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Abstract 

Naturalistic learning scenarios are characterized by infrequent experience of external feedback 

to guide behavior. Higher-order learning mechanisms like second-order conditioning (SOC) 

may allow stimuli that were never experienced together with reinforcement to acquire 

motivational value. Despite its explanatory potential for real-world learning, surprisingly little is 

known about the neural mechanism underlying such associative transfer of value in SOC. 

Here, we used multivariate cross-session, cross-modality searchlight classification on 

functional magnetic resonance imaging data obtained from humans during SOC. We show that 

visual first-order conditioned stimuli (CS) reinstate cortical patterns representing previously 

paired gustatory outcomes in the lateral orbitofrontal cortex (OFC). During SOC, this OFC 

region showed increased functional covariation with amygdala, where neural pattern similarity 

between second-order CS and outcomes increased from early to late stages of SOC. Our data 

suggest a mechanism by which motivational value is conferred to stimuli that were never paired 

with reinforcement.  
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Introduction 

Learning in naturalistic settings is characterized by infrequent direct encounters with rewarding 

or punishing stimuli (Gewirtz and Davis 2000). Hence, several stimuli or actions often need to 

be chained together, such that one stimulus serves as a proxy for another stimulus that might 

eventually predict reward (Gewirtz and Davis 2000). Exploiting such statistical regularities 

would allow agents to learn about the value of stimuli or actions that were never directly 

followed by reinforcement and support instrumental behavior in the absence of reinforcement 

or in new contexts. Second-order conditioning (SOC) is an example of higher-order learning 

that allows such associative transfer to stimuli that have never been directly paired with 

reinforcement (Pavlov 1927; Rizley and Rescorla 1972). In SOC, a first-order conditioned 

stimulus (CS1) is first paired with a motivationally salient event or stimulus (unconditioned 

stimulus, US). By virtue of this pairing, the CS1 is capable of evoking conditioned responses 

(CR, e.g. salivating, as in the presence of food), enabling it to function as conditioned reinforcer 

(Sharpe et al. 2017). Subsequently, another previously neutral conditioned stimulus (CS2) is 

paired with the CS1. Thereby, CS2 acquires incentive properties and is, like CS1, now able to 

elicit a CR. Despite its relevance for real-life learning phenomena (Gewirtz and Davis 2000; 

Parkes and Westbrook 2011) and decades of behavioral investigations (Rizley and Rescorla 

1972; Barnet et al. 1991; Gewirtz and Davis 2000; Parkes and Westbrook 2011), surprisingly 

little is known about the neural mechanism underlying associative transfer of motivational value 

in SOC (Parkes and Westbrook 2011). 

Building on models of memory reinstatement (Tonegawa et al. 2018), we hypothesized 

that during SOC, presentation of the CS1 would trigger reinstatement of the neural pattern 

representing the US with which it had previously been paired during first-order conditioning 

(FOC). This would allow linkage of CS2 and US representations by associative plasticity. Both 

amygdala (Hatfield et al. 1996; Gewirtz and Davis 1997, 2000; Setlow et al. 2002; Parkes and 

Westbrook 2011) and hippocampus (Gilboa et al. 2014), as well as orbitofrontal cortex (OFC) 

and ventral striatum (Mcdannald et al. 2013) have consistently been shown as the key 

structures involved in second-order learning and conditioned reinforcement (Hatfield et al. 
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1996; Gewirtz and Davis 1997, 2000; Setlow et al. 2002; Parkes and Westbrook 2011; Gilboa 

et al. 2014). Our analyses therefore focused on these regions.  

To test our predictions, we combine a SOC paradigm and choice preference tests with 

cross-session (Stokes et al. 2009), cross-modality searchlight (Kriegeskorte et al. 2006) 

classification of functional magnetic resonance imaging (fMRI) data in healthy human 

participants. Participants first established Pavlovian associations between visual CS1 and 

appetitively or aversively valued gustatory US. During SOC, participants were exposed to 

associations between visual CS2 and previously learned CS1. In a subsequent preference test 

phase, participants were more likely to select directly (CS1) and indirectly (CS2) appetitively 

paired stimuli over aversively paired stimuli. These behavioral associative transfer learning 

effects were accompanied by CS1-related reinstatement of the neural patterns representing 

US in the lateral OFC and increased functional coupling between lateral OFC, 

amygdala/anterior hippocampus, and medial OFC during SOC. Furthermore, representations 

of second-order CS in the amygdala became more similar to US representations from early to 

late phases of second-order conditioning, indicating the acquisition of an association between 

CS2 and US patterns. 
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Materials and Methods 

Participants 

Participants were recruited from the local student community of the Otto-von-Guericke 

University Magdeburg, Germany by public advertisements and via online announcements. 

Only participants indicating no history of psychiatric or neurological disorder, no regular intake 

of medication known to interact with the central nervous system and participants not reporting 

quinine intolerance were included. Participants in both samples had normal or corrected-to-

normal vision and did not report experience with Japanese kanjis or Chinese characters. All 

participants provided informed written consent before participation and received monetary 

compensation for taking part in the study. The study was approved by the local ethics 

committee at the medical faculty of the Otto-von-Guericke University Magdeburg, Germany 

(reference number: 101/15) and conducted in accordance with the Declaration of Helsinki. We 

assumed a medium effect size in a generic binomial test (effect size g = 0.25) for the main 

behavioral effects (choice probability > 0.50), for which a sample size of N = 23 would be 

necessary, given standard power (1–β = 0.80) and a one-tailed alpha-error probability of 0.05. 

We conducted two experimental studies. Since we used within-subject designs in both 

experiments and each participant experienced all conditions, effects of interest were tested 

within-subjects. There were no experimental groups and thus no randomization to 

experimental group was performed. 32 healthy adult volunteers (age: M = 24.16, SD = 3.61, 

range = 18 – 32 years, 15 males) participated in the fMRI study. We recruited 32 participants 

due to the fact that we expected ~15% drop out in the fMRI study (due to compromised data, 

artifacts, falling asleep etc.). 20 healthy adult volunteers (age: M = 23.40, SD = 3.07, range = 

19 – 30 years, 9 males), participated in the behavioral study. Participants self-reported high 

levels of education (50 of 52 subjects reported holding university entrance qualification 

degrees and received an average of 12.26 (SD = .95, range = 9 – 16) years of school 

education). 

In the fMRI study, two participants were excluded from statistical analyses due to self-

reports of having fallen asleep during the second-order conditioning scanning run. One 
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additional participant had to be excluded due to a scanner malfunction and corruption of three 

of the five classifier training experiment scanning runs, thus leaving a total of N = 29 

participants for final analyses. 

In the fMRI study, volunteers participated in two sessions on two consecutive days (Figure 

1A). The fMRI classifier training (see below) took place on the first day, and the learning 

experiment (next paragraph) was performed on the second day. In the behavioral study, 

participants attended one single session during which they performed the learning experiment. 

 

Learning experiment – ratings 

Participants received written instructions for the experiment and were instructed once again 

on the computer screen. All experiments were programmed in MATLAB 2012b (v8.0.0.783, 

MATLAB and Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick, MA, USA), 

using Psychophysics Toolbox (Brainard 1997) (version 3). Before and after the learning 

experiment, participants rated ten different round, greyscale fractal images (300 x 300 pixels) 

serving as first-order conditioned stimuli (CS1), ten white Japanese kanjis (Tamaoka et al. 

2017) (250 x 250 pixels) serving as second-order conditioned stimuli (CS2) and gustatory 

stimuli as unconditioned stimuli (US). We used quinine-HCl (0.2 mmol/l solved in purified 

water) as aversive US and either chocolate milk (Nesquik, Nestlé, Switzerland) or orange juice 

(Milde Orange, EDEKA, Germany) as appetitive US (only orange juice in the fMRI study). Each 

participant received the same kind and amount of US per trial during the experiment. Ratings 

of subjective value/liking were assessed with the number buttons on a German (QWERTZ) 

computer keyboard from 1 (not liked) to 9 (very much liked). In the fMRI study, participants 

additionally rated gustatory stimuli regarding their subjective intensity levels from 1 (low 

intense) to 9 (very intense). Three fractals and kanjis rated closest to 5 (equivalent to “neutral”) 

were selected for first- and second order conditioning and their order was randomized before 

being associated with the US in first-order conditioning or with the first-order CS1 in second-

order conditioning. To ensure motivational salience of the gustatory US, participants were 

instructed to abstain from food for 12 hours and on average reported having fasted for 13.28 
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(SD = 2.71) hours. Participants reported intermediate levels of hunger before the task on a 

paper-pencil visual analog scale (VAS), ranging from 0 (“not hungry”) to 100 (“very hungry”), 

M = 58.38 (SD = 29.61). 

 

Learning experiment – first-order conditioning 

The first-order conditioning (FOC) phase of both the fMRI study and the behavioral study was 

performed outside of the scanner (Figure 1C). This was aimed at avoiding fatigue effects during 

the second-order conditioning phase, which was the phase of main interest to test our neural 

hypotheses. During FOC, participants were presented with CS+
1 followed by the appetitive 

US+, and CS–
1 followed by the aversive US–. CS1 were presented for 2000 ms, followed by an 

inter-stimulus interval (1000 ms) marked by a fixation cross, and oral infusion of one US (1 ml 

bolus per trial). Each CS1 was presented 50 times, amounting to 100 trials total. CS1 were 

followed by a US with 80% probability (40 trials of each CS1-US pair, 10 trials of CS1-no US 

per CS). US were delivered by a MATLAB code-controlled custom-made gustometer 

consisting of two high pressure single syringe pumps (AL-1000HP, World Precision 

Instruments, Saratoga, FL) operating 50 ml Luer lock syringes. Syringes were attached to Luer 

lock infusion lines (1,40 m length, 2 mm inner diameter) that participants held centrally in their 

mouths like drinking straws. In the fMRI study, infusion line position order (Q-O (N = 17) and 

O-Q (N = 15) for quinine (Q) and orange juice (O)), i.e. which US was delivered from the left 

or right infusion line, was counterbalanced across participants. In the fMRI study, the US bolus 

onset was preceded (500 ms) by a blue square that was presented for 2500 ms on the screen 

(Figure 1C). Participants were instructed to only swallow the US bolus upon offset of the blue 

square. Each trial was separated by an inter-trial-interval (ITI) marked by a grey screen. The 

ITI per trial was drawn from a discretized γ-distribution (shape = 6, scale = 1) truncated for an 

effective range of values between 3500 ms and 10,000 ms. Participants took self-paced breaks 

after each 10th trial during which they could drink water. Importantly, the instructions did not 

contain information about the underlying associative structure of the experiment, aiming at 

leaving participants unaware of the associative learning process. Instead, participants were 
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instructed to perform a simple attentional control task, during which they should respond as 

quickly and as correctly as possible by pressing the “y” button upon seeing the CS1 colored in 

red. Each CS1 was colored red in 10 % of the trials (90 % of trials grayscale image) and color 

did not predict US contingency. Performance during the task was rewarded with a bonus of 1 

€ (if > 70 % correct answers). Participants performed very well in the attentional control task 

(overall probability of correct answers: M = .99, SD = .05). In the fMRI study, both ratings and 

first-order conditioning were performed outside the MRI scanner.  

 

Learning experiment – second-order conditioning 

In the fMRI study, second-order conditioning (SOC) was performed inside the MRI scanner. 

For SOC, participants were presented with CS2
+ followed by CS1

+, CS2
–

 followed by CS1
– and 

CS2
n followed by CS1

n. CS1
n had not been presented during first-order conditioning and thus 

was not paired with any US. Since we assumed that both CS2
n and CS1

n should by design not 

elicit a neural representation of any of the US, CS2
n and CS1

n served as control stimuli. In each 

trial (Figure 1D), a CS2 (2000 ms) was followed by an inter-stimulus interval (500 ms) marked 

by a fixation cross, and a CS1 (2000 ms). CS2 were followed by a CS1 deterministically. Each 

trial was separated by an ITI marked by a grey screen. The ITI per trial was drawn from a 

discretized γ-distribution (shape = 7, scale = 1) truncated for an effective range of values 

between 4000 ms and 10,000 ms. Each CS2-CS1 pair was presented 50 times, amounting to 

150 trials total. Again, instructions did not explicitly mention relational structures to be learned, 

but participants were instructed to perform a simple attentional control task. Participants were 

instructed to respond as quickly and as correctly as possible by pressing the “y” button 

(behavioral study) or with the right index finger on an MRI-compatible 4-button response box 

(fMRI study) upon seeing the CS2 tilted by a 45° angle. Each CS2 was tilted in 10 % of its 

presentations. Performance during the task was rewarded with a bonus of 1 € (if > 70 % correct 

answers). Participants performed very well in the attentional control task (overall probability of 

correct answers: M = .97, SD = .07).  
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Learning experiment – choice preference test 

Following SOC, participants were presented with two separate test phases consisting of 

repeated binary choices between pairs of CS1 and pairs of CS2 to assess behavioral signatures 

of first- and second-order conditioning. Participants were instructed to choose the stimulus 

they preferred (or “liked better”) on each choice trial, without being explicitly informed about 

the consequences of their choices. They chose between CS1
+ and CS1

–, and between CS2
+ 

and CS2
–, each choice being presented ten times (twelve times in the fMRI study). These 

decision trials were interleaved in pseudo-random order with fourteen (twelve in the fMRI 

study) choices between CS1
n or CS2

n and lure stimuli (fractal and kanjis, respectively) that had 

only been seen during pre-task rating. Neither CS1
+, CS2

+, nor CS1
–, CS2

– were ever presented 

in comparison with CS1
n, CS2

n. We hypothesized preference for both CS1
+ and CS2

+ over CS1
– 

and CS2
–, respectively, as expressed by choice probabilities above indifference criterion 

(choice probability > 0.5). The CSn-to-lure comparison trials were intended to rule out response 

biases related to mere exposure to the stimuli experienced during conditioning. We reasoned 

that if choices were reflecting acquired and transferred value and could not only be attributed 

to mere exposure-dependent response biases, choice probability in trials involving CSn-to-lure 

stimuli should not exceed the indifference criterion. Choice options were presented for 1500 

ms on the right- and left-hand side of the screen. If participants did not respond within this time-

window, a time-out message was displayed, and the respective trial was repeated at the end 

of the choice preference test. Order (left/right) of choice options was counterbalanced. 

Participants selected choice options by pressing the “y” (left option) or “m” (right option) button 

(behavioral study, left or right index finger on MR-compatible response box in the fMRI study). 

Participants were instructed to select the CS they preferred/liked more. Importantly, 

participants were never presented with the US related to their chosen or unchosen CS. 

Following the choice preference test and after completing the behavioral paradigm, 

participants performed a post-experiment paper-pencil test. The test consisted of four 

questions assessing explicit knowledge about the associative structure of the second-order 

conditioning experiment. Participants were presented with a printed version of the ten fractal 
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images and the ten kanji images that had initially been presented during ratings. Fractal and 

kanji images were numbered. We explicitly asked whether any of these kanjis (CS2) had been 

associated with a gustatory stimulus (US). Additionally, participants were asked which of the 

fractals (CS1) and which of the kanjis (CS2) presented on the printed page had also been 

presented during first- and second-order conditioning. Finally, we asked which fractals (CS1) 

and which kanjis (CS2) had been linked with which gustatory stimulus (US). Participants noted 

the respective numbers of the fractals and kanjis and linked these numbers with free-format 

words to describe the gustatory stimuli (e.g. “sweet” or “orange juice” to describe US+). We 

counted the number of correctly identified CS–US associations and calculated average (and 

standard deviation) to obtain a measure of explicit knowledge.   

 

Behavioral analyses 

Data were analyzed using MATLAB 2019a (v9.6.0.1072779, The MathWorks, Inc., Natick, MA, 

USA) and RStudio (RStudioTeam 2019) (version 3.6.3, RStudio Team, Boston, MA) using 

custom analysis scripts. Choice probabilities for each CS in the fMRI and behavioral study 

were jointly analyzed. Each binary decision in which the respective CS was present (1 = 

selection of the respective target CS, 0 = selection of the alternative CS) for CS1
+ and CS2

+ 

(versus CS1
– and CS2

–, respectively) and both first-order and second-order CSn-to-lure 

comparison trials was included in the models. We used six single-trial Bayesian multilevel 

generalized linear models (Equations 1–6), representing different hypotheses about which 

processes might have generated the choice data using the R package rethinking (McElreath 

2020):  1) “Flat” model, modelling a single intercept parameter. This model assumes that 

choice behavior is invariant across subjects, studies and CS. 2) Model with CS-specific 

intercepts. This model assumes that choices vary only across CS but are invariant across 

subjects and studies. 3) Study-specific intercepts model. This model allows variation across 

studies (behavioral and fMRI study) but assumes invariance across subjects and CS. 4) Study-

specific intercepts model with covarying CS-specific intercepts. This model includes variation 

across studies and CS and models covariation between study-specific and CS-specific effects. 
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5) Varying intercepts model with covarying CS-specific intercepts. This model allows subject-

specific variation and includes covarying CS-specific effects. 6) “Full” model, combining 

individually varying intercepts and study-specific intercepts with covarying CS-specific 

intercepts. This model allows variation across subjects, studies and CS and also includes the 

covariation between these factors. We used Pareto-Smoothed Importance Sampling (PSIS) 

and the Widely Applicable Information Criterion (WAIC) for model comparisons and to find 

evidence for the best-fitting model. Within the best-fitting model, we hypothesized above-

chance level choice probability for both CS1
+ and CS2

+ at the group-level. For both first-order 

and second-order CSn-to-lure comparison trials, we expected no difference from chance level 

for these choices. For hypothesis testing, we specified a region of practical equivalence 

(ROPE), i.e. an interval of parameter values (choice probability = [.45; .55]) representing the 

null hypothesis of no difference from chance level (“random”) choice behavior. Specifically, we 

expected that the 89% highest posterior density interval (HPDI) around the posterior parameter 

estimates – the interval containing 89% probability mass of the posterior distribution (i.e. the 

most credible posterior parameter values given the model and the data) – would not overlap 

with the ROPE for choices of CS1
+ and CS2

+ (versus CS1
– and CS2

–, respectively). This 

expected non-overlap between HPDI and ROPE indicates that the most credible parameter 

values of the posterior probability distribution do not intersect with an a priori defined interval 

of parameter values that is indistinguishable from chance level (“random”) choice behavior. If 

there is no overlap between HPDI and ROPE, it is possible to reject the null hypothesis. 

However, we expected that the ROPE would overlap with the 89%-HPDI around the parameter 

estimates for both first-order and second-order CSn-to-lure comparison trials. This overlap 

would provide evidence for the null hypothesis, i.e, that the most credible parameter values 

are indistinguishable from chance level (“random”) choice behavior. Overlap between HPDIs 

and ROPEs was quantified using the R package bayestestR (Makowski et al. 2019). 

Since we acquired binary choice data, we used a binomial distribution as likelihood 

function (e.g. Equation 1) and specified weakly informative prior and hyperprior probability 

distributions. Models were passed to RStan (Stan Development Team 2020) using the function 
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“ulam” (rethinking). Using No-U-Turn samplers (NUTS; a variant of Hamiltonian Monte Carlo) 

in RStan and four independent Markov chains, we drew 4 x 10000 samples from posterior 

probability distributions (4 x 5000 warmup samples). Quality and reliability of the sampling 

process were evaluated with the Gelman-Rubin convergence diagnostic measure (𝑅" 	≈ 1.00) 

and by visually inspecting Markov chain convergence using trace- and rank-plots. For all 

models fitted we found 𝑅" = 1.00 for all parameters sampled from the posterior distribution. 

There were no divergent transitions between Markov chains for any of the models reported.  

 

 

𝐶𝑃	~	Binomial(1, p) 

𝑙𝑜𝑔𝑖𝑡(𝑝) = ⍺ 

⍺	~	Normal(0, 1)	 
 

(1) 

 

where CP is the binomially distributed choice probability for all CS (CS1
+, CS2

+, CS1
n or CS2

n).  

p is the proportion of choices of CS.  

 

𝐶𝑃! 	~	Binomial(1, p) 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝜇⍺ + 𝑥#$[!] ∗ 	𝜎⍺ 

x#$[!]	~	Normal(0, 1) 

𝜇⍺	~	Normal(0, 1) 

𝜎⍺		~	Half − Normal(0, 0.1) 

 
 

(2) 

where CPi is the binomially distributed choice probability for each CS separately (CS1
+, CS2

+, 

CS1
n or CS2

n). p is the proportion of CS choices. Note that the model is reparametrized to allow 

sampling from a standard normal posterior distribution. 
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𝐶𝑃' 	~	Binomial(1, 𝑝') 

𝑙𝑜𝑔𝑖𝑡(𝑝') = 	𝜇⍺ + 𝑥()*+,['] ∗ 	𝜎⍺ 

x()*+,[']	~	Normal(0, 1) 

𝜇⍺	~	Normal(0, 1) 

𝜎⍺		~	Half − Normal(0, 0.5) 
 

(3) 

 

where CPk  is the binomially distributed choice probability for the k-th study across all CS. pk is 

the proportion of CS choices. Again, the model is reparametrized to allow sampling from a 

standard normal posterior distribution. 

 

𝐶𝑃!,' 	~	BinomialJ1, 𝑝!,'K 

𝑙𝑜𝑔𝑖𝑡(𝑝!,') = 𝜇()*+,['] + 	𝜇#$[!] + 𝛼()*+,['],#$[!] 

M	

𝛼',.
𝛼',/
𝛼',0
𝛼',1

N~	MVNormalQR
0
0
0
0

S , 𝐒	U 

𝐒 = 	V
𝜎()*+, 0
0 𝜎#$

W 	𝐑	 V
𝜎()*+, 0
0 𝜎#$

W   

𝜇()*+,	~	Normal(0, 1) 

𝜇#$	~	Normal(0, 1) 

𝜎23456		~	Half − Normal(0, 0.05) 

𝜎78		~	Half − Normal(0, 0.05) 

𝐑	~	LKJcorr(2) 

 
 

(4) 

where CPi,k is the binomially distributed choice probability for the k-th study, covarying with the 

i-th CS-specific intercepts. pi,k is the proportion of CS choices.  
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𝐶𝑃!,9 	~	BinomialJ1, 𝑝!,9K 

𝑙𝑜𝑔𝑖𝑡(𝑝!,9) = 	𝜇#$[!] + 𝛼(*:9;<)[9],#$[!] 

M	

𝛼9,.
𝛼9,/
𝛼9,0
𝛼9,1

N~	MVNormal QR
0
0
0
0

S , 𝐒	U 

𝐒 = 	V
𝜎(*:9;<) 0

0 𝜎#$
W 	𝐑	 V

𝜎(*:9;<) 0
0 𝜎#$

W   

𝜇#$	~	Normal(0, 1) 

𝜎(*:9;<)		~	Half − Normal(0, 0.5) 

𝜎78		~	Half − Normal(0, 0.5) 

𝐑	~	LKJcorr(2) 

 

 
 

(5) 

where CPi,j is the binomially distributed choice probability for the j-th subject, covarying with 

the i-th CS-specific intercepts. pi,j is the proportion of CS choices.  
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𝐶𝑃!,9,' 	~	BinomialJ1, 𝑝!,9,'K 

𝑙𝑜𝑔𝑖𝑡(𝑝!,9,') = 	𝜇#$[!] + 𝛼(*:9;<)[9],#$[!] + 	𝜇()*+,[']

+ 𝛾#$[!],()*+,[']	 

M	

𝛼9,.
𝛼9,/
𝛼9,0
𝛼9,1

N~	MVNormal QR
0
0
0
0

S , 𝐒𝒔𝒖𝒃𝒋𝒆𝒄𝒕	U 

_
𝛾!,.
𝛾!,/	` ~	MVNormal QR

0
0
0
0

S , 𝐒𝑪𝑺	U 

𝐒𝒔𝒖𝒃𝒋𝒆𝒄𝒕 =	V
𝜎(*:9;<) 0

0 𝜎#$
W	𝐑𝒔𝒖𝒃𝒋𝒆𝒄𝒕 	V

𝜎(*:9;<) 0
0 𝜎#$

W   

𝐒𝑪𝑺 =	V
𝜎#$ 0
0 𝜎()*+,W

	𝐑𝑪𝑺 	V
𝜎#$ 0
0 𝜎()*+,W 

𝜇#$[!]	~	Normal(0, 1) 

𝜇()*+,[']~	Normal(0, 1) 

𝜎(*:9;<)		~	Half − Normal(0, 0.1) 

𝜎78		~	Half − Normal(0, 0.1) 

𝜎()*+,		~	Half − Normal(0, 0.1) 

𝐑𝒔𝒖𝒃𝒋𝒆𝒄𝒕	~	LKJcorr(2) 

𝐑𝑪𝑺	~	LKJcorr(2) 

 

 
 

(6) 

where CPi,j,k is the binomially distributed choice probability for the j-th subject covarying with 

the i-th CS-specific intercepts and the i-th CS-specific intercept covarying with the k-th study. 

pi,j,k is the proportion of CS choices.  
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fMRI – classifier training experiment 

The classifier training experiment was always performed on day 1 of two consecutive testing 

days. This was done to acquire unbiased estimates of the neural patterns representing the two 

US for training of a multivariate classification algorithm (multivariate pattern analysis, MVPA), 

before any association of the US with first- or second order CS had been acquired. Participants 

received oral instructions for the classifier training experiment and were instructed once again 

on the projection screen in the MRI. Before and after the experiment, participants rated 

gustatory US (aversive: quinine-HCL 0.1 mmol/l solved in purified water and appetitive: orange 

juice) according to subjective value/liking and intensity via button presses with their right and 

left index and middle fingers on a MRI-compatible 4-button response box. Ratings ranged from 

1 (not liked/not intense) to 4 (very much liked/very intense) and were indicated by e.g. pressing 

the left middle finger corresponding to rating 1 or pressing the right index finger corresponding 

to rating 3. As on day 2, participants were instructed to abstain from food for 12 hours and on 

average reported to have fasted for 13.59 (SD = 2.18) hours. Participants reported 

intermediate levels of hunger before the experiment on a paper-pencil VAS, M = 48.50 (SD = 

31.28). In each of the five total runs of the classifier training experiment, each US was 

administered twenty times (40 trials per run, 200 trials in total). Per trial, one US (1 ml bolus 

per trial) was delivered by a MATLAB code-controlled custom-made gustometer and Luer lock 

infusion lines (8.30 m length, 2 mm inner diameter). Participants held infusion lines centrally in 

their mouths like drinking straws. Additionally, infusion lines were fixed at absorbent materials 

attached to throat, chin and cheeks. The US bolus onset was preceded (500 ms) by a blue 

square that was presented in total for 4000 ms on the screen. Participants were instructed to 

only swallow the US bolus upon offset of the blue square. Each trial was separated by an ITI 

marked by a grey screen. The ITI was drawn from a uniform distribution with 5 discrete steps 

(range: 3000 – 7000 ms). Both US were presented in a pseudo-random order, thus reducing 

the influence of potentially confounding low-level features of the schedule (e.g. number of 

same/different US repetitions, different ITI lengths following each US). During each run of the 

classifier training experiment, participants performed a 0-back style attentional control task. 
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After a pseudo-random 20% of trials, participants were presented with probe trials in which 

they were asked to indicate which US they had received last (“pleasant” (US+) or “unpleasant” 

(US–)) via button presses with their right and left index fingers on an MRI-compatible response 

box. Correct responses were rewarded with 0.05 € and incorrect responses or time-out trials 

(without a response by the participant within 2500 ms after onset of the probe trial) resulted in 

a 0.05 € penalty which would be summed up as a bonus upon completion of the experiment. 

On average, participants earned a bonus of 1.86 € (SD = .11) during the classifier training 

experiment. Performance during the 0-back attentional control task was generally high (overall 

probability of correct answers, excluding time-out trials: M = .93, SD = .05). 

 

fMRI – acquisition 

During SOC, one run, and during the classifier training experiment, five runs of fMRI were 

acquired on a 3 Tesla Siemens PRISMA MR-system (Siemens, Erlangen, Germany), using a 

64-channel head coil. Blood oxygenation level dependent (BOLD) signals were acquired using 

a multi-band accelerated T2*-weighted echo-planar imaging (EPI) sequence (multi-band 

acceleration factor 2, repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle = 80°, 

field of view (FoV) = 220 mm, voxel size = 2.2 × 2.2 × 2.2 mm, no gap). Per volume, 66 slices 

covering the whole brain, tilted by approximately 15° in z-direction relative to the anterior–

posterior commissure plane were acquired in interleaved order. The first 5 volumes of the 

functional imaging time series were automatically discarded to allow for T1 saturation. To 

ensure close spatial alignment of the slices acquired during both sessions, the AutoAlign 

technique provided by the vendor was applied. At the end of both testing days, a B0 magnitude 

and phase map was acquired to estimate field maps for B0 field unwarping during 

preprocessing (TR = 660 ms, TE 1 = 4.92 ms, TE 2 = 7.38 ms, flip angle = 60°, FoV = 220 

mm). Additionally, before task-based fMRI on both days, a high-resolution three-dimensional 

T1-weighted anatomical scan (TR = 2500 ms, TE = 2.82 ms, FoV = 256 mm, flip angle = 7°, 

voxel size = 1 × 1 × 1 mm, 192 slices) covering the whole brain was obtained using a 

magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence. This scan was 



 18 

used as anatomical reference to the EPI data during the registration procedure. For all cross-

session classification analyses, SOC EPI data was referenced to orientation of the classifier 

training experiment. 

 

fMRI – data preprocessing 

All fMRI preprocessing steps were performed using tools from the Functional Magnetic 

Resonance Imaging of the Brain (FMRIB) Software Library (FSL, v5.0 and v6.0, Jenkinson et 

al., 2012). Preprocessing for each run of both classifier training task and SOC task included 

motion correction using rigid-body registration to the central volume of the functional time 

series (Jenkinson et al. 2002), correction for geometric distortions using the field maps and an 

n-dimensional phase-unwrapping algorithm (B0 unwarping, Jenkinson, 2003), slice timing 

correction using Hanning windowed sinc interpolation and high-pass filtering using a Gaussian-

weighted lines filter of 1/100 Hz. EPI images were registered to the high-resolution structural 

image using affine linear registration (boundary-based registration) and then to standard (MNI) 

space using linear (12 degrees of freedom) and nonlinear registration (Andersson et al. 2007a, 

2007b). Functional data was not spatially smoothed. We applied a conservative independent 

components analysis (ICA) to identify and remove obvious artefacts. Independent components 

were manually classified as signal or noise based on published guidelines (Griffanti et al. 

2017). Before progressing to statistical analyses using general linear models (GLMs), the 

identified noise components were removed from the data by regressing components classified 

as noise from the functional imaging time series (using the FSL function fsl_regfilt). 

 

fMRI – searchlight classification analyses 

We hypothesized that, during SOC, first-order CS would reinstate the neural pattern of the US 

with which they had previously been paired during FOC. We therefore expected that a 

multivariate classification algorithm trained on neural patterns evoked by the US (during the 

classifier training task) would be able to correctly predict the class of a paired CS1 during SOC. 

Hence, we used a cross-session (Stokes et al. 2009), cross-modality searchlight (Kriegeskorte 
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et al. 2006) classification approach to identify brain regions in which the CS class during SOC 

could be predicted based on training the classifier during the classifier training experiment on 

day 1. GLMs were fitted into pre-whitened data space to account for local autocorrelations 

(Woolrich et al. 2001). For the searchlight classification analyses, the individual level (first level) 

GLM design matrix per run and participant of the classifier training experiment included four 

box-car regressors in total. Two regressors coded for onsets and durations of both US (each 

modelled as single events of 4000 ms duration) and two regressors coded onsets and 

durations of left and right button presses (delta stick functions on the recorded time of response 

button presses) and the six volume-to-volume motion parameters from motion correction 

during preprocessing were entered to account for residual head motion. The SOC run per 

participant included five box-car regressors in total. Three regressors coding for onsets and 

durations of all combinations of CS2-CS1 (CS2
+/CS1

+, CS2
-/CS1

-, CS2
n/CS1

n) trials (each 

modelled as single events of 4500 ms duration, due to the 100 % contingency of CS-CS pairs), 

one regressor coding onsets and durations of right button presses (delta stick functions on the 

recorded time of response button presses), one regressor coding onset and duration of the 

within-run pause (45 sec), and the six volume-to-volume motion parameters from motion 

correction during preprocessing were entered. Please note that for the SOC analyses, the CS2-

CS1 presentations were modeled as single events. The close temporal succession of the two 

stimuli with a fixed inter-stimulus interval was chosen to obtain robust conditioning effects. This 

makes it difficult to obtain estimates of neural activity that can be unambiguously attributed to 

either the first- or second-order stimulus. Therefore, for this analysis (but see below for neural 

pattern similarity analyses) we chose to model them as single events. Please note however 

that this analysis is not aimed at separating out effects specific to either CS1 or CS2. Instead, 

we aim to detect reinstatement of US representations. If such reinstated US representations 

can be detected, they indeed can only be faithfully attributed to the CS1, as the CS2 had no 

association with the US. 

Additionally, we performed an exploratory multivariate searchlight classification to 

distinguish between the spatial activation patterns (t maps) of US+ versus US- across the whole 
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brain during the classifier training experiment. The aim of this analysis was to present an 

overview over the whole-brain patterns allowing classification of the US. This analysis resulted 

in one whole-brain map of classification accuracies per participant. The classification analysis 

was performed using a 5-fold cross-validation scheme, iteratively training the classification 

algorithm on the difference between US+ versus US- on 4 (out of 5 runs) labeled training data 

sets and then assessing the out-of-sample predictive accuracy of the classifier on the 

remaining, left-out data set (1 out of 5 runs).  

Regressors were convolved with a hemodynamic response function (γ-function, mean lag 

= 6 s, SD = 3 s). Each first level GLM included two or three (for classifier training experiment 

or SOC, respectively) contrasts to estimate individual per run t-statistic maps for each US or 

each CS2-CS1 pair (for classifier training experiment or SOC, respectively). For SOC, the 

activation pattern of CS2
n/CS1

n was subtracted from CS2
+/CS1

+ and CS2
-/CS1

- activation 

patterns. This was intended to account for general activation expected to result from visually 

presented CS and the visually presented swallowing cue coinciding with US presentation, 

which could have confounded classification accuracies. 

All classification-based analyses were conducted in subject native (fMRI) space. Per-

participant t-statistic maps were subjected to linear support vector machine (C-SVM, cost 

parameter C = 1) classification using the MATLAB-based multivariate pattern analysis toolbox 

CoSMoMVPA (Oosterhof et al. 2016). For cross-session, cross-modality classification, a 

classifier was trained on the spatial activation patterns of US+ versus US- (obtained from 

classifier training) and tested on the patterns of CS2
+/CS1

+ versus CS2
-/CS1

- during SOC within 

3-mm searchlight spheres across the whole brain. For the exploratory multivariate searchlight 

classification between US+ versus US- patterns, we similarly used a 3-mm searchlight sphere 

across the whole brain. Each searchlight sphere classification accuracy was mapped to the 

center voxel of the sphere, resulting in one whole-brain map of classification accuracies per 

participant. Additionally, in cross-session, cross-modality classification we repeated this 

procedure 100 times per participant with randomly permuted class labels in the training data 

set (US+ versus US-) to create chance level maps. Before group level statistics, the 
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normalization parameters obtained from preprocessing were applied to both whole-brain 

classification accuracy maps and chance level maps for normalization to MNI space. The 

resulting normalized whole-brain maps were spatially smoothed with a Gaussian kernel (5 mm 

full-width half-maximum).  

For cross-session, cross-modality classification, we used small-volume correction (PSVC) 

to assess significance of clusters with above-chance level (0.5) classification accuracy. To 

correct for multiple comparisons, we used a meta-analysis-based explicit mask for functional 

activations related to the term “taste” in the Neurosynth data base (Yarkoni et al. 2011) 

(www.neurosynth.org), thresholded at z > 7. This value was chosen such that only meta-

analytic clusters of activation, but not single voxels, survived thresholding. The Neurosynth-

based mask encompassed, aside from the lateral OFC, functional activation clusters in 

bilateral anterior insula. In addition, we evaluated an anatomically and functionally defined 

region-of-interest (ROI) for the lateral orbitofrontal cortex (lOFC), our a priori ROI. This region 

has been implicated in higher-order gustatory processing, such as motivational aspects and 

discrimination of taste (Small et al. 1999; Kobayashi et al. 2004; Miranda 2012), but also 

representation and adaptive changes of stimulus-outcome associations (Klein-Flügge et al. 

2013; Boorman et al. 2016; Jocham et al. 2016; Luettgau et al. 2020). We thus reasoned that 

this brain region would be a well-suited candidate for associative coupling between visual 

conditioned stimuli and gustatory outcomes and the proposed associative transfer learning. 

We used two different approaches for lOFC ROI definition: 1) an independent anatomical mask 

of the lateral OFC (Harvard-Oxford Atlas) and 2) an independent functional ROI from a 

gustatory mapping study by Benz and colleagues (K. Benz, personal communication, 

12/2019). This approach aimed at reducing inferential limitations related to arbitrary ROI 

definition.  

Within the meta-analysis-based mask and the ROIs, we computed group-level random-

effect cluster-statistics corrected for multiple comparisons in small volumes as implemented in 

CoSMoMVPA (Oosterhof et al. 2016). In brief, for 50,000 iterations, we randomly selected one 

chance level map per participant, calculated a group level z-statistic map for the respective 
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permutation and finally compared the resulting cluster sizes drawn from this empirical null 

distribution (50,000 samples) to the clusters in the “real” classification accuracy map (Stelzer 

et al. 2013). Since classifications accuracies below chance level are generally limited in 

interpretability, we considered clusters significant if PSVC < .05 (one-tailed). Please note that 

due to the exploratory nature and illustrative purpose of the exploratory multivariate searchlight 

classification between US+ versus US- patterns, no multiple comparisons correction using 

random-effects cluster-statistics was performed in this analysis. 

Additionally, we split participants into a high- or low-bias group, depending on their 

preference for the CS2
+ (vs. CS2

-) and compared classification accuracies within the small-

volume corrected cluster. The cluster ROI was built in MNI space and the ROI was then back-

projected into subject native space using inverse normalization parameters obtained during 

preprocessing to extract individual averaged classification accuracies from the ROI. Both 

groups’ average extracted classification accuracies were separately tested against chance 

level (0.5) using one-sample Wilcoxon signed-rank tests. We report measures of effect size 

Cohen’s U31 for one-sample Wilcoxon signed-rank tests (range: 0 – 1, .5 indicating no effect), 

calculated in the MATLAB-based Measures-of-Effect-Size-toolbox (Hentschke 2020). 

 

fMRI – functional covariation analyses 

Our cross-session, cross-modality searchlight classification during SOC identified a cluster in 

the lOFC (see Results). We investigated functional covariation between lOFC and the rest of 

the brain during SOC using this lOFC cluster as a seed region in a psychophysiological 

interaction (PPI) analysis. For each participant, we set up two separate first-level PPI GLMs. 

The first PPI GLM was aimed at investigating general differences in BOLD signal covariation 

for both CS2
+/CS1

+ and CS2
-/CS1

- compared with the control stimuli that had not been paired 

with a US, CS2
n/CS1

n. It contained the following regressors: 1) the BOLD timeseries 

(preprocessed functional time series) of the lOFC seed as physiological regressor, 2) onsets 

and durations of CS2
+/CS1

+ and CS2
-/CS1

- pairs (magnitude coded as 1) and CS2
n/CS1

n 

(magnitude coded as –1) as psychological regressor and 3) the interaction between 1) and 2) 
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as psychophysiological interaction regressor. The psychological regressor was convolved with 

a hemodynamic response function (γ-function, mean lag = 6 s, SD = 3 s). The second PPI 

GLM aimed at investigating specific differences in covariation between CS2
+/CS1

+ and CS2
-

/CS1
-. It contained the following regressors: 1) the BOLD timeseries (preprocessed functional 

time series) of the lOFC seed as physiological regressor, 2) onsets and durations of CS2
+/CS1

+ 

(magnitude coded as 1) and CS2
-/CS1

- pairs (magnitude coded as –1) as psychological 

regressor and 3) the interaction between 1) and 2) as psychophysiological interaction 

regressor. The psychological regressor was convolved with a hemodynamic response function 

(γ-function, mean lag = 6 s, SD = 3 s).  

In addition to the main effects of the PPI regressors, we also investigated whether task-

related functional covariation of lOFC with the rest of the brain was related to our behavioral 

index of second-order conditioning (choice probability of CS2
+ vs. CS2

-). For this, we entered 

the averaged second-order choice preference test data per subject as an additional regressor 

to the group level GLMs. In all analyses, contrast images from the first level were then taken 

to the group level and analyzed using mixed-effects analyses in FLAME1+2 (Beckmann et al. 

2003). We used cluster-based correction with an activation threshold of Z > 2.3 and a cluster-

extent threshold of P < .05 at whole-brain level to control for multiple comparisons. 

 

fMRI – neural pattern similarity analyses 

In addition to our classification-based approach, we investigated whether there was evidence 

for changes of neural pattern similarity across second-order conditioning. Specifically, we used 

a least-squares separate (LS-S) approach (Mumford et al. 2012) to deconvolve single-trial 

estimates of neural patterns representing CS2 and CS1. We then used these patterns to 

perform a template-based neural pattern similarity analysis (Wimber et al. 2015) (a variant of 

representational similarity analysis, RSA (Kriegeskorte et al. 2008)) between patterns of the 

two US during the classifier training experiment and all trial-specific CS2/CS1
 patterns during 

the SOC run. We estimated two subject-specific GLMs per trial, one for both CS1 and CS2, 

containing the following regressors: 1) onset and duration of the respective trial to be estimated 
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(each modelled as a single event of 2000 ms duration), 2) onsets and durations of the 

remaining CS1 or CS2 trials, respectively, 3) onsets and durations of all other CS1 or CS2 trials, 

respectively. Additionally, one regressor coding onsets and durations of right button presses 

(delta stick functions on the recorded time of response button presses), one regressor coding 

onset and duration of the within-run pause (45 sec), and the six volume-to-volume motion 

parameters from motion correction during preprocessing were entered. For example, the GLM 

of the 25th trial of CS1
+, contained one regressor (onset and duration) modelling this particular 

trial and one separate regressor (onsets and durations) for all remaining CS1
 trials but the 25th 

trial of CS1
+ (149 other trials in total) and one separate regressor (onsets and durations) 

modelling all CS2 trials. This procedure is assumed to allow for better deconvolution of events 

happening within close temporal proximity than standard least-squares-based approaches, 

which generally do not distinguish between overall and trial-specific error terms (Mumford et 

al. 2012; Abdulrahman and Henson 2016). As we have detailed above (paragraph "fMRI – 

searchlight classification analyses"), the temporal relation between CS1
 and CS2

 makes it 

inherently difficulty to estimate separate activation patterns. While, for the searchlight 

classification, it is not important to separate out the individual CS contributions to the neural 

pattern, our analyses on changes in neural pattern similarity across the SOC phase do make 

different predictions for CS1
 and CS2. We therefore used the deconvolution approach described 

above to mitigate the issue, but caution is warranted in interpreting these results. 

Each first level GLM included one contrast to model activation related to the respective 

trial of interest versus baseline. The a priori ROIs of the bilateral amygdala were built in MNI 

space and back-projected into subject native space using inverse normalization parameters 

obtained during preprocessing. We used these individual ROIs for spatially constrained 

multivoxel pattern extraction from the respective contrast t-value maps. Similarity-based 

analyses were carried out using CoSMoMVPA (Oosterhof et al. 2016). We used 1−Pearson’s 

product-moment correlation coefficient (1−r) as a measure of pairwise dissimilarity between 

trial-specific neural patterns and the US template. Within-subject pairwise neural dissimilarity 

was subtracted from 1 (to create a measure of neural pattern similarity) and Fisher-Z 



 25 

transformed to approximate normally distributed data more closely. CS1
n-US–/CS2

n-US– and 

CS1
n-US+/CS2

n-US+ early and late neural pattern similarity were subtracted from CS1
–-US–

/CS2
–-US– and CS1

+-US+/CS2
+-US+ early and late neural pattern similarity, respectively. We 

hypothesized that neural pattern similarity would show changes from early (first 25) to late (last 

25) trials, as both CS2
+ and CS2

– should become more similar to their respective indirectly 

associated US, indicating associative learning transfer from CS1
 to CS2. Contrarily, CS1

+ and 

CS1
– should, if anything, become less similar to the respectively paired US (e.g. due to 

extinction). Average change of early to late CS-US neural pattern similarity was analyzed at 

the group level with paired-samples t-tests. Due to the expected negative change for CS1
+ and 

CS1
– and the expected positive change for CS2

+ and CS2
– across trials, we used one-tailed 

tests accordingly. 

 

Code Accessibility and Data Availability  
Custom analysis code for the reported behavioral data analyses and the multivariate fMRI, 

behavioral data, extracted classification accuracies, neural pattern similarity matrices and 

thresholded, unthresholded statistical maps that support the findings of this study are available 

at GitHub (https://github.com/LLuettgau/higher_order_learning). There are restrictions to the 

availability of the neuroimaging raw data due to them containing information that could 

compromise research participant privacy/consent. Neuroimaging raw data are available upon 

reasonable request from the corresponding author (LL). 
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Figure 1. Experimental procedure, task schematic and behavioral results. 

A) Experimental procedure: Participants in the fMRI study (N = 29) performed both day 1 and day 

2 (B-E), participants in the behavioral study (N = 20) only performed the procedures of day 2 (C-E, 
outside fMRI). B) Classifier training experiment: After rating of subjective value and intensity of both 

gustatory US (orange juice and quinine), in a total of five runs each US was administered twenty 
times (40 trials per run, 200 trials in total). Per trial, one US (1 ml bolus per trial) was delivered. In 

the fMRI study, the US bolus onset was preceded by a blue square. Trials were separated by an 
inter-trial-interval (ITI) marked by a grey screen. Participants performed a 0-back-style attentional 

control task. In 20% pseudo-randomly selected trials, participants were presented with probe trials 
in which they were asked to indicate which US they had received last (“pleasant” (US+) or 

“unpleasant” (US–)). C) First-order conditioning (outside MRI): In each trial, a CS1 was followed by 
an inter-stimulus interval marked by a fixation cross, and oral infusion of one US. Trials were 
separated by an ITI marked by a grey screen. CS1 were followed by a US with 80% probability. D) 

Second-order conditioning: In each trial, a CS2 was followed by an inter-stimulus interval marked 
by a fixation cross, and a CS1. CS2 were followed by a CS1 fully deterministically. Each trial was 

separated by an ITI marked by a grey screen. E) Choice preference test: Following SOC, 
participants were presented with two separate test phases consisting of repeated binary choices 

between pairs of CS1 (right) and pairs of CS2 (left) to assess behavioral signatures of first- and 
second-order conditioning. F) Behavioral results (combined across fMRI and behavioral study, N = 

49): Raincloud plots (Allen et al. 2019) showing density of choice probability. Box plot center lines 
represent (pre-averaged) medians and box bottom/top edges show 25th/75th percentile of the (pre-

averaged) data, respectively. 
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Results  

Behavioral evidence for transfer of motivational value during second-order conditioning 

Across two experiments, we found behavioral evidence that our second-order conditioning 

procedure induced both direct associative learning (CS1) and associative transfer learning 

effects (CS2). Our data suggests that second-order conditioning induces preferences for 

higher-order conditioned stimuli – stimuli that had themselves never been directly paired with 

a reinforcing event or outcome. Participants (N = 49, combined across two experiments) first 

established Pavlovian visuo-gustatory associations between a visual CS+
1 and an appetitive 

gustatory US+ (chocolate milk or orange juice), and between a visual CS–
1 and an aversive 

gustatory US– (quinine-HCl) during first-order conditioning (FOC, performed outside MRI, Fig. 

1C). During SOC, participants were visually presented with CS2
+ followed by CS1

+, CS2
–

 

followed by CS1
–, and a pairing of CS2

n followed by CS1
n (Fig. 1D). Since CS1

n had not been 

presented during first-order conditioning, both CS2
n and CS1

n were considered neutral CS, 

serving as control stimuli in fMRI analyses. Importantly, participants were not informed about 

the underlying associative structure of the tasks but were instructed to perform simple 

attentional control tasks. This was aimed at leaving participants unaware of the associative 

learning process. Post-experimental tests for explicit knowledge indeed revealed that 

participants were unaware of the (indirect) associations between CS2 and US (Table 1). The 

number of participants that had indeed realized the indirect associations between CS2 and US 

was significantly below the value that would be expected under a random guessing assumption 

(29%, P = 0.004, binomial test vs. 0.5). Participants could also not reliably indicate which CS2 

and which US had been indirectly linked in the experiment (mean correct responses: M = 0.31, 

SD = 0.68, maximum of 2 correct answers possible, Table 1). In a subsequent choice 

preference test (Fig. 1E), participants performed binary decisions between pairs of CS1 and 

CS2. Choice trials were interspersed with lure decisions between CS1
n or CS2

n and other lure 

fractals or kanjis, respectively, that had only been seen during pre-task rating. We reasoned 

that choice probabilities should exceed the indifference criterion (choice probability > 0.5) if  
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Table 1. Explicit knowledge of CS-US associations 
 

Note: Number (N) and percentage (in parentheses) of participants indicating explicit knowledge of 

CS–US associations between directly paired CS1 and US (providing an answer to the question 
which CS1 was associated with which US, regardless of being correct or incorrect) and indirectly 

paired CS2 and US (responding “yes” to the question whether there was a relationship between 
CS2 and US). These numbers of participants were significantly above (CS1–US) and below (CS2–

US) the numbers expected under the assumption of random guessing, P < .001 and P = .004, 
respectively (Binomial test vs. 0.5). Additionally, we provide the mean (and standard deviation, SD) 

number of correct answers for CS–US associations between CS1 and US, and CS2 and US. Since 
participants were presented with two CS–US associations during conditioning, the maximum 

number of correct answers is 2 in both cases. 
 

associative direct (CS1) and associative transfer (CS2) learning effects occurred. Additionally, 

we assumed that choice probability should not exceed the indifference criterion in trials  

involving CSn-to-lure stimuli, since both CS2
n and CS1

n had not been paired with a US and 

should therefore not have acquired motivational value. Combined across the two experiments, 

participants showed a preference both for the appetitive first- and second order stimuli, CS1
+ 

and CS2
+, respectively, over the aversive CS1

– and CS2
– (Fig. 1F). Among six candidate 

Bayesian multilevel generalized linear models, a model that combined individually varying 

intercepts for each participant with covarying CS-specific intercepts (Equation/Model 5) best 

captured the observed pattern of choice behavior using Pareto-Smoothed Importance 

Sampling (PSIS) values (± standard error): Model 5 = 1788.6 (±53.13), Model 6 = 2034.8 

(±33.53), Model 4 = 3173.2 (±18.37), Model 2 = 3184.5 (±15.64), Model 3 = 3236.6 (±8.34), 

Model 1 = 3239.1 (±8.12). We found converging evidence using Widely Applicable Information 

Criterion (WAIC) values (± standard error): Model 5 = 1782.5 (±52.65), Model 6 = 2033.1 

(±33.50), Model 4 = 3173.0 (±18.36), Model 2 = 3184.4 (±15.62), Model 3 = 3236.6 (±8.36), 

Model 1 = 3239.0 (±8.08). Model 5 had higher predictive accuracy than any other model 

considered and captured the choice behavior more accurately than the more complex model 

CS1–US  
(N = yes) 

CS1–US 
(Mean + SD) 

CS2–US  
(N = yes) 

CS2–US 
(Mean + SD) 

    
38 (78 %) .98 (.95) 14 (29 %) .31 (.68) 
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combining individually varying intercepts, study-specific intercepts with covarying CS-specific 

intercepts (Equation/Model 6). This suggest that adding information about study (behavioral or 

fMRI) does not further increase the model's predictive accuracy - indicating that choice 

behavior did not differ between the two studies. Within the varying intercepts model 

(Equation/Model 5), the highest posterior density intervals (HPDI) around the group-level 

intercept parameter (i.e. the mean posterior choice probability, 𝜇⍺= .71) for CS1
+ versus CS1

– 

[.61; .81] and for CS2
+ versus CS2

– (𝜇⍺= .69) [.56; .81] did not overlap (0% overlap) with the 

defined ROPE (choice probability = [.45; .55]). Importantly, there was no evidence for both 

choice probabilities of CS1
n (𝜇⍺= .50) and CS2

n (𝜇⍺= .42) being different from chance level in 

CSn-to-lure comparison choice trials (Fig. 1F, HPDIs: [.38; .62] and [.31; .53], 57.43% and 

28.05% ROPE overlap, respectively). This indicates that our conditioning procedure reliably 

induced both direct associative (CS1) and associative transfer learning effects (CS2). Together, 

these data indicate that our conditioning procedures induced both a preference of CS1
+ over 

CS1
–, and of CS2

+ over CS2
–.  

 

CS and US ratings 

CS1 ratings. During the ratings prior to the learning experiment, the subjective values/liking for 

the three fractals selected as CS1
 were higher for CS1

n than CS1
– (t48 = 2.26, P = .028, paired-

samples t-test). Of note, this difference was only significant within the fMRI study (CS1
n > CS1

–

: t28 = 2.44, P = .022, paired-samples t-test). We reason that the observed difference most 

likely resulted from the selection process and the inherent rank-ordering of the CS according 

to subjective value ratings. However, there were no significant differences between CS1
n and 

CS1
+ (t48 = 1.68, P = .101, paired-samples t-test). Most importantly, no rating differences were 

observed between CS1
– and CS1

+ (t48 = 0.44, P = .659, paired-samples t-test), indicating that 

there were no systematic (and unintended) differences between the selected fractals that were 

later paired with US– or US+. A rmANOVA evaluating changes in pre-post ratings indicated that 

none of the CS1 was rated significantly different from the others across ratings (main effect of 

stimulus:  F2,96 = 3.09, P = .050, η2
p = .06, rmANOVA). There was also no significant pre-post 
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change in ratings across all CS1 (main effect of time: F1,48 = 2.02, P = .161, η2
p = .04, 

rmANOVA). However, there was a significant CS x time interaction effect (F2,96 = 3.36, P = 

.039, η2
p = .07, rmANOVA), that was driven by more positive change of CS1

+ ratings compared 

to CS1
- (t48 = 2.06, P = .045, paired-samples t-test on pre-post differences) and CS1

n (t48 = 2.52, 

P = .015, paired-samples t-test on pre-post differences), but no significant difference between 

CS1
- and CS1

n  (t48 < .01, P > .999, paired-samples t-test on pre-post differences). The CS x 

time interaction effect was marginally significant in the behavioral study (F2,38 = 2.78, P = .075, 

η2
p = .13, rmANOVA), but was not significant in the fMRI study (F2,56 = 1.17, P = .318, η2

p = 

.04, rmANOVA). In the behavioral study, there was more positive change of CS1
+ ratings 

compared to CS1
n (t19 = 2.97, P = .008, paired-samples t-test on pre-post differences), but all 

pairwise comparisons were not significant within the fMRI study (all Ps > .184).  

CS2 ratings. None of the three kanjis selected as CS2
 differed significantly from each 

other during the pre-experimental rating (all Ps > .919), indicating that there were no systematic 

(and unintended) differences between the selected kanjis that were later paired with CS1
– or 

CS1
+. Similarly, in an rmANOVA evaluating changes in pre-post ratings, none of the CS2 was 

rated significantly different from the others across both ratings (main effect of stimulus:  F2,96 = 

.46, P = .630, η2
p = .01, rmANOVA). There was significant pre-post change in ratings across 

all CS2 (main effect of time: F1,48 = 4.11, P = .048, η2
p = .08, rmANOVA), resulting from slightly 

overall higher ratings after learning (mean difference: M = .29). This effect was marginally 

significant in the behavioral study (F2,38 = 3.34, P = .083, η2
p = .149, rmANOVA), but was not 

significant in the fMRI study (F2,56 = 1.31, P = .263, η2
p = .05, rmANOVA). However, there was 

no significant CS x time interaction effect for CS2 ratings (F2,96 = .89, P = .416, η2
p = .02, 

rmANOVA).  

Together, both CS1 and CS2 rating results indicate that the conditioning procedure only 

induced reliable changes in subjective value/liking of CS1
+ (compared with CS1

n) in the 

behavioral study, but these changes were not found in the fMRI study. CS2 ratings did not 

exhibit systematic changes in subjective value/liking. 
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US ratings (learning experiment). Overall, US valence ratings did not differ from pre to 

post rating across both US (main effect of time (pre/post): F1,48 = 0.34, P = .564, η2
p = .01, 

rmANOVA), but the appetitive US+ was rated as significantly more pleasant than the aversive 

US– (main effect of stimulus: F1,48 = 466.64, P < .001, η2
p = .91, rmANOVA). There was also a 

significant interaction effect between stimulus and time, indicating that US+ was rated as more 

pleasant and US– was rated as less pleasant from pre to post (interaction effect of stimulus x 

time: F1,48 = 7.32 P = .009, η2
p = .13, rmANOVA). Importantly, no subject rated US– as more 

pleasant than US+ (pre or post). These results indicate that both US– and US+ possessed the 

intended reinforcing properties and valence, both before and after being used as unconditioned 

stimuli in first-order conditioning. Additionally, these reinforcing properties were even 

enhanced over the course of conditioning, ruling out potential exposure-dependent habituation 

or devaluation of the reinforcers. In the fMRI study, intensity ratings did not differ between US 

overall (main effect of stimulus: F1,28 = 1.05, P = .315, η2
p = .04, rmANOVA), but US were rated 

as significantly more intense at the post rating (main effect of time: F1,28 = 4.89, P = .035, η2
p 

= .15, rmANOVA). There was also a significant interaction effect between stimulus and time, 

indicating that US– intensity rating increased more strongly than US+ from pre to post 

(interaction effect of stimulus x time: F1,28 = 5.62, P = .025, η2
p = .17, rmANOVA). The average 

temperature (°Celsius) of US+ (M = 22.49, SD = 1.46) was significantly higher than temperature 

of US– (M = 22.37, SD = 1.52) before being loaded into the syringes (t27 = 2.22, P = .035, 

paired-samples t-test). However, we would argue that this minor difference in average 

temperatures (M = .12) is unlikely to be perceived by participants. Additionally, this difference 

does not meaningfully influence the observed results, since no neural activation was recorded 

during first-order conditioning and the multivariate classification analysis was trained on the 

data resulting from the fMRI classifier training experiment. 

US ratings (classifier training experiment). In the fMRI classifier training experiment, 

overall US valence ratings were higher in pre than in post rating (main effect of time: F1,28 = 

11.67, P = .002, η2
p = .29, rmANOVA), but the appetitive US+ was rated as significantly more 

pleasant than the aversive US– across ratings (main effect of stimulus: F1,28 = 185.28, P < .001, 
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η2
p = .87, rmANOVA). There was no significant interaction effect between stimulus and time 

(F1,28 = 0.28, P = .602, η2
p = .01, rmANOVA). Importantly, no subject rated US– as more 

pleasant than US+ (pre or post). Intensity ratings for US+ were higher than for US– across 

ratings (main effect of stimulus: F1,28 = 15.14, P < .001, η2
p = .35, rmANOVA). There was no 

difference between US ratings from pre to post (main effect of time: F1,28 = 0.02, P = .899, η2
p 

< .001, rmANOVA). However, there was also a marginal interaction effect between stimulus 

and time, indicating that US– intensity rating increased while US+ intensity rating decreased 

from pre to post (interaction effect of stimulus x time: F1,28 = 3.93, P = .057, η2
p = .12, 

rmANOVA). Average temperature of US+ (M = 21.71, SD = 1.93 °C) and US– (M = 21.68, SD 

= 1.95) did not differ before being loaded into the syringes (t27 = 0.71, P = .486, paired-samples 

t-test).  

 

First-order CS reinstate neural US patterns during second-order conditioning 

After establishing behavioral evidence for associative transfer learning, we reasoned that a 

prerequisite for the observed learning effect would be reinstatement of the neural US pattern 

by the paired CS1 to establish a direct associative link between CS2 and US. Importantly, it 

should be noted that US reinstatement during SOC could only be faithfully attributed to the 

respective CS1, but not to CS2, since only CS1 had been directly paired with the US, and CS2 

had not previously been experienced. To test for cortical reinstatement of neural patterns 

representing US during second-order conditioning, we used functional magnetic resonance 

imaging (fMRI) and a cross-session (Stokes et al. 2009), cross-modality searchlight 

(Kriegeskorte et al. 2006) classification approach (multivariate pattern analysis, MVPA). To 

obtain unbiased estimates of the neural patterns representing our gustatory US, without the 

confounding influence of associations to a learned first-order CS, we first performed an fMRI 

classifier training experiment on day 1 (Fig. 1B) during which the US+ and US– were presented.  
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Figure 2. Behavioral results separated for both studies. 
Results as in 1F, but separately for the behavioral (A, N = 20) and fMRI study (B, N = 29). Raincloud 

plots showing density of choice probability. Box plot center lines represent (pre-averaged) study 
medians and box bottom/top edges show 25th/75th percentile of the (pre-averaged) data, 

respectively.  

 

A multivariate pattern classifier (linear support vector machine, C-SVM) was trained on the 

fMRI data from this session. 

On day 2, during SOC, we used the weights of the classifier trained on gustatory neural 

patterns to predict the class label of the visual CS (Fig. 1D) that had been paired with the US 

during FOC (Fig. 1C, see Fig. 3A for schematic of the classification approach). In other words, 

we used data from one sensory modality, assessed during a first day to train a classification 

model and tested the model’s generalizability to unseen data from another sensory modality 
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on a second day. We found evidence for reinstatement of US patterns in a region in the left 

lateral orbitofrontal cortex (lOFC). In this region, it was possible to predict the class labels of 

neural CS patterns based on US pattern information obtained during classifier training on the 

previous day. Classification with a 3-mm searchlight revealed a small-volume corrected cluster 

of above-chance level (0.5) classification accuracy (extracted cluster mean = 0.56, SD =  0.07) 

in the left lateral OFC (lOFC, Fig. 3B, peak voxel at MNI [x = –21, y = 30, z = –17], z = 2.26, P 

= 0.012, random-effect cluster corrected (Stelzer et al. 2013), 50,000 iterations, one-tailed). 

The location of this lOFC cluster is consistent with this region's well-documented role in 

gustatory processing, particularly in representing motivational (Small et al. 1999; Rolls 2000, 

2006) aspects of gustatory sensation and taste memory (Kobayashi et al. 2004). To ensure 

that our results are not dependent on this particular choice of ROI, we repeated the same 

analysis using two different, independent ROIs. The first was an anatomical mask of lateral 

orbitofrontal cortex, the second was obtained from an independent gustatory mapping study 

by Benz and colleagues (K. Benz, personal communication, 12/2019). We found similar results 

in the left lOFC anatomical ROI (peak voxel at MNI [x = –21, y = 30, z = –17], z = 1.96, P = 

.024, corrected, one-tailed) and in the mask from Benz and colleagues (peak voxel at MNI [x 

= –21, y = 30, z = –17], z = 1.84, P = .033, corrected, one-tailed). 

 Very similar classification results could be obtained in the left lOFC if neural activation 

related to CSn was not subtracted from both CS2
+/CS1

+ versus CS2
–/CS1

– patterns before 

classification (as reported in the previous analysis).  

When we split participants into a high- and low-bias group, depending on their 

preference for the CS2
+, we observed that significant classification of CS labels in lOFC was 

possible in the high bias group (Z = 3.43, P = .006, U31 = .88, one-sample Wilcoxon signed-

rank test, two-tailed), but not in the low bias group (Z = 1.44, P = .151, U31 = .58, one-sample 

Wilcoxon signed-rank test, two-tailed, Fig. 3C). However, there was no significant difference 

in classification accuracies in lOFC between the high bias and low bias group (Z = 0.64, P = 

.260, U3 = .50, Mann-Whitney U test, one-tailed). In an additional exploratory analysis testing 

for sex differences, we found that classification accuracies in the lOFC did not differ between  
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Figure 3. Reinstatement of US representations during second-order conditioning. 
A) Analysis approach: For cross-session, cross-modality classification, a multivariate classifier was 

trained on the spatial activation patterns (t maps) of US+ versus US- (obtained from the classifier 
training session) and tested on CS2+/CS1+ versus CS2-/CS1- during SOC. CS2n/CS1n related 

activations were subtracted to control for general visual effects. B) Classification accuracy 
exceeded chance level (0.5) in a small-volume corrected cluster in the left lateral orbitofrontal cortex 

(lOFC), using random-effect cluster-statistics (Stelzer et al. 2013). C) Average classification 
accuracy in the lOFC cluster (extracted cluster mean = 0.56, SD = 0.07) was significantly above 

chance level in the high bias group of participants showing higher than chance preference for CS2+, 
but not in the low bias group. However, there was no significant difference in classification 

accuracies in lOFC between the high bias and low bias group. Color bar represents Z-values. Black 

dots indicate means and error bars represent standard errors of the means of the data, respectively. 

 

female (Median = .53) and male (Median = .55) participants (Z = 0.50, P = .616, U3 = .64, 

Mann-Whitney U test). 

 

Interaction between lOFC, amygdala, and medial OFC during second-order conditioning 

To form an associative link between CS2 and US, the reinstated US patterns need to be 

projected from their cortical storage site to regions like amygdala and hippocampus, allowing 

for convergence of US and CS2 information. We investigated BOLD signal covariation of the 

cluster in the left lOFC with the whole brain during SOC using two separate 

psychophysiological interaction (PPI) analyses. In the first PPI, we investigated general 

covariation differences in response to CS– and CS+ relative to CSn, reasoning that in the former, 

but not in the latter, reinstated US representations need to be linked with the CS. We found 

that covariation of BOLD signal in the left lOFC with a cluster in the left hippocampus, extending 

to amygdala and medial temporal lobe (Fig. 4A, peak voxel at MNI [x = –38, y = –11, z = –24], 
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Z = 3.75, P = .003, whole-brain corrected) and a cluster in the right inferior temporal gyrus, 

extending to the right hippocampus (peak voxel at MNI [x = 40, y = –32, z = –20], Z = 3.55, P 

= 0.007, whole-brain corrected) was higher in CS–
 and CS+ compared to CSn trials. Despite the 

fact that we used an approach with high statistical sensitivity for group-level cluster-based 

inference (FSL's FLAME1+2 (Beckmann et al. 2003)), a robust estimation technique that yields 

low family-wise errors rates even at liberal activation thresholds (Z > 2.3, corresponding to p < 

0.05) (Eklund et al. 2016), we would like to note that the aforementioned result did not survive 

whole-brain correction at more conservative thresholds (e.g. Z > 2.6). Additionally, it should be 

noted that the observed BOLD covariation differences could potentially also be explained by 

higher familiarity and salience of CS– and CS+ relative to CSn and cannot be attributed 

exclusively by the formation of associative links with a US. Furthermore, in the same PPI 

analysis, we found a positive correlation between second-order choice preference and 

functional covariation of the left lOFC with a region in the right and left lateral prefrontal cortex 

(Fig. 5, right peak voxel at MNI [x = 49, y = 41, z = 7], Z = 3.80, P < 0.001, whole-brain corrected; 

left peak voxel at MNI [x = –45, y = 46, z = –4], Z = 3.93, P = 0.010, whole-brain corrected). 

The more participants preferred CS2
+ (versus CS2

–), the stronger these regions’ BOLD signal 

covaried during SOC. Some studies hint at complex interactions between OFC and amygdala 

that differ between appetitive and aversive stimuli (Morrison et al. 2011). Therefore, we next 

asked whether there were any specific differences between CS– and CS+ trials in lOFC BOLD 

signal covariation with other regions. We found that covariation of the BOLD signal in the left 

lOFC was higher in CS+ compared to CS–
 trials in a cluster located in the medial OFC, 

extending to subgenual anterior cingulate cortex (Fig. 4B, peak voxel at MNI [x = 10, y =  50, 

z = –1], Z = 3.90, P < 0.001, whole-brain corrected) and a cluster in the left anterior insula, 

extending to left caudo-lateral OFC and temporal pole (peak voxel at MNI [x = –51, y =  18, z 

= –11], Z = 3.33, P = 0.004, whole-brain corrected). Given both the difficulties in inferring 

directionality from fMRI data and the reciprocal nature of connections between lOFC and both 

amygdala and medial OFC, a directionality of our PPI results cannot be determined. Again,  
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Figure 4. Psychophysiological interaction analyses and neural pattern similarity results. 

A) BOLD covariation was higher in CS– and CS+ trials than in CSn trials between the left lOFC and 

a cluster in the anterior hippocampus, extending to (basolateral) amygdala and medial temporal 
lobe and a cluster in the right inferior temporal gyrus, extending to the right hippocampus. B) 

Covariation of BOLD signal in the left lOFC was higher in CS+ trials compared to CS– trials in a 
cluster located in the medial OFC, extending to subgenual anterior cingulate cortex. C, D) 

Template-based neural pattern similarity between US patterns from the classifier training 
experiment and CS2 (C) and CS1 (D) patterns during SOC, separately estimated for early (first 25 

trials) and late (last 25 trials) of SOC in a bilateral amygdala ROI. C) CS2– and US– patterns became 
more similar from early to late trials. However, there was no evidence for a difference between 

early and late trial similarity for CS2+ and US+. D) There was no evidence for change in similarity 
for CS1–-US– or CS1+-US+ neural pattern similarity. Black dots indicate means and error bars 

represent standard errors of the means of the data, respectively. Color bars represent Z-values. 

 

exploratory analyses testing for sex differences revealed no significant differences in either the 

PPI analysis comparing CS–/CS+ vs CSn (parameter estimates extracted from amygdala mask)  

or in the PPI analysis comparing CS– vs CS+ trials (parameter estimates extracted from mOFC 

mask) between female and male participants (Z = 1.07, P = .285, U3 = .64, Mann-Whitney U 

test and Z = .98, P = .326, U3 = .57, Mann-Whitney U test, respectively). 
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Figure 5. Psychophysiological interaction analyses: Association with second-order choice 
preferences. 

A positive correlation was observed between second-order choice preferences (CS2+ versus CS2–

) and functional covariation between the left lOFC and a region in the right and left lateral prefrontal 

cortex. The more participants preferred CS2+ (versus CS2–), the higher these regions’ activation 
covaried during second-order conditioning. Color bar represents Z-values. 

 

Plasticity of association between second-order CS and US in the amygdala 

We reasoned that if the amygdala uses the reinstated cortical outcome pattern in lOFC to 

acquire an association between CS2 and the respective US, one would expect similarity 

between the neural patterns evoked by CS2 and US, respectively. This similarity should 

increase over the course of second-order conditioning, as the association is being acquired. 

Importantly, during the classifier training experiment, there was evidence for US 

representations in the amygdala. We found differential neural patterns in response to US– and 

US+ in the amygdala (among other regions) using an exploratory leave-one-run-out cross-

validated classification analysis on the neural pattern recorded during the classifier training 

experiment (Fig. 6). Using a least-squares separate (LS-S) approach (Mumford et al. 2012) to 

deconvolve single-trial estimates, we first computed overall neural pattern similarity 

(Kriegeskorte et al. 2008) between the pattern evoked by CS2 (during SOC) and their 

respective US (during classifier training) in the bilateral amygdala. There was significant 
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pattern similarity between CS2
– and US– (t28 = 3.38, P = 0.002, U31 = 0.79; but not between 

CS2
+ and US+, t28 = 0.74, P = 0.464, U31= 0.55). The reasons for this difference between CS2 

are unknown, but their investigation might present a fruitful avenue for future studies. Due to 

the observed disparity, we reason that it is possible that the observed preference for CS1
+ and 

CS2
+ was indeed due to an aversion against CS1

– and CS2
–. If the observed neural pattern 

similarity between CS2 and US indeed reflects the formation of an associative link during 

second-order learning, one would expect the observed similarity to increase from early to late 

stages of learning, as the association is being acquired and the CS2 comes to predict the US. 

We therefore compared our measure of neural pattern similarity between early and late trials 

of SOC. As expected, neural pattern similarity between CS2
– and US– in the bilateral amygdala 

ROI increased from early to late trials of SOC (t28 = 1.88, P = 0.035, Cohen’s d = 0.35, paired-

samples t-test, one-tailed, Fig. 4C). This change in similarity was not observed for the first-

order CS1
+-US+ or CS1

–-US– pattern similarity (Fig. 4D), nor for second-order CS2
+-US+ 

similarity (all P > .310, paired-samples t-tests, one-tailed, Fig. 4C).  

 

Discussion 

Using a second-order conditioning paradigm, we provided evidence for associative transfer of 

value during higher-order conditioning. Decisions were biased by values indirectly acquired by 

second-order learning. Participants were more likely to select directly and indirectly appetitively 

paired stimuli over aversively paired stimuli, closely resembling rodent studies describing 

instrumental behavior guided by second-order conditioning (Sharpe et al. 2017; Maes et al. 

2020). Notably, choice biases for second-order conditioned stimuli in the present study 

emerged in the absence of explicit knowledge of the underlying higher-order associative 

structure. This suggests that humans, similar to rodents, implicitly acquire preferences through 

higher-order transfer learning mechanisms – extending previous studies promoting acquisition 

of explicit associative relationships between stimuli (Jara et al. 2006; Pauli et al. 2019; Wang 

et al. 2020). 
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Figure 6. US+ versus US- classification. 
Group average (N = 29) cross-validated predictive accuracy for US+ versus US- activation patterns 

during the classifier training experiment. As an exploratory analysis, we used multivariate 
searchlight classification (3-mm searchlight spheres) to distinguish between the spatial activation 

patterns (t maps) of US+ versus US- across the whole brain, resulting in one whole-brain map of 
classification accuracies per participant. This classification was performed using a 5-fold cross-

validation scheme. Data was averaged across participants and smoothed with a Gaussian kernel 
with 5 mm FWHM. Please note that due to the exploratory nature and illustrative purpose of this 
analysis, no multiple comparisons correction using random-effects cluster-statistics was performed. 

Color bar represents uncorrected Z-values. 

 

The present study thus demonstrates that human value-based decision making is affected by 

motivational value implicitly conferred via second-order conditioning. Our study is – to the best 

of our knowledge – the only report so far demonstrating that human binary decision making is 

governed by motivational value transfer via second-order conditioning. Although there is a rich 

literature on second-order conditioning, direct evidence for this phenomenon in humans using 

similar procedures as in previous animal work was lacking. Our study enables a closer 

comparison between humans and other species during higher-order learning. Moreover, even 

animal studies, albeit well-covering Pavlovian settings (Gewirtz and Davis 2000; Sharpe et al. 

2017), have thus far not reported effects of second-order conditioning on binary choice 

behavior.  
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Thus far, most studies investigating higher-order learning effects in humans have used 

sensory preconditioning procedures (Wimmer and Shohamy 2012; Kurth-Nelson et al. 2015; 

Wang et al. 2020). Theoretical accounts and empirical findings suggest that the value structure 

acquired during sensory preconditioning and second-order conditioning – despite the close 

conceptual links between paradigms – differs fundamentally. In sensory preconditioning, a 

stimulus-stimulus association is acquired first (preconditioning phase), before one stimulus is 

paired with an outcome (conditioning phase). It has been found that preconditioned stimuli do 

not directly acquire value, as they do not serve as conditioned reinforcers (Sharpe et al. 2017). 

Instead, preconditioned stimuli reactivate both conditioned stimuli and indirectly associated 

outcome representations at preference assessment (Barron et al. 2020; Wang et al. 2020), 

suggesting value inference based on associative chaining. Contrarily, during second-order 

conditioning, second-order CS directly acquire value, allowing them to act as conditioned 

reinforcers (Sharpe et al. 2017). These findings indicate that associative transfer of 

motivational value from outcomes to higher-order, indirectly paired CS are observed in second-

order conditioning, but not in sensory preconditioning.  

 We found reinstatement of neural representations of gustatory outcomes by directly 

paired visual first-order CS. This reinstatement occurred in a region in the rostrolateral OFC, 

which has previously been implicated in representing stimulus-outcome associations (Klein-

Flügge et al. 2013; Jocham et al. 2016; Luettgau et al. 2020) and in correctly assigning credit 

for a reward to the causal stimulus choice (Walton et al. 2010; Jocham et al. 2016). It is also 

part of the network most consistently involved in taste processing (Neurosynth, Yarkoni et al., 

2011) and plays a well-documented role in representing motivational aspects of gustatory 

sensation (Small et al. 1999; Rolls 2000, 2006) and taste memory (Kobayashi et al. 2004). 

Importantly, we had trained the classifier on gustatory US prior to pairing them with first-order 

CS (on a separate day). Thus, decoding of the visual CS during second-order learning cannot 

be spuriously driven by visual responses elicited by the US or the visual swallowing cue during 

classifier training. Despite the fact that the classifier was tested on the entire activation pattern 

elicited by the CS1-CS2-pairs, US reinstatement during second-order conditioning is most likely 
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attributable to the respective CS1. This is due to the fact that, despite the close temporal 

proximity with CS2, only CS1, but not CS2, had been directly paired with the outcome and 

should thus elicit a US representation (Wagner 1981). Since we had optimized our design for 

behavioral second-order learning effects by introducing only small temporal offsets between 

first- and second-order CS, methods with higher temporal resolution than fMRI would be 

required to dissociate the specific responses to CS1, and CS2. 

 OFC clearly does not act in isolation. The OFC region in which we observed 

reinstatement of outcome representations displayed increased task-related BOLD signal 

covariation with amygdala, anterior hippocampus, and medial OFC during second-order 

learning. Neurons in OFC and amygdala show complex, bi-directional interactions during 

acquisition and reversal of outcome-predictive associations (Morrison et al. 2011). Functional 

disconnection of OFC and amygdala using asymmetric lesions produces deficits in flexibly 

adjusting behavior to changes in stimulus value (Baxter et al. 2000; Fiuzat et al. 2017). We 

also observed that representations of visual second-order CS in amygdala became more 

similar to gustatory US representations from early to late phases of second-order conditioning. 

This indicates development of an associative link between CS2 and US, consistent with the 

finding that both amygdala and hippocampal lesions impair second-order learning (Gewirtz 

and Davis 1997; Gilboa et al. 2014).  

Similar to the present results, two previous fMRI studies in humans used sequential 

Pavlovian conditioning paradigms to investigate higher-order learning. Whereas Seymour and 

colleagues (Seymour et al. 2004) elegantly show that human learning about sequentially 

presented pain-predictive stimuli relies on the formation of stimulus-stimulus associations and 

follows temporal difference learning algorithms, putatively implemented in the striatum, Pauli 

and colleagues (Pauli et al. 2019) provide evidence for model-based representation of 

stimulus-stimulus associations in the lateral OFC. However, in both paradigms, two CS and a 

US are presented in close temporal proximity within the same trial. This approach differs from 

the present design in two important ways. Firstly, unlike second-order conditioning, the 

paradigm employed by Pauli and colleagues does not require any reinstatement of US 
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representations, nor any transfer of value, but rather imposes different temporal offsets 

between CS and US. This is in contrast to second-order conditioning, where CS2 is presented 

in a separate block that is entirely devoid of US presentations. Secondly, in both studies, it is 

difficult to dissociate the activation patterns related to the proximal CS (Pauli et al. 2019) or 

Cue B/D (Seymour et al. 2004) (CS1 in second-order conditioning), CS-related anticipatory 

pre-activation of US representations and the neural activation related to the US presentation. 

In contrast, here we trained the classifier on the (gustatory) US on a separate day and then 

tested on the (visual) CS presented during the second-order learning phase. 

Another fMRI study in humans using multivariate pattern classification provides 

evidence that – similar to the present study – neural pattern similarity between reward-

predictive cues and rewards increases over the course of Pavlovian conditioning. This 

indicates that, as the association is learned, the reward-predictive cue comes to elicit the 

neuronal representation of the reward (Kahnt et al. 2011). The current study extends on these 

findings, firstly by showing that first-order stimuli are capable of reinstating neural outcome 

representations even in a later learning stage (second-order learning), in the complete 

absence of outcomes, and secondly, by demonstrating that indirectly paired (second-order) 

stimuli similarly acquire higher-order outcome-predictive properties that guide decision making. 

Furthermore, in the present study, we used primary reinforcers (as opposed to monetary 

rewards in Kahnt et al., 2011), which enables a closer comparison across species. We also 

classified visual stimuli in a phase that was devoid of any direct exposure to reinforcement. 

Since we trained the classifiers on activation patterns related to gustatory stimuli that had been 

presented on a separate day, it was possible to mitigate potential biases arising from 

classification within the same sensory modality and from performing cross-validation within 

data from the same fMRI session. 

Our study presents a neural mechanism for associative transfer learning in second-

order conditioning, which thus far has remained unclear. At least four potential mechanisms 

have been proposed (Rizley and Rescorla 1972; Barnet et al. 1991; Gewirtz and Davis 2000). 

Three of these suggest that CS2 could become associated with a CR using (i) the associative 
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link between stimulus representations of CS2 and CS1, (ii) direct pairing of the CS1-evoked CR 

with CS2, or (iii) because CS1 reactivates US representations which then evoke a CR that 

becomes paired with CS2. Previous studies clearly suggest that neither of these three 

hypotheses can account for second-order learning effects (Rizley and Rescorla 1972; Barnet 

et al. 1991). It has been shown that CRs towards CS2 are unaffected by CS1 extinction after 

second-order conditioning (Rizley and Rescorla 1972; Barnet et al. 1991). Additionally, the 

magnitudes of CRs for CS2 and CS1 appear largely uncorrelated (Barnet et al. 1991). Together, 

these previous findings make it highly implausible that CS2–CS1 associations are necessary for 

the expression of CS2-related CRs, or that CS2 could be associated with CRs elicited by CS1. 

Here, we provide evidence for a fourth possibility (Gewirtz and Davis 2000; Parkes and 

Westbrook 2011): that CS2 is directly paired with a neural representation of the US, or with the 

motivational state conveyed by the US. Our results suggest that, during second-order 

conditioning, outcome representations are reinstated in the lateral OFC. Information of 

reinstated outcome representations could be communicated between lOFC and 

amygdala/anterior hippocampus for associative linking between neutral stimuli and outcomes. 

It should be noted that the present design does not allow us to dissociate whether the 

reinstated US representations detected by the classification algorithm pertain to the value, 

intensity or sensory features of the US – or a combination of these features. However, the 

question which of these features was reinstated by CS1 and contributed to the associative 

transfer of value to CS2 is beyond the scope of the present study. Future studies should aim at 

replicating and maximizing the present, rather subtle higher-order and neural reinstatement 

effects. This could be achieved by using more strongly aversive (e.g., more aversive gustatory 

stimuli or mild electric shocks) and appetitive stimuli, presumably combined with even more 

enhanced periods of food – or even water – deprivation in volunteers. 

How the reinstatement of cortical US patterns found in our study relates to the 

observation in rats that midbrain dopamine neurons acquire temporal difference error signals 

in response to CS2 (Maes et al. 2020) presents an important question for future studies. 

Furthermore, it would be of great interest to elucidate the directionality and exact content of 
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information flow between lOFC and amygdala/anterior hippocampus, and whether this transfer 

of information is supported by phase coherence in theta oscillations (Benchenane et al. 2010; 

Young and Shapiro 2011; Knudsen and Wallis 2020).  

Taken together, our data support the idea that during second-order conditioning, 

second-order CS and representations of outcomes – events that had never been explicitly 

paired during the individual’s learning history – can be linked by exploiting the relational 

structure of events. The present study enables a closer comparison between humans and 

other species during higher-order learning. In conclusion, our results suggest a neural 

mechanism by which outcome representations can be propagated to stimuli that are never 

experienced in contiguity with reinforcement, allowing for credit assignment in real-world 

learning scenarios with infrequent direct encounters with rewards or punishments.  
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