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Abstract

Objective: Methods for meta-analysis of studies with individual participant data and continuous exposure variables are well described
in the statistical literature but are not widely used in clinical and epidemiological research. The purpose of this case study is to make
the methods more accessible.

Study Design and Setting: A two-stage process is demonstrated. Response curves are estimated separately for each study using
fractional polynomials. The study-specific curves are then averaged pointwise over all studies at each value of the exposure. The
averaging can be implemented using fixed effects or random effects methods.

Results: The methodology is illustrated using samples of real data with continuous outcome and exposure data and several covariates.
The sample data set, segments of Stata and R code, and outputs are provided to enable replication of the results.

Conclusion: These methods and tools can be adapted to other situations, including for time-to-event or categorical outcomes, different
ways of modelling exposure-outcome curves, and different strategies for covariate adjustment. © 2021 The Authors. Published by
Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

For categorical exposure variables meta-analysis meth-
ods for summary statistics, such as relative risks or haz-
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ard ratios, are well-known [1]. The meta-analysis involves
calculating weighted averages of the estimates from each
study, with weights inversely proportional to their precision
(or standard errors). The methods can take into account
within-study correlation, heterogeneity across studies, and
non-linear exposure-outcome associations [2,3]. However,
if individual participant data (IPD) are available there are
other opportunities for meta-analysis [4]. In particular, if
continuous exposure data are available, it is preferable
to model the exposure-outcome association continuously
rather than to categorise the exposure [5]. If the associ-
ation is linear, or has some other simple form, a single
stage analysis can be conducted by pooling the IPD for
ess article under the CC BY-NC-ND license
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all studies and fitting a random effects model to take ac-
count of within-study correlation. If the exposure-outcome
association is non-linear, relevant methods have been pub-
lished in the statistical literature but are not widely used
in epidemiological research.

In this tutorial paper we explain an approach pro-
posed by Sauerbrei and Royston [6] and further exam-
ined by White et al. [7]. These authors used a two-stage
method. Firstly, they modelled the exposure-outcome curve
for each study separately and calculated the predicted out-
come values and their standard errors each observed expo-
sure value. Secondly, they calculated pointwise weighted
averages across all the study-specific curves using weights
inversely proportional to the standard errors of the pre-
dictions. This approach provides considerable flexibility as
various methods, such as fractional polynomials, can be
used to fit curves with a variety of shapes, and covari-
ates (which may differ across studies) can be included in
the models [8]. The authors illustrated the method using
time-to-event outcome variables and continuous prognos-
tic (exposure) variables. Their approach is, however, much
more widely applicable for categorical or continuous out-
comes and using other types of functions for the exposure
and covariates.

To make these methods more accessible we demonstrate
their use with a simple worked example. We start with a
sample data set of IPD from several studies. Then we de-
scribe how the two-stage meta-analysis can be performed.
The mathematical details are in Appendix 1 and segments
of code and output for both Stata 16.0 (StataCorp, USA)
and R are provided in Appendix 2. Finally, we discuss how
the method can be extended to more complicated situations
and mention other available software.

2. Methods and results

2.1. Sample data set

To illustrate the methodology, we use data on the as-
sociation between two continuous variables, age at natural
menopause (the outcome) and body mass index (BMI) be-
fore menopause (the exposure of interest). The data were
assembled for the International Collaboration for a Life
Course Approach to Reproductive Health and Chronic Dis-
ease Events (InterLACE) [9]. Zhu et al. examined the as-
sociation using harmonized data from 11 longitudinal co-
hort studies with data from more than 24,000 women who
were premenopausal at the baseline survey and experienced
menopause during the follow-up period [10]. Covariates in-
cluded age at the baseline survey, smoking status, level of
education and number of children. For the original analysis
both the outcome and exposure variables were categorized
and multinomial logistic regression models were fitted with
adjustment for clustering within studies.

For this paper, to respect data sovereignty we used
random samples from four of the larger studies. From
each study a simple random sample of data from 1,500
participants was selected. The sample data set (Inter-
LACE4sample.csv) is available as supplementary material.

2.2. Exploratory analysis

Exploratory analyses of the association between age at
natural menopause and baseline BMI are shown in the scat-
ter plots and lowess (local weighted scatterplot smoothing)
curves in Fig. 1. Notably age at natural menopause has a
ceiling at 55 years for Study 4 corresponding to the last
available follow-up for that study. Overall, the patterns are
generally similar for the four studies although the ranges
differ for both variables and the extent of curvature dif-
fers. The descriptive statistics in Table 1 show the broad
similarities between the studies. The associations between
age at natural menopause and baseline age, and between
BMI and baseline age, are approximately linear (results
not shown here).

2.3. Modelling

The strategy is to model the association between the
outcome and exposure of interest for each study separately
(taking the covariates into account) and use each study-
specific model to calculate estimates of the outcome. The
individual study-specific estimates are then pooled point-
wise using standard meta-analysis methods. Full details are
provided in Appendix 1.

For the sample data we fitted multiple linear regression
models for each study. The dependent variable was age
at natural menopause. The independent variables were a
curved function for BMI, a linear term for age at baseline,
and indicator variables for the categories of smoking, level
of education and number of children. The curved functions
we used were fractional polynomials which are sums of
polynomial and logarithmic terms [8] – see Appendix 1.
For Study 1 the results obtained using the Stata com-
mand fp are: predicted age at natural menopause = 49.38 -
1134.30 × (1/BMI)2 - 2.93 × ln(BMI) + 0.30 × baseline
age + (0 if the participant was a never smoker, or 0.19
for a former smoker, or -0.09 for a current smoker) + and
so on. Details of the study-specific models are shown in
Table 2. The models differ in: the functional forms of terms
for BMI, coefficients for the covariates and adequacy of
fit as measured by adjusted R-squared values. Notably, the
model for Study 1 has the poorest fit and the model for
Study 4 has the best fit (as expected from the ceiling effect
for age at natural menopause due to last available follow-
up data for that study).

If the study-specific models all have the same terms
(e.g., quadratic functions) an option for the meta-analysis is
to calculate weighted averages of the parameter estimates
from each study. If the study-specific models have different
forms, an appropriate method is to calculate the predicted
values of the outcome for each value of the exposure vari-
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Fig. 1. Scatter plots and lowess fits for age at natural menopause and baseline body mass index for the sample data set.

Table 1. Summary statisticsa for the sample data set

Study 1 Study 2 Study 3 Study 4

Size of random sample, n 1500 1500 1500 1500

Age at natural menopause (y), mean (standard deviation) 52.55 (2.78) 51.93 (3.29) 51.18 (3.12) 49.38 (3.90)

Body Mass Index at baseline, mean (standard deviation) 25.44 (4.82) 26.16 (4.66) 23.58 (3.38) 25.82 (5.12)

Age at baseline (y), mean (standard deviation) 47.52 (1.43) 48.19 (4.05) 44.84 (3.44) 45.19 (5.19)

Smoking status at baseline, column %

Never 57.73 70.47 41.53 47.40

Former 28.13 20.00 39.60 28.47

Current 14.13 9.53 18.87 24.13

Education (y), column %

<=10 44.27 56.60 36.00 60.73

11-12 17.40 8.47 22.93 11.33

>12 38.33 34.93 41.07 27.93

Number of children, column %

0 7.87 14.93 8.73 16.60

1 8.87 7.67 15.87 15.00

2 40.67 37.40 44.60 45.53

>=3 42.60 40.00 30.80 22.87

a There are small but statistically significant differences among the four studies (P < 0.0001 for all variables, based on one-way analysis
of variance for the continuous variables and chi-squared tests for the categorical variables).
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Table 2. Models for age at natural menopause fitted to each data set separately: powers for fractional polynomials for BMI, coefficients and
standard errors obtained using the Stata command fp

Study 1 Study 2 Study 3 Study 4

Powers for fractional polynomial for BMI -2, 0 3, 3 -2, -2 -2, -2

First term for BMI -1134.30 (555.94) 0. 00012 (0. 00015) -4405.27 (3651.46) -2736.25 (1579.61)

Second term for BMI -2.93 (1.71) -0. 00003 (0. 00004) 1689.89 (1380.56) 964.88 (588.62)

Age at baseline 0.30 (0.05) 0.55 (0.02) 0.58 (0.02) 0.65 (0.01)

Smoking status at baseline, column %

Never (reference) 0 0 0 0

Former 0.19 (0.16) -0.01 (0.16) -0.29 (0.14) -0.23 (0.11)

Current -0.09 (0.21) -1.00 (0.21) -0.80 (0.17) -0.31 (0.12)

Education (y), column %

<=10 (reference) 0 0 0 0

11-12 0.10 (0.20) 0.10 (0.23) 0.27 (0.17) 0.22 (0.15)

>12 0.35 (0.16) 0.25 (0.14) 0.27 (0.14) 0.36 (0.11)

Number of children, column %

0 (reference) 0 0 0 0

1 -0.24 (0.35) 0.08 (0.27) 0.49 (0.26) -0.15 (0.17)

2 0.13 (0.28) 0.17 (0.19) 0.46 (0.23) 0.09 (0.14)

>=3 -0.19 (0.28) 0.12 (0.19) 0.42 (0.24) 0.12 (0.15)

Constant 49.38 (6.88) 24.59 (0.82) 23.29 (1.55) 19.24 (0.66)

Adjusted R-squared 0.03 0.49 0.41 0.78
able, and then calculate the weighted average across stud-
ies at each point, that is, pointwise averaging. To ensure
that each study contributes to the predicted values at ev-
ery exposure value and covariate pattern, the study-specific
model is used to calculated predicted outcome values and
their standard errors for every participant in every study,
not only the participants in the study used for the study-
specific model (this approach is supported by the empirical
studies by White et al. [7]).

Fig. 2 shows lowess plots of the predicted values for age
at natural menopause and their 95% confidence intervals
(predicted value ± 1.96 × standard error) against BMI.
Each plot depicts the whole dataset but using predictions
derived from each of the four study-specific models (i.e.,
all 4 × 1,500 sets of exposure and covariate values). No-
tably, consistent with the larger adjusted R-squared value,
Study 4 shows less variability (i.e., narrower confidence
intervals across the range of BMI values).

Standard meta-analysis methods are now used for the
pointwise averaging. The standard errors of the predicted
values are used to calculate the inverse variance weights
with different formulas for fixed effects or random effects
models (see Appendix 1). For a fixed effects model the
exposure-outcome pattern is assumed to be the same for
all the study populations and the variation in estimates
is only due to sampling variation. For the random effects
model, it is assumed that there are differences between the
study populations and the goal is to estimate the average
effect, therefore there is variation between the studies as
well as sampling variation and so the confidence intervals
are wider. Fig. 3 shows lowess plots of the fixed effects and
random effects weights for each study. Despite the identi-
cal sample size, there is considerable difference in the fixed
effects weights over the range of BMI values and across
the studies, with the largest weights usually for Study 4
which showed the most homogeneity (i.e., least variance)
in Fig. 2. In contrast, the random effects weights are very
similar across the BMI range and for all studies. The meta-
analysis is conducted pointwise (i.e., at each value of BMI
observed within the whole dataset) with weighted aver-
aging of the predicted values from each study. Note that
the predicted values depend on the observed values of the
exposure and the covariates for each participant. The meta-
analysis results for fixed or random effects are shown in
Fig. 4. The pooled curves are similar for both methods
of meta-analysis: low BMI was associated with early age
at natural menopause, after adjusting for baseline age and
other potential confounders. Age at natural menopause was
highest for women with BMI around 30 and there was
slight evidence of a decrease for more obese women. The
confidence intervals are much wider for the random ef-
fects analysis, consistent with the underlying assumption
of differences between the study populations.

3. Discussion

The goal of this paper is to make meta-analysis methods
for exposure-outcome associations with IPD and continu-
ous exposure data more accessible. While our approach
follows that of Sauerbrei, Royston, White et al. [6,7], a
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Fig. 2. Lowess plots of predicted values (and 95% confidence intervals) for age at natural menopause by body mass index for each study separately.

Fig. 3. Lowess plots of the weights for each study that are used in the fixed effects and random effects meta-analyses.
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Fig. 4. Results of meta-analysis of the association between age at natural menopause and body mass index: lowess plots for estimates and 95%
confidence intervals.
simplified version is used with the sample data set. Each
step from the exploratory analysis to interpretation of the
pooled results is explained.

In the example, the outcome is continuous and the
curves of exposure-outcome association are estimated us-
ing multiple linear regression, including fractional poly-
nomial terms. Other examples have involved time-to-event
data and survival analysis [6,7]. However, the method is
just as applicable for counts or categorical outcomes (e.g.,
proportions) and a variety of generalized linear models
(e.g., logistic regression). The strength of the method is
that continuous curves are estimated for each study; that
is, the exposure variable is not categorized.

To allow the curves to vary in shape, fractional poly-
nomials were used in the example. But there are other
functional forms that can be used such as ordinary poly-
nomials, splines, generalized additive models, or even dis-
continuous forms. In the example, the number of terms
and orders of the polynomials for the fractional polyno-
mial were chosen using the default for the Stata command
fp The Stata command fp uses forward selection of the
numbers and powers of terms which are chosen to min-
imise the deviance. The R procedure mfp uses different
criteria. It uses backward elimination and family-wise P-
values; this procedure is designed to protect against overfit-
ting. In the example the R command mfp produced simpler
(linear) functions but very similar values for the predicted
outcomes (see Appendix 2). More generally, the choice of
form for the exposure-outcome curve may be made using
subject-matter knowledge, visual inspection of the curves,
and comparisons of alternative forms (e.g., using criteria
for model fit such as AIC or BIC). For any curve fitting
there is a tension between selecting forms that are too sim-
ple (e.g., linear only) and overfitting with more complex
ones.

In some cases, selecting the same form of curve for
all studies may be appropriate. In this situation meta-
analysis could be used to average the parameter estimates
rather than pointwise pooling of the curves [11]. For meta-
analyses of large numbers of studies with many partici-
pants this approach would be less computationally inten-
sive, and White et al. have shown that the results are
likely to be similar [7]. This strategy is also likely to have
more power to model complicated curves [12]. Software
for pooling parameter estimates is available in Stata and R
programs both called mvmeta [7,12].

A notable difference between the method used above
and the approach described by Sauerbrei, Royston, White
and others [6,7] and implemented in the Stata program
metacurve [13], is their use of an intermediate stage of
fitting “confounder models.” Instead of fitting a study-
specific model with the outcome as the dependent variable
and fractional polynomial terms of the exposure and co-
variates as the independent variables, they first fit a “con-
founder model” which has the exposure as the dependent
variable and the covariates as the independent variables.
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Next the linear predictor of this model is calculated for
all individuals, this is called the “confounder index.” Fi-
nally, they fit a study-specific model with the outcome as
the dependent variable and the fractional polynomial of the
exposure, adjusted for the confounder index. An advantage
of using a confounder model is that it can accommodate
more complex terms for the covariates. For instance, in the
example above the covariate, baseline age, was treated as a
linear term, but in a confounder model a fractional polyno-
mial, or other functional form, for this variable could have
been included. A nonstatistical researcher may initially find
the concept of a confounder model confusing because the
main exposure has the role of the dependent variable. This
is why confounder models were not used in the example,
but when they were used the final results were the same.
A confounder model is analogous to a propensity score
[14] with a model fitted for the exposure variable rather
than the outcome but the coefficients may be less easily
interpreted.

In the example, for simplicity, centring and scaling were
not used for any of the continuous variables. Nevertheless,
it is usually better statistical practice to standardize the
exposure and other covariates, at least by centring them,
as this can help interpretation of the estimates and re-
duce collinearity. In some situations, it is important that
the results can be readily transformed back to the origi-
nal scales (as in the example of age at natural menopause
and BMI). In other situations, effect sizes relative to some
fixed value are more interpretable, for example, risk of
an outcome relative to a reference level of the exposure
[7,12].

Using IPD to fit a continuous curve for the exposure-
outcome association is preferable to categorizing the ex-
posure. Categorizing continuous variables reduces the pre-
cision and power of an analysis [5]. If only published ag-
gregate results, not IPD, are available for a continuous ex-
posure variable, the effect estimates usually refer to cat-
egories of exposure, and these may be used to estimate
the underlying continuous association [15]. Meta-analysis
of these data is complicated by the correlation of estimates
from the same study across the exposure range. Specialised
software includes the SAS macro metadose [16] and the
R program dosresmeta [17].

As with any meta-analysis it is important to consider
whether the studies and their results are sufficiently similar
to justify averaging them. Factors to be considered include
differences in: study design, covariates measured, measure-
ment scales, and ranges of exposure and outcome measures
[18,19]. Recommendations for exploring heterogeneity for
IPD include comparisons across studies of the distribu-
tions and associations between variables [19,20]. For the
InterLACE consortium from which the example data were
drawn [9], some studies collected age at menopause ret-
rospectively and other prospectively, for some BMI was
calculated from self-reported measures while others pro-
vided measured weight and height. Nevertheless, visual
inspection of the plots in Fig. 1 and summary statistics
in Table 1 suggest sufficient similarity in the sample data
to justify meta-analysis.

The goal of making the sample data set publicly avail-
able, providing segments of Stata and R code, and output,
is to facilitate replication of the results, comparison or al-
ternative methods and software, and extension to other sit-
uations.
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Appendix 1. Mathematical methods

Notation. The data are denoted by yjk, zjk and cjkl, where
y is the outcome or response variable, z is the exposure
or dose variable of interest, and c denotes the covariates;
j = 1, …, J denotes the studies, k = 1, …, Kj denotes the
observations in each study, and l denotes the covariates
(l = 1, …, L). For the sample data there are J = 4 studies
with K = 1500 observations for each study and L = 4
covariates.

Fractional polynomials. A fractional polynomial of a
variable x is defined as f(x) = β0 +

∑M
m=1 βm xpm with

degree M, the number of terms, and powers pm [8]. Usu-
ally, M = 2 and the values pm are selected from -2, -1,
-0.5, 0, 0.5, 1, 2 and 3; x0 is defined to be ln(x) and if a
power p is repeated the terms are xp + xpln(x).

Fitting models for each study separately. For
the sample data we fitted models f(yjk) = β0 +∑M

m=1 βmzpm

jk +
∑L

l=1 γjklcjkl for each study separately
using multivariable linear regression. The fractional poly-
nomial and covariate terms were all fitted at the same time
(using the Stata command fp. The powers p1 and p2 for
each study were selected based on the model with the low-
est deviance (the default method in Stata). The continuous
covariate baseline age was fitted as a linear term. In this
case, for simplicity, none of the variables was transformed
(e.g., centred or scaled).

Predicted values and standard errors of predicted
values. For each model predicted values and their standard
errors need to be calculated for every participant, not only
those in that particular study. To do this it may be conve-
nient to work with the data in “long form”, that is with the
observations of Study 1 stacked on those for Study 2, and
so on. We use the index i for each of the J × K rows and
retain the index j for studies. With this change in notation,
each row includes the predicted values ψij and their stan-
dard errors sij for each of the J studies. Fig. 2 shows the
J × K predicted values and their 95% confidence intervals
(ψij ± 1.96 sij) plotted for each study separately.

Meta-analysis. Standard metaanalysis methods are now
used to average the predicted values ψij across each row
using inverse variance weights calculated from the standard
errors sij. Using similar notation to Sauerbrei and Royston
[6], let vij = s2

ij and Ri =
∑J

j=1(1/vij). For the fixed
effects estimate, the weights are given by wij = 1/(vijRi)
and the estimate is

https://doi.org/10.1016/j.jclinepi.2021.08.033
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stimate, first calculate Qi =
∑J

j=1[(ψij − ψFE
i )2/vij ], Di =

i −Di)} and Wi =
∑J

j=1 1/(vij + τ2
i ). Then the weights are

estimate is

i.

ndom effects weights uij for each study, plotted for all i and
fixed or random effects analysis.

————————————————-

————————————————-
menopause against BMI for each study, for example, for Study

(tiny)) (lowess meno bmi if study==1, noweight
pause) ytitle(, margin(medium)) ylabel(35(10)65)
(Study 1) legend(off)
nomials —————————————
se as a function of a fractional polynomial for BMI and linear
and the default criteria for choosing the powers, for example,

i.smoke i.educ i.child age if study==1

-----------------------------------
Dev. dif. P(∗) Powers

------------------------------------
5.470 0.246
4.723 0.196 1
2.954 0.231 -2
0.000 -- -2 0

-----------------------------------
d on F with 1487 denominator dof.
MS Number of obs = 1,500
----- F(10, 1489) = 5.70
67172 Prob > F = 0.0000
08884 R-squared = 0.0369
----- Adj R-squared = 0.0304
95063 Root MSE = 2.7388
----------------------------------
t P>|t| [95% Conf. Interval]
-----------------------------------
04 0.042 -2224.918 -43.68532
71 0.087 -6.292136 .4249326
ψFE
i =

J∑

j=1

wijψij , with variance given by varFE
i =1/Ri

for row i of the stacked data. For the random effects e

Ri − [
∑J

j=1(1/v
2
ij)/Ri], τ2

i = max{0, [Qi − (J − 1)]/(R
given by uij = 1/{(vij + τ2

i )Wi} and the random effects

ψRE
i =

J∑

j=1

uijψij , with variance given by varRE
i = 1/W

Fig. 3 shows the fixed effects weights wij and the ra
Fig. 4 shows the results of the meta-analysis using either

Appendix 2. Segments of Stata and R code and output

—————– Stata code for Table 1 ————————
by study, sort : summarize meno bmi age
tabulate smoke study, chi2 column
tabulate educ study, chi2 column
tabulate child study, chi2 column
—————– Stata code for Fig. 1 ————————
Plot of scatter plots and lowess curves of age at natural

1 as shown in Fig. 1
twoway (scatter meno bmi if study==1, msize

bwidth(0.5) lwidth(thick)), ytitle(Age at meno
xtitle(Body mass index) xlabel(15(10)50) title

—————– Stata code and output for fractional poly
Fit linear regression models for age at natural menopau

terms for the other covariates using the Stata function fp,
for Study 1.

fp <bmi>, replace all: regress meno <bmi>
The output (summarized in Table 2) is as follows
Fractional polynomial comparisons:
--------------------------------------------

bmi | df Deviance Res. s.d.
-------------+-----------------------------

omitted | 0 7273.778 2.742
linear | 1 7273.030 2.742
m = 1 | 2 7271.262 2.741
m = 2 | 4 7268.307 2.739

--------------------------------------------
(∗) P = sig. level of model with m = 2 base

Source | SS df
-------------+-----------------------------

Model | 427.367172 10 42.73
Residual | 11168.8228 1,489 7.50

-------------+-----------------------------
Total | 11596.19 1,499 7.735

--------------------------------------------
meno | Coef. Std. Err.

-------------+-----------------------------
bmi_1 | -1134.302 555.9948 -2.
bmi_2 | -2.933602 1.712177 -1.

|
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19 0.235 -.1267038 .5149337
44 0.658 -.5075091 .320676

49 0.627 -.2965998 .4918719
23 0.026 .0428992 .6662654

70 0.482 -.9274906 .4376121
45 0.652 -.4207024 .6720626
68 0.494 -.736041 .3552811

07 0.000 .2049166 .400711
18 0.000 35.88992 62.87345
----------------------------------
ials ——————————————–

et(dat, study==2); d3 <- subset(dat, study==3);

A, alpha=NA, scale=F) + factor(smoke)+factor(educ)
)

Pr(>|t|)
< 2e-16 ∗∗∗

.18e-09 ∗∗∗

0.6170
0.0271 ∗

0.5123
0.5566
0.5997
0.2287
0.6055
0.3889

.05 ‘.’ 0.1 ‘ ’ 1
ken to be 7.519492)
of freedom
f freedom

t = NA, alpha = NA,
duc) + factor(child) +

inal power1 power2
1 1 .
1 1 .
smoke |
1 | .194115 .163553 1.
2 | -.0934166 .2111038 -0.

|
educ |

2 | .097636 .2009809 0.
3 | .3545823 .1588956 2.

|
child |

1 | -.2449392 .3479638 -0.
2 | .1256801 .2785451 0.
3 | -.19038 .2781773 -0.

|
age | .3028138 .0499079 6.

_cons | 49.38168 6.878085 7.
--------------------------------------------
—————– R code and output for fractional polynom
library(mfp)
> d1 <- subset(dat, study==1); d2 <- subs

d4 <- subset(dat, study==4)
> f1 <- mfp(meno ∼ fp(bmi, df=4, select=N

+factor(child)+age, family=gaussian, data=d1
> summary(f1)
> f1
Coefficients:

Estimate Std. Error t value
(Intercept) 37.51567 2.38370 15.738
age 0.30581 0.04996 6.122 1
factor(educ)2 0.10066 0.20122 0.500
factor(educ)3 0.35184 0.15908 2.212
factor(child)1 -0.22827 0.34832 -0.655
factor(child)2 0.16367 0.27832 0.588
factor(child)3 -0.14579 0.27776 -0.525
factor(smoke)1 0.19717 0.16375 1.204
factor(smoke)2 -0.10913 0.21124 -0.517
I(bmi^1) 0.01281 0.01487 0.862
---
Signif. codes: 0 ‘∗∗∗’ 0.001 ‘∗∗’ 0.01 ‘∗’ 0
(Dispersion parameter for gaussian family ta

Null deviance: 11596 on 1499 degrees
Residual deviance: 11204 on 1490 degrees o
AIC: 7295
Number of Fisher Scoring iterations: 2
Call:
mfp(formula = meno ∼ fp(bmi, df = 4, selec

scale = F) + factor(smoke) + factor(e
age, data = d1, family = gaussian)

Deviance table:
Resid. Dev

Null model 11596.19
Linear model 11204.04
Final model 11204.04
Fractional polynomials:

df.initial select alpha df.f
age 1 1 0.05
factor(educ)2 1 1 0.05
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1 1 .
1 1 .
1 1 .
1 1 .
1 1 .
1 1 .
1 1 .

cted a linear model for Study 1 (and also different linear models
e Stata function fp selected the more complicated models shown

values ψij and their standard errors sij are very similar. This

s and standard errors ——————–
Study 1 data first, followed by Study 2 data (and so on) the
, and their standard errors for all 4×1500 observations.

ow include these values.

e2 y3 se3 y4 se4

367986 53.12684 .1990782 51.84632 .1531551

947484 50.9301 .217362 49.36789 .1938314

835253 51.26583 .1570621 49.37421 .1321854

n(solid)) (lowess ucl1 bmi, lcolor(black)
) lpattern(dash)), ytitle(Predicted age at
dex) xlabel(15(5)50) title(Study 1) legend(off)
nd standard errors ————————-

1^2

y3 se3 y4 se4

365143 53.08190 0.1944257 51.82207 0.1527804

946102 50.87636 0.2104466 49.30538 0.1920844

830635 51.23898 0.1541292 49.30062 0.1283526

andom effects meta-analysis ——-
factor(educ)3 1 1 0.05
factor(child)1 1 1 0.05
factor(child)2 1 1 0.05
factor(child)3 1 1 0.05
factor(smoke)1 1 1 0.05
factor(smoke)2 1 1 0.05
bmi 4 1 0.05
Note that the default setting for the R function mfp sele

for all other Studies). In contrast, the default settings for th
in Table 2. However, as can be seen below, the estimated
suggests that the Stata models are over-fitted.

—————– Stata code and output for predicted value
Note because the data are already in long format with

following commands provide estimates of predicted values
predict y1, xb
predict se1, stdp
Similarly for all studies. The first 3 rows of the data n
list meno y1 se1 y2 se2 y3 se3 y4 se4 in 1/3

meno y1 se1 y2 s

1 53 53.18607 .2443321 51.4018 .2

2 55 51.56691 .2874484 49.22062 .2

3 56 51.85093 .2149087 50.27079 .1

For the plots in Fig. 2, for example, for Study 1.
gen ucl1 = y1 + 1.96∗se1
gen lcl1 = y1 - 1.96∗se1
twoway (lowess y1 bmi, lcolor(black) lpatter

lpattern(dash)) (lowess lcl1 bmi, lcolor(black
menopause) ylabel(40(5)55) xtitle(Body mass in

—————– R code and output for predicted values a
For Study 1
s1p <- predict(f1, se.fit=T, newdata=dat)
y1 <- s1p$fit; se1 <- s1p$se.fit; v1 <- se
lcl1 <- y1-1.96∗se1
ucl1 <- y1+1.96∗se1

meno y1 se1 y2 se2

1 53 53.13694 0.2433305 51.40186 0.2

2 55 51.46335 0.2836528 49.22723 0.2

3 56 51.74361 0.2093062 50.27884 0.1

Similarly for all other studies
———— Stata code and output for fixed effects and r
Fixed Effects Meta Analysis
gen v1=se1^2
gen v2=se2^2
gen v3=se3^2
gen v4=se4^2
gen suminv = 1/v1 + 1/v2 + 1/v3 + 1/v4
gen w1 = (1/v1)/suminv
gen w2 = (1/v2)/suminv
gen w3 = (1/v3)/suminv
gen w4 = (1/v4)/suminv
gen phiFE = w1∗y1 + w2∗y2 + w3∗y3 + w4∗y4
gen varphiFE = 1/suminv
Random Effects Meta Analysis
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^2∗1/v2 + (y3 - phiFE)^2∗1/v3 + (y4 -

(1/v3)^2 + (1/v4)^2)/suminv

4

+ w4std∗y4

meno for each study are shown here for the first few rows

--------------------------------------+
y3 y4 phiFE phiRE |

-------------------------------------|
684 51.84632 52.30338 52.3873 |
301 49.36789 50.18005 50.26868 |
583 49.37421 50.42663 50.68446 |
--------------------------------------+

-----------------------------+
se4 sephiFE sephiRE |

----------------------------|
31551 .0987976 .4302353 |
38314 .118349 .5566828 |
21854 .0818929 .5652525 |
-----------------------------+
ffects is here (and similarly for the random effects)
n(solid)) (lowess w2 bmi, lcolor(black)
lpattern(longdash)) (lowess w4 bmi, lcolor(black)
hts) ytitle(, margin(medium)) ylabel(0(0.2)1)
Fixed effect weights: lowess plots) legend
"study 3′′) label(4 "study 4′′))

de is here (and similarly for the random effects)

tern(dash)) (lowess lclFE bmi, lcolor(black)
k) lpattern(solid)) , ytitle(Age at natural
dex) xlabel(15(5)50) title(Meta-analysis: Fixed
") label(1 "95% CI") )
dom effects meta-analysis —————
gen Q = (y1 - phiFE)^2∗1/v1 + (y2 - phiFE)
phiFE)^2∗1/v4

gen denom = suminv - ((1/v1)^2 + (1/v2)^2 +
gen tausq = max(0, ((Q - (4-1))/denom))
gen wran1 = 1/(v1 + tausq)
gen wran2 = 1/(v2 + tausq)
gen wran3 = 1/(v3 + tausq)
gen wran4 = 1/(v4 + tausq)
gen wransum = wran1 + wran2 + wran3 + wran
gen w1std = wran1/wransum
gen w2std = wran2/wransum
gen w3std = wran3/wransum
gen w4std = wran4/wransum
gen phiRE = w1std∗y1 + w2std∗y2 + w3std∗y3
gen varphiRE = 1/wransum
The FE and RE averages of the predicted values y of
. list meno y1 y2 y3 y4 phiFE phiRE in 1/3

+------------------------------------
| meno y1 y2
|-------------------------------------

1. | 53 53.18607 51.4018 53.12
2. | 55 51.56691 49.22062 50.9
3. | 56 51.85093 50.27079 51.26

+------------------------------------
The corresponding standard errors are
gen sephiFE = sqrt(varphiFE)
gen sephiRE = sqrt(varphiRE)
list se1 se2 se3 se4 sephiFE sephiRE in 1/3

+------------------------------------
| se1 se2 se3
|-------------------------------------

1. | .2443321 .2367986 .1990782 .15
2. | .2874484 .2947484 .217362 .19
3. | .2149087 .1835253 .1570621 .13

+------------------------------------
For graphs of the weights (Fig. 3) the code for fixed e
twoway (lowess w1 bmi, lcolor(black) lpatter

lpattern(dash)) (lowess w3 bmi, lcolor(black)
lpattern(shortdash)), ytitle(Fixed effect weig
xtitle(Body mass index) xlabel(15(5)50) title(
(label(1 "study 1′′) label(2 "study 2′′) label(3

For graphs of the fixed effects estimates (Fig. 4) the co
gen lclFE = phiFE - 1.96∗ sephiFE
gen uclFE = phiFE + 1.96∗ sephiFE
gen lclRE = phiRE - 1.96∗ sephiRE
gen uclRE = phiRE + 1.96∗ sephiRE
twoway (lowess uclFE bmi, lcolor(black) lpat

lpattern(dash)) (lowess phiFE bmi, lcolor(blac
menopause) ylabel(45(5)55) xtitle(Body mass in
effects) legend( order(3 1 ) label(3 "Estimate

————– R code and output for fixed effects and ran
#Pooling the functional forms across studies
suminv = 1/v1 + 1/v2 + 1/v3 + 1/v4
#Standardised fixed effect weights
w1 = (1/v1)/suminv
w2 = (1/v2)/suminv
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nce

##
)^2∗(1/v2)) + ((y3 - phiFE)^2∗(1/v3)) + ((y4 -

v3)^2 + (1/v4)^2)/suminv

ance
w4std∗y4

sephiFE phiRE sephiRE

0.09802917 52.35814 0.4211312

0.11653731 50.21595 0.5449056

0.08020266 50.63507 0.5703076
w3 = (1/v3)/suminv
w4 = (1/v4)/suminv
#Overall fixed effect estimate and the varia
phiFE = w1∗y1 + w2∗y2 + w3∗y3 + w4∗y4
varphiFE = 1/suminv
sephiFE = sqrt(varphiFE)
lclFE = phiFE - 1.96∗sephiFE
uclFE = phiFE + 1.96∗sephiFE
####Calculation random effect weights#######
Q <- ((y1 - phiFE)^2∗(1/v1)) + ((y2 - phiFE

phiFE)^2∗(1/v4))
denom = suminv - ((1/v1)^2 + (1/v2)^2 + (1/
#S Squared
#tausq = max(0, ((Q - (4-1))/denom))
tausq1 = ((Q - (4-1))/denom)
tausq <- ifelse(tausq1<0,0,tausq1)
#random-effect weights
wran1 = 1/(v1 + tausq)
wran2 = 1/(v2 + tausq)
wran3 = 1/(v3 + tausq)
wran4 = 1/(v4 + tausq)
wransum = wran1 + wran2 + wran3 + wran4
w1std = wran1/wransum
w2std = wran2/wransum
w3std = wran3/wransum
w4std = wran4/wransum
#Overall random-effect estimate and the vari
phiRE = w1std∗y1 + w2std∗y2 + w3std∗y3 +
varphiRE = 1/wransum
sephiRE <- sqrt(varphiRE)
lclRE = phiRE - 1.96∗sephiRE
uclRE = phiRE + 1.96∗sephiRE

meno phiFE

1 53 52.28356

2 55 50.13915

3 56 50.37194
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