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Abstract

Dimension reduction plays a pivotal role in
analysing high-dimensional data. However, obser-
vations with missing values present serious difficul-
ties in directly applying standard dimension reduc-
tion techniques. As a large number of dimension
reduction approaches are based on the Gram ma-
trix, we first investigate the effects of missingness
on dimension reduction by studying the statisti-
cal properties of the Gram matrix with or without
missingness, and then we present a bias-corrected
Gram matrix with nice statistical properties under
heterogeneous missingness. Extensive empirical re-
sults, on both simulated and publicly available real
datasets, show that the proposed unbiased Gram
matrix can significantly improve a broad spectrum
of representative dimension reduction approaches.

1 INTRODUCTION

Dimension reduction (DR) is important for analysing high-
dimensional data as it helps reveal underlying structures
of the data. A large number of DR methods have been
successfully applied to real data, such as principal com-
ponents analysis (PCA) [Pearson, 1901], dual probabilistic
PCA and its non-linear variant Gaussian process latent vari-
able model (GPLVM) [Lawrence, 2005]. However, missing
data arise in many applications [Marlin et al., 2007, Shen
et al., 2015, Hicks et al., 2017], making it infeasible stan-
dard DR methods, which are usually designed for complete
data. To address the problems posed by missing data, a
broad spectrum of methods have been proposed, includ-
ing the expectation-maximisation approaches [Little and
Rubin, 2019], the direct imputation of observations via ei-
ther matrix completion [Candès and Recht, 2009, Candes
and Plan, 2010, Hastie et al., 2015] or by chained equa-
tions [Van Buuren, 2018], and the implicit imputation of

covariance matrix [Cho et al., 2017, Zhu et al., 2019].

In this work, we focus on the implicit imputation of the
Gram matrix and show that an unbiased estimator of it, in
the presence of missing data, offers a significant prospect
for enhancing the reliability of many DR procedures. Specif-
ically, a large number of widely used DR methods obtain
the low-dimensional projections via the distance matrix or
the Gram matrix rather than the data matrix. For example,
multidimensional scaling (MDS) seeks to find an embed-
ded low-dimensional structure, of which the distance ma-
trix is as close to the high-dimensional distance matrix as
possible [Torgerson, 1952]. In addition, the objective of
preserving the distance relationship between data points
is shared by many dimension reduction algorithms. Algo-
rithms such as the t-distributed stochastic neighbor embed-
ding (tSNE) [Maaten and Hinton, 2008] and the uniform
manifold approximation and projection (UMAP) [McInnes
et al., 2018], two favoured visualisation tools in data anal-
ysis, build the stochastic relationship between data points
in the low-dimensional space based on their original Eu-
clidean distances. Similarly, dual probabilistic PCA and
its non-linear variant GPLVM also seek to find the low-
dimensional embedding using the Gram matrix [Lawrence,
2005]. It is adequate for performing the aforementioned
methods through precise calculation of either the Gram ma-
trix or the distance matrix, due to the linear transformations
between these two matrices: the Gram matrix can be ob-
tained by doubly centering the squared Euclidean distance
matrix [Van Der Maaten et al., 2009], while there also exists
a linear transformation for converting the Gram matrix to
the distance matrix, as shown by (14)). Consequently, for
the relevant DR approaches, we do not need to impute the
missing values as long as we can estimate the distance or
Gram matrix reliably in such cases.

Although Cho et al. [2017] and Zhu et al. [2019] studied
the eigenvectors and eigenvalues for homogeneous and het-
erogeneous missing data, respectively, the effect of missing
data on the techniques beyond PCA remains unclear. More-
over, the consequences of neglecting missing observations
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are not thoroughly studied from a statistical perspective.
Therefore, this paper aims to fill in this critical gap by mak-
ing the following contributions. First, we elucidate how a
reliable Gram matrix can ensure the powerful representation
using GPLVM, a generalised framework for DR where the
Gram matrix can be seen as an estimator of the covariance
matrix [Lawrence, 2005] (sec.2.1). Secondly, we show that,
owing to missing data, the original computation of the Gram
matrix by an inner product matrix is a biased estimator of
the covariance matrix with a larger variance under the frame-
work of GPLVM, and we propose unbiased estimators in
the cases of homogeneous missingness (sec.2.2) and hetero-
geneous mechanism (sec.2.3). In addition, we clarify the
role of input dimension in the relevant dimension reduction
methods, based on its relationship with the variances of the
estimators (sec.2.4).

The data illustrated in this paper include image data and
single-cell RNA sequencing (scRNA-seq) data, which mea-
sure gene expression at a single-cell level and offer a way to
investigate the stochastic heterogeneity of complex issues on
a near-genome-wide scale [Saliba et al., 2014, Shapiro et al.,
2013, Kolodziejczyk et al., 2015]. The comparison is con-
ducted in two aspects: visualisation and clustering results,
on both simulated and real datasets (sec.4.4 and sec.4.5).
Moreover, we empirically verify that the impact of input
dimension is consistent to the results from our theoretical
analysis (sec.4.3).

2 PROPOSED UNBIASED ESTIMATORS

In this section, we first show that the Gram matrix of high-
dimensional data is an unbiased estimator of a covariance
matrix when there is no missing observation and we clarify
the importance of accurately computing the Gram matrix
under the framework of GPLVM. The missing data model
is then introduced and leads to bias in the estimator, and an
unbiased estimator is derived in the presence of missing ob-
servations. Finally, we elucidate the role of input dimension
on DR.

2.1 FOR COMPLETE DATA

Consider a dataset of N observations and D features rep-
resented as an N × D matrix Y = [y1, . . . ,yN ]T , where
yi ∈ RD is a D-dimensional observation. Under the as-
sumption of GPLVM, every dimension is a realisation of
a Gaussian process (GP) indexed by the latent variables
X = [x1, . . . ,xN ]T , where xi ∈ Rd and d is the di-
mension of the latent space (normally d � D). Let the
GP have a mean function m(x) and a covariance function
k(x,x′). For simplicity, m(x) is taken to be the zero func-
tion (m(x) = 0). Let y:,i denote the i-th column of the data
matrix Y , GPLVM assumes that y:,i ∼ N (0,K), where
K is the covariance matrix with Kij = k(xi,xj). GPLVM

then aims to find the latent variables by maximising the
marginal likelihood of the data:

log p(Y |X, θ) =

D∑
s=1

log p(y:,s|X, θ), (1)

where

log p(y:,s|X, θ) = −1

2
yT
:,sK

−1y:,s−
N

2
log2π−1

2
log |K| .

The above formulation provides a probabilistic interpreta-
tion of dual PCA in the case of the linear covariance function
k(xi,xj) = xT

i xj . Notably, GPLVM would be a non-linear
model as long as K is obtained by a non-linear covariance
function. Here we denote the latent points found by GPLVM
by X̂ and denote the corresponding covariance matrix by
K̂ to differentiate them from the true latent points X and
true covariance matrix K, respectively.

The following Kullback-Leibler (KL) divergence, between
the two Gaussians [Kullback and Leibler, 1951] equiva-
lent to (1) up to a constant independent of X , clarifies the
objective of GPLVM:

KL(N (z | 0, 1

D
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tr(
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D
GK−1)− N

2
,

(2)

where G = Y Y T is the Gram matrix. Thus, GPLVM seeks
a matrix of latent points X̂ , which generate the covariance
matrix K̂, with K̂ij = k(x̂i, x̂j), as close to 1

DG as possible
in terms of KL divergence. Moreover, 1

DG can be regarded
as an estimator of the covariance matrix in N (0,K). Since
Gij =

∑D
s=1 yisyjs, under the assumption that each column

of Y follows N (0,K), the asymptotic properties of 1
DG

can be summarised by the Lindeberg–Lévy central limit
theorem (CLT) as [Lehmann, 2004]

√
D(

Gij

D
−Kij)

dist.→ N (0,KiiKjj +K2
ij), i 6= j,

√
D(

Gii

D
−Kii)

dist.→ N (0, 2K2
ii), i = j, as D →∞.

(3)
That is, when there is no event of missingness, not only 1

DG
is an unbiased estimator of the covariance matrix K, but
also, with a higher dimension D, 1

DG is an estimator of
higher accuracy because the variance shrinks with D.

2.2 FOR DATA WITH HOMOGENEOUS
MISSINGNESS

The nice asymptotic properties in (3) may not hold as miss-
ing data exist. It is hence necessary to investigate the con-
sequences of directly using the Gram matrix obtained from
data with missing values. Let Ỹ denote the complete data
matrix without missing entries and Y the partially observed



data matrix. We define a N ×D binary revelation matrix Ω
with 1 representing the corresponding entry in Ỹ being ob-
served and 0 for the missing entry. Here, we assign a value
of 0 to missing entries, as Cho et al. [2017], Zhu et al. [2019]
did in their work, to calculate the Gram matrix with miss-
ing observations by Y Y T . Therefore, we have Y = Ỹ ◦ Ω,
where ◦ denotes the element-wise product.

We first study a simple case where values in a dataset are
missing independently and completely at random (MCAR)
with the homogeneous probability. Under the framework of
GPLVM, we assume that the partially observed data matrix
Y is generated column-wise from N (0,K), followed by
the event of homogeneous missingness. The occurrences
of missing observations are assumed to follow independent
Bernoulli distributions with the homogeneous probability
1− p (0 < p ≤ 1). We also assume that the missing obser-
vations are independent of the Gaussian processes given p.
The detailed statistical model is

ỹ:,s ∼ N (0,K),

his | ỹis ∼ Bernoulli(p),

yis =

{
ỹis if his = 1,
0 if his = 0,

(4)

where ỹis is the true value in the i-th observation and s-th
feature (s = 1, . . . , D; i = 1, . . . , N).

From the above model, we get E(yisyjs) = p2Kij and
Var(yisyjs) = p2KiiKjj + K2

ij(2p
2 − p4) for i 6= j; and

E(y2is) = pKii and Var(y2is) = K2
ii(3p − p2). With the

CLT, the asymptotic properties of 1
DG, as D →∞, are

√
D(

Gij

D
− p2Kij)

dist.→ N (0, p2KiiKjj +K2
ij(2p

2 − p4)),

i 6= j;
√
D(

Gii

D
− pKii)

dist.→ N (0,K2
ii(3p− p2)), i = j.

(5)
Therefore, 1

DG is no longer an unbiased estimator of K for
data with missing values. As we mentioned in sec.2.1, the
Gram matrix is of importance to dual PCA and GPLVM.
Hence the latent points found by GPLVM with the original
Gram matrix G can be misleading. A straightforward solu-
tion to the problem is to use an unbiased estimator instead
of 1

DG. Based on the above analysis in (5), it is easy to see
that an unbiased estimator for K is a matrix G̃ where

G̃ij =
Gij

Dp2
(i 6= j) and G̃ii =

Gii

Dp
.

2.3 FOR DATA WITH HETEROGENEOUS
MISSINGNESS

In spite of the simplicity of the assumption presented in
sec.2.2, the homogeneous missing data model conflicts with
the fact that the missingness probability is often linked to

some internal or external factors in reality. For instance,
there usually exists an inverse relationship between the true
values and the corresponding missingness probabilities in
scRNA-seq data [Pierson and Yau, 2015]; in the recommen-
dation system, whether a user rates a movie is determined
by their preference and the movie’s genre. We therefore
consider the case where the missingness probabilities are
heterogeneous; that is, values are missing not at random
(MNAR). Further, we propose an unbiased estimator in such
a situation. Now the statistical model is

ỹ:,s ∼ N (0,K),

his | ỹis ∼ Bernoulli(pis),

yis =

{
ỹis if his = 1,
0 if his = 0,

(6)

where 1 − pis denotes the probability of missingness for
the i-th observation and s-th feature, and 0 < pis ≤ 1
(s = 1, . . . , D; i = 1, . . . , N ).

By using the statistical model in (6), we get the following
two propositions regarding the estimator of K in such case.

Proposition 1 Let the probabilities of missingness for the s-
th feature in the i-th and j-th observations to be 1− pis and
1 − pjs respectively, where i = 1, . . . , N, s = 1, . . . , D.
By assuming that the observed data matrix Y is generated
according to the model in (6), we have, for i 6= j,

E[yisyjs] = pispjsKij ,

Var[yisyjs] = pispjsKiiKjj +K2
ij(2pispjs − p2isp2js);

(7)
and for i = j,

E[yisyjs] = E[y2is] = pisKii,

Var[yisyjs] = Var[y2is] = K2
ii(3pis − p2is).

(8)

Based on Proposition 1, it is straightforward to conclude
that 1

DG is a biased estimator of K. Consequently, it is
necessary to correct the bias so as to get reliable K̂ and X̂ .

Proposition 2 By adopting the same assumption and no-
tation as those in Proposition 1, we obtain an unbiased
estimator G̃ of K with bounded variances. Specifically, for
i 6= j we have G̃ij =

Gij∑D
s=1 pispjs

, and Var[G̃ij ] is given by

KiiKjj

∑D
s=1 pispjs +K2

ij

∑D
s=1(2pispjs − p2isp2js)(∑D

s=1 pispjs

)2 .

(9)
The bounds of Var[G̃ij ] are given by

KiiKjj +K2
ij

Dp̄ij
≤ Var(G̃ij) ≤

KiiKjj

p̄ijD
+
K2

ij

D

(
2

p̄ij
− 1

)
,

(10)



where 0 < p̄ij = 1
D

∑D
s=1 pispjs ≤ 1. Note that the equal-

ity holds if and only if pis = 1, for all i and s, which means
no event of missing observations.

For the diagonal entries, G̃ii = Gii∑D
s=1 pis

, and Var[G̃ii] is

K2
ii

∑D
s=1 pis(3− pis)(∑D

s=1 pis

)2 . (11)

The bounds of Var[G̃ii] are given by

2K2
ii

Dp̄i
≤ Var(G̃ii) ≤

K2
ii

D

(
3

p̄i
− 1

)
, (12)

where p̄i = 1
D

∑D
s=1 pis. Again, the equality holds if and

only if pis = 1, for all i and s.

Based on Proposition 2, we conclude that G̃ is bias-corrected
with the bounds of variance decreasing withD. Furthermore,
under a mild condition, G̃ is a consistent estimator.

Proposition 3 Let xij,s = yisyjs and µij,s = E(xij,s) =

pispjsKij . If
D∑

s=1
pispjs � D, then

Zij,D =

∑D
s=1 (xij,s − µij,s)[∑D
s=1 Var(xij,s)

] 1
2

dist.→ N (0, 1), (13)

as D approaches infinity. Here we define
D∑

s=1
pispjs � D if

there exist constants 0 < m < M <∞, and an integer n0
such that m <

∑D
s=1 pispjs

D < M , for all D > n0.

Corollary 1 If
D∑

s=1
pispjs � D, the proposed unbiased es-

timator G̃ converges in probability to the true covariance
matrix K as D approaches infinity.

Proposition 3 and Corollary 1 suggest that the unbiased es-
timator G̃ of K could be beneficial for a method using the
Gram matrix as input since it converges to the ground-truth
covariance matrix in the presence of missing observations

if
D∑

s=1
pispjs � D. In reality,

∑D
s=1 pispjs

D < M for any

constant M > 1, since pij’s ≤ 1. Furthermore, there ex-

ists a constant m > 0 such that m <
∑D

s=1 pispjs

D as long
as the probabilities of non-missingness pij’s are bounded

from below. Thus, the condition
D∑

s=1
pispjs � D is readily

satisfied in practice. When applying the proposed estimator
to DR methods, we use G̃ rather than 1

DG to improve the
performance.

Corollary 2 If
D∑

s=1
pispjs � D, the estimator G/D con-

verges in probability to the true covariance matrix K if and

only if lim
D→∞

D∑
s=1

pispjs

D = 1.

Corollary 2 implies that the estimator G/D would still con-
verge to K if the fraction of missing values is small enough
as compared to 1. All proofs in this section are provided
in the supplementary material. Note that the mathematical
terms in the bias and the variances presented in Proposition 1
and Proposition 2, respectively, would be more involved if
we set the missing observations to a non-zero constant, but
the statistical properties remain the same.

2.4 IMPACT OF THE INPUT DIMENSION D

As shown in (3), (5) and Proposition 2, the variance of 1
DG

and the bounds of Var(G̃) are inversely proportional to
the input dimension D. Hence, higher input dimension can
lead to more accurate results of dimension reduction, from
decreasing the variances of the estimators. Moreover, 1

DG
would be close enough to K when there exists no missing
entries in Y , as long as the dimension is high enough such
that the corresponding variances approach zero, so is G̃ for
data with missingness. Although G̃ is an unbiased estimator,
as shown by Proposition 2, the variance of G̃ are greater
than that of 1

DG in the presence of missing observations.
In other words, in order to reach the same accuracy, more
dimensions are required in the presence of missing data,
compared with the case of complete data.

3 APPLICATION OF THE PROPOSED
UNBIASED ESTIMATOR

In practice, the heterogeneous probabilities of missingness
are unknown. Hence, we need to estimate them before apply-
ing the proposed estimator to real datasets. The procedure of
estimation is proposed as follows: first compute pF ∈ RD

and pS ∈ RN , which are the vectors containing the pro-
portion of non-missing observations for each feature and
for each sample, respectively; then, the entries in the outer
product of two vectors pS ⊗ pF scaled by a constant are
treated as the matrix of estimated non-missingness probabil-
ities for the data matrix. The detail of estimators is provided
in sec.S.3 of the supplementary material.

Once all the pij are estimated, we compute G̃ and then
substitute G

D in the relevant Gram-matrix-based dimension
reduction methods, such as PCA and GPLVM, to correct
the bias. In addition, G̃ can benefit the approaches designed
taking advantage of the distance structure, owing to the lin-
ear transformation between the squared Euclidean distance



matrix E2 and G:

E2 = diag(G)1T + 1diag(G)T − 2G, (14)

where diag(G) is a column vector of the diagonal elements
in G. Considering that the bias corrected G̃ could result in
negative values via (14), we propose an alternative way to
enhance the distance-matrix-based methods such as tSNE
and UMAP: first do PCA with the bias-corrected Gram
matrix G̃, and then calculate the distance matrix in the PC
space. To ensure a good estimate of the distance, we keep
all the PCs with non-negative eigenvalues.

There is an additional challenge when handling real scRNA-
seq data: the positions of missing entries remain un-
known. There exist highly-frequent zero expression values
in scRNA-seq data. Some zeros indicate the true biological
non-expression while others are due to the corresponding
missing values, which are called dropouts [Hicks et al., 2017,
Li and Li, 2018]. To address the mentioned problem, we
propose a simple yet reliable ensemble-learning strategy to
infer the positions of missing entries (dropouts) in data ma-
trix, as illustrated in Figure 1. Specifically, we first identify
similar cells via clustering. A zero count is then regarded as
true biological non-expression if most values of the same
gene in the corresponding cluster are zero, otherwise it is
taken to be a missing value. This identification procedure is
performed multiple times using different clustering methods
and different numbers of clusters to ensure reliable results.
We reach the final decision by the majority voting: a zero
count is considered as the true non-expression if more than
half results confirm this. The proposal of this procedure
is inspired by the principle introduced in scImpute that a
zero count may reflect real biological variability if the cor-
responding gene has constantly low expression in similar
cells [Li and Li, 2018]. After the true non-expression or
dropout events are identified, we compute the probability of
being a dropout across both observations (cells) and features
(genes) as we mentioned before.

4 EXPERIMENTAL RESULTS AND
ANALYSIS

In this section, we show the superiority of the pro-
posed unbiased estimator in terms of the clustering ac-
curacy and visualisation quality on both simulated and
real datasets. The results in sec.2.4 regarding the role
of the input dimension are empirically verified with the
simulated data. The code to reproduce these experiments
is available at https://github.com/yurongling/
DR-for-Data-with-Missingness.git

4.1 DATASETS

Nine publicly available real datasets from different domains
are selected for comparing different methods: 6 scRNA-

Pipeline	for	differentiating	true	non-expression	from	dropouts

Data	(cell	by	gene)																			Cell	clustering																					Identification	results											Major	voting
Log-transformed															different	k	and	methods																Indicator	matrices													Final	result

(cell	by	gene)					 (cell	by	gene)

M1

M3

M2

C1

C3

C2 M

Figure 1: Pipeline for identifying dropout events. From left
to right: 1) log-transformed data matrix; 2) clustering with
different clustering methods and different numbers of clus-
ters (k); 3) indicator matrices from different clustering re-
sults; and 4) combining all indicator matrices (results) by
the majority voting.

Table 1: Real datasets used in this paper.

Dataset # clusters/classes N D Ref
Pollen (scRNA-seq) 11 301 21045 [Pollen et al., 2014]
Deng (scRNA-seq) 10 286 20484 [Deng et al., 2014]
Treutlein (scRNA-seq) 8 405 15893 [Treutlein et al., 2016]
Koh (scRNA-seq) 10 651 41594 [Loh et al., 2016]
Usoskin (scRNA-seq) 4 622 17571 [Usoskin et al., 2015]
Kumar (scRNA-seq) 3 361 16092 [Kumar et al., 2014]
Olivetti faces (image) 40 400 4096 [Samaria and Harter, 1994]
fashion MNIST (image) 10 1000 784 [Xiao et al., 2017]
wine (UCI) 3 178 13 [Dua and Graff, 2017]

seq datasets, 2 image datasets, and 1 dataset from the UCI
repository. The characteristics of each dataset are provided
in Table 1; the data pre-processing and availability are pro-
vided in sec.S.1 and sec.S.2 of the supplementary material,
respectively. Clusters in each real scRNA-seq dataset are for
different cell types. We sample 1000 images from the test
set of the fashion MNIST dataset for comparison by preserv-
ing the percentage of samples of each class to reduce the
computational complexity of some benchmark imputation
methods. Note that the wine dataset possesses only a small
number of features (13).

In addition to real datasets, we also simulate a dataset with
3 clusters for investigating the role of the input dimension.
The complete dataset is first simulated with the Probabilis-
tic PCA (PPCA) [Tipping and Bishop, 1999], which can
be regarded as a GPLVM with a linear kernel. Then, the
data matrix with missing observations is generated with a
missingness mechanism mentioned below.

Missing value generation mechanism. Apart from
scRNA-seq datasets, all datasets we employ are complete.
We therefore adopt a missingness mechanism to generate
missing positions. Specifically, P(Ωij = 0) = biqj , for
i ∈ [N ], j ∈ [D], where iid b1, . . . , bN ∼ U [0.4, 0.6], and
iid q1, . . . , qD ∼ U [0.7, 0.9]. The fraction of missingness is
around 0.4.

https://github.com/yurongling/DR-for-Data-with-Missingness.git
https://github.com/yurongling/DR-for-Data-with-Missingness.git
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Figure 2: 2D scatter plots of the simulated data with or with-
out missing observations, obtained by four different methods
(from top to bottom: PCA on the complete dataset, PCA,
BC-PCA, softImpute-PCA, and ice-PCA on the dataset with
missing values), and with different numbers of genes (from
left to right: 500, 1000, 2000 and all 3000 features). Colours
indicate the cluster labels. Comparing columns: generally
more input features, better separation between different clus-
ters. Comparing rows: BC-PCA, softImpute-PCA, and ice-
PCA lead to much more distinct clusters on the dataset with
heterogeneous missingness.

4.2 BENCHMARKS

DR methods. To demonstrate the applicability and the ef-
fectiveness of the proposed estimator, we consider four
DR methods: PCA, GPLVM, tSNE, and UMAP. PCA and
GPLVM are representative Gram-matrix-based methods,
while tSNE and UMAP are widely-used approaches depend-
ing on the distance matrix. In both the simulated and real
experiments, we compare them with their bias-corrected
variants proposed in this paper, where the Gram matrix is
replaced by G̃ or the distance matrix is calculated in the
PCA space obtained from G̃ as discussed in sec.3. The pre-
fix BC- (bias-corrected) of each method is to denote its
bias-corrected variant.

Imputation methods. The widely-used imputation meth-
ods softImpute [Hastie et al., 2015] and imputation by
chained equations (ice) [Van Buuren, 2018] are applied
to the datasets, followed by performing the DR methods on
the imputed data matrices. softImpute is proposed with the
low-rank assumption and performs missing values imputa-
tion using iterative soft-thresholded SVD’s, while ice uses a
strategy that models each feature with missing values as a
function of other features in a round-robin fashion. We use
the prefix softImpute-/soft- and ice- to represent the corre-
sponding DR methods applied to the data matrix imputed
by softImpute and ice, respectively. When these two impu-
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Figure 3: ARI of the k-means clustering results with differ-
ent DR approaches on the simulated dataset with or without
missing values.

tation approaches are applied to real scRNA-seq data where
the missing positions are unidentified, we input the missing
positions inferred by the proposed pipeline.

Approaches designed specifically for scRNA-seq data
For real scRNA-seq data, we also integrate two approaches
that deal with the missing data problem of scRNA-seq data:
CIDR [Lin et al., 2017] and scImpute [Li and Li, 2018].
CIDR tries to recover the Euclidean distance matrix while
scImpute aims at imputing the missing values. The imputed
data matrix produced by scImpute is directly fed into the
mentioned four benchmarks for extracting low-dimensional
components. tSNE and UMAP take the imputed Euclidean
distance matrix yielded by CIDR as input. On the other hand,
we transform the imputed distance matrix to the Gram ma-
trix by doubly-centering, which is then input into GPLVM
and PCA, respectively. We use the prefix CIDR- and sc-
/scImpute- to denote the corresponding DR methods inte-
grated with CIDR and scImpute, respectively,

Evaluation. We evaluate the performances from two per-
spectives: clustering and visualisation. For clustering-based
evaluation, we use k-means clustering in the reduced space
and the number of clusters is set to the same as the ground
truth. The clustering results are evaluated in terms of the
adjusted rand index (ARI) between the cluster/class labels
obtained from the original publication and the inferred clus-
tering labels. Since the missing positions determined by the
proposed pipeline could be variable, we replicate the pro-
cedure of first performing DR and then applying k-means
20 times on the real scRNA-seq datasets for a more reliable
comparison. Regarding the visualisation-based evaluation,
we reduce the input data into two dimensions and visually
compare the visualisations. For implementation details, see
sec.S.4 of the supplementary material.

4.3 INPUT DIMENSION INFLUENCES THE
PERFORMANCE OF DIMENSION
REDUCTION

In order to examine the impact of input dimension on the
performance of DR, we randomly select a subset of dimen-
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Figure 4: Visualisation of the Treutlein dataset obtained by
GPLVM and its variants integrated with the bias correction
or imputations.

sions (features) from the simulated data. We then reduce
the selected subset of data into two dimensions (2D). The
qualities of the produced 2D projections are assessed ac-
cording to the visualisation and the clustering accuracy. We
repeat the aforementioned procedure 10 times and average
the ARI. The size of the subset features varies across 500,
1000, and 2000. The performance using all features (3000)
is also provided for comparison. Since the simulated dataset
is generated in the context of PPCA, we compare only the
DR methods based on PCA.

First, we find that, on the simulated datasets with and with-
out missing observations, the visualisation (Figure 2) is of a
higher quality with more input features, based on the sepa-
ration between different clusters. The upward trends of the
clustering performances on the simulated datasets shown in
Figure 3 are consistent with the visualisation. In addition,
more input features lead to a smaller deviation of the ARI.

Second, by comparing the performances between the dataset
with missing observations and that without missing obser-
vations, we find that, with missing data, a higher input di-
mension is required to reach a performance comparable to
that of the complete data. For instance, PCA leads to dis-
tinct clusters when the number of input features is 1000
while BC-PCA renders clusters that are overlapping to some
degree in such a case.

Overall, the experimental results on the simulated data of-
fer empirical evidence confirming that the input dimension
influences the performance of relevant DR approaches, as
discussed in sec.2.4.
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Figure 5: Visualisation of the Pollen dataset obtained by
PCA and its variants integrated with the bias correction or
imputations.

4.4 BIAS CORRECTION IMPROVES
VISUALISATION

Now we examine whether the bias correction exploiting the
information of missing data can produce better visualisation.
First, we visualise the dimension-reduced data of the sim-
ulated datasets without and with bias-correction. Figure 2
shows that PCA is capable of separating different clusters
when no missing entry is present in data matrix. However,
for data with missing observations, PCA cannot distinguish
the subpopulations very clearly (Figure 2). In contrast, BC-
PCA shows much more distinct clusters. Furthermore, BC-
PCA has comparable performance to softImpute-PCA and
ice-PCA in terms of the separation of clusters.

Next, we focus on the comparison between the benchmark
DR methods and their bias-corrected versions in terms of
the visualisations displayed by them on a wide spectrum
of real datasets. Compared with PCA, BC-PCA presents
more divergent clusters on the Pollen dataset and the Kumar
dataset (Figure 5 and Figure S8 of the supplementary mate-
rial), and it achieves comparable performance on the other
datasets. BC-GPLVM succeeds in separating most clusters
on the Treutlein dataset (Figure 4), the Usoskin dataset (Fig-
ure S15 of the supplementary material), and the Koh dataset
(Figure S14 of the supplementary material), showing a better
performance than BC-PCA. It may be due to the nonlinear-
ity of data structure, which is difficult to be captured by
a linear dimension reduction method like PCA even after
the bias correction. Meanwhile, the degrees of overlapping
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Figure 6: ARI of k-means with different DR approaches and their variants on the datasets (a) Usoskin, and (b) Pollen.

between clusters are reduced greatly by BC-GPLVM on
the fashion MNIST dataset (Figure S9 of the supplemen-
tary material) and the Olivettic faces dataset (Figure S10 of
the supplementary material). Comparing GPLVM with BC-
GPLVM, we find that BC-GPLVM often yields a clearer
visualisation. Regarding the distance-matrix-based meth-
ods, both BC-tSNE and BC-UMAP clearly show superior
visualisation to tSNE and UMAP, respectively.

Last, we compare the proposed bias-corrected estimator
with other imputation methods and the approaches specifi-
cally handling scRNA-seq data. The visualisations obtained
by CIDR are inferior to those produced by the bias-corrected
variants in terms of the separation between different groups
of cells. Compared with the bias-corrected benchmark meth-
ods, scImpute yields more compact clusters on the Koh
dataset (Figure S6, Figure S14, Figure S23, and Figure S32
of the supplementary material). However, the within-cluster
compactness and between-cluster separation are worse than
or comparable to the approaches incorporating the unbiased
Gram matrix on the other datasets. When applied to the
fashion MNIST dataset and the Olivetti faces dataset, the
proposed bias-corrected estimator is comparable to softIm-

pute and ice; see the visualisations shown in Figure S9 and
Figure S10 of the supplementary material. However, soft-
Impute presents superior visualisations on the wine dataset
(Figure S3, Figure S11, Figure S19, and Figure S28 of the
supplementary material). The bias-corrected DR methods
fail to separate different clusters in such a case, since our
method is proposed to the data that are high-dimensional
while the wine dataset has only a small number of features.
For the scRNA-seq datasets, the DR methods incorporat-
ing the bias correction match or outperform softImpute and
ice, respectively. In particular, the visualisations attained by
the bias correction on the Usoskin dataset are much more
clear than those achieved by softImpute and ice (Figure S15,
Figure S24 and Figure S33 of the supplementary material).

To sum up, the superiority shown by the bias-corrected vari-
ants suggests that the proposed bias correction is beneficial
for displaying better separation of clusters in the presence
of missing observations.



4.5 BIAS CORRECTION ENHANCES
CLUSTERING

In this subsection, we investigate how the proposed bias
correction impacts on the clustering applications. To this
end, we first apply different DR methods and their variants
to the dataset to extract the low-dimensional points, which
are then grouped using the k-means clustering algorithm.
The ARI is then calculated as a measure of clustering perfor-
mance. For the real datasets, the dimension of latent points
extracted from PCA and BC-PCA is chosen in terms of the
Cattell–Nelson–Gorsuch scree test [Gorsuch and Nelson,
1981], while only two-dimensional projections are produced
with the other dimension reduction methods. Note that the
dimension determined by the scree test is usually 2 in our
experiments.

First, we assess the clustering performance obtained from
using all features on the simulated data. On the simulated
data without missing observations, the inferred labels ob-
tained from PCA match perfectly with the ground truth
labels in terms of ARI (Figure 3). On the simulated data
with missing observations, the original PCA is unable to
provide distinct clusters in the low-dimensional space (Fig-
ure 2), and hence hinders the clustering (Figure 3). On the
contrary, their bias-corrected PCA presents nearly perfect
ARI values, suggesting that the bias-correction significantly
improves the clustering accuracy in such a case.

Next, we compare benchmark DR methods with their vari-
ants integrating the bias-correction in terms of the clustering
performance on the real datasets, as presented in Figure 6,
Figure S35 and Figure S36 of the supplementary material.
Consistently with the visualisations, the k-means clustering
performance of BC-tSNE and BC-UMAP is better than that
of tSNE and UMAP on almost all datasets except the Deng
dataset and the wine dataset. Similarly, the cluster labels ob-
tained by BC-GPLVM show a much higher agreement with
the ground truth labels than GPLVM on the Treutlein dataset,
the Usoskin dataset, the Koh dataset, and the Olivetti faces
dataset. For the other datasets, BC-GPLVM accomplishes
the ARI values comparable to those of GPLVM. BC-PCA
surpasses or is comparable to PCA on all the datasets ex-
cept the Koh dataset which can be due to the nonlinearity
possessed by the datasets and the wine dataset which is not
suited for being handled by the proposed estimator, as we
discussed in sec.4.4.

Last, the bias-corrected estimators are compared with the
imputation methods and the approaches handling scRNA-
seq data. It is clear that the k-means results obtained by
integrating CIDR with different DR methods are inferior
to those attained by the bias correction, according to ARI.
Bias-corrected DR methods outperform DR approaches in-
tegrated with scImpute on the Usoskin, Treutlein and Pollen
datasets. Moreover, all the values of ARI achieved by the
proposed bias correction are nearly 1 while the values of

ARI of sc-tSNE and sc-UMAP are much lower than 1 on
the Kumar dataset. Although BC-tSNE and BC-UMAP per-
form slightly worse than sc-tSNE and sc-UMAP on the
Koh dataset, BC-GPLVM achieves much higher ARI value.
On the Deng dataset, scImpute achieves higher ARI values
when combined with the benchmark methods in compari-
son with the bias-corrected versions and the original ones.
Generally speaking, the bias-corrected DR methods is better
than scImpute on most datasets. When applied to the fashion
MNIST dataset and the Olivetti dataset, the methods based
on the bias correction often yield higher ARI compared to
those integrating ice (Figure S36 of the supplementary mate-
rial), while their clustering performances are slightly worse
than those attained by the methods inputting the data matrix
imputed by softImpute. For the scRNA-seq datasets, the
bias-corrected approaches outperforms softImpute on the
Usoskin dataset, the Pollen dataset, and the Deng dataset.
For the other scRNA-seq datasets, the bias-corrected vari-
ants accomplishes the ARI values comparable to or slightly
worse than those obtained by softImpute.

Overall, the clustering results indicate that the bias correc-
tion is able to infer the cluster labels that are more consistent
with the ground truth and improve the performance of clus-
tering following dimension reduction.

5 CONCLUSION

This paper proposes an unbiased estimator of the covari-
ance matrix in the presence of missing data. The proposed
bias-corrected Gram matrix is able to substantially improve
the performance of various DR methods. As shown by the
theoretical results in this paper, the Gram matrix is a biased
estimator in the presence of missing observations and could
be adverse for DR, while the proposed unbiased estimator
can correct the bias introduced to the Gram matrix by the
missingness. Moreover, the bounds of variances ensure the
accurate estimation of the ground-truth covariance matrix in
the low-dimensional space as long as the input dimension
is high enough, and hence guarantees the reliable repre-
sentation of the high-dimensional data. The experimental
results on both simulated and real datasets demonstrate that
the proposed unbiased estimator is widely applicable and
is able to effectively enhance the performance of both the
distance-matrix-based and Gram-matrix-based DR methods.
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