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Abstract. Microstructure imaging combines tailored diffusion MRI ac-
quisition protocols with a mathematical model to give insights into sub-
voxel tissue features. The model is typically fit voxel-by-voxel to the MRI
image with least squares minimisation to give voxelwise maps of param-
eters relating to microstructural features, such as diffusivities and tissue
compartment fractions. However, this fitting approach is susceptible to
voxelwise noise, which can lead to erroneous values in parameter maps.
Data-driven Bayesian hierarchical modelling defines prior distributions
on parameters and learns them from the data, and can hence reduce such
noise effects. Bayesian hierarchical modelling has been demonstrated for
microstructure imaging with diffusion MRI, but only for a few, relatively
simple, models. In this paper, we generalise hierarchical Bayesian mod-
elling to a wide range of multi-compartment microstructural models, and
fit the models with a Markov chain Monte Carlo (MCMC) algorithm.
We implement our method by utilising Dmipy, a microstructure mod-
elling software package for diffusion MRI data. Our code is available at
github.com/PaddySlator/dmipy-bayesian.

Keywords: Bayesian statistics · Bayesian hierarchical model ·Microstruc-
ture modelling · Diffusion MRI

1 Introduction

Diffusion MRI (dMRI) measures the microscopic motion of water molecules, and
is hence sensitive to tissue microstructure. Microstructural modelling combines
specifically-designed dMRI acquisitions with a tissue model to enable estima-
tion of parameters relating to tissue microstructure. These techniques have been
widely applied in neuroimaging, with prominent examples of brain microstruc-
ture imaging including NODDI [10], the standard model of diffusion in neuronal
tissue [7] and the spherical mean technique [4]. Microstructural modelling has
also provided insights into body MRI [5], for example in prostate cancer [9].

The core fitting procedure in microstructure imaging estimates model param-
eters given the observed dMRI signal (Figure 1, top panel). The vast majority of
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fitting techniques assume that voxels are independent; in other words, the model
is separately fit to the signal in each voxel, usually with nonlinear least squares
estimation. An alternative approach is to use an MCMC algorithm to estimate
parameter posterior distributions in each voxel [3]. Orton et al. [8] introduced a
hierarchical Bayesian model fitting approach for the intravoxel incoherent mo-
tion (IVIM [6]) model. Their model breaks the assumption of independent pixels
by introducing a Gaussian prior (estimated from the data) over the microstruc-
tural model parameters across a region of interest (ROI). By using an MCMC
algorithm to fit the Bayesian model, they showed an improvement in IVIM pa-
rameter maps of the liver. This approach has also been applied to combined
T2-IVIM modelling in the placenta [2].

In this paper, we generalise the Bayesian approach to apply to any mi-
crostructural model, derive the corresponding MCMC algorithm, and implement
arbitrary upper and lower parameter bounds. We also utilise regional priors,
which may be more appropriate than a global prior for fitting across distinct
neurological tissue types. The MCMC algorithm is implemented in Python by
utilising the Diffusion Microstructure Imaging in Python (Dmipy [1]) software
package. We demonstrate our algorithm on simulations and on HCP data, and
show clear advantages over the standard least squares fitting technique.

2 Methods

2.1 General Bayesian Microstructure model

We extend the approach of Orten et al. [8] to a general multi-compartment
microstructural model. A schematic of the hierarchical Bayesian framework is
shown in Figure 1.

We consider a general multi-compartment model of Ncomp compartments,
with a set of underlying microstructure-related parameters θ. For notational
convenience we group θ by parameter type as

θ =
{
{fk}

Ncomp−1
k=1 , {xj}Jj=1

}
(1)

where fk denotes compartment signal fractions and xj the other parameters, e.g.
diffusivities, orientations, radii, etc. Assuming that relaxation times are fixed

across compartments, the signal fractions sum to 1, i.e.
∑Ncomp

k=1 fj = 1, meaning

that fNcomp
is not a free parameter but fixed as 1−

∑Ncomp−1
k=1 fk.

A general microstructural model comprises a mapping - or signal equation
- between underlying tissue-related parameters θ and acquisition parameters tn
(typically b-value and gradient direction), and a dMRI signal intensity Sn, i.e.

Sn = S0gn(θ, tn) (2)

where S0 is the signal intensity without diffusion weighting. The experimentally-
measured signal in the presence of noise is hence modelled as

yn = Sn + εn = S0gn(θ, tn) + εn (3)
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S=S0 g(θ,t)
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Fig. 1. Schematic of Bayesian hierachical model for a general microstructure model.
Top panel defines a general microstructure model, g that maps microstructure-related
parameters θ and acquisition parameters t to dMRI signal S. The microstructure pa-

rameters can be grouped by parameter type as θ =
{
{fk}Ncomp−1

k=1 , {xj}Jj=1

}
where fk

are the compartment signal fractions and xj are the other parameters. Second panel
defines the voxelwise likelihood function. Third panel displays the ROI-wide Gaussian
priors, note that θµ and Σ are learnt from the data for all ROIs. Fourth panel displays
the voxelwise parameter posterior distributions and corresponding parameter maps.
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where yn is the measured signal and εn is noise.
We now consider all measurements for a voxel i - i.e. the signal intensities at

all acquisition parameters t = {t1, ..., tN} - which we denote yi = [y1, ..., yN ]T .
The likelihood, assuming normally distributed noise with variance σ2

y, is therefore

p(yi|θi, S0, σ
2
y) = (2πσ2

y)−N/2 exp

(
−1

2σ2
y

N∑
n=1

(yn − S0gn(θi, tn))
2

)
(4)

where θi denotes the microstructural model parameter values in voxel i. Or-
ton et al. [8] demonstrated that the “nuisance parameters” S0 and σ2

y can be
marginalised out from Equation (4) to give the following marginalised likelihood

p(yi|θi) ∝
[
yTi yi − (yTi gi)

2/gTi gi
]−N/2

(5)

where gi = [g1(θi, t1), ..., gN (θi, tN )] are the model predicted signals for voxel i.

2.2 Parameter Transforms

Microstructure model fitting needs to enforce physically reasonable minimum
and maximum values of parameters; for example, diffusivities need to be positive.
Here we generalise the transforms used by Orton et al. [8] to enable arbitrary
minimum and maximum constraints. For a parameter p, we define a transform

p′ = log(p− pmin)− log(pmax − p). (6)

which maps the interval (pmin, pmax) to R. By defining the Bayesian prior on
the transformed parameter p′, we therefore constrain p between pmin and pmax.
Default values for pmin and pmax are set as the minimum and maximum values
defined in the Dmipy variable “model.parameter ranges”; however, they can also
be manually defined by the user.

2.3 Bayesian shrinkage priors

Orton et al. [8] used a multivariate Gaussian Bayesian shrinkage prior on the
IVIM model parameters, with the prior defined over a single user-defined ROI.
The Bayesian fitting method is generalised here to the multiple ROI case simply
by running the derived MCMC algorithm separately on the voxelwise dMRI data
from each ROI; however, note that here and throughout the methods section we
consider the single ROI case for brevity, without loss of generality. The prior
generalised for any microstructural model is denoted

p(θ|θµ, Σ) = N(θ; θµ, Σ) (7)

where θµ is a vector whose elements encode the prior means of the parameters, Σ
is their covariance and N(θ; θµ, Σ) denotes the multivariate normal probability
density function (PDF) with variable θ, mean θµ and covariance Σ. Again, we
emphasise that θµ and Σ are estimated from the data.
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To generalise from Orton et al.’s [8] two-compartment model to an arbitrary
multi-compartment model, all signal fractions must to sum to one. We enforce
this (following Harms et al. [3]) by modifying the prior to

p(θi|θµ, Σ) =

{
N(θi; θµ, Σ) if

∑n−1
j=1 fj ≤ 1

0 otherwise
(8)

To complete the model we define a hyper-prior on θµ and Σ as a non-
informative Jeffrey’s prior

p(θµ, Σ) = |Σ|−1/2 (9)

2.4 Posterior Distributions

Each ROI has its own posterior distribution, which can be written as [8]

p(θ1:M , θµ, Σ|y1:M ) ∝ p(y1:M |θ1:M )p(θ1:M |θµ, Σ)p(θµ, Σ)

where θ1:M = {θ1, θ2, ..., θM} are the parameters and y1:M = {y1, ...,yM} the
dMRI data for all voxels in the ROI. Substituting in equations (5), (7), (9) gives

p(θ1:M , θµ, Σ|y1:M ) ∝

(
M∏
i=1

[
yi
Tyi − (yi

Tgi)
2/gi

Tgi

]−N/2)(M∏
i=1

N(θi; θµ,Σ)

)
|Σ|−1/2

from which we can draw samples with an MCMC algorithm.

2.5 MCMC algorithm

The MCMC algorithm is derived here, and given as pseudocode in Algorithm 1.

ROI-wide parameters Following Orton et al. [8], the MCMC updates for
the ROI-wide prior parameters θµ and Σ are Gibbs moves. The conditional
distributions are (up to proportionality)

p(θµ|θ1:M , Σ,y1:M ) ∝
M∏
i=1

N(θi; θµ,Σ) = N(θµ;m,V )

where m = M−1
∑M
i=1 θi V = M−1Σ, and the second line comes from rearrang-

ing the multivariate normal PDF so that θµ is the variable. The MCMC update
is therefore sampled as follows

θµ ∼ N(m,V ) (10)

where N(m,V ) is a multivariate normal distribution with mean m and covari-
ance V . Following the same steps for Σ (see Orton et al. [8] for full details) gives
the MCMC update for Σ

Σ ∼W−1(Φ,M − 3) (11)

where Φ =
∑M
i=1(θi − θmu)(θi − θmu)T and W−1 is the inverse-Wishart distri-

bution.
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Voxelwise parameters For the non-signal fraction voxelwise parameters the
posterior distribution up to proportionality is

p(xi,j |xi,−j , {fi,k}
Ncomp−1
k=1 , θµ, Σ) ∝

[
yi
Tyi − (yi

Tgi)
2/gi

Tgi

]−N/2
N(θi; θµ, Σ)

(12)

where xi,j is the value of parameter xj in voxel i, xi,−j = {xi,1, ..., xi,j−1, xi,j+1, ..., xi,J}
denotes the set of all non-signal fraction parameters except xi,j , and {fi,k}

Ncomp−1
k=1

are the signal fractions for voxel i.
As in Orton et al. [8], we sample from this with a Metropolis-Hastings algo-

rithm. Proposed parameters are first sampled from Gaussian distributions as

x∗i,j ∼ N(xi,j , wxi,j
) (13)

where xi,j is the current value of the parameter, x∗i,j is the proposed parameter
value and wxi,j is the variance of the proposal distribution, which should reflect
the scale of the parameter and can be tuned for optimal algorithm performance.

The acceptance probability utilises the ratio of the posterior distributions for
xi,j and x∗i,j

α(xi,j → x∗i,j) = min

{
1,
p(x∗i,j |xi,−j , {fk}

Ncomp−1
k=1 , θµ, Σ)

p(xi,j |xi,−j , {fk}
Ncomp−1
k=1 , θµ, Σ)

}
(14)

where the values on the right of the posterior are the current parameter values
in the MCMC algorithm.

The signal fraction parameter MCMC moves are the same, except that the

posterior distributions now contain the terms enforcing
∑Ncomp

k=1 fk = 1, i.e.

p(fi,k|xi,1, ..., xi,J , fi,−k, θµ, Σ) ∝

{[
yi
Tyi − (yi

Tgi)
2/gi

Tgi

]−N/2
if
∑Ncomp−1
k=1 fk ≤ 1

0 otherwise

(15)

where fi,−k = {fi,1, ..., fi,k−1, fi,k+1, fi,K} are the other signal fractions apart
from fi,k. Again we sample proposed values as

f∗i,k ∼ N(fi,k, wfi,k) (16)

where fi,k is the current signal fraction. The acceptance probabilities are

α(fi,k → f∗i,k) = min

{
1,
p(f∗i,k|xi,1, ..., xi,J , fi,−k, θµ, Σ)

p(fi,k|xi,1, ..., xi,J , fi,−k, θµ, Σ)

}
(17)

Metropolis-Hastings Acceptance Ratio. We tuned the Metropolis-Hastings
jumping variances wθi during the burn-in period to achieve an acceptance ratio
that samples the posterior distribution efficiently. Following Orton et al. [8], at
every 100 MCMC steps we applied the update rule

wθi = wθi101/ (2 (101−Rθi)) (18)
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where Rθi is the number of times the proposed parameter update was accepted
in the previous 100 steps. This scheme aims to adjust the jumping variances
such that an acceptance rate of approximately 50% is achieved.

2.6 Models

The MCMC algorithm was tested using the ball-stick model, defined as

g(θ, t) = fpar exp (−bDpar(n.g)) + (1− fpar) exp (−bDiso) (19)

where b is the b-value, g is the gradient direction and n is the stick orientation,
which is parameterised by two angles φ1 and φ2 constrained such that φ1 ∈ (0, π)
and φ2 ∈ (−π, π). The signal fractions were constrained as fk ∈ (0.01− 0.99)
and the diffusivities as Dpar, Diso ∈ (0.1− 3)µm2/ms.

2.7 Algorithm implementation

Note that while all distributions have been presented in the linear scale, they
were calculated in log-scale for numerical convenience. Parameter values were ini-
tialised with a voxelwise least squares fit, estimated using the Dmipy brute2fine
option [1]. The MCMC algorithm was then run for 2000 steps with a burn-in
of 1000 steps; weights were updated every 100 steps during the first half of
the burn-in period. In our experience this was sufficient to sample the poste-
rior distributions, and aligns with the work of Harms et al. [3]. We calculated
model parameter posterior distributions and representative statistics from the
1000 MCMC samples after the burn-in. Parameter maps were generated using
the mean of the posterior distributions in each voxel.

2.8 Data

To test the MCMC algorithm’s ability to infer correct model parameter values,
we ran simulations using the Shepp-Logan phantom. We generated synthetic
images with a matrix size of 128 × 128 and defined ground truth parameters
in each major region (see Figure 3A, top row). We then simulated the signal
in each voxel using Dmipy’s simulate signal function with the same acquisition
parameters as the Human Connectom Project (HCP) data (see below), added
Gaussian noise to give a signal-to-noise ratio (SNR) of 10 in the b = 0 data,
and ran the MCMC algorithm on these synthetic datasets. We perturbed initial
parameter values to verify that the algorithm could find the global minimum.
Bayesian priors were defined over the whole phantom excluding the background
(i.e. one ROI).

We then applied our Bayesian model fitting approach on publicly-available
data provided by the HCP WU-Minn Consortium (48 Subjects Test Retest Data
Release, release date: Mar 01, 2017, available online at humanconnectome.org).
Data from a single subject was used. The white matter (WM), cortical gray
matter (GM), sub-cortical GM and ventricle ROIs derived from the Freesurfer
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Algorithm 1 MCMC algorithm for Bayesian model fitting of a general mi-
crostructural model. This pseudocode describes the algorithm for a single ROI.
For multiple ROIs, the algorithm is simply run separately on each ROI.

for voxels i = 1 to i = N do
Calculate initial values for voxelwise parameters: {xi,j}Jj=1, {fi,k}Ncomp

k=1 with
least squares estimation

end for
S ← number of MCMC steps
for MCMC steps s = 1 to s = S do
θ
(s)
µ ← sample from Equation (10)
Σ(s) ← sample from equation (11)
for voxels i = 1 to i = N do

for non-signal fraction parameters j = 1 to j = J do
εxi,j ← N(x

(s−1)
i,j , wxi,j )

x∗i,j ← x
(s−1)
i,j + εxi,j

calculate α(xi,j → x∗i,j) from Equation (14)
u← sample from unif(0, 1)
if u < α then
x
(s)
i,j ← x∗i,j

else
x
(s)
i,j ← x

(s−1)
i,j

end if
end for
for signal fraction parameters k = 1 to k = Ncomp − 1 do

εfi,k ← N(f
(s−1)
i,k , wfi,k )

f∗
i,k ← f

(s−1)
i,k + εfi,k

calculate α(fi,k → f∗
i,k) from Equation (17)

u← sample from unif(0, 1)
if u < α then
f
(s)
i,k ← f∗

i,k

else
f
(s)
i,k ← f

(s−1)
i,k

end if
end for
f
(s)
i,Ncomp

← 1−
∑Ncomp−1

k=1 fi,k
if s mod 100 = 0 then

for voxels i = 1 to i = N do
Update {wxi,j}Jj=1 and {wfi,k}

Ncomp−1

k=1 using Equation (18)
end for

end if
end for

end for
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T1 segmentations (these provided the best contrast between tissues) were trans-
formed into diffusion space via linear and non-linear registration between the
subject’s T1-weighted image and the b = 0 dMRI data. The MCMC algorithm
was applied with the Bayesian priors defined over these four ROIs.

3 Results

Figure 2 displays the output of several runs of the MCMC algorithm for a sin-
gle voxel in the Shepp-Logan data. The MCMC chains and posterior distribu-
tions demonstrate that voxelwise parameter estimates converged to the ground
truth value under a range of perturbations. Figure 3 compares the least squares
and Bayesian parameter maps with the ground truth. The Bayesian approach
more accurately replicated the ground truth and provided lower errors than least
squares approach, particularly in low SNR cases.

Figure 4 shows the MCMC algorithm results on the HCP data. The Bayesian
fit clearly removed some apparent outlier voxels when compared to the least
squares fit (see arrows).

4 Discussion and Conclusions

In this work we present an extension to previous approaches that enables Bayesian
hierarchical model fitting for a general microstructural model with arbitrary pa-
rameter constraints and regional priors. The algorithm is implemented by util-
ising and adapting the Dmipy software package, and is made publicly available

Fig. 2. MCMC output from the Bayesian ball-stick model fit on the Shepp-Logan phan-
tom data. The left panel shows three MCMC chains for the stick parallel diffusivity in
a single voxel; the initial parameter value in each run was given a different perturba-
tion. The right panel shows the posterior distribution from each run, calculated on all
samples after the burn-in of 1000 steps. The ground truth parameter value is indicated
by the black lines.
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Fig. 3. Ball-stick model parameter maps in the Shepp-Logan phantom synthetic im-
ages. A. Ground truth (top row), least-squares derived (middle row) and Bayesian de-
rived (bottom row) parameter maps for the stick parallel diffusivity (Dpar) in µm2s−1,
ball isotropic diffusivity (Diso) in µm2s−1, stick signal fraction (fpar) and elevation
orientation parameter (φ1) in radians. B. Relative error maps for the least-squares fits
(top row) and Bayesian fits (bottom row). Bayesian priors were defined over the whole
image. The mean relative error (ε̂) and mean absolute relative error (|ε̂|) are displayed
for each fitted parameter (both in %). Computation time for the Bayesian method was
approximately 1 hour.
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Fig. 4. Ball-stick parameter maps in the HCP data for the least squares fit (top row)
and Bayesian fit (bottom row). Parameters as Figure 3. The Bayesian priors were
defined over four ROIs as described in Methods section 2.8. Computation time for the
Bayesian method was approximately 3.5 hours.

at github.com/PaddySlator/dmipy-bayesian. On synthetic data, we show that
Bayesian fitting of the ball-stick model more accurately recovered ground truth
maps than least squares fitting, particularly for parameters more susceptible to
noise such as the stick parallel diffusivity. On HCP data, the algorithm reduced
the appearance of apparent outlier voxels.

Although high SNR images from the HCP were used as the test data here,
we anticipate the biggest gains of this approach will be seen in lower SNR data
and more complex models. This may enable estimation of richer microstructural
detail in a greatly reduced acquisition time.

The algorithm has limitations that motivate future work. The Bayesian ap-
proach assumes Gaussian noise, which may not be appropriate in all cases, par-
ticularly in low SNR cases. We also assumed that a Gaussian prior is suitable
for all parameters; however, this may not be the optimal choice, particularly for
orientation parameters where a flat prior may be more appropriate and could
enable improved orientation parameter maps over LSQ (our current Bayesian
implementation doesn’t dramatically improve orientation maps, see Figures 3
and 4). Alternative prior choices are an avenue for future work. Utilising prob-
abilistic segmentations, rather than the current hard-thresholded ROIs which
may bias parameter estimation in partial volume voxels, is possible, but may
complicate the MCMC inference. More complex model choices, as well as com-
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parisons with alternative model fitting methods (e.g. Harms et al. [3]), should
also be explored to better quantify the benefits of our Bayesian approach.

To conclude, we derive a general Bayesian hierarchical microstructural model
and an MCMC algorithm for model inference given dMRI data. The algorithm,
and corresponding open-source software, newly enables Bayesian model fitting
for a wide range of microstructure imaging techniques.
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