stably during O(100 ns) simulations



used this method to study the effect of structural changes in
a compound on their binding potency with ADRP.

The relative binding affinities (∆∆G) predicted by TIES for
these transformations fall between -0.55 to 4.62 kcal/mol. A
positive value indicates a diminished relative binding potency
for the “new” compound, whereas a negative value means
that the transformation studied is favorable. Twelve out of the
19 transformations studied have ∆∆G > +1 which suggests
that they all correspond to unfavorable structural changes. The
remaining 7 have statistically zero value for ∆∆G which
indicates that the corresponding structural modifications do
not affect the binding. Both the favorable and unfavorable
interactions provide insight into finding compounds with high
affinity for target proteins.

VI. DISCUSSION

Multi-scale biophysics-based computational lead discovery
is an important strategy for accelerated drug development.
In its current formulation and practice however, it is too
inefficient to explore drug compound libraries at the scale
of billions of molecules, even on the largest supercomputers.
This work demonstrates a path towards improvement by: (i)
pairing ML components with, and trained from physics-based
components, and (ii) building the HPC and AI infrastructure
necessary to enable methodological advances [18]. In doing so,
it provides an enhanced drug discovery pipeline for COVID-
19 — a societal and intellectual grand challenge.

This work is a harbinger of how the role of supercomputers
is evolving, to soon become increasingly important “mere
generators of data for powerful ML models”. This will require
the ability to generate data using computational methods that
have not historically been used at scale on supercomputers
(e.g., WF1). Furthermore, scalable ML-driven methods are
needed to improve traditional physics-based approaches [20].

Collectively, supercomputers will increasingly have to sup-
port campaigns with diverse components, viz., physics-based
simulations, data generation and analysis, and ML/AI tasks.
These individual workflows have different computational char-
acteristics and performance challenges. They encompass high-
throughput function calls, ensembles of MPI-based simula-
tions, and AI-driven HPC simulations. There are no “turnkey
solutions” to support such campaigns across multiple hetero-
geneous platforms, with the necessary performance and scale
to ensure the required throughput. This has necessitated the de-
sign, development and iterative improvement of infrastructure
to advance therapeutics for COVID-19. The effectiveness and
impact of the infrastructure is evidenced by its use to sustain a
campaign on multiple heterogeneous platforms over a period
of months to generate valuable scientific insight (§V).
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